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vorgelegt am: 28.06.2010

wissenschaftliche Aussprache am: 10.09.2010

Gutachter: 1. Univ.-Prof. Dr.-Ing. habil. Wolfgang Fengler

2. Prof. Dr.-Ing. habil. Ilka Philippow

3. Prof. Dr. (ass.) Ahmed Ghoneim

urn:nbn:de:gbv:ilm1-2010000335



”Quality is never an accident; it is always the result of intelligent effort.”

John Ruskin

”Program testing can be used to show the presence of bugs, but never to show

their absence!” Edsger Dijkstra

”A clever person solves a problem. A wise person avoids it.” Albert Einstein

”It is not enough to do your best. You must know what to do and then do

your best.” W. Edwards Deming
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Zusammenfassung

In den letzten zehn Jahren hat sich die Domäne ”Software-Produktlinie” als eins der vielver-

sprechendsten Paradigmen der Softwareentwicklung entwickelt. Die wichtigsten Vorteile

eines solchen Ansatzes sind Verbesserungen in Produktivität, Time to Market, Produkt-

qualität und Kundenzufriedenheit.

Um die erforderliche Software-Qualitätssicherung zu erreichen, ist das Testen von Software-

Produktlinien von grosser Bedeutung. Das Anliegen dieser Arbeit besteht darin, möglichst

früh Tests für Software-Produktlinien zu entwickeln und einzuführen, um Fehler in frühen

Phasen zu erkennen. Die Kosten werden demzufolge wesentlich gegenüber dem Erkennen

der Fehler in späteren Phasen reduziert.

Die in dieser Arbeit vorgeschlagene Methode ist eine modellbasierte, wiederverwendungs-

orientierte Testmethode, ”Colored Model Based Testing for Software Product Lines” (CMBT-

SWPL). CMBT-SWPL ist ein anforderungsbasierter Ansatz für die effiziente Generierung

von Tests für Produkte in einer Software-Produktlinie. Dieser Testansatz ist für die Va-

lidierung und Verifizierung von Produktlinien vorgesehen. Es ist ein neuartiger Ansatz

für Produktlinien-Tests unter Einbeziehung von gefärbten Zustandsdiagrammen (CSCs),

wobei die Variabilität in frühen Phasen eines Produktlinienentwicklungsprozesses berück-

sichtigt wird. Genauer gesagt, wird die Variabilität in die Hauptkomponenten des gefärbten

Zustandsdiagramms eingebaut. Dementsprechend wird die Variabilität in den Testfällen

aufrechterhalten, welche sich aus dem Testmodell automatisch generieren lassen.

Während des Domain Engineerings wird die CSC aus dem Merkmalmodell abgeleitet.

Durch Färbung des State Chart kann das Verhalten mehrerer Varianten von Produktlinien

gleichzeitig in einem einzigen Diagramm modelliert werden und somit die Variabilität der

Produktlinie früh umgesetzt werden. Das CSC stellt das Testmodell dar, aus der die
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Testfälle mit Hilfe statistischer Tests abgeleitet werden können.

Während des Application Engineerings werden diese farbigen Testmodelle für eine be-

stimmte Anwendung der Produktlinie angepasst. Am Ende dieses Testprozesses werden

die Testfälle mit Hilfe statistischer Tests generiert und dann ausgeführt. Die Testergebnisse

sind dann bereit für die Bewertung. Darüber hinaus wird das CSC zwecks Verifikation und

Simulation in Gefärbte Petri Netze (CPN) umgewandelt.

Der wichtigste Vorteil der Anwendung der CMBT-SWPL-Methode ist die Früherkennung

von Fehlern in den Anforderungen, z.B wie Unklarheiten, Unvollständigkeit und Redun-

danz, was sich dann in Einsparungen bei Testaufwand, Zeit, Entwicklungs- und Wartungs-

kosten auswirkt.
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Abstract

Over the last decade, the software product line domain has emerged as one of the most

promising software development paradigms. The main benefits of a software product line

approach are improvements in productivity, time to market, product quality, and customer

satisfaction.

Therefore, one topic that needs greater emphasis is testing of software product lines to

achieve the required software quality assurance. Our concern is how to test a software

product line as early as possible in order to detect errors, because the cost of error detected

in early phases is much less compared to the cost of errors when detected later.

The method suggested in this thesis is a model-based, reuse-oriented test technique called

Colored Model Based Testing for Software Product Lines (CMBT-SWPL). CMBT-SWPL

is a requirements-based approach for efficiently generating tests for products in a soft-

ware product line. This testing approach is used for validation and verification of product

lines. It is a novel approach to test product lines using a Colored State Chart (CSC), which

considers variability early in the product line development process. More precisely, the vari-

ability will be introduced in the main components of the CSC. Accordingly, the variability

is preserved in test cases, as they are generated from colored test models automatically.

During domain engineering, the CSC is derived from the feature model. By coloring the

State Chart, the behavior of several product line variants can be modeled simultaneously

in a single diagram and thus address product line variability early. The CSC represents

the test model, from which test cases using statistical testing are derived.

During application engineering, these colored test models are customized for a specific

application of the product line. At the end of this test process, the test cases are generated

again using statistical testing, executed and the test results are ready for evaluation. In
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addition, the CSC will be transformed to a Colored Petri Net (CPN) for verification and

simulation purposes.

The main gains of applying the CMBT-SWPL method are early detection of defects in

requirements, such as ambiguities incompleteness and redundancy which is then reflected

in saving the test effort, time, development and maintenance costs.
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Chapter 1

Introduction

”‘Whatever you can do or dream, begin it.”’ Johann Wolfgang von Goethe (1749 - 1832)

1.1 Motivation and Scope of Research

The product line approach to software development is based on the systematic, large scale

reuse of development artifacts such as architecture, design, and components among a set of

functionally similar products. It promises, among other things, to shorten the development

time of software systems and to significantly reduce development and maintenance costs.

The software product line development is presented in the following table 1.1:

Domain Engineering

(Development for Reuse)

Application Engineering

(Development with Reuse)

During the domain engineering, reusable

artifacts are produced.

During application engineering, applica-

tions are built from these artifacts to cre-

ate customer specific applications.

Table 1.1: Software Product Lines Development

Research in the field of software product lines to date has focused primarily on analysis,

design, and implementation. In particular, the quality assurance challenges that arise in a

Technical University of Ilmenau
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product line context have been addressed insufficiently so far, and there is little guidance

for product line organizations on how to systematically assure the quality of their product

lines and reusable artifacts.[KM04]

To achieve the promised improvements, however, the components and artifacts intended

for reuse must be of high quality since the components are potentially reused in many

family members. Thus a defect (figure 1.1) in one of the components or even in the core of

the family has effects on many delivered products and carries the risk of very high costs to

solve such defects. Thus, more than for traditional software development, testing becomes

a very crucial part of every product line effort.

Defect in one 
component

Reusing defected 
components

Figure 1.1: Defected components and their influence on PL infrastructure

Therefore, the emphasis (figure 1.2) in this thesis is on testing software product lines as

Technical University of Ilmenau
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Early Testing to achieve 
software quality 
assurance. 

Emphasis

Reducing test effort 

Reuse correct test artifact

Figure 1.2: Thesis’s Emphasis

early as possible in order to reduce the test effort and development and maintenance costs

targeting a competitive advantage in the market.

Each software development paradigm requires a suitable test model. Accordingly, soft-

ware product line engineering needs also an appropriate test model to complete the whole

product engineering.[JHQJ08]

The main challenge for testing is how to deal adequately with both the separation of

product lines into domain engineering and application engineering and the presence of

variability. [PBvdL05]

This thesis suggests a new system test method for software product lines, the Colored

Model Based Testing for Software Product Lines (CMBT-SWPL), based on Col-

ored State Charts. It describes two separate and closely related sub-models of domain test

and application test.

In the next section, the main challenges that face system testing in product lines are

discussed in more detail.

Technical University of Ilmenau
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1.2 Product Line’s System Testing Challenges

Main challenges, problems and obstacles (figure 1.3) that face system testing in the product

line paradigm are presented briefly:

Complexity of 
software

Reuse

Mass Customisation

Separation of product 
line  in DE & AE

Variability

No running 
application in DE

Single systems testing 
techniques not 

suitable

V & V 

not supported early

Figure 1.3: Challenges of System Testing in Product Lines

1. Software is becoming complex.

2. The software product line paradigm focuses on mass customization, which is the

ability to efficiently create many variations of a product. It is a big advance in

both manufacturing and software engineering. The key to mass customization is to

capitalize on the commonality and to effectively manage the variation in a product

line. Therefore, producing goods and services to meet individual customer’s needs

Technical University of Ilmenau
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should be done with the utmost mass production efficiency.

3. Reuse is essential.

However, reuse is double-edged: it scales up everything, including the consequences

of possible flaws. Then, quality becomes critical. Without quality, the dangers of

reusing components may well offset the advantages. Therefore, reuse must be dealt

with care.

4. The main challenge for testing is how to deal adequately with the separation of

product line into domain engineering and application engineering.

5. The next challenge testing is facing is that, in the domain engineering, there is no

running application. We can only test components or integrated chunks of data. The

applications are available only in application testing.

6. The presence of variability in product lines is another challenge. In an ideal world,

it is desired to test every possible combination in an application. However, in most

cases, this simply is not possible, due to the number of possible inputs, combinations

of features and configurations, and paths through the code. A simple application

can have hundreds or thousands of possible input and output combinations. ”Cre-

ating test cases for all of these possibilities is impractical. Complete testing of a

complex application would take too long and require too many human resources to

be economically feasible.” [Mye04]

7. The testing techniques used in single systems can not be directly applied in product

lines. They must be adapted to suit the nature of product lines.

8. Early Validation and Verification is not fully supported. Many testing techniques

are performed late, when there is a running application. Thus a defect in one of the

components or even in the core of the family has effects on many delivered products

and poses the risk of very high costs to solve such defects.
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1.3 Contribution of Thesis

The goal of this thesis is to establish an efficient overall testing process using the CMBT-

SWPL method in order to overcome the problems and obstacles mentioned above. Testing

aspects have to be considered right from the beginning of the development to ensure that

requirements and design support testing.

The method (figure 1.4) should facilitate the following:

• Providing reusable test artifacts.

• Early Validation and Verification.

• An appropriate test model that can represent the product line variants in a compact

way and cope with the software product line engineering challenges.

• Systematic test case generation.

• Reducing development and maintenance effort and cost.

Section 1.5 shows the main research area on which the method is built. On the other hand,

chapter 4 discusses the main requirements for the CMBT-SWPL method in more details.

It is worthy of note that the domain of interest is an embedded product line. Therefore,

a suitable test model to represent the behavior of the embedded product line should be

selected. The behavioral test model chosen, was the Colored State Chart (CSC). The idea

of colored models has been originally examined before by [FFDD02][FFD02][Fen04]. It has

been performed for real-time complex systems. The idea was adjusted to suit testing an

embedded product line system of a Universal Remote Control (URC). Furthermore, the

CSC is used to systematically generate test cases. The thesis shows how the new feature,

”‘color”’, was incorporated into the existing rules.
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Figure 1.4: CMBT-SWPL Method

1.4 Layout of the Study

This thesis is organized as follows. Chapter 1 introduces challenges facing system test-

ing, contribution of the thesis as well as research area on which the test method is built.

Chapter 2 is an extensive study of software product lines and product line testing. Fun-

damentals in Quality Assurance, Testing, Petri Nets, Colored Petri Nets, State Charts,

Colored State Charts and embedded reactive systems are presented in chapter 3. Chapter

4 discusses the main requirements of CMBT-SWPL method. Chapter 5 demonstrates the

case study used for the description and evaluation of the methodology developed in this

work. The main aspects for applying the CMBT-SWPL method are presented in chapter

6. Chapter 7 introduces the details of the proposed methodology ”Colored Model Based
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Testing for Software Product Lines (CMBT-SWPL)”. Respectively and finally, chapter 8

and 9 evaluate and summarize this work.

1.5 Research Area

The following figure 1.5 demonstrates the research area of this thesis.

Research Area

Figure 1.5: Research Area
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Chapter 2

State of the Art

”What keeps me going is goals.” Muhammad Ali

2.1 Software Product Line

This chapter is mainly a state of the art study of software product lines and software

product line testing. Software reuse at the beginning emphasizes that in order to apply

the product line concept, planned strategic reuse should be targeted. Next, the software

product line paradigm is presented with its different terminologies, examples, subprocesses,

variability, features and feature modeling and promised, if applied correctly, considerable

benefits in terms of reduced costs, shortened time-to market and increased product quality.

Moreover, section 2.1 demonstrates our own developed product line reference process used

in this thesis to introduce the development artifacts in parallel to the test artifacts for

the different test approaches relevant to our domain of interest. Section 2.2. starts with

demonstrating the three main approaches for testing product lines, namely CMBT-SWPL,

ScenTED and CADeT and ends with listing related work in testing software product lines

followed by the main state-based approaches for testing software product lines. The chapter

ends with demonstrating the different testing strategies for software product lines.
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2.1.1 Software Reuse

The dream of massive software reuse is as old as software engineering itself[vdLSR07]. From

subroutines in the 1960s through modules in the 1970s, objects in the 1980s, and compo-

nents in the 1990s, software engineering has been the story of a continuously ascending

spiral of increasing capability and economy battled by increasing complexity(figure 2.1).

Numerous attempts to reuse software were made, but usually with little success. These

2000s
SOFTWARE PRODUCT LINES

PRODUCT LINES = STRATEGIC REUSE

Figure 2.1: Reuse History (adjusted after [Nor08])

reuse initiatives were usually based on an approach focusing on small-scale and ad hoc

reuse (typically on the code-level - or at least within a development phase). Software

reuse has been one of the goals in software engineering since 1968, when the term soft-

ware engineering was first coined. Traditional approaches to software reuse have proved

ineffective in addressing the software crisis in practice. Now at the dawn of the new mil-
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lennium, comes the next great turn of the cycle. The field of software reuse has evolved

from the reuse of individual components toward the large-scale reuse with software prod-

uct lines. [Gom04][vdLSR07] Studies have shown that organizations can yield remarkable

improvements in productivity, time to market, product quality and customer satisfaction

by applying this approach.[Eri03]

Reuse Definition:

”Reuse is the process of implementing or updating software systems using ex-

isting software assets. Assets can be specifications, design, code, user docu-

mentation, or anything associated with software. Reuse is an integral part of

every engineering discipline.”[Jor97]

Reuse Benefits

Expected benefits of reusability are numerous; it should [Mey00]:

• Improve timeliness (in the sense of bringing your product faster to market);

• Decrease maintenance effort (since it is not the programmer’s duty anymore, but the

duty of the software provider);

• Increase reliability (by relying on components produced by well-known, reputed third

parties);

• Boost efficiency (since developers can reuse the algorithms and data structures that

best fit their needs);

• Lead to better consistency of the software design (since programmers are likely to

apply the same design rules as the ones conveyed by the libraries they reuse);

• Help preserve the know-how of the best developers by contributing this fragile re-
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source to a well of permanent assets.

2.1.2 Software Product Lines’ Terminologies

This part presents software product lines as an approach to software reuse. Software

product line is a new paradigm that aims to reduce the development time and cost and

increase software quality. This reduction is achieved by reusing software artifacts in a

systematic and proactive way, not like the previous traditional opportunistic reuse way

(table 2.1). The traditional opportunistic reuse way was based on putting general software

components into a library in the hope that opportunities for reuse will occur. on the other,

hand software product lines are based on proactive reuse, which is a planned strategic

reuse. ”It is important to realize that a software product line never happen by accident.

For any software reuse initiative to be successful, it has to be a carefully planed and

enforced activity.”[Eri03]

Previous Efforts Software Product Lines

Opportunistic Software Reuse Proactive Software Reuse

Table 2.1: Proactive versus Opportunistic Software Reuse

The following definitions are fundamental to understand the concept of software product

line([PBvdL05]):

The classic definition for a software product line is:

”A software product line is a set of software-intensive systems that share a

common, managed set of features satisfying the specific needs of a particular

market segment or mission and that are developed from a common set of core

assets in a prescribed way. [CN01]”

Platform Definitions:
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”A platform is any base of technologies on which other technologies or pro-

cesses are built.”

”A platform is, in the software context, a collection of reusable artifacts.”

Mass Customisation Definition:

”Mass customisation is the large-scale production of goods tailored to individual

customer’s needs.”

Domain Engineering Definition:

”Domain engineering is the process of software product line engineering in

which the commonality and the variability of the product line are defined and

realised.”

Application Engineering Definition:

”Application engineering is the process of software product line engineering in

which the applications of the product line are built by reusing domain artifacts

and exploiting the product line variability.”

2.1.3 Typical Examples of Software Product Lines

The idea of a product line is not new. There are examples of product lines in ancient

history; the pyramids of Egypt (figure 2.2 on page 14) might have been the first product

line! A modern example of product lines comes from the airline industry, with the Euro-

pean Airbus A-318, A-319, A-320, and A-321 airplanes, which share common product fea-

tures, including jet engines, navigation equipment, and communication equipment[Gom04].

Other examples of companies applying product lines are as diverse as Boeing, Ford and

McDonalds[Eri03].
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Figure 2.2: A product line from ancient history: The pyramids of Egypt[Gom04]

2.1.4 The Software Product Line Paradigm

The interest in software product lines emerged from the field of software reuse when de-

velopers realized that they could obtain much greater reuse benefits by reusing software

architectures instead of reusing individual software components. [Gom04]

The software product line engineering paradigm is divided into two processes: the domain

engineering and the application engineering processes.

Domain Engineering:

During domain engineering:(see figure 2.3) [vdLSR07] reusable artifacts are produced to

create a product platform that can be used as a common baseline for all products within a

product family; i.e. the core assets are built for all members of the product line. The core

assets are the artifacts used in the development of the product line such as requirement,

design, implementation and test artifacts. The domain engineering process itself is further

divided into 4 sub-processes: domain requirements engineering, domain design, domain

realisation and domain testing (table 2.2) (Terms are defined in the Glossary on page 145).
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Domain Engineering Development Process:

Sub-process Artifacts produced = core assets

1. Domain Requirements Engineering Common features & the variability of a product line

2. Domain Design A reference architecture

3. Domain Realisation Generic components

4. Domain Testing Domain test artifacts

Table 2.2: Domain Engineering Process

Figure 2.3: Platform versus Mass Customization

Application Engineering: On the other hand, the application engineering[vdLSR07] is

also divided into 4 sub-processes: application requirements engineering, application design,

application realisation and application testing (table 2.3) (Terms are defined in the Glossary

on page 145). The core assets, or artifacts, are reused to build a sequence of applications.

The different applications are each customized, or tailored, to the needs of the specific

customers or stakeholders by selecting different combinations of features from among those

defined in the domain-engineering of the product line. Each of these applications, built
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using the product-line assets (what Gomaa [Gom04] calls the product-line repository), is

a member of the product line [Lut07]. To conclude, in application engineering customer-

specific applications are built by binding the variability and reusing the domain artifacts.

Any unsatisfied requirements (see figure 2.4), errors and adaptations are sent back to the

Application Engineering Development Process:

Sub-process Artifacts produced

1. Application Requirements Engineering Application requirements specification

2. Application Design Application architecture

3. Application Realisation A running application

4. Application Testing Application test artifacts

Table 2.3: Application Engineering Process

domain engineering to perform any required changes on the reusable assets and then they

are stored again in the repository. The process of updating the reusable assets, selecting

features, deriving and testing each application is repeated until the applications are ready

to be delivered to the customers.[Oli08]

Figure 2.4 is the Product Line Engineering Reference Process which the author has devel-

oped as a reference process in order to compare the different test methods that are going

to be added later to this model. This reference process was influenced by Klaus Pohl’s

[PBvdL05], Gomaa’s [Gom04] frameworks. In figure 2.4 we can see various standard de-

velopment artifacts that are going to be extended with the various test artifacts for each

approach including our own colored approach (CMBT-SWPL).

Therefore, this work is keen to demonstrate the test development method suggested in

parallel to the development phase and similarly into two test processes like the domain en-

gineering process and the application engineering process. Thus figure 2.4 will be extended

to express the different as well as suggested test methods demonstrated in figure 2.5, which
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facilitates comparing the main different test methods dealing with testing software product

lines in the literature.
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2.1.5 Variability

Software product lines support product diversification (figure 2.6), which means that the

software is prepared for change by identifying the commonalities and variabilities within a

family of products. Variability is defined as the ability of a software system or artifact to

be efficiently extended, changed, customized or configured for use in a particular context.

Variability is often expressed in the form of so-called variation points. A variation point

typically has an associated set of variants (options). A variant is first introduced (made

explicit) and then bound (selected) at a specific phase (moment) during the development

or deployment process, e.g., at run-time. Examples of variants may range from parameter

types, source code constructs and functions to components, Dynamic Link Libraries (DLLs)

and stand-alone subprograms. A variation point can be seen as an explicit placeholder in

the product line architecture that accommodates product specific functionality in the form

of variants.[JKB08]

Most Product Lines offer more potential variability than is in use at any one time, and

testing all possible variants is usually impossible and in some cases considered a waste of

time. Testing just those variants produced is already a difficult problem where there is a

high number of variants. Because of this variability, testing a product Line also represents

a significant challenge.
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Variability Variability Variability

Core

Variability Variability

Variant n

Variability

Variant 2

Variability Variability

Variant 1

Figure 2.6: Software Product Lines support Product Diversification

2.1.6 Feature & Feature Modelling

The traditional mode of software development is to develop single systems-that is, to de-

velop each system individually. To model and design families of systems, the analysis and

design concepts for single product systems need to be extended to support software prod-

uct lines. For software product lines, the development approach is broadened to consider

a family of software systems. This approach involves analyzing what features (functional

requirements) of the software family are common, optional, and alternative. After fea-

ture analysis, the goal is to design a software architecture for the product line, which

has common components (required by all members of the family), optional components
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(required by only some members of the family), and variant components (different ver-

sions of which are required by different members of the family). Instead of going back

to square one, the developer derives applications by adapting and tailoring the product

line architecture[Gom04]. The following two definitions from [Bos00] and [Rie03] were

combined into the following feature definition.

”Features are a logical unit of behavior that is specified by a set of functional

and quality requirements and represent an aspect valuable to the customer.”

From a set of features, a software product line can be generated that shares common

features and differs in other features [AK10]. In particular, features are characteristics

used to differentiate between members of the product line and hence identify the common

and variable functionality of a software product line.

The feature concept is not an object oriented one, and it is not used in UML modeling

of single systems. [Gom04] Features may be structured in feature models. These are

hierarchical tree illustrations of features. Feature models describe the system family in an

early stage of the development cycle and are used to specify members of a product-line.

To sum up, features may serve as a means of [SPH04]:

• modeling large domains

• managing the variability of PL products

• encapsulating system requirements

• guiding the PL development

• driving marketing decisions

• future planning

• communication between system stakeholders
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2.2 Software Product Line Testing

2.2.1 Introduction

System testing of a product line has the same goal as testing of a single system, which

is checking the quality of software systems. The test methods applied in single systems

can not be directly used in testing the product line. They have to be adapted, and new

testing techniques have to be developed. Thus, testing in product lines requires a more

efficient test approach than testing in a single system. The main challenge for domain

testing is how to deal adequately with both the separation between domain engineering

and application engineering and the presence of variability.

Although reuse is a core concept in software product line development, testing does not

yet fully benefit from reuse. If delayed and not treated properly, testing can become a

serious bottleneck in product line development[Met06]. Therefore, the idea of proactive

reuse should be extended to product line testing [RKPR05].

As depicted in (figure 2.4) and in (figure 2.5) the Product Line Engineering Reference

Process suggested here, which represents the two phases of development the product line

development phase called the domain engineering phase and the product development

phase called the application engineering phase, will be extended with a testing method

as it is performed in the development [JHQJ08]. Accordingly, test development for the

product line should be done in the two phases of domain engineering and in application

engineering respectively.

Reusing test artifacts and model based testing are the two main aspects (figure 2.7)

taken into consideration when comparing (figure 2.8) the different approaches dealing with

software product line testing[RKPR05].
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Figure 2.7: Reuse and MBT - Aspects of comparison

Approaches Reuse MBT

McGregor 20012001

&

Geppert et  al. 20042004

YES NO

Nebut et al. 

20062006

YES NO

Hartmann et al.  

20042004

NO YES

Bertolino

and Gnesi

2006 2006 

YES NO

ScenTED 20052005 YES YES

CADeT 20082008 YES YES

CMBT 20102010 YES YES

Figure 2.8: Comparison on Supporting Reuse Or/And Model Based Testing

The next three subsections demonstrate the three main approaches for testing product

lines, namely CMBT-SWPL, ScenTED and CADeT. Section 2.2 ends with listing related

work in testing software product lines followed by the main state-based approaches for

testing software product lines. At the end, the different testing strategies for software

product lines are explained and compared.

Technical University of Ilmenau



24 CHAPTER 2

2.2.2 Colored Model Based Testing for Software Product Lines

(CMBT-SWPL)

The Colored Model-Based Testing for Software Product Lines (CMBT-SWPL)(figure 2.9),

which is a model based, reuse-oriented technique, is our contribution regarding testing

product lines. It is a new requirements based system testing method used for validation

and verification of product lines. The CMBT-SWPL approach is explained in more detail

under section 7.3 (see page 109).
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2.2.3 Scenario based TEst Derivation(ScenTED)

As depicted in figure 2.10, the ScenTED technique (Scenario based TEst case Derivation)

aims at reducing effort in product family testing. ScenTED is a model-based, reuse-oriented

technique for test case derivation in the system test of software product families.

The ScenTED technique is based on the assumption that requirements have been specified

as use cases. Thus, during activity A (the left part of figure 2.10) requirements specified in

use cases are modeled as domain activity diagram containing variability. Activity diagrams

are used as test model from which test case scenarios are derived. During activity B (the left

part of figure 2.10) in domain engineering test case scenarios are derived using an adapted

coverage criterion for product family engineering. The test case scenarios are specified

in sequence diagrams. Test case scenarios describe the test engineer’s actions and the

responses of the system without specifying concrete test data. Activity C (the right part

of figure 2.10) comprises the adaptation of these test case scenarios for a customer-specific

application. Traceability information (depicted by the dotted arrows) created during the

first two activities is required to perform activity C.

(ScenTED) technique was applied to an industrial case study at Siemens. A test engineer

uses ScenTED to create hierarchical activity diagrams from the use cases of an SPL, and

then uses the ”variant” stereotype to identify decision nodes and activities in the activity

diagrams that correspond to variation points. The test engineer uses ScenTED to trace

paths from the activity diagrams during SPL engineering to satisfy the branch coverage

testing criterion, and then convert these paths to test specifications, which can be manually

customized for an application derived from the software product line.
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2.2.4 Customizable Activity Diagrams, Decision Tables and Test

Specifications(CADeT)

As depicted in figure 2.11, the CADeT Approach, (Customizable Activity Diagrams, De-

cision Tables and Test Specifications) is a feature-oriented model-based functional test

design method for software product lines. CADeT is incorporated within the Product Line

UML-Based Software Engineering(PLUS) method described in [Gom04]. CADeT extends

PLUS to create activity diagrams and decision tables from the use case and feature mod-

els of a Software Product Line (SPL). The decision tables are used to generate reusable,

functional system test specifications for a SPL. During SPL engineering, PLUS is used to

create feature and use case requirements models, and CADeT is used to develop customiz-

able activity diagrams, decision tables, and test specifications from these models. During

application engineering, PLUS is used to derive one or more applications from the SPL,

and CADeT is used to select and customize the test specifications for each application.

Each derived application is then tested using the test specifications derived using the same

feature model.

In CAdeT, SPL Test Modeling consists of creating activity diagrams from use cases to

provide greater precision in the use case descriptions, creating decision tables to formalize

the test specifications, and defining a feature based test plan that provides test coverage

of all use case scenarios, all features, and selected feature combinations of a SPL. Feature-

based Test Derivation consists of deriving the test specifications for the derived application,

selecting the test data, and testing the application.[OG09]
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2.2.5 Related Work for Software Product Line Testing

Table 2.4 and table 2.5 represent related work in Software Product Line Testing.

McGregor

[McG01]

McGregor et al. discusses the overall issues for product line

testing and assumes that product line test development starts

from requirements. McGregor developed a testing process for the

requirements-based testing of core assets and applications of a soft-

ware product line. This process described how test management

activities, requirements-based testing strategies, and test specifi-

cations could be adapted to fit within a software product line de-

velopment process. He points out the importance of a well-defined

process for testing software product lines.

Kolb

[Kol03]

Kolb discusses the challenges facing testing software product lines

and highlights some problems particular to testing software prod-

uct lines, such as reusing generic tests and test results, and choos-

ing which variants to test from a potentially large number of vari-

ants. He outlines an approach that helps testing product lines

more effectively and efficiently.

Bertolino and Gnesi

[BG04]

Bertolino et al. developed Product Line Use case Test Optimiza-

tion (PLUTO), a method of creating tests from the use case de-

scriptions of a software product line. Variation points in a use case

description are tagged to create a Product Line Use Case (PLUC)

description. The tags in a PLUC identify alternative, optional and

parametric variation points. They then applied category partition

testing to product line use cases.

Table 2.4: Related Work for Software Product Line Testing 1/2
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Nebut et al.

[NFTJ03]

Nebut et al.’s technique created customizable use case contracts

for a software product line, customized these contracts for an ap-

plication derived from a software product line and then applied

predicate-based testing coverage criteria on these contracts.

Kamsties et al.

[KPRR03]

Kamsties et al. created activity diagrams from software product

line use cases and then applied parameterization, fragmentation

and segmentation techniques to these activity diagrams in order

to create reusable test cases.

Hartmann et al.

[HVFR05]

Hartmann et al. developed a tool that converts activity diagrams

to category partition tests for a system, and then extended that

tool for a software product line. A test engineer maps product

configurations to nodes and transitions in the activity diagrams.

Selecting a product configuration selects and enables the nodes

and transitions in the activity diagrams that correspond to that

product configuration.

Geppert et al.

[GLRW04]

Geppert et al. investigated the problem of test reuse in a soft-

ware product line. System tests were parameterized to make them

reusable and a decision tree was used to guide the test selection

and customization for an application of the software product line.

Table 2.5: Related Work for Software Product Line Testing 2/2
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2.2.6 State-based Software Product Line Testing

Table 2.6 represents related work in state-based Software Product Line Testing.

Offutt and Abdurazik

[OA99]

UML state machines are used by Offutt and Abdurazik to derive test

cases automatically.

El-Fakih et al.

[EFYvB02]

They consider testing during product life cycle. They reduce the test

effort by testing only the modified elements of a new product version.

Weissleder et al.

[WSS08]

They propose the reuse of test models for automatic model-based test

generation. They define an approach to reuse state machines for context

classes from a class hierarchy. This state machine can also be used to

describe the behaviour of this class’ subclasses. They focus on UML state

machines, OCL constraints, and inheritance relationships. The approach

allows to test all products of a product line based on one behavioural

test model. Test cases are generated automatically from UML models

with special focus on inheritance as one part of object-orientation. The

automation of the test case creation reduces the effort for repeated test

creation. In this approach, the differences between the product variants

can be expressed by pre-/postconditions or attribute values of context

classes.

Luna and Gonzalez

[LG08]

They argue that the behavior of product lines can be specified, by ex-

tending UML State Charts by introducing variability in their main com-

ponents. Their contribution is the proposal of a rule-based approach

that defines a transformation strategy from extended State Charts to

concrete UML State Charts. This is accomplished via the use of fea-

ture models in order to describe the common and variant components

in such a way that, starting from different feature configurations and

applying the rule-based method, concrete state machines corresponding

to different products of a line can be obtained.

Table 2.6: State-based Software Product Line Testing
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2.2.7 Testing Strategies for Software Product Lines

The following table 2.12 represents the testing strategies available for software product line.

Those testing strategies should consider the product line variability and the differentiation

between the two development processes, i.e. domain and application engineering.[PBvdL05]

As the first two strategies, BFS and PAS, have obvious shortcomings, they are not rec-

ommended. The two remaining strategies, namely the SAS and CRS are reasonable.

[PBvdL05] recommends to combine the two strategies to keep the strong points in both of

them.
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Chapter 3

Fundamentals

”Goals are not only absolutely necessary to motivate us. They are essential to really keep

us alive.” Robert H. Schuller

3.1 Quality Assurance and Testing

3.1.1 Introduction

Software testing is one of the most important phases in software engineering, and it plays

an essential role in software quality assurance. Therefore, testing and quality assurance of

embedded product lines, which is the main focus of this thesis, become extremely important

to the success of embedded product line development, because a single defect may affect

many components in the product line.[GTW03]

There are several different terms that need to be clarified (table 3.1) before explaining

what is meant by testing and quality assurance.
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Term Meaning

Mistake A human action that produces an incorrect result.

Fault An incorrect step, process, or data definition in a computer program.

The outgrowth of the mistake. (Potentially leads to a failure.)

Failure An incorrect result. The result (manifestation) of the fault (e.g., a crash).

Error The amount by which the result is incorrect.

Table 3.1: Different terms for errors[Kit95]

3.1.2 Computer System Failures caused by Software Bugs

• Email services of a major smartphone system were interrupted or unavailable for nine

hours in December 2009, the second service interruption within a week, according to

news reports. The problems were believed to be due to bugs in new versions of the

email system software.

• A news report in January 2009 indicated that a major IT and management consulting

company was still battling years of problems in implementing its own internal ac-

counting systems, including a 2005 implementation that reportedly ”was attempted

without adequate testing”.

• Software system problems at a large health insurance company in August 2008 were

the cause of a privacy breach of personal health information for several hundred

thousand customers, according to news reports. It was claimed that the problem was

due to software that ’was not comprehensively tested’.

• Software problems in the automated baggage sorting system of a major airport in

February 2008 prevented thousands of passengers from checking baggage for their

flights. It was reported that the breakdown occurred during a software upgrade,

despite pre-testing of the software. The system continued to have problems in sub-
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sequent months.

• In November of 2007 a regional government reportedly brought a multi-million dol-

lar lawsuit against a software services vendor, claiming that the vendor ’minimized

quality’ in delivering software for a large criminal justice information system and the

system did not meet requirements. The vendor also sued its subcontractor on the

project.

• A software problem contributed to a rail car fire in a major underground metro

system in April of 2007 according to newspaper accounts. The software reportedly

failed to perform as expected in detecting and preventing excess power usage in

equipment on new passenger rail cars, resulting in overheating and fire in the rail

car, and evacuation and shutdown of part of the system.

• Tens of thousands of medical devices were recalled in March of 2007 to correct a

software bug. According to news reports, the software would not reliably indicate

when available power to the device was too low.

• A September 2006 news report indicated problems with software utilized in a state

government’s primary election, resulting in periodic unexpected rebooting of voter

checkin machines, which were separate from the electronic voting machines, and

resulted in confusion and delays at voting sites. The problem was reportedly due to

insufficient testing.

• In early 2006 problems in a government’s financial monitoring software resulted in

incorrect election candidate financial reports being made available to the public.

The government’s election finance reporting web site had to be shut down until the

software was repaired.

• Trading on a major Asian stock exchange was brought to a halt in November of 2005,

reportedly due to an error in a system software upgrade. The problem was rectified
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and trading resumed later the same day.

• In July 2004 newspapers reported that a new government welfare management system

in Canada costing several hundred million dollars was unable to handle a simple

benefits rate increase after being put into live operation. Reportedly the original

contract allowed for only 6 weeks of acceptance testing and the system was never

tested for its ability to handle a rate increase.

• A bug in site management software utilized by companies with a significant per-

centage of worldwide web traffic was reported in May of 2004. The bug resulted in

performance problems for many of the sites simultaneously and required disabling of

the software until the bug was fixed.

• News stories in the fall of 2003 stated that a manufacturing company recalled all

their transportation products in order to fix a software problem causing instability in

certain circumstances. The company found and reported the bug itself and initiated

the recall procedure in which a software upgrade fixed the problems.

• In March of 2002 it was reported that software bugs in Britain’s national tax system

resulted in more than 100,000 erroneous tax overcharges. The problem was partly

attributed to the difficulty of testing the integration of multiple systems.

• A review board concluded that the NASA Mars Polar Lander failed in December 1999

due to software problems that caused improper functioning of retro rockets utilized

by the Lander as it entered the Martian atmosphere.

• In early 1999 a major computer game company recalled all copies of a popular new

product due to software problems. The company made a public apology for releasing

a product before it was ready.

• In April of 1998 a major U.S. data communications network failed for 24 hours,

crippling a large part of some U.S. credit card transaction authorization systems as
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well as other large U.S. bank, retail, and government data systems. The cause was

eventually traced to a software bug.

• January 1998 news reports told of software problems at a major U.S. telecommu-

nications company that resulted in no charges for long distance calls for a month

for 400,000 customers. The problem went undetected until customers called up with

questions about their bills.

• A retail store chain filed suit in August of 1997 against a transaction processing

system vendor (not a credit card company) due to the software’s inability to handle

credit cards with year 2000 expiration dates.

• On June 4 1996 the first flight of the European Space Agency’s new Ariane 5 rocket

failed shortly after launching, resulting in an estimated uninsured loss of a half billion

dollars. It was reportedly due to the lack of exception handling of a floating-point

error in a conversion from a 64-bit integer to a 16-bit signed integer.[Cen07]

3.1.3 Reasons for Bugs in Software

• Miscommunication or no communication - as to specifics of what an application

should or shouldn’t do (the application’s requirements).

• Software complexity - the complexity of current software applications can be difficult

to comprehend for anyone with no experience in modern-day software development.

• Programming errors - programmers, like anyone else, can make mistakes.

• Changing requirements.

• Time pressures - scheduling of software projects is difficult at best, often requir-

ing a lot of guesswork. When deadlines loom and the crunch comes, mistakes are

made.[Cen07]
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3.1.4 Different Definitions for Testing

In the literature many definitions [Kit95] for testing are found:

(1) Establishing confidence that a program does what it is supposed to do (Hetzel,1973).

(2) The process of executing a program or system with the intent of finding errors (Myers, 1979).

(3) Detecting specification errors and deviations from the specifications.

(4) An activity aimed at evaluating an attribute or capability of a program or system (Hetzel,

1983).

(5) The measurement of software quality (Hetzel, 1983).

(6) The process of evaluating a program or system.

(7) Verifying that a system satisfies its specified requirements or identifying differences between

expected and actual results.

(8) Confirming that a program performs its intended functions correctly.

(9) The process of operating a system or component under specified conditions, observing or

recording the results, and making an evaluation of some aspect of the system or component

(IEEE/ANSI, 1990 (Std 610.12-1990]).

(10) The process of analysing a software item to detect the difference between existing and

required conditions (that is, bugs) and to evaluate the features of the software items

(IEEE/ANSI, 1983 (Std 829-1983]).

(11) The purpose of testing is to discover errors. Testing is the process of trying to discover every

conceivable fault or weakness in a work product.

Table 3.2: Historical definitions of testing[Kit95]

Edward Kit in his book ”Software Testing in the Real World” [Kit95] finds that definition

no. 11 in (table 3.2) is the best definition.

The present author chose the following definition for testing.

Testing [Lim09] Definition:

”Testing involves operation of a system or application under controlled con-

ditions and evaluating the results. The controlled conditions should include
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both normal and abnormal conditions. Testing should intentionally attempt to

make things go wrong to determine if things happen when they shouldn’t or

things don’t happen when they should. It is oriented to ’detection’.”

On the other hand, Software Quality Assurance[Lim09] is defined as follows:

”Software QA involves the entire software development process - monitoring

and improving the process, making sure that any agreed-upon standards and

procedures are followed, and ensuring that problems are found and dealt with.

It is oriented to ’prevention’.”

Software testing is supposed to be concerned, after finding errors, with assuring the quality

of the system in order to fulfill the system requirements and satisfy the customers. In other

words, software testing is more than just error detection; testing software is operating

the software under controlled conditions, (1)to verify that it behaves as specified; (2) to

detect errors, and (3) to validate that what has been specified is what the user actually

wanted.[Tri10]

3.1.5 Difference between Quality Assurance, Quality Control and

Testing

Many people and organizations are confused about the difference between quality assurance

(QA), quality control (QC), and testing. Though they are closely related in meaning, but

they have different concepts.

Based on ANSI/IEEE standards, they are defined as follows[Gee10]:

• Testing: The process of executing a system with the intent of finding defects includ-

ing test planning prior to the execution of the test cases.

• Quality Control: A set of activities designed to evaluate a developed working
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product.

• Quality Assurance: A set of activities designed to ensure that the development

and/or maintenance process is adequate to ensure a system will meet its objectives.

QA activities ensure that the process is defined and appropriate. Methodology and stan-

dards development are examples of QA activities. A QA review would focus on the process

elements of a project (e.g., are requirements being defined at the proper level of detail?).

QC activities focus on finding defects in specific deliverables (e.g., are the defined require-

ments the right requirements?). Testing is one example of a QC activity, but there are

others such as inspections. The difference is that QA is process oriented and QC is product

oriented. Testing therefore is product oriented and thus falls in the QC domain. Testing

for quality is not assuring quality, it is controlling it. Quality Assurance ensures that the

right things are done the right way. Quality Control ensures that the results meet the users

expectations.

Quality Assurance Testing

QA is a continuous process in which we mon-

itor and perform steps in order to improve.

Testing is done under controlled conditions

in order to find defects.

The role of quality assurance is a superset of

testing.

It is one example of Quality Control activity.

QUALITY ASSURANCE measures the qual-

ity of processes used to create a quality prod-

uct.

QUALITY CONTROL measures the quality

of a product.

The goal of QA is to prevent the errors in the

program.

The goal of testing is to find the errors.

It is PREVENTION oriented. It is DETECTION oriented.

Table 3.3: Quality Assurance versus Testing[Lew04][Cen07]
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In their Systematic Software Testing book [CJ02], Craig and Jaskiel explained, ”Testing is

a concurrent life cycle process of engineering, using, and maintaining test ware in order to

measure and improve the quality of the software being tested.”

In this definition, there is no direct mention of finding defects, although it is certainly

still a valid goal of testing. This definition also includes not only measuring, but also

improving the quality of the software. This is known as preventive testing. It uses the

philosophy that testing can actually improve the quality of the software being tested if it

occurs early enough in the life cycle. Specially, preventive testing requires the creation of

test cases to validate the requirements before the code is written. The process of writing

test cases to test a requirement (before the design or code is completed) can identify

flaws in the requirements specification. Problems in the requirements can be very costly

to fix, especially if they are not discovered until after the code is written, because this

may necessitate the rewriting of the code, design and/or requirements. By following this

approach, the main benefits are software documentation, cost reduction, time investment

and early detection of errors.[CJ02]

Using the Rational Unified Process (RUP) in an iterative incremental way would support

the preventive testing discussed in this paper. In other words, testing should be performed

from the beginning of the software development life cycle in an iterative incremental man-

ner.

In his technical report[McG01] on testing software product line, McGregor described that

we should embed the test cases from the beginning of the life cycle and try to manage

their reuse in order to avoid testing from scratch with each new software development.

Testing in itself cannot ensure the quality of software. The testing team cannot improve

quality; they can only measure it. All that testing can do is to provide a certain level

of assurance (confidence) in the software. On its own, the only thing that testing proves

is that under specific controlled conditions the software functions as expected by the test
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cases executed.[Tri10]

3.1.6 Debugging and Testing

Debugging and testing are different. Testing can show failures that are caused by defects.

Debugging is the development activity that identifies the cause of a defect, repairs the code

and checks that the defect has been fixed correctly. Subsequent confirmation testing by

a tester ensures that the fix does indeed resolve the failure. The responsibility for each

activity is very different, i.e. testers test and developers debug.[IC08]

Debugging Testing

It is a process of finding and removing errors It is a demonstration of error or apparent cor-

rectness

It is concerned with locating and repairing

these errors

It is concerned with establishing the existence

of defects in a program

It starts from possibly unknown initial con-

ditions, and the end can not be predicted,

except statistically

It starts with known conditions, uses prede-

fined procedures, and has predictable out-

comes

Its procedures and duration can not be con-

strained

It should be designed and scheduled before-

hand

It is the programmer’s justification It proves programmer’s failure

It must be done by an insider It can be done by an outsider

It can be done only with detailed design

knowledge

It can be designed and accomplished without

detailed design knowledge

Table 3.4: Debugging vs. Testing[Bei84]

Technical University of Ilmenau



CHAPTER 3 45

3.1.7 How Testing should be?

Testing Should be repeatable, systematic and documented[Cen07].

• Repeatable means:

if an error is found, the test should be repeated to show others; if an error is corrected,

the test should be repeated to ensure successful fix.

• Systematic means:

random testing is not enough; select test sets that cover the range of behaviors of

the program and select test sets that are representative of real uses.

• Documented means:

keep track of what tests were performed, and what the results were

3.1.8 The Test Process

A common perception of testing is that it only consists of running tests, i.e. executing the

software. This is part of testing, but not all of the testing activities. The fundamental test

process consists of the following main activities:

• Planning and control;

• Analysis and design;

• Implementation and execution;

• Evaluating exit criteria and reporting;

• Test closure activities.

Although logically sequential, the activities in the process may overlap or take place

concurrently.[IC08]
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3.1.9 Purpose of Testing

The purpose of testing is verification, validation and error detection in order to find prob-

lems and the purpose of finding those problems, is to get them fixed.

By understanding the root causes of defects found in other projects, processes can be

improved, which in turn should prevent those defects from reoccurring and entails the

improvement of future systems quality.

Effective testing before production deployment achieves three major benefits[IC08]:

1. Discovering defects before an application is deployed allows to fix them before they

impact business operations. This reduces business disruptions from software failure

or errors and reduces the cost of fixing the defects.

2. Users can estimate the extent of remaining, undiscovered defects in software and use

such estimates to decide when the software meets reliability criteria for production

deployment.

3. Test results help users identify strengths and deficiencies in the development processes

and make process improvements that improve delivered software.

3.1.10 Testing Principles

A number of testing principles have been suggested over the past 40 years and offer com-

mon guidelines for all testing. These should be the fundamentals for a positive testing

organization approach. [GvVEB06]

• Principle 1 - Testing shows only presence of defects.

Testing can show that defects are present, but cannot prove that there are no defects.

Testing reduces the probability of undiscovered defects remaining in the software but,

even if no defects are found, it is not a proof of correctness.
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• Principle 2 - Exhaustive testing is impossible.

Testing everything (all combinations of inputs and preconditions) is not feasible ex-

cept for trivial cases. Instead of exhaustive testing, risks and priorities are used to

focus testing efforts.

• Principle 3 - Early testing.

Testing activities should start as early as possible in the software or system develop-

ment life cycle, and should be focused on defined objectives.

• Principle 4 - Defect clustering.

A small number of modules contain most of the defects discovered during prerelease

testing, or show the most operational failures.

• Principle 5 - Pesticide paradox.

If the same tests are repeated over and over again, eventually the same set of test

cases will no longer find any new bugs. To overcome this ”pesticide paradox”, the

test cases need to be regularly reviewed and revised, and new and different tests need

to be written to exercise different parts of the software or system to potentially find

more defects.

• Principle 6 - Testing is context dependent.

Testing is variably done in different contexts. For example, safety-critical software is

tested differently from an e-commerce site.

• Principle 7 - Absence-of-errors fallacy.

Finding and fixing defects does not help if the system built is unusable and does not

fulfill the users’ needs and expectations.

3.1.11 Software Testing Types

This part lists different types of testing and the main ones are depicted in figure 3.1.
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Testing

Knowledge
Based

Black-box
testing

White-box
testing

Gray-box
testing

Function
Based

Functional

Non-
Functional

SDLC
Based

Unit
testing

Integration
testing

System
testing

Acceptance
testing

Execution
Based

Verification

Validation

1

Figure 3.1: Different Types of Testing

• ACCEPTANCE TESTING

Testing to verify that a product meets customer specified requirements. A customer

usually does this type of testing on a product that is developed externally.

• BLACK-BOX TESTING

Testing without knowledge of the internal workings of the item being tested. Tests

are usually functional.

• COMPATIBILITY TESTING

Testing to ensure compatibility of an application or Web site with different browsers,

OSs, and hardware platforms. Compatibility testing can be performed manually or

can be driven by an automated functional or regression test suite.
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• CONFORMANCE TESTING

Verifying implementation conformance to industry standards. Producing tests for the

behavior of an implementation to be sure it provides the portability, interoperability,

and/or compatibility a standard defines.

• FUNCTIONAL TESTING

Validating that an application or Web site conforms to its specifications and correctly

performs all its required functions. This entails a series of tests which perform a

feature by feature validation of behavior, using a wide range of normal and erroneous

input data. This can involve testing of the product’s user interface, APIs, database

management, security, installation, networking, etcF testing can be performed on an

automated or manual basis using black box or white box methodologies.

• INTEGRATION TESTING

Testing in which modules are combined and tested as a group. Modules are typically

code modules, individual applications, client and server applications on a network,

etc. Integration Testing follows unit testing and precedes system testing.

• LOAD TESTING

Load testing is a generic term covering Performance Testing and Stress Testing.

• PERFORMANCE TESTING

Performance testing can be applied to understand your application or WWW site’s

scalability, or to benchmark the performance in an environment of third party prod-

ucts such as servers and middleware for potential purchase. This sort of testing

is particularly useful to identify performance bottlenecks in high use applications.

Performance testing generally involves an automated test suite as this allows easy

simulation of a variety of normal, peak, and exceptional load conditions.

• REGRESSION TESTING
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Similar in scope to a functional test, a regression test allows a consistent, repeatable

validation of each new release of a product or Web site. Such testing ensures that

reported product defects have been corrected for each new release and that no new

quality problems were introduced in the maintenance process. Though regression

testing can be performed manually, an automated test suite is often used to reduce

the time and resources needed to perform the required testing.

• SMOKE TESTING

A quick-and-dirty test to ensure that the major functions of a piece of software work

without bothering with finer details. Originated in the hardware testing practice of

turning on a new piece of hardware for the first time and considering it a success if

it does not catch on fire.

• STRESS TESTING

Testing conducted to evaluate a system or component at or beyond the limits of

its specified requirements to determine how and under what load it fails. A grace-

ful degradation under load leading to non-catastrophic failure is the desired result.

Stress Testing is often performed using the same process as Performance Testing but

employing a very high level of simulated load.

• SYSTEM TESTING

Testing conducted on a complete, integrated system to evaluate the system’s compli-

ance with its specified requirements. System testing falls within the scope of black

box testing, and as such, should require no knowledge of the inner design of the code

or logic.

• UNIT TESTING

Functional and reliability testing in an Engineering environment. Producing tests

for the behavior of components of a product to ensure their correct behavior prior to

system integration.
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• WHITE BOX TESTING

Testing based on an analysis of internal workings and structure of a piece of software.

It includes techniques such as Branch Testing and Path Testing. It is also known as

Structural Testing and Glass Box Testing. [Apt10]

3.1.12 Comparison between Black-Box Testing & White-Box Testing

Broad Comparison among the two prime testing techniques i.e. Black Box Testing & White

Box Testing are as under Table 3.5

Black Box Testing White Box Testing

Functional Testing Glass Box Testing or Structural Testing

Focus on Results Focus on Details

Called ”Black Box” testing because no knowledge

of the internal logic of the system is used to de-

velop test cases

Referred to as ”White Box” testing because

knowledge of the internal logic of the system is

used to develop hypothetical test cases

Uses validation techniques Uses verification techniques

Tests are based on requirements and functionality Tests are based on coverage of code statements,

branches, paths, conditions

Simulates actual system usage Allows for testing structures logic

Pros: Easy to Use, Rapid Pros: Stable and Thorough

Cons: Vulnerability of code changes Cons: Complexity

Table 3.5: Black-Box Testing & White-Box Testing
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The targeted test here is a requirements model based system test that takes variability

into consideration. System testing falls within the scope of black box testing, and as such,

should require no knowledge of the inner logic or design of the code.

3.2 Unified Modeling Language(UML)

3.2.1 Building Models

Models are built to develop software that satisfies their intended purpose and can adapt

to the changing needs of business and technology. Modeling is the central part of all the

activities that lead up to the deployment of good software. Development of the software

engineering discipline is similar to building construction industry. Like other engineering

disciplines, software engineers build models of the software system before carrying out the

actual implementation. Modeling is a very important activity in software development since

the software engineer usually spends a lot of time developing models with different levels

of abstraction before the software system is finally designed and implemented. Models are

an effective communication tool, especially in situations where detailed information is not

required.[Tsa05] Different stakeholders invariably need information about different aspects

of the physical system. Therefore, different models should be created for them. A model

contains different views (one or more), with each view representing a specific aspect of the

system. [Tsa05] Models are built to visualize and control the system’s architecture. 1)

To better understand the system so that it is easily simplified and reused. 2) To manage

risks. 3) A model is a simplification of reality. 4) A model provides the blueprints of a

system. 5) Models are usually built for complex systems because we cannot comprehend

such a system in its entirety. 6) No single model is sufficient. 7) Every nontrivial system is

best approached through a small number of nearly independent models (models that can

be built and studied separately but are still interrelated).
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3.2.2 Visual Modeling

The human brain is capable of handling and processing only a limited amount of informa-

tion at any time. Models can help reduce complexity by creating an abstract hierarchical

representation of the real world system. Creating models through abstraction using some

standard graphical notations is a fundamental technique used to perceive world. In the

object oriented approach, the visual modeling language used to specify models of a system

for software development is Unified Modeling Language (UML). [Tsa05]

3.2.3 UML

UML started as an effort by Booch and Rumbaugh in 1994 not only to create a common

notation, but also to combine their two methods - the Booch and OMT methods. Thus,

the first public draft of what is known today as the UML was presented as the Unified

Method. They were soon joined at Rational Corporation by Ivar Jacobson, the creator of

the Objectory method, and as a group came to be known as the three amigos. It was at

this point that they decided to reduce the scope of their effort, and focus on a common

diagramming notation - the UML. [Lar04] UML is accepted by the Object Management

Group (OMG) as the standard for modeling object oriented programs. It is a relatively

open standard, controlled by the OMG. [Fow03]. The simple and essential value of the

UML Diagrams help us see or explore more of the big picture and relationships between

analysis or software elements, while allowing us to ignore or hide uninteresting details.

([Lar04].

3.2.4 UML Definition

Fowler made the following simplified definition for UML:

Technical University of Ilmenau



54 CHAPTER 3

”The Unified Modeling Language (UML) is a family of graphical notations,

backed by single meta-model, that help in describing and designing software

systems, particularly software systems built using the object-oriented (OO)

style.” [Fow03]

The following definition was given by the OMG:

”The Unified Modeling Language is a visual language for specifying, con-

structing and documenting the artifacts of system.” [OMG03a]

The current version of the standard is UML 2.2(figure 3.2). UML is technology independent

and can be used with all processes throughout the software development life cycle. Good

models ensure technical and architectural soundness, particularly for complex systems.

Figure 3.2: OO-historie
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3.2.5 Diagrams overview

UML 2.2 has 14 types of diagrams divided into two categories (figure 3.3). Seven diagram

types represent structural information, and the other seven represent general types of

behavior, including four that represent different aspects of interactions. These diagrams

can be categorized hierarchically as shown in the following class diagram:

Figure 3.3: UML Diagram[OMG09]

3.3 Petri Nets (PNs) and Colored Petri Nets (CPNs)

3.3.1 Petri Nets (PNs)

Petri nets (figure 3.4)[vdA10] are a mathematically precise model, and so both the structure

and the behavior of Petri net models can be described using mathematical concepts. The

Petri net concepts are described briefly as follows. By mathematical definition, a Petri net is

a bipartite, directed graph consisting of a set of nodes and a set of arcs, supplemented with a

distribution of tokens in places. A bipartite graph is a graph with a set of two types of nodes
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and no arc connecting two nodes of the same type. For (ordinary) Petri nets, we use the

following three-tuple definition: PN = (T, P,A), where T = {t1, t2, ..., tn}, a set of nodes

called transitions, P = {p1, p2, ..., pm}, a set of nodes called places, A ⊆ (T × P )∪(P × T ),

a set of directed arcs. To each arc a non-negative integer multiplicity is assigned as follows

A → N . Note that an arc connects a transition to a place or a place to a transition.

The distribution of tokens among places at certain time defines the current state of the

modeled system. Transitions are enabled to fire when certain conditions are satisfied,

resulting in a change of token distribution for places. With its formal representation and

well-defined syntax and semantics, Petri nets can be ”executed” to perform model analysis

and verification. [HS06]
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Simple 
process 
model 

 

• Just three elements: 
• Graphical and mathematical description.
• Formal semantics and allows for analysis.
• Emphasis on dynamic behavior rather than structuring the state space

History 
 

• Carl Adam Petri (1962, PhD thesis)
• In sixties and seventies focus mainly on theory.
• Since eighties also focus on tools and applications (CPN work by Kurt Jensen).

Elements 

Rules • Connections are directed.
• No connections between two places or two transitions.
• Places may hold zero or more toke

Enabled 
 
 
 
 
 
 

 
 

• A transition is 
as the multiplicity of the arc attached.

Firing • An enabled transition can fire (i.e., it occurs).
• When it fires it consumes a token from each input place and produces a token 

for each output place.

Remarks 
 

• Firing is atomic.
• Multiple transitions may be enabled, but only one fires at a time, i.e., we assume 

interleaving semantics (diamond rule).
• The number of tokens may vary if there are transitions for which the number of 

input places is not equal to the number of output place
• The network is static.
• The state is represented by the distribution of tokens over places (also referred 

to as marking).

Classical Petri Net 
Just three elements: places, transitions and arcs. 
Graphical and mathematical description. 
Formal semantics and allows for analysis. 
Emphasis on dynamic behavior rather than structuring the state space
Carl Adam Petri (1962, PhD thesis) 
In sixties and seventies focus mainly on theory. 
Since eighties also focus on tools and applications (CPN work by Kurt Jensen).

Connections are directed. 
No connections between two places or two transitions.
Places may hold zero or more tokens. 
A transition is enabled if each of its input places contain
as the multiplicity of the arc attached. 

An enabled transition can fire (i.e., it occurs). 
When it fires it consumes a token from each input place and produces a token 
for each output place. 

Firing is atomic. 
Multiple transitions may be enabled, but only one fires at a time, i.e., we assume 
interleaving semantics (diamond rule). 
The number of tokens may vary if there are transitions for which the number of 
input places is not equal to the number of output place
The network is static. 
The state is represented by the distribution of tokens over places (also referred 
to as marking). 

Emphasis on dynamic behavior rather than structuring the state space 

Since eighties also focus on tools and applications (CPN work by Kurt Jensen). 

 

No connections between two places or two transitions. 

contain at least as many tokens 

 

When it fires it consumes a token from each input place and produces a token 

 

Multiple transitions may be enabled, but only one fires at a time, i.e., we assume 

The number of tokens may vary if there are transitions for which the number of 
input places is not equal to the number of output places. 

The state is represented by the distribution of tokens over places (also referred 

Figure 3.4: Classical Petri Net[vdA10]
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3.3.2 Colored Petri Nets (CPNs)

Coloured Petri Nets have been developed from being a promising theoretical model to

being a full-fledged language for the design, specification, simulation, validation and im-

plementation of large software systems.[Jen97]

”Coloured Petri Nets (CP-nets or CPNs) is a language for the modelling and analysis of

distributed systems and others systems in which concurrency, communication, resource

sharing and other kinds of synchronisation plays a crucial role.”[Jen07]

Typical examples of application areas are communication protocols, distributed systems,

embedded systems, automated production systems, work flow analysis and VLSI chips.[Jen97]

Hence, Colored Petri nets are one type of Petri net. In colored Petri nets, tokens are

differentiated by colors, which are data types. Places are typed by color sets, which specify

which type of tokens can be deposited into a certain place. Arcs are associated with

inscriptions, which are expressions defined with data values, variables, and functions. Arc

inscriptions are used to specify the enabling condition of the associated transition as well

as the tokens that are to be generated by the transition. [HS06]

Coloured Petri Nets are named as such because they allow the use of tokens that carry

data values and can hence be distinguished from each other, in contrast to the tokens of

low-level Petri nets, which by convention are drawn as black, ”uncoloured” dots.

3.3.3 CPN-Graphical Representation

CP-nets have an intuitive, graphical representation which is appealing to human beings.

A CPN model consists of a set of modules (pages) each of which contains a network of

places, transitions and arcs. The modules interact with each other through a set of well-

defined interfaces in a similar way to that of many modern programming languages. The
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graphical representation makes it easy to see the basic structure of a complex CPN model,

i.e., understand how the individual processes interact with each other.[Jen97]

3.3.4 CPN-Formal Representation

CP-nets also have a formal, mathematical representation with a well-defined syntax and se-

mantics. This representation is the foundation for the definition of the different behavioural

properties and the analysis methods. Without this mathematical representation it would

have been totally impossible to develop a sound and powerful CPN language. However,

for the practical use of CP-nets and their tools, they managed to have an intuitive un-

derstanding of the syntax and semantics. This is analogous to programming languages

which are successfully applied by users who are not familiar with the formal, mathematical

definitions of the languages.[Jen97]

3.3.5 CPN and Simulation

CP-nets can be simulated interactively or automatically. In an interactive simulation,

the user is in control. It is possible to see the effects of the individual steps directly on

the graphical representation of the CP-net. This means that the user can investigate the

different states and choose between the enabled transitions. An interactive simulation

is similar to single-step debugging. It provides a way to ”walk through” a CPN model,

investigating different scenarios and checking whether the model works as expected. This is

in contrast to many off-the-shelf simulation packages which often act as black boxes, where

the user can define inputs and inspect the results, but otherwise has very little possibility

to understand and validate the models on which the simulations are built. The insight and

detailed knowledge of a system, which the users gain during the development and validation

of a simulation model is often as important as the results that the users get from the
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actual simulation runs. Automatic simulations are similar to program executions. Now the

purpose is to be able to execute the CPN models as fast and efficiently as possible, without

detailed human interaction and inspection. However, the user still needs to interpret

the simulation results. For this purpose, it is often suitable to use animated, graphical

representations providing an abstract, application-specific view of the current state and

activities in the system.[Jen97]

3.3.6 CPN and Verification

CP-nets also offer formal verification methods, known as state space analysis and invariant

analysis. In this way, it is possible to prove, in the mathematical sense of the word, that a

system has a certain set of behavioural properties. However, industrial systems are often

so complex that it is impossible or at least very expensive to make a full proof of system

correctness. Hence, the formal verification methods should be seen as a complement to the

more informal validation by means of simulation. The use of formal verification is often

restricted to the most important subsystems or the most important aspects of a complex

system. [Jen07]

3.4 State Charts and Colored State Charts

3.4.1 State Charts

State Charts is a formalism designed to describe the behaviour of reactive systems, A

reactive system is a mainly event-driven system, continuously reacting to external and

internal stimuli. In contrast to transformational systems, that perform transformations

on inputs, thus producing outputs, reactive systems engage in continuous interactions,

dialogues so to say, with their environment. As a consequence, a reactive system cannot be

Technical University of Ilmenau



CHAPTER 3 61

modeled by giving its input and output alone. It is necessary to model also the timing or

causality relation between input and output events. State Charts generalise Finite State

Machines (FSM’s), or rather Mealy machines, and arise out of a conscious attempt to free

FSM’s from two serious limitations: the absence of a notion of hierarchy or modularity

and the ability to model concurrent behaviour in a concise way. The external and internal

stimuli are called events and they cause transitions from one state to another.

States, in contrast to FSM’s, can be structured as a tree. The descendants in such a

tree are called substates. In State Charts, there are two types of states: the AND-type

and the OR-type. Being in an AND-state means being in all of its immediate substates

simultaneously. These immediate substates and their interior are called the orthogonal

components of that AND-state describing concurrency. Being in an OR-state means being

in exactly one of its substates.[HGdR88]
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The following figure 3.5 shows the different possible states of a State Chart, followed by

figure 3.6 that shows the different possible transitions of a State Chart.

State Graphical Representation

Normal State
• Rounded rectangle, denoting a state.

• Top of the rectangle contains a name of the 

state. 

• Can contain a horizontal line in the middle, 

below which the activities that are done in 

that state are indicated.

Initial stateInitial state
• Filled circle, pointing to the initial state. 

• An initial state, also called a creation state, is 

the one that an object is in when it is first 

created.

Final State
• Hollow circle containing a smaller filled circle, 

indicating the final state. 

• A final state is one in which no transitions lead 

out of.

Figure 3.5: Representation of the different States of a State Chart[Mol04]

Transition Graphical Representation

Normal

Conditional

Conjunction

Intersection

Synchronisation

Figure 3.6: Representation of the different Transitions of a State Chart[Mol04]
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The following figures 3.7, 3.8 and 3.9 shows facts about State Charts. 

Facts about State Charts 

What is a UML state machine diagram? 

UML state machine diagrams depict the various states that an object may 
be in and the transitions between those states.  

 A state machine performs actions in response to explicit events. 
 A state machine is idle when it sits in a state waiting for an event to 

occur. 
 UML state machines overcome the main limitations of traditional 

finite state machines while retaining their main benefits.  
 UML State Charts introduce the new concepts of  

 hierarchically nested states,  
 orthogonal regions,  
 and extending the notion of actions. 

  UML state machines have the characteristics of both Mealy 
machines and Moore machines. They support actions that depend 
on both the state of the system and the triggering event, as in Mealy 
machines, as well as entry and exit actions, which are associated with 
states rather than transitions, as in Moore machines. 

 The term "UML state machine" can refer to two kinds of state 
machines: behavioral state machines and protocol state 
machines.  
 Behavioral state machines can be used to model the behavior 

of individual entities (e.g., class instances).  
 Protocol state machines are used to express usage protocols 

and can be used to specify the legal usage scenarios of 
classifiers, interfaces, and ports. 

UML state machine diagram Synonyms:  

UML state machine, known also as UML statechart  is an object-based 
variant of Harel statechart adapted and extended by the Unified Modeling 
Language.  In other modeling languages, it is common for UML state 
machine diagrams to be called a state-transition diagram or even simply 
a state diagram.  

Figure 3.7: Facts about State Charts 1/3[Amb09][Wik10]
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Hierarchy 

FSM will be in exactly one of the substates of S if S 
is active (either in A or in B or ..) 

 

� Current states of FSMs are also called
states. 

� States which are not composed of other states 
are called basic states. 

� States containing other states are called 
states. 

� For each basic state S, the super
containing S are called ancestor states

� Super-states S are called OR-super
exactly one of the sub-states of S is active 
whenever S is active. 

Default state 

Filled circle 
indicates sub-state entered whenever super
entered. 

Not a state by itself! 

 

History mechanism 

For input m, S enters the state it was in before S was 
left (can be A, B, C, D, or E). 

If S is entered for the first time, the default 
mechanism applies. 

History and default mechanisms can be used 

exactly one of the substates of S if S 

Current states of FSMs are also called active 

States which are not composed of other states 

States containing other states are called super-

, the super-states 
ancestor states. 

super-states, if 
states of S is active 

state entered whenever super-state is 

For input m, S enters the state it was in before S was 

time, the default 

History and default mechanisms can be used 

 

 

 

 

 

Figure 3.8: Facts about State Charts 2/3 [Mar05] [Mar09]
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In State Charts, states are either

� Basic states, or (States which are not composed of other states are called 
states.) 

� OR-super-states, or 

� AND-super-states. 
OR-states have sub-states that are 
related to each other by exclusive
The FSM on the right side can only be 
in one of the sub-states of super
Sat any time. Super states of this type 
are called OR-super-states. 

 

Concurrency 

Convenient ways of describing 
concurrency are required. 

AND-super-states: FSM is in all 
(immediate) sub-states of a super

 

General form of edge labels

The general syntax of an expression 
labeling a transition in a State Chart is 
n[c]/a, where 

n is the event that triggers the transition

c is the condition that guards the 
transition (cannot be taken unless c is 
true when e occurs) 

a is the action that is carried out if and 
when the transition is taken. 

Types of states 

In State Charts, states are either 

(States which are not composed of other states are called 
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Figure 3.9: Facts about State Charts 3/3 [Mar05] [Mar09]
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3.4.2 Colored State Chart(CSC)

The new approach represented in section 7.2 is called CMBT-SWPL using the CSC[FFDD02]

[Fen04], where only one State Chart is depicted that captures all product line variants. One

Color represents a product line variant, where features are the color variables. One Color,

i.e. one product line variant, may consist of one or more features in this case color variables.

(See section 7.2 on page 105 for more details).

3.5 Embedded Systems

3.5.1 Introduction to Embedded Systems

Embedded systems[Mar05] are expected to be the most important application area of

information technology during the coming years. Based on this, the term post-PC era was

coined. This term denotes the fact that in the future standard PCs will be less dominant

kind of hardware. Processors and software will be used in much smaller systems and

will in many cases even be invisible (this led to the term the disappearing computer).

However, with this new trend, computers will actually not disappear; they will be rather

everywhere. This new type of information technology applications has also been called

ubiquitous computing, pervasive computing, and ambient intelligence. These three terms

focus on only slightly different aspects of future information technology.

• Ubiquitous Computing focuses on the long term goal of providing ”information

anytime, anywhere”.

• Pervasive Computing focuses a somewhat more on practical aspects and the ex-

ploitation of already available technology.

• Ambient Intelligence focuses on communication technology in future homes and
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smart buildings.

Embedded systems are one of the origins of these three area and they provide a major part

of the necessary technology. Therefore, the embedded system is defined [Mar05] as follows:

”Embedded systems are information processing systems that are embedded

into a larger product and that are normally not directly visible to the user.”

Bruce Douglass [Dou04] mentions that ”embedded computerized systems can be seen every-

where. There are more computers hidden in the guts of things than there are conventional

desktops or laptops.” Embedded systems span all aspects of modern life and there are

many examples of their use. From the washing machine and microwave oven to the tele-

phone, stereo, television, and automobile, embedded computers are everywhere. Embedded

computers are even more widespread in the industry where they are used to securely and

conveniently improve our productivity and quality of life.

The software for these embedded computers is more difficult to construct than the software

for a desktop or laptop. Embedded systems have all the problems of desktop applications

plus many more. The embedded computer is part of a lager system that provides some

non-computing feature to the user. They do not have a conventional computer display or

keyboard, but lie at the heart of some apparently non-computerized device. The user of

these devices may never be aware of the CPU embedded within, making decisions about

how and when the system should act[Dou04].

3.5.2 Embedded Systems Characteristics

The common characteristics [Dou04] [Mar05] of these embedded systems are as follows:

• Embedded systems are connected to the physical environment through sensors col-

lecting information about that environment and actuators controlling the environ-
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ment.

• Many embedded systems are safety-critical and therefore have to be dependable.

Dependability encompass the following aspects of a system:

Reliability - Maintainability - Availability - Safety - Security.

• Embedded systems have to be efficient regarding the following: energy, code size,

run-time efficiency, weight and cost.

• These systems are dedicated towards a certain application. They are designed to do

some specific task, rather than to be a general-purpose computer for multiple tasks.

• Most embedded systems do not use keyboards, mice and large computer monitors

for their user interface.

• Many embedded systems must meet real time constraints, for reasons such as safety

and usability; others may have low or no performance requirements, allowing the

system hardware to be simplified to reduce costs..

• Many embedded systems are hybrid systems in the sense that they include analog

and digital parts.

• Typically embedded systems are reactive systems.

• Embedded systems are not always standalone devices. Many embedded systems

consist of small computerized parts within a larger device that serves a more general

purpose. For example, an embedded system in an automobile provides a specific

function as a subsystem of the car itself.

• The program instructions written for embedded systems are referred to as firmware,

and are stored in read-only memory or Flash memory chips. They run with limited

computer hardware resources: little memory, small or non-existent keyboard and/or

screen.
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Actually, not every embedded system will have all the above characteristics. We can define

the term ”embedded system” also in the following way:

”Information processing systems meeting most of the characteristics listed

above are called embedded systems”

3.5.3 Reactive Embedded Systems

The term reactive [Dou04] is applied to objects that respond dynamically to incoming

events of interest and whose behavior is driven by the order of arrival of those events. Such

objects are usually modeled and often implemented as finite state machines. State Charts

make modeling reactive objects viable. A finite state machine (FSM) specifies the events

of interest to a reactive object, the set of states that object may assume, and the actions

(and their order of execution) in response to incoming events in any given state. This is

crucial in many systems because the allowable sequences of primitive behaviors may be

restricted.

In his book Embedded System Design, Peter Marwedel, defined a reactive system as follows

[Mar05]:

”A reactive system is one that is in continual interaction with its environment

and executes at a space determined by that environment.”

Reactive systems can be thought of as being in a certain state waiting for an input. For

each input, they perform some computation and generate an output and a new state.

Therefore, automata are very good models of such systems. That is why State Charts

have been chosen in this thesis to model the behavior of the CSC.
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Chapter 4

Main Requirements of Colored

Model Based Testing for Software

Product Lines Method

”Nothing is Impossible, the word itself says, ’I’m Possible’ !” Audrey Hepburn

4.1 CMBT-SWPL Method’s Requirements

In this section we are going to determine more precisely the main requirements of the

CMBT-SWPL method and what are the steps needed to meet those requirements.

1. Reuse

• Strategic reuse should be fulfilled for the test artifacts the same way it is fulfilled

for the development artifacts.

• The method should fulfill the reuse of Colored State Chart for systematic test

case generation in the context of product lines.

• Reusing test artifacts later in the application engineering process.

• The components and artifacts intended for reuse must be of high quality since

the components are potentially reused in many family members.
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2. Early Validation

• The main target of validation is to satisfy the intended requirements, which is

achieved by answering the following question: ”Are we building the right

thing?”

For validation purposes, the CMBT-SWPL method should perform the follow-

ing:

– Creating a feature model capturing all feature combinations and making

sure that it represents the correct requirements.

– Create test artifacts that consider variability early in the product line de-

velopment process.

∗ Based on feature model, a test model using colored state charts should

be created to facilitate testing process.

∗ Then the test cases should be derived systematically from the test mod-

els using statistical testing.

– It is noteworthy that the defects in requirements, such as ambiguities and

incompleteness, may be detected early during the development of the feature

model as well as during the development of the test model, which is cheaper

than correcting them in later development phases, where they can increase

dramatically.

– Moreover it is possible to simulate the test model after transforming it to

a Colored Petri Net. Then the error detection through simulation is more

obvious and the chance to correct them early is facilitated.

3. Early Verification

• The main target of verification is to check that the specifications are correctly
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met by the system and it is achieved by answering the following question: ”Are

we building it right?”

For verification purposes, the CMBT-SWPL method should perform the follow-

ing:

– Adopting certain powerful elements and concepts of Colored Petri Nets to

the Colored State Charts.

– The proposed State Chart’s semantics’ extension will allow certain terms

such as ”Marking” and ”Transition Firing” to be introduced to the UML

state diagrams. This helps in diagnosing, tracing and finding the errors as

it is performed in the Petri nets approach.

– More precisely, Product line verification will be accomplished by transform-

ing the CSC into a CPN and thus we can benefit from the powerful analysis

methods of PNs regarding e.g. how to deal with conflicts, deadlocks, and

unwanted states.

4. Variability Consideration

• The method should introduce variability early in the main components of the

CSC, so that the behavior of product lines can be specified.

• The method should preserve the variability in test cases.

5. Compact Presentation

• The developed test model should be able to manage large numbers of feature

combinations.

• The method should provide compact presentation by representing all product

line variants in one model, namely CSC.
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– To make it clear, if they were not compact then we would have to model

several separate state charts, then errors are more likely to occur in each

model.

– On the other hand when the modeler will try to realize this compact presen-

tation, he will try to avoid redundancies, ambiguities and incompleteness.

– Thus, product line’s test artifacts will be less complex, compact, expressive

and help in modeling both simple and complex embedded reactive product

lines.

– Effort for the CSC describing all product line features is admittedly much

more than the effort for a state chart describing just one product variant.

However, it requires considerably less effort than modelling and maintaining

an individual State Chart for each product variant of a product line, in

particular, for large product lines with dozens of features.

6. Systematic Test Case Generation

• The method should achieve systematic test case generation by following the

next two principles:

a) Model-Based Testing

Model-based testing is an approach to systematically derive test cases in

single system engineering. The CMBT-SWPL method adapts model-based

testing to the product line engineering and supports the proactive reuse of

test cases. In model-based testing, first a test model (i.e. CSC) is built

from the requirements.

b) Statistical Testing

Statistical testing techniques are then applied to derive test cases.
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7. Reduced development and maintenance effort and cost

• Reducing test development time, cost and effort by reusing test artifacts such

as test models and test cases.

4.2 Summary

In figure 4.1 the main requirements for the method are presented briefly.
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Chapter 5

Case Study : Universal Remote

Control(URC)

”Go as far as you can see; when you get there, you’ll be able to see farther.”

J. P. Morgan.

5.1 Introduction

As an example of a system family, the Universal Remote Control, which is part of the

Digital Video Project (figure 5.1) & (figure 5.2), is used to serve the practical testing and

evaluation of the Colored Model Based Testing for Software Product Lines (CMBT-SWPL).

This example [Die03] was conducted at the Faculty of Computer Science and Automation

- Institute of Computer Engineering - Ilmenau University of Technology and it is part of

the Digital Video Project(DVP)[Mef03][Str04] based on the VDR project [Gos10].

Within a group of students a digital video system was built making use of existing hardware

and software components.The project goal is to develop a system family making use of

adapted methods and thus, evaluating these methods. The students are taught to use the

system family paradigm for the development of a software system within the context of a

real-life example. In Figure (figure 5.2) a brief system overview is sketched, as a Unified

Modeling Language (UML) component diagram[SRP03].
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Figure 5.1: Digital Video System Example[SRP03]

5.2 Universal Remote Control

A universal remote is a remote control that can be programmed to operate different elec-

tronic devices. The Computer dictionary defines URC as follows:

A handheld remote control that can turn on and operate any unit of equip-

ment in a home theater system, such as an A/V receiver, cable box, TV, DVR,

CD/DVD player and media hub. It uses built-in remote control codes for differ-

ent models and may be able to download additional code sets from the Internet.

Advanced units have a training mode that accepts signals from another remote

placed head to head and assigns them to designated buttons.
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Palm-Handhelds are used as a remote control via the Infrared Data Association (IrDA)

Interface. It was desired to develop a concept allowing the creation of a system family which

enables the combination of different features within one remote control. It was necessary to

elaborate a list of the features and functions to be implemented. Furthermore, the concept

should be designed in a way that different components can be combined in as desired.

A system family architecture and its integration in the current video system was developed

(figure 5.2), where the interaction of this subproject with the vdr-project was considered.

In [Die03] a software for Palm-Handhelds was prototypically developed to test and evaluate

the elaborated concept. The target is to achieve high variability and ensure flexibility, i.e.

the concept should adapt to the user needs and not vice versa.

The focus is to design a remote control that should be the central element of the operation.

This universal remote control was designed as a family of systems.

Product Lines must adhere to a high level of abstraction in order to be flexible, extensible

and maintainable. Many PL development methodologies have established ”features” and

”feature modelling” for this purpose, e.g. FODA, FORM, FeatuRSEB[SPR04]. A key

technical innovation of software product-lines is the use of features to distinguish product-

line members. A particular product-line member is defined by a unique combination of

features. The set of all legal feature combinations defines the set of product-line members

[KCH+90]. Feature models are a well accepted means for expressing requirements in a

domain on an abstract level. They are applied to describe variable and common prop-

erties of products in a product line and to derive and validate configurations of software

systems[Rie03].
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5.3 Universal Remote Control-Feature Model

As mentioned earlier, the Palm-handheld URC is modeled using features. Figure 5.3 de-

scribes a FM for the universal remote control example. As depicted in (figure 5.3), a

feature diagram has a root node called concept, referring to the complete system. Hier-

archically located below the concept node are all the features of the system. Features are

marked either mandatory or optional. All mandatory features are part of all systems to

be generated within this family. Thus, the set of mandatory features is forming the core

of the system family. At the top of the FM, the concept node Advanced IrDA-Remote

Control refers to the system itself. Below the concept node the Controlling VDR fea-

ture is modeled mandatory, since we need to control the video system in some way. At

the level below the Controlling VDR feature, there is the mandatory Basic Functions

feature. All features of the system are arranged hierarchically and will be marked optional

or mandatory to model the core and all variable parts of the system.[SRP03] To build an

application based on the system family, a selection of features has to be made. The user

can choose out of all optional features of the family.

FODA [KCH+90] defines two relations between features to support the consistency of the

overall model and the correctness of a choice of features in particular. With the ”requires

and excludes” constraints we can further limit the possible choices of features in the tree.

A relation called ”requires” can be established to state the need for the selection of a spe-

cific feature in case another feature should have been chosen. In our example a user might

want to choose the Title-Database feature. This features would definitely require using

the EPG feature.[SRP03]

A tree structure instance is an FM configuration that describes the model and that re-

spects the semantics of their relations. That is, an FM allows one to identify common and

variant features between products of a PL, while an FM configuration characterizes the

functionalities of a specific product.[LG08]
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The URC in [Die03] (see figure 5.3) has the following features: (1) Controlling the video

recorder (2)Controlling other devices (3)Providing a user profile. All the functionalities

are explained in detail in [Die03]. This thesis will focus only on how to control the video

recorder. The features under focus are based on the overall feature model (see figure 5.3)

in [Die03] and are reduced to the feature model of controlling the VDR represented in

figure 7.4. In the reduced feature model, there are features that are mandatory such as

Basic Functions. The Basic Functions feature could contain other features such as

choosing channel feature, controlling volume feature or waiting feature. The op-

tional features for controlling the video recorder (VDR) are Electronic Program Guide

(EPG) and Title-Database. Reminder feature is a feature available to remind user

of visual materials such as movies and is an optional sub feature of the EPG feature.

Data adjustment via telephone, programming via telephone and programing

via infrared are optional sub features of EPG feature. On the other hand, the data

adjustment via infrared is a mandatory sub-feature of EPG. Own connection and

connection via VDR are two optional sub-features of Title-Database.

The features contained in the feature model represent aspects that concern the user. They

can be divided into four categories[Str04]:

• Functional features expressing a behavior or interaction between the user and the

system.

• Interfaces features expressing the integration of standards or subsystems in the

product.

• Parameters features expressing numerical values of presentable environmental

characteristics or non-functional features. In each case they have a preset value.

• Abstract features expressing concepts.

These characteristics are hierarchically structured in a feature model. Furthermore, the
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various relationships that can exist between those features are represented in this model.

These relationships can be divided into several categories[Str04]:

• Features-subfeature relationships are used to reflect the hierarchy.

• Refinement· Refining involves an attempt to represent detailed sub features and ex-

press an ”is-a” - or ”is-part-from” relationship.

• Restrictions are expressed by ”requires” and ”excludes” relations.

• Recommendations or suggestions are expressed by using ”hint” relationship which

influences the customer selection.

Many systems are based and dependent on the flexible family architecture, which was

itself based on the overall requirements for the family. Thus, requirements engineering

activities have a high impact on all applications based on the family. Many of the current

system family development methods are making use of feature modeling, to capture all the

mandatory and optional ’parts’ of the system. The feature model is a high level description

of the system and understandable by customers.[SRP03]

 
Requirements 

Model 

Feature Model Test Model 

Figure 5.4: Features in context [Die03]

After completion, the feature model serves as a basic architecture for the product line. As

depicted in figure 5.4, the feature model is located between the requirements model and

the system design model, or more specifically in our case the test model. In the feature

model, the variability and possible combinations of the individual features are taken into

account. The result of this design is a generic architecture, which is generated later to a

specific application. Thus, a large number of applications can be created by only changing

some of the generic parameters.
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In addition to the large number of applications that can be generated in a simple way,

there is another advantage of system families; namely changes can be easily performed on

existing architecture. Due to this modular design, it is always possible, to insert, modify

or even delete individual components of the product line.[Die03]
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Chapter 6

Main Aspects for Applying the

Colored Model Based Testing for

Software Product Lines Method

”A goal properly set is halfway reached - Abraham Lincoln”

6.1 Introduction

This chapter starts with introducing the W-model for testing software product lines. Sec-

tion 6.3 & 6.4 respectively are concerned with explaining the model-based testing and the

statistical testing which the CMBT-SWPL method is relied on. Section 6.5 explains the

State Chart behavioral model that has been chosen from UML to capture the complex

behavior of the remote control product line. Section 6.6 lists the arguments why State

Charts are chosen to represent behavior.

6.2 The W-Model for Testing Software Product Lines

The traditional way of testing single systems is to test after coding is finished (for functions,

components or the integrated system), i.e. when there is a running application. However,

in product line testing, test development is meant to start early in the domain engineering
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phase and not to wait until the variability is bound and there is a running application.

Therefore, testing plays an important role during software product line engineering, because

the quality of the reusable domain artifacts affects all applications that are derived from

these artifacts. In addition, software product line testing faces specific challenges that

cannot be tackled by traditional testing techniques. Therefore, testing techniques from the

development of single systems have to be adapted and/or new testing techniques have to

be developed [Met06]. Thus, testing in a product line is divided into domain testing and

application testing [PBvdL05].

This reusable feature-oriented model-based testing method, namely ”Colored Model Based

Testing for Software Product Lines lines” (CMBT-SWPL) is used to create test assets

from feature models, which can then be configured to test individual applications that are

members of the software product line. This method can be used to reduce the number

of reusable test assets created to cover all features, and selected feature combinations of

a software product line. These test assets can be automatically selected and configured

during application engineering to test a given application derived from the software product

line.[OG09]

McGregor [McG01] in Testing a software product Line states that ”the testing activities

are related to the construction activities in a development process. A testing activity is

scheduled to immediately follow the construction activity whose output the testing activity

will validate. The development process produces various types of artifacts examined by

the testing process. The testing process produces test results and bug reports used by

the development process to repair the artifacts. This provides an opportunity to identify

defects as soon as they are injected into the artifact so that they can be removed before

the faulty information is used as the basis for development in subsequent phases.”[McG01]

Based on this idea [McG01][McG06], [JHQJ08] suggests a test model for SPLs. The W-

model supplements domain test and application test to the dual life-cycle model of Product
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Line Software Engineering (PLSE), resulting in a W-form.
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Figure 6.1: The W-Model for SPL Test

The W-Model suggested in [JHQJ08] seems viable compared to our approach and idea for

testing the Software product line presented in Figure 2.9. In our approach, only system

black box testing is stressed. Therefore, the W-Model in [JHQJ08] is merged to our ref-

erence process 2.4 and 2.5 and the resulting figure is demonstrated in figure 6.1. Three

test activities at the level of component test, integration test and platform test are added

to the domain engineering. They perform the tests on reusable component, SPL archi-

tecture and the common platform. Correspondingly, three test activities are inserted in

the application engineering. The W-model links the closely related two kinds of software

engineering activities. It ensures the quality of the common assets and the correct reuse

by validating different artifacts as early as possible. The test activities in the application

engineering are affected and restricted by the work in the application engineering and by

the test activities of the same kind of software artifacts in the domain engineering. On
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the other hand, the testing results are fed back both to the domain and the application

engineering to ensure that the reusable artifacts in the domain engineering are correct and

adaptable to different applications. [JHQJ08]

Although the idea of this W-model is quite interesting, the missing point in this suggested

test model is the variability. It is desired to create test artifacts that consider variability

early in the development process, i.e. in the domain engineering in order to be reused in

the application engineering.

When test artifacts are created early in the product line development process two main im-

portant principles are addressed: First, the idea of test driven development (TDD)[Bec00]

is supported, which aims to design test early before coding is started; and second, embrac-

ing testing early in the development process as it is performed by the Rational Unified

Process (RUP), representing evolutionary, iterative and incremental development.

Product lines would better be developed according to the RUP and not according to the

waterfall-oriented requirements analysis approaches, in which there is an attempt to define

so-called ”complete” specifications before starting the development process. [Lar04]

6.3 Model Based Testing

The cost of finding and fixing faults in software typically rises as the development project

progresses into a new phase. Faults found after the system had been delivered to the

customer are much more expensive to track down and correct than if found earlier. Often

testing is done when the whole system has been coded although the most expensive errors

to correct are often introduced early in the life cycle. Current and future trends for software

include increasingly complex requirements on interaction between systems. The increased

complexity means that a system may have potentially infinite combinations of inputs and

resulting outputs. It is difficult to get satisfactory coverage of such a system with hand-
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crafted manual or automatic test cases. Thus a method which allows the designer to

automatically test the partially designed and implemented system will be of a particular

value.[Bob08][BHS99]

Model-based testing (figure 6.2) is a test technique where test cases are generated from

a model of the system. ”More precisely, instead of manually writing hundreds of test

cases (sequences of operations), the test designer writes an abstract model of the system

under test, and then the model-based testing tool generates a set of test cases from that

model. The overall test design time is reduced, and an added advantage is that one can

generate a variety of test suites from the same model simply by using different test selection

criteria.”[UL06]

There are model-based testing tools that can automate the generation of test cases from a

behavioral model, such as test oracles that can determine whether the system under test

behaved correctly at the execution of the test case. Test cases generated from a model

have been identified as giving a high coverage of system interaction points, given that

the generation is carefully guided. It is argued that applying model-based testing in the

context of product lines, starting from early development, i.e. in the domain engineering,

significantly increased the number of faults found during system testing. [Bob08]

6.3.1 Model Based Testing Steps

Model-based testing is the automation of black-box test design. It usually involves four

phases [Utt06]:

• Building an abstract model of the system under test.

This is similar to the process of formally specifying the system, but the kind of

specification/model needed for test generation may be a little different than that

needed for other purposes, such as proving correctness, or clarifying requirements.
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Figure 6.2: Model Based Testing

• Validating the model (typically via animation).

This is done to detect gross errors in the model. This validation process is naturally

incomplete, but this is less crucial in this context than in the usual refinement to

code context. With model-based testing, if some errors remain in the model, they

are very likely to be detected when the generated tests are run against the system

under test.

• Generating abstract tests from the model.

This step is usually automatic, but the test engineer can control various parameters

to determine which parts of the system are tested, how many tests are generated,
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and which model coverage criteria are used etc.

• Refining those abstract tests into concrete executable tests.

This is a classic refinement step which adds concrete details missing from the ab-

stract model. It is usually performed automatically after the test engineer specifies

a refinement function in the abstract values to some concrete values and a concrete

code template for each abstract operation.

After this, the concrete tests can be executed on the system under test in order to

detect failures (where the outputs of the system under test are different from those

predicted by the tests). It is the redundancy of the test model and the implementation

that counts. Experience shows that failures occurring when the tests are run seems

to be equally due to errors in the model or errors in the implementation.

So the process of model-based testing provides useful feedback and error detection for the

requirements and the model as well as the system under test.

6.3.2 Benefits of Model-Based Testing (MBT)

Model-Based Testing (MBT) can result in the following benefits[Tes10]:

• Shorter schedules, lower cost, and better quality.

• A model of user behavior.

• Enhanced communication between developers and testers.

• Early exposure of ambiguities in specification and design.

• Capability to automatically generate many non-repetitive and useful tests.

• Test harness to automatically run generated tests.

• Easy update of test suites for changed requirements.
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• Capability to evaluate regression test suites.

• Capability to assess software quality.

These benefits all require an initial investment in tools and training.

6.4 Model-Based Statistical Testing

The objective of a real-life test is to detect defects concerning the operational usage of a

system. The test should therefore simulate the real situation as much as possible. One

method for describing the real usage of a system is called operational profiles. An oper-

ational profile is a quantitative characterization of how a system will be used. Statistical

usage testing uses operational profiles to produce a statistically relevant set of test cases.

Statistical usage testing pays more attention to the most frequently used operations focus-

ing mainly on normal use of the system. Operational profiles are used for systems that

can be described as state machines, or systems that have state-based behavior. An oper-

ational profile describes the probabilities of input in relation to the state of the system.

The preparation of test cases is based on the distribution of these probabilities. [BN02]

In model-based testing[UL06], statistical test generation is often used to generate test

sequences from environment models because it is the environment that determines the

usage patterns of the SUT. A typical approach is to use a Markov chain to specify the

expected usage profile of the SUT. A Markov chain is essentially an FSM with probabilities

attached to the transitions. Test cases can be generated via a random walkthrough of

the Markov chain, where the random choice of the next transition is made using the

probability distribution of the outgoing transitions. This means that the test cases with

greatest probability are likely to be generated first. In this approach, the usage model is

a representation of the system use not its behavior. The usage model does not provide

the expected response of the system; that is, no oracles are generated. With just a usage
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model, the oracle information has to be provided independently, either manually for each

test case or by giving some general oracle criterion such as ”no exceptions allowed,” or ”all

output values must be in the range 10 .. 100.” Another approach is to use this kind of

statistical usage model (e.g., Markov chains) in addition to a behavioral model of the SUT.

The statistical model acts as the test selection criterion and chooses the paths through the

behavioral model while the behavioral model is used to generate the oracle information for

those paths. This generates a test suite that can not only perform accurate oracle checking

but also follow the expected usage profile of the SUT.

6.4.1 Statistical Usage Testing

Statistical usage testing is a way to derive test cases for system level black-box testing

from the specification models. [HPR03] states that ”taking the specification models as the

basis for tests has the positive side effect that more attention is paid to keep the models

complete and up-to-date. Another advantage is that testing can start in very early phases

of the development process which is important for incremental development and allows to

shorten the time to delivery. Furthermore the software quality is raised because the system

is tested with respect to the explicitly stated user requirements.”

State machines and usage graphs are very similar. Hence most model elements of a state

machine can be transformed straight forward into corresponding elements in the usage

graph. The basis for creating test cases in statistical usage testing is a usage model.

A usage model is a directed usage graph consisting of states and transitions, with the

extension that every state transition is attributed to the probability that this transition

will be traversed when the system is in the state from which the transition arc starts. Hence

for every state the probabilities of outgoing transitions sum up to one. Every transition

can be related to an event (possibly with parameters) which triggers that transition. A

transition with an associated event may also be related to a guard condition. This means
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that the transition is only performed if the condition is fulfilled by the event parameter

value(s).

There are three approaches [HPR03] to assign transition probabilities.

1. In the uninformed approach all exit arcs of a state have the same probability.

2. The informed approach uses sample user event sequences captured from a proto-

type or a prior version of the system to calculate suitable probabilities.

3. The intended approach allows to model hypothetic users or to shift the test focus

to certain states or transitions.

The Marcov property states that all transition probabilities depend only on the actual

state and are independent of the history, which means that they must be fixed numbers.

A system with this property is called a Marcov chain, for which some valuable analytical

descriptions can be concluded. One such description is the usage distribution stating

the steady-state probability for every state, i.e. the expected appearance rate of that

state. Since each state is associated with some part of the actual software, the usage

distribution shows which parts of the software get most attention from the test cases.

Other important descriptions are the expected test case length and the number of test

cases that are necessary to verify the required reliability of the system. [HPR03]

6.4.2 Phases of Statistical Testing

The process of statistical testing based on a usage model can be divided into five phases[Pro03]:

1. Usage Modeling, where one or more usage models are constructed to represent the

population of uses.

2. Model Analysis and Validation, in which usage models are analyzed to determine

their properties, which are then compared against known or assumed properties of
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field use and test constraints.

3. Test Planning, where test cases are generated and test automation is planned and

designed.

4. Test Execution, where the generated tests are executed against the system under test

and the results are recorded.

5. Product and Process Measurement, where the results of the test are analyzed to

determine expected reliability.

Throughout this process, there are opportunities for automation. For this reason, the

Java Usage Model Builder Library (JUMBL) has been developed by the Software Quality

Research Laboratory of the University of Tennessee.

6.4.3 Statistical Testing using JUMBL

In order to apply statistical testing, a usage model is developed and analyzed to validate

its fitness for use in testing. As mentioned earlier, a usage model is a specification of the

system’s use not its behavior. In other words, the model represents what the user is likely

to do next, not the internal states of the system. The model may then be used to gen-

erate test cases representing expected usage and to reason about system reliability given

the performance on the set of tests. The Java Usage Model Builder Library (JUMBL) is

a Java class library and set of command-line tools for working with usage models. The

JUMBL supports construction and analysis of models, generation of test cases, automated

execution of tests, and analysis of testing results.[Pro03] The most common format for

developing usage models is The Model Language (TML) (figure 6.3), which is a simple

language developed specifically for Markov chain usage models. The TML language sup-

ports developing usage models as compositions of other models to simplify specifying the

structure of large models. For example, one might create a model of each user dialog pre-
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sented by a software system and then create a top-level model which links these together.

TML allows specifying the probabilities as constraints along with simple objective func-

tions to simplify specifying the probability distribution for a usage model. For example,

one might specify that one arc is twice as likely as another, and then leave all other arcs

unconstrained. The JUMBL then chooses probabilities which honor the given constraints.

Additionally, multiple distributions (as constraints) can be stored in a single model, and

automated testing information (called labels) can be attached to parts of the model as

necessary.[Pro03] ”In addition to TML standard formats supported by the JUMBL in-

clude comma-separated value (CSV), the DOT language used by the Graphviz tools, GML

as used by Graphlet, and Model Markup Language (MML). MML is an XML extension

language created specifically for representing Markov chain usage models.”[Pro03]

The JUMBL creates a comprehensive analytical report of model and use statistics which

can be used to validate model correctness, plan for testing, investigate expected use, and

compare different modeling approaches.[Pro03]

• Test model 

is represented as a 

• Graph 
Modeling 
Language 
(GML) 

with minor manual 
adaptations 

transformed into • The Model 
Language 
(TML) 

as input for

• Jumbl

tool

Figure 6.3: Steps before using the tool JUMBL
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6.4.4 Test Generation using JUMBL

The JUMBL can generate test cases in five ways[Pro03]:

• A collection of test cases can be generated covering the model with minimum cost.

• Test cases can be generated by random sampling with replacement. Test cases can

be generated in order of probability.

• There is an interactive test case editor for creating test cases by hand.

• Test cases can be created by interleaving the events of other test cases.

6.5 State Charts (SCs)

The Unified Modeling Language (UML) is now the standard used for modeling in soft-

ware engineering. As mentioned earlier, UML 2.2 has 14 types of diagrams divided into

two categories. Seven diagram types represent structural information, and the other seven

represent general types of behavior, including four that represent different aspects of inter-

actions. In this thesis, State Charts are chosen since they are the primary means within

the UML for capturing complex dynamic behavior.

A State Chart shows the possible states and the transitions that cause a change in state.

From each state comes a complete set of transitions that determine the subsequent state.

States are rounded rectangles. Transitions are arrows from one state to another. Events or

conditions that trigger transitions are written beside the arrows. The action that occurs

as a result of an event or condition is expressed in the form event/action.

Figure 6.4 represents the main contents that will appear in the Colored State Chart.

In the latest version of UML, the UML state machines unfortunately do not offer operators,

sub-languages and/or graphical notations for specifying product lines.[LG08] Therefore,
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State i State j
event / action

Figure 6.4: A State Chart

in order to overcome this obstacle, it is targeted to extend the UML state diagrams to

represent the product lines and the variability.

6.6 Why State Charts?

The intention of this section is to shed light on how much more concise and structured the

State Chart version is in comparison to the natural language specifications.

6.6.1 Why not Natural Language Specifications?

Although the behavior of a URC may be intuitive to describe, the behavior of such an

application in natural language can be surprisingly difficult. Most specifications written

for real projects try to be detailed as much as possible, but they usually leave many

aspects of a system unspecified and open to interpretations. Even if a serious attempt is

made to specify a system in detail, it is almost impossible to write one without ambiguity,

inconsistency, incompleteness and redundancy. Thus, one of the main problems with using

natural languages for specifications is their inherent ambiguity. The semantics of each

word is not well defined and when words are combined into sentences and paragraphs, the

ambiguity can be magnified further. Even when precise and accurate descriptions are used,
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they are often very long and difficult to understand. The best way to capture the precise

behavior is to produce a model of the targeted behavior in a graphical language that has

well-defined semantics. The advantage of this approach is that many of the problems with

natural language specifications are avoided. [Hor99]

6.6.2 Advantages of State Charts

The use of state machines is widespread in the electronics industry.[Hor99] More specifi-

cally, State Charts are a well known design method to develop embedded systems. They

have been chosen for modeling the product line test model for the following reasons and

advantages[Mue09][Gom10]:

• Many embedded systems consist of multiple threads, each running an FSM. State

charts allow the modeling of these parallel threads

• State Charts allow designing the dynamic behavior of a device. Parts of an embedded

device can be often modeled as state machine due to the reactive nature of embedded

devices. Devices react to some kind of external or internal stimuli which lead to an

action and, eventually, to a change of state.

• A state machine forces the programmer to think of all the cases and, therefore, to

extract all the required information from the user. One can quickly draw a state

transition diagram on a whiteboard, in front of the user, and walk him through it.

The first and hardest step is to figure out what the user really wants the software to

do.

• State Charts provide a good level of abstraction: Many people with different techni-

cal background understand State Chart diagrams. This is important because for the

development of an embedded system often different engineering disciplines come to-

gether. Therefore, State Charts are a very good basis to discuss the modeled behavior
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or requirements in design reviews with colleagues or customers.

• State Charts allow finding defects already in the design phase. To decrease cost of

poor quality, it is important to find defects as early as possible in the development

process. During the design, usually defects related to unclear, incomplete or missing

requirements are found. Such defects can lead to very costly redesigns or even to

the reconstruction of the system if they are found not before the system test. State

Charts open a number of possibilities to find defects early in the process.

• State Charts allow simulation of the modelled behaviour: It is easily possible to

execute a State Chart in a simulator and allow the user to send events to the machine

and observe how the State Chart reacts to the sent stimuli. This way the user can

interactively test the model and improve it where necessary.

• Robustness of state charts can be automatically checked on model level: In the

hardware design automatic design rule checks are very common. For software designs,

this is not yet common. Software design rules need to be defined; handmade checks

are time-consuming and the result is very dependent on the reviewer. In practice, a

tool is needed to ensure that checks are really performed.

• Automatic code-generation reduces coding errors: Once the state chart was checked

the implementation can start. It is highly recommended not to code the state machine

by hand but let a tool generate the code for you. Automatic code generation has

many benefits especially if a model checker is integrated in the generator and can

perform a large number of checks automatically. Especially composite state charts

can be tricky to code by hand. When transitions or states have to be added because

of an additional requirement one wishes to have a generator at hand taking over all

the error-prone placement of entry, exit and action code associated with states or

transitions.
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• Automatically deriving test-cases from the model: There are several articles about

testing state machines, but the one written by Martin Gomez [Gom10] summarizes

the usually used approach:

”The beauty of coding even simple algorithms as state machines is that the test plan

almost writes itself. All you have to do is to go through every state transition. I

usually do it with a highlighter in hand, crossing off the arrows on the state tran-

sition diagram as they successfully pass their tests ... This requires a fair amount

of patience and coffee, because even a mid-size state machine can have 100 differ-

ent transitions. However, the number of transitions is an excellent measure of the

system’s complexity.”

Based on a state chart model the tool JUMBL, introduced later can take over this

time consuming manual task of defining routes through the state chart ensuring 100%

transition coverage. Implementing the test cases is a task that one still has to do.

But a good code generator can also support by automatically generating trace code

if needed for test purposes.

In the next chapter the CMBT-SWPL using the CSC is represented, where only one State

Chart is depicted that captures all product line variants.
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Chapter 7

Colored Model Based Testing for

Software Product Lines

(CMBT-SWPL)

”Success is not the key to happiness. Happiness is the key to success. If you love what

you are doing, you will be successful.” Albert Schweitzer

7.1 Introduction

This chapter introduces the concept of the Colored State Chart(CSC), followed by in-depth

details on how testing for embedded product lines is conducted using the CMBT-SWPL

method. The transformation from CSC to CPN for verification and simulation purposes is

then presented. Next, the tool PENECA Chromos is introduced followed by an explanation

of simulation in terms of concept and function.

7.2 Colored State Charts (CSCs)

State Charts (SCs) used here are based on David Harel´s State Charts introduced in

1987[Har87]. They were later incorporated into the UML [OMG09], followed by some

modifications and an object-oriented interpretation. The basics of the State Charts are
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covered in [Fow03], [OMG09] as ”UML state machine diagrams”.

UML State Charts cannot address product lines. Thus, the extended State Chart version

as introduced in [FFD02], [FFDD02] and [Fen04], will be used in the present work to

address product lines. Such State Charts are called ”Colored State Charts” (referred to

as CSC) and are based on the basic idea of Colored Petri Nets (CPNs), as described in

[Jen80] or [Fen93].

The basic principle is based on the folding of similar state diagrams, which represent, for

example, a class and its subclasses, or more object instances of a class. In figure 7.1 an

example is depicted to explain the idea.

7.2.1 Example: Folding of States and Transitions

In this example, State Charts SCa and SCb have the same states, but differ only in the

transitions. SCa and SCb have the transitions t1a and t1b respectively as well as t2a

and t2b. However, t3a exists only in SCa. The included tokens (black dots) in S3a and

S1b show the currently active states in the state diagrams SCa and SCb. Tokens move

when transitions fire into the next active state. In the resulting CSC, the common states

and transitions are superimposed. This superimposition is labeled as shown in figure 7.1.

For example, the two states S1a and S1b will be superimposed in the CSC to S1a/S1b

and correspondingly the two transitions t1a and t1b are superimposed in the CSC to

t1a/t1b. The states or transitions (e.g. t3a) that are only present in one state diagram are

transferred to the CSC. In the CSC, the tokens SCa and SCb appear in the states (S1a/S1b

and S3a/S3b), as a result of the superimposition of the corresponding marked states in

SCa or SCb. The transitions of the CSC will be further labeled with the disjunction of the

SC names, which are involved in the superimposition of the transitions. For example, the

transition arising from t1a and t1b will be labeled SCa ∨ SCb and the transition arising

from only t3a will be labeled SCa. The SCi names used in the tokens and on the transitions
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S1a S2a

S3a

t1a

t3at2a

S1b S2b

S3b

t1b

t2b

S1a/S1b S2a/S2b

S3a/S3b

t1a / t1b

t3at2a / t2b

SCa

SCa SCb

Folding

CSC

SCa ˅ SCb

SCa ˅ SCb

SCa 

SCb

Figure 7.1: Folding of States and Transitions (from [FFDD02])

are described in the following sections as colors. Transitions can fire, if the originating state

contains a token of color SCi (e.g. S1a/S1b contains the token SCb) and the disjunction

of the transition contains SCi (e.g. the disjunction of t2a/t2b contains SCb).

7.2.2 Formal Definitions

The CSC in figure 7.1 will be depicted in the overall following figure 7.2. The following

CSC used does not use all the options mentioned in [FFDD02],[FFD02] and [Fen04]. In

order to extend the State Chart (SC) to a Colored State Chart (CSC) based on the general

State Chart definition, the present work will focus only on the following:
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s1 s2

s3
c1

CSC

c2

cv1/a1

cv3/a3cv2/a2

cvd(cv1) = (c1 , c2) s1 : S1a / S1b    c1 : SCa

cvd(cv2) = (c1 , c2) s2 : S2a / S2b    c2 : SCb

cvd(cv3) = (c1) s3 : S3a / S3b

ai represents actions

Figure 7.2: Example of a Colored State Chart(CSC)

• S: a finite set of complex states.

• The elements of S are called s.

• T: a finite number of complex transitions with T ⊆ S × S.

• The elements of T are resulting as (si, sj).

In addition, the following is introduced:

• C: a finite set of colors.

• The elements of C are called c.
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• CV: a finite set of color variables.

• The elements of CV are called cv.

• m: a marking with m: S → P (C), were P(C) is the power set of C.

• ctf: a color transition function with T → CV .

• For each cv ∈ CV belongs a definition set cvd with cvd ⊆ C ∧ cvd 6= ∅.

For the state transitions in the CSC, there is a transition firing rule:

• A transition (si, sj) can fire for c ∈ C if c ∈ m(si).

• A transition fires for c ∈ C if and only if it can fire for c (and additionally the events

and the guards of the transition are fulfilled).

The result of firing of (si,sj) for c ∈ C is:

• mk+1(si) = mk(si)\{c} and mk+1(sj) = mk(sj) ∪ {c}

• k is before firing (si, sj); k +1 is after firing (si, sj).

• A transition fires in parallel for different colors, if it can fire for these colors.

Colored State Charts can be transformed to Colored Petri Nets [FFDD02]. This makes ver-

ification of the transformed model possible using widespread methods and tools developed

for CPN.

7.3 Testing Product Lines with CMBT-SWPL Method

7.3.1 CMBT-SWPL : Domain Engineering.

Within the domain engineering (the left part of figure 7.3) of the product line a feature

model was developed in [Die03] to model the variable and common features of the product
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Figure 7.3: Colored Model-Based Testing for Software Product Lines(CMBT-SWPL) - Domain

Engineering

line. For further elaboration of the example the present work will mainly concentrate on

the features shown in figure 7.4, referenced as ”Reduced Feature Model”. The selection of

features in the reduced feature model for a certain product line variant is called feature

configuration. In parallel to the feature model, a usage model is developed, represented as

State Chart with usage probabilities. It models the black box usage of the system and is

extended towards a Colored State Chart. From (figure 7.4), several product line variants

could be extracted. For simplification purposes the focus will be in the following definitions

on only three product line variants (see figure 7.7), (figure 7.8) and (figure 7.9).
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Figure 7.4: Reduced Feature Model

Technical University of Ilmenau



112 CHAPTER 7

Those three product line variants are defined in figure 7.5:

V D(v1) = {f1, f2}

(f1 = Basic Functions)

V D(v2) = {f1, f2, f3}

(f1 = Basic Functions, f2 = Electronic Program Guide(EPG))

V D(v3) = {f1, f2, f3, f9}

(f1 = Controlling VDR, f2 = Basic Functions, f3 = Electronic Program Guide(EPG),

f9 = Reminder)

v1

v3

v2

f1

f3

f2

f9

Figure 7.5: Product Line Variants to Features Assignments

• F represents the set of all features and corresponds to CV from section 7.2.2

The elements of F are called f and build the color variables in CSC of figure 7.6

• V represents the set of all defined product line variants and is equivalent to C from

section 7.2.2

The elements of V are called v and build the colors in CSC in figure 7.6.
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• VD is the variant definition set. VD contains the allocation of all defined product

line variants to the features and is produced from the specification of the product

line variants and the restrictions of the feature model.

• (V D : V → F )

• (V D(v) = {fi, fj, fk, . . .}

The reduced feature model results in three product line variants (V1, V2 and V3). V1

includes features f1 and f2. V2 includes features f1, f2 and f3. V3 includes features f1,

f2, f3 and f9. The set of all features corresponds to the finite set of color variables of the

colored State Chart. The features correspond to the color variables, presented in the test

model in figure 7.6.
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This test model can be elaborated formally as explained in the following lines and based

on Section 7.2.2:

• S represents the set of all states.

• Symbolic identifiers are used for the elements of S.

• S = {Waiting, V olume, . . .}

• T represents the set of all transitions.

• The elements of T are resulting from S×S as (symbolic identifier i, symbolic identifier

j)

• T = {(Waiting, V olume), (Waiting,Waiting), . . .}

An example for a condition is:

• condition(Waiting, V olume) = V olP lus

An example for cft is:

• cft(Waiting , Volume) = f2

The set of features is:

• F = CV = {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12}

The set of the defined product line variant is:

• V = C = {v1, v2, v3} From the VD(v), the assignment of the product line variant vi

to the feature fj can be directly derived as following:

• cvd(f1) = {v1, v2, v3}

• cvd(f2) = {v1, v2, v3}
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• cvd(f3) = {v2, v3}

• cvd(f9) = {v3}

Based on the knowledge captured in the feature model and the previously developed usage

model a CSC is developed (see (A) in figure 7.3). The CSC includes the behavior of the

system family and its variability as well, represented by the colors. At any given moment,

the CSC refers to one active product line variant while the remaining variants are passive.

This is similar to the concept of instantiation in the object oriented paradigm. One active

product variant is equivalent to a certain feature configuration extracted from the feature

diagram or from the CSC.

One color, i.e. one product line variant may consist of one or more features, in this case

color variables (figure 7.10). Within the domain test model in (figure 7.6), variability is

realized by mapping the features to one or more transitions (figure 7.11). The events are

combined with features present in a given application of the product line. A transition

will only be able to fire if all features which are bound to it are present in the derived

application.

1 1 PLV PLV 
=          =          

1 1 colorcolor

FeatureFeature

= = 

color color 
variablevariable

FeatureFeature

= = 

color color 
variablevariable

FeatureFeature

= = 

color color 
variablevariable

One color, i.e. 
one product 
line variant 
may consist of 
one or more 1 1 colorcolor

variablevariable

FeatureFeature

= = 

color color 
variablevariable

variablevariableone or more 
features, in this 
case color 
variables. . 

Figure 7.10: One product line variant constitute of one or more features
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1 PLV 
=          

1 color

Feature

= 

color 
variable

Feature

= 

color 
variable

Feature

= 

color 
variable

Feature

= 

color 
variable

Figure 7.11: Features to transitions mapping

The domain test model includes all features of the product line. Out of the domain test

model, domain test cases (see (B) in figure 7.3) are derived (see figure 7.13) by reducing

the feature set to the common features, which is the core of the product line. Based on

this reduction, a State Chart is derived and enhanced with usage probabilities to be used

as input for the generation of test cases, described in section 7.3.3. The test artifacts (see

figure 7.12) gained until this step such as test models and test cases are stored in the

repository to be reused for the derivation of applications of the product line.

Figure 7.12: Test Artifacts
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Systematic Test Case Generation 

Model-
Based 

Testing

Statistical 

Testing 

Systematic 
Test Case 

Generation 
Test Case 
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Usage 
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Colored 
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Chart

Figure 7.13: Systematic Test Case Generation

7.3.2 CMBT-SWPL : Application Engineering

Within the application engineering (the right part of figure 7.14) of the product line,

the feature model is reused. Based on the Application Requirements Engineering phase,

possible required changes to the feature model are thoroughly assessed. In case such new

requirements make changing the feature model worthwhile, these changes are fed back to

the Domain Engineering phase. The next step is to customise the colored domain test

model (i.e. one color is chosen) to produce the colored application test model for a specific

application (see (C) in figure 7.14). The CSC is transformed into a State Chart modeling

the behavior of a single application and enhanced with usage probabilities to generate
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test cases (see (D) in figure 7.14) for this application using the statistical testing approach

described in section 7.3.3. Traceability information (depicted by the dotted arrows) created

during the first activities are required to perform activity D.
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Figure 7.14: Colored Model-Based Testing for Software Product Lines(CMBT-SWPL) - Applica-

tion Engineering

Statistical testing as one of the technologies to reduce the huge test space, was chosen based

on own experiences in the embedded software development domain, expert knowledge of

embedded software developers in the automation domain and the results of the D-MINT

project. Other approaches towards test case reduction and generation are subject of further

research.
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Statistical Testing is a technology to reduce the huge test space

Figure 7.15: Why Statistical Testing?

7.3.3 Statistical Testing

Statistical testing [Poo00], [WT94] is based on usage models. Such models represent the

typical (based on statistics) usage of a system, in our case by an end user. The usage model

may be expressed by a State Chart with annotated transition probabilities. All possible

paths from the start to the final state form the test cases of the system.

As depicted in figure 7.16 (a), each test case is composed of the transitions and states

along a path from the start to the final state. Part (a) of the figure results in a test case

along the transitions goto A, goto AC, goto CF and goto X in exactly this order. For each

transition, test steps according to a test interface are defined, e.g. push buttons on the
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system under test (SUT) or the measurement of the reference values parallel to the test

case execution. As shown in (b) of figure 7.16, circular paths of transitions are possible,

e.g. increase in volume by one step, which results in different volume levels according to

the number of circulations per test case. Clearly, an abort criterion is needed to exit such

circular paths to generate test cases for such a State Chart (note: the volume example

needs to have an upper bound which is left out of the discussion). In statistical testing,

this abort criterion is addressed by probabilities attached to the transitions of the State

Chart.
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(a) Test Case Path

(b) Infinite Test Case Path

(c) Test Model with Probabilities

Figure 7.16: Statistical Testing based on Usage Models

Finally, in part (c) of figure 7.16 the probabilities conform to (figure 7.17) the usage of

the system, which can be obtained by observing the user using the system, using similar

project´s statistics or by expert estimations which can be further refined if necessary
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through usage.

Figure 7.17: How is the typical usage obtained?

In part (c) of figure 7.16, 70% of the cases users of the system would change from state A to

state C, in 30% from A to B, according to the annotated probabilities. Based on the State

Chart with probabilities, test cases are generated, e.g. with full state and/or transition

coverage with the least possible paths. Alternatively, a given number of test cases may be

generated according to the probabilities.

The tool JUMBL [Pro03] is used to generate test cases according to the above mentioned

criteria. The test model in 7.16 is presented as Graph Modeling Language (GML) with

minor manual adaptations transformed into The Model Language (TML) used as input for

JUMBL (figure 6.3).
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7.4 Colored Petri Nets (CPN)

This section shows the result of transforming the CSC (figure 7.6 on page 114) of the

universal remote control example to a CPN (see figure 7.18, 7.19, 7.20) for verification and

simulation purposes. It is worth of note that the label edges of the CPN arise from color

variables of the CSC.

7.5 PENECA Chromos

In the next section PENECA Chromos[Wik96]is used as a tool (figure 7.21) for design and

simulation of Petri Nets. It has been developed at the Technical University of Ilmenau in

corporation with OWIS Software GmbH, Martinroda. This tool includes an interface to the

analysing tool INA and a component for statistical evaluation. This statistical component

allows observation and recording of the net’s firing behaviour.[DMMF97]

7.6 Simulation

By using the animated Petri Net simulation tool ”PENECA Chromos”, the designer can

observe the effects of changes by simple manipulations in the model. The developer is

enabled to experiment with variations in order to see the effects of particular changes.

The simulation tool immediately interprets the net in it’s actual state and changes can be

performed rapidly without the need to write any line of code. If one is given an animation

component, the results can be visualized in a clear and easy to understand way. Decisions

show their consequences in an immediate manner. This intuitive approach leads to faster

development, makes it easier to find solutions for a problem and avoid disadvantageous

decisions. In this study’s example, simulation was helpful and without it, errors would

not have been traced immediately. The clearly visible differences during simulation lead
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to rapid error correction. Simulation can be used to predict quantitative properties of the

process, especially statistical ones. Such measurements are valid with respect to the chosen

stimulus parameters, which may be varied to get additional information.[DMMF97]
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Figure 7.18: Petri Net 1
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Figure 7.19: Petri Net 2
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Figure 7.20: Petri Net 3
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Chapter 8

Evaluation

”The only way of finding the limits of the possible is by going beyond them into the

impossible.” Arthur C. Clarke

8.1 Introduction

Software product line engineering needs an appropriate test model to complete the whole

product engineering. The presented approach supports the reuse of Colored State Charts,

i.e. the test models. This reuse of the test models and the automatic test generation

indicate that the test effort can be saved by using the ”Colored Model Based Testing for

Software Product Lines lines” (CMBT-SWPL) method.

This reusable feature-oriented model-based testing method, namely CMBT-SWPL is used

to create test assets from feature models, which can then be configured to test individual

applications that are members of the software product line.

This method can be used to reduce the number of reusable test assets created to cover

all features, and select feature combinations of a software product line. These test assets

can be automatically selected and configured during application engineering to test a given

application derived from the software product line.
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8.2 Results

As mentioned before UML state machines do not consider product line variability. With

the approach described in this thesis, variability will be considered early by introducing

it directly in the main product line components of the CSC. Thus, by using the CSC, the

product line variability can be extended to the UML state machines. Accordingly, variabil-

ity is preserved in test cases as they are generated from colored test models automatically.

To sum up, one of the main benefits of the CMBT-SWPL method is its formal syntax as

well as a formal semantic for the CSC and the consideration of variability.

As a result of the D-MINT project [DM10], an overall improvement of 35% (compared to

a non-model based testing approach) for the testing development activities was achieved

using model-based testing of single applications (statistical testing was a central part of

this project) within the automation domain. Combining the CMBT-SWPL method to

the statistical testing within the embedded product line domain is expected to lead to

a reduction of test case development time, cost and effort by 4̃5% (based on interviews

with domain experts).Future research will result in metrics on the improvement due to the

CMBT-SWPL product line testing.

8.3 Colored Model Based Testing for Software Product

Lines - Strong Points

The main two approaches that also address reuse and model based testing are ScenTED[RKPR05]

and CADeT[Oli08] (figure 8.1). In this section, focus will be made on the main points that

make CMBT-SWPL approach more advantageous as follows:

1. Compact presentation (CSC).
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Approaches

Support  The  Idea  Of  Extending

Proactive  Reuse

To Product Family Testing.

Support  The  Idea  Of  Extending  MBT

To Product Family Testing.

Reuse MBT

ScenTED 2005

CADeT 2008

CMBT 2010

(+)The key idea of the techniques 

is to create reusable test case 

artifacts in domain engineering and 

to reuse these test case artifacts in 

application engineering. 

(+)They are model-based techniques for 

system testing in product family 

engineering.

YES YES

Figure 8.1: What makes CMBT-SWPL so special?

• If they were not compact, then we would have to model several separate State

Charts, then errors are more likely to occur in each individual model. The

modelling effort for the CSC describing all product line features admittedly

exceeds the effort needed for a state machine describing just one product variant.

However, it requires a less considerable effort than modelling and maintaining an

individual State Chart for each product variant of a product line, in particular,

for large product lines with dozens of features.

• On the other hand, when the developer will try to realize this compact presen-

tation, he will try to avoid redundancies, ambiguities and incompleteness.

• The method provided compact presentation by representing all product line
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variants in one model, namely CSC. The developed test model is able to manage

large numbers of feature combinations. Colors and tokens are used to distinguish

between active and passive product line variants.

• Transformation from CSC to CPN is easily performed and accordingly achieve

the benefits from CPN’s Verification and Analysis Methods.

Thus, product line’s test artifacts are less complex, compact, expressive and

helpful in modeling both simple and complex embedded reactive product lines.

2. Early Verification not only Validation of product lines.

Product line verification is accomplished by transforming the CSC into a CPN

utilizing the powerful analysis methods of PNs regarding for example how to deal

with conflicts, deadlocks, and unwanted states. This helped in diagnosing and tracing

the errors as it is performed in the Petri Nets approach.

3. More complex systems can be addressed by using State Charts, which are the most

widespread suitable UML models used for modeling complex embedded product lines.

According to the above mentioned advantages, CMBT-SWPL is recommended to be the

choice when testing a software product line.

8.4 Discussion

Using the CMBT-SWPL introduced in this thesis showed that the targeted goals have been

achieved as follows:

• After comparing the new CMBT-SWPL method with the other testing product line

methods, the CMBT-SWPL method is considerably simpler than the existing variants

because:
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Requirements based, system 
testing method

Model-based, reuse-oriented test 
technique

(+)Early validation and verification

(+)Compact Presentation

(+)Early Variability Consideration

(+)Automatic Test Case Generation 

(+)Reduced test effort 

Figure 8.2: CMBT-SWPL Method

– The new method introduced the concept of colors.

– It enables to manage complexity by a test model instead of many hundreds of

manually defined test cases.

– It automates test case generation and test result analysis.

– It enables one-click verification of the test model (by Petri Net technologies)

• The CSC model is an economical way of dealing with the increasing complexity in the

embedded product line domain. CMBT-SWPL seems to be powerful and expressive

enough for modeling typical behavior and interaction requirements of systems in the

embedded domain in an efficient way, reducing the development effort by 30%.
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• Ambiguities, incompleteness, redundancies, etc. in requirements were addressed in

an earlier stage when trying to achieve this compact presentation.

• By using the new principle of colors in State Chart, compact presentation through

folding is possible, although this approach is fully maximized when used with the

appropriate tool support.

• Variability, which is a basic concept in product lines, is introduced for the various

test artifacts by using the principle of colors.

• The benefits of model based testing and statistical testing in the context of product

lines are achieved because of the preserved variability in all test artifacts. More

precisely, variability is introduced in the colored test model and accordingly in the

test cases as they are generated using statistical testing form the reusable Colored

State Chart.

• The behavior captured in the CSC could be transformed to CPNs. The powerful

verification and analysis methods of Petri Nets regarding for example how to deal

with conflicts, deadlocks, and unwanted states, could be implemented.

• Furthermore, this transformation to CPNs facilitates the early validation of the

method, which has been achieved by the simulation performed using PENECA Chro-

mos.

• The product line infrastructure contains better tested reusable components, which

result in a higher quality of the components.

Thus, the CMBT method provides an important step toward the goal of modeling in-

creasingly complex semantics of UML State Charts in the context of embedded product

lines.
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Chapter 9

Conclusion

”Arriving at one goal is the starting point to another.” John Dewey

In this chapter, a conclusion of the thesis is presented.

• Section 9.1: Provides a summary for the overall thesis layout, which discusses the

main issues that motivated the thesis.

• Section 9.2: The CMBT-Method is explained in a nutshell.

• Section 9.3: Describes areas of suggested future studies.

9.1 Summary of the Thesis’s Layout

Chapter 1 has introduced the motivation and contribution of the thesis. Then, the research

area on which this thesis is built is demonstrated. Chapter 1 ends with the layout of the

thesis.

Chapter 2 and 3 respectively provide an in-depth analysis of a wide range of topics such

as: Software product lines, Testing software product lines, Variability, Feature modeling,

Testing, Quality Assurance, Unified modeling language, Petri Nets, Colored Petri Nets,

State Charts, Colored State Charts and embedded reactive systems. This detailed analysis

forms a sound background of the area of the research.

Chapter 4 determines more precisely the main requirements of the Colored Model Based
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Testing for Software Product Lines(CMBT-SWPL) method and what are the steps needed

to meet those requirements.

In chapter 5, the example of a Universal Remote Control is used to explain the test method.

This example [Die03] was conducted at the Faculty of Computer Science and Automation

- Institute of Computer Engineering - Ilmenau University of Technology and it is part of

the Digital Video Project(DVP)[Mef03][Str04] based on the VDR project [Gos10].

The main aspects such as Model Based Testing, Statistical Testing, State Charts’ Selec-

tion to represent behavioral models are explained in chapter 6 in detail to facilitate un-

derstanding how testing using the CMBT-SWPL can be applied to the embedded product

line domain.

In chapter 7, the Colored State Chart and test method, the Colored Model Based Testing

for Software Product Lines(CMBT-SWPL) are presented.

Chapter 8 evaluates the test method and chapter 9 ends with a conclusion and suggested

studies.

9.2 CMBT-Method in a Nutshell

In this thesis, a novel approach for the system test of embedded product lines has been

presented. Moreover model based testing, which is considered a prerequisite for automated

test generation, has been adapted to embedded product lines. The CSC considers variabil-

ity early in the embedded product line development process and as test cases from CSC

automatically are generated, the variability is preserved.

The testing process is divided into two parts:

• Part1: Domain Testing where the following is performed:
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1. Create feature model to capture common and variable features of the product

line.

2. In parallel to the feature model, usage model is developed, represented as a

State Chart with usage probabilities.

3. Based on the knowledge captured in the feature model and the previously de-

veloped usage model, a customizable statistical test model, namely the Colored

State Chart(CSC) is developed. The CSC is linked to all features of the product

line by the concept of colors.

4. Out of the domain test model, domain test cases are generated applying statis-

tical testing.

• Part2: Application Testing where the following is performed:

1. Determine a product line variant, which is a set of features for a specific appli-

cation to test. Feature model is reused for a specific application (i.e. product

line variant.)

2. Customize the colored domain test model (i.e. one color is chosen) to produce

the colored application test model for a specific application based on the selected

feature set.

3. The application CSC is transformed into a State Chart with usage probabilities

by removing colors and the corresponding states of unselected features

4. Out of the application test model, application test cases are generated applying

statistical testing.

In addition, the CSC will be transformed to a Colored Petri Net (CPN) for verification

and simulation purposes.
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9.3 Suggested Studies

The present thesis paves the way for more research work on improving the techniques

applied and their tool support.

The applicability and usability of the proposed colors to the test models remain to be

investigated in future works for other purposes. For other UML Models, using the concept

of colors, will open up new vistas of research areas in testing embedded product lines.

Furthermore, applicability of CMBT-SWPL method on other domains is to be investigated.

Another target is to apply this method in future works to more industrial partners. The

aspect of applying this method and integrating it into the Rational Unified Process and

with agile methods is the next target. Last but not least the present author hopes that

this work will enhance further research.
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Synonymic Terminologies

Terminology Alternate Terminologies

Product Line Product Family

Business Unit

Domain Engineering Software Product Line

Product Line Development Phase

Core Asset Development

Product Line Engineering

Software Product Line Engineering

Product Development Preparation Phase

Application Engineering Product Development

Actual Product Development Phase

Product Engineering

Software Core Assets Platform

Product Line Infrastructure

Infrastructure

Product Line Assets

Product Line Repository

Customizable Assets

Product Customization

Customized Product

Application

Actual Product

Product Instance

Table 9.1: Synonymic Terminologies
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Glossary

Abstraction Considering certain details and ignoring the rest.

Action An action is a description of an activity that is to

be performed at a given moment.

Application Artifacts They are the development artifacts of specific

product line applications.

Application Design It is the development of a single application archi-

tecture conforming to the reference architecture.

Application Engineering It is the process in which the applications of the

software product line are built by reusing plat-

form artifacts and exploiting the variability of the

product line.

Application Realization It is the development of applications based on the

application architecture and the set of domain ar-

tifacts.

Application Requirements Engineering It is the sub-process of application engineering

dealing with the communication of product line

capabilities to the stakeholders, the elicitation of

stakeholder requirements, and the creation of the

application requirements specification.

Application Testing It is the process of uncovering the evidence of de-

fects in a software product line application.

Asset see development artifact.
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Black-box testing A testing technique whereby the design of tests

is based on just the requirements or specification

of the system under test, not on knowledge about

the implementation of the system.

Component It is a unit of composition with contractually spec-

ified component interfaces and explicit context

dependencies only; it can be developed indepen-

dently and is subject to composition by third par-

ties.

Coverage A measure of how much testing has been done.

Deadlock A deadlock is a situation where an application

locks up because two or more activities are wait-

ing for each other to finish. This occurs in

multi-threaded software where a shared resource

is locked by one thread and another thread is wait-

ing to access it and something occurs so that the

thread holding the locked item is waiting for the

other thread to execute.

Development Artifact It is the output of a sub-process of domain or ap-

plication engineering. Development artifacts en-

compass requirements, architecture, components,

and tests. Product-line assets. The artifacts are

stored in the product-line repository.
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Domain It is an area of process or knowledge driven by

business requirements and characterized by a set

of concepts and terminology understood by stake-

holders in that area. The problem domain and the

solution domain are two kinds of domains.

Domain Artifacts They are reusable development artifacts created in

the sub-process of domain engineering. Synonyms

are platform and product line artifacts.

Domain Design It is the development of a reference architecture

for the complete software product line.

Domain Engineering It is the process of software product line engineer-

ing in which the commonality and the variability

of the product line are defined and realized.

Domain Realization It is the development of the set of reusable com-

ponents and interfaces within a given reference ar-

chitecture.

Domain Requirements Engineering It is the sub-process of domain engineering deal-

ing with the identification of common and variable

requirements and their documentation in reusable

requirements artifacts.

Domain Test Case It is a description of a single test flow that has to

be performed to test a specific test item. A test

case consists of a test case scenario, input data,

the expected result, information about the execu-

tion, environmental needs, and fail-pass-criteria.
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Domain Test Case Scenario A domain test case scenario is a variable sequence

of interactions between variable internal and/or

external actors of a system under test.

Error A human action that produces an incorrect result.

Failure The symptom of a fault. For example, it is the

wrong output, the crash, or the infinite loop that

may happen when we execute a fault in the SUT.

Fault A defect in the SUT. Also known as a bug or an

error. When a fault is executed, it may cause a

failure.

Feature It is an end-user characteristic of a system.

Finite State Machine A model that has a finite number of states and a

finite number of transitions between those states.

Formal Expressed in a notation that can be analyzed

automatically, such as a programming language.

Contrast to informal.

Informal Expressed in a notation that cannot be analyzed

automatically, such as natural language or hand-

drawn diagrams. Contrast to formal.

JUMBL The JUMBL is a software tool for statistical test-

ing based on Markov chain usage models devel-

oped at the SQRL. Expertise, training, and sup-

port is available from Software Silver Bullets.
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Livelock A liveness failure where execution continues end-

lessly, never reaching an accepting state.

Liveness The property that something good will happen:

execution will reach an accepting state and will

avoid dead states, deadlock, and livelock. Or a

given scenario will be executed.

Mass Customisation It is a large-scale production of goods tailored to

individual customers’ needs.

Model-Based Testing Model-based testing is a testing technique where

the runtime behavior of an implementation under

test is checked against predictions made by a for-

mal specification, or model.

Model-based testing The generation of executable black-box tests from

a behavioral model of the SUT.

Operational Profiles They deal with the use of a system. The user

could be a human being or another system that

triggers the system under test.

Oracle A mechanism for analysing SUT output and de-

ciding whether a test has passed or failed.

Product Line Artifacts see domain artifacts.

Product Management It is the process of controlling the development,

production, and marketing of the software prod-

uct line and its applications.
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Reference Architecture It is a core software architecture that captures the

high-level design of a software product line.

Requirement It is (1) a condition needed by a user to solve a

problem or achieve an objective. (2) A condition

or capability that must be met or possessed by a

system or system component to satisfy a contract,

standard, specification, or other formally imposed

document. (3) A documented representation of a

condition or capability as in (1) or (2) (IEEE Std

610.12-1990)

Requirement Artifacts They are products of the requirements engineering

process specified using natural language and/or

requirements models.

Safety Violations The program reaches forbidden states.

Scenario It is a concrete description of system usage, which

provides a clear benefit for the actor of the system.

Scoping It is the process of determining the boundaries of

the product line engineering activity. This can

be performed on three levels: product portfolio,

domain and assets.

Software Architecture It is the set of the main guiding development prin-

ciples for one or more software applications. The

principles are the solution of one or more archi-

tectural concerns dealing with quality.
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Software Platform It is a set of software subsystems and interfaces

that form a common structure from which is a set

of derivative products can be efficiently developed

and produced.

Software Product Line A collection of applications that have so many fea-

tures in common that it is worthwhile to study and

analyze the common features as well as analyzing

the features that differentiate these applications,

in order to efficiently develop next generation ap-

plications.

State A current state is determined by past states of

the system. As such, it can be said to record in-

formation about the past, i.e., it reflects the input

changes from the system start to the present mo-

ment.

State Chart A graphical modeling notation that is similar to a

finite state machine, but extended with hierarchy

of nested states, orthogonal states, and broadcast

communication. UML state machines are one ex-

ample of a State Chart notation.

System Under Test The program, library, interface, or embedded sys-

tem that is being tested.

Test Artifacts They are products of the test process containing

plans, specifications, and test results.
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Test Automation Test automation is the use of software to control

the execution of tests, the comparison of actual

outcomes to predicted outcomes, the setting up of

test preconditions, and other test control and test

reporting functions. Commonly, test automation

involves automating a manual process already in

place that uses a formalized testing process.

Test case A sequence of SUT interactions. Each SUT in-

teraction includes the SUT inputs and usually in-

cludes the expected SUT outputs or some kind of

oracle for deciding whether the actual SUT out-

puts are correct. When testing nondeterministic

SUTs, this view of test cases is sometimes gener-

alized so that a test case is a tree or graph of pos-

sible SUT interactions. Note that a test case may

be executable (though we usually use the term

test script for an executable test case) or may be

non-executable because it is a higher level of ab-

straction than the SUT.

Test driver A software program that invokes a system under

test, provides test inputs to the system, controls

and monitors the execution of the tests, and re-

ports test results.

Test script An executable version of a test case, which is usu-

ally written in a programming language, a script-

ing language, or a tool-specific executable nota-

tion.
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Test sequence A synonym for test case.

Test specification A document in a test plan that specifies the in-

puts, predicted results, and a set of execution con-

ditions for a test item (IEEE 1998).

Test Suite A collection of test cases.

Traceability The ability to trace the connections between the

artifacts of the testing life cycle or software life

cycle; in particular, the ability to track the re-

lationships between test cases and the model, be-

tween the model and the informal requirements, or

between the test cases and the informal require-

ments. Traceability information is often displayed

in a traceability matrix.

Traceability Matrix A table that shows the relationships between two

different artifacts of the testing life cycle. For ex-

ample, the relationships between informal require-

ment identifiers and generated test cases.

Transition A transition indicates a state change and is de-

scribed by a condition that would need to be ful-

filled to enable the transition.
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UML state machine The Unified Modeling Language has a very rich

semantics and notation for describing state ma-

chines. UML state machines overcome the limi-

tations of traditional finite state machines while

retaining their main benefits. UML state ma-

chines introduce the new concepts of hierarchi-

cally nested states and orthogonal regions, while

extending the notion of actions. UML state ma-

chines have the characteristics of both Mealy ma-

chines and Moore machines. They support ac-

tions that depend on both the state of the system

and the triggering event, as in Mealy machines,

as well as entry and exit actions, which are asso-

ciated with states rather than transitions, as in

Moore machines.

Use Case It is a description of system behavior in terms of

scenarios illustrating different ways to succeed or

fail in attaining one or more goals.

Use case scenario A sequence of actions that illustrate the execution

of a use case instance.

Validation Determination of the correctness of the products

of software development with respect to the user

needs and requirements.
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Variability mechanism A technique that enables the representation and

automatic configuration of the variability in an ap-

plication’s requirements, models, implementation

and tests.

Variant It is a representation of variability object within

domain artifacts.

Verdict A verdict is the result of an assessment of the SUT

correctness.Predefined verdict values are pass, fail,

none, and error. Verdict may be computed for a

single validation function((n i.e., assertions set),

requirement, test case, or entire test.

Verification The process of evaluating a system or component

to determine whether the products of the given

development phase satisfy the conditions imposed

at the start of that phase.

White-box testing A box testing technique wherein the design of

tests uses knowledge about the implementation of

the system (e.g., tests designed to ensure that all

statements of the implementation code are tested.
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Technical University of Ilmenau, 2004. Accessed: August 2008,

http://www.db-thueringen.de/servlets/MCRSearchServlet?mode=results&

id=xcq7qmw0mi1cgawhyjex&numPerPage=7, in German language.

[FFD02] Olga Fengler, Wolfgang Fengler, and Vesselka Duridanova. Transformation

zwischen zustandsorientierten Beschreibungsmitteln der Elektronik und In-

formatik. Deutsche Forschungsgemeinschaft: Modelle, Werkzeuge und Infras-
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Theses

• The need for a systematic approach for testing becomes more pressing, because of

the current trend to increasing complexity and functionality in software product line

development.

• Efficient and effective product line testing is crucial to the success of a Software Prod-

uct Line Engineering (SPLE) in organizations and it depends heavily on establishing

the appropriate testing methods.

• Product line test development is of higher complexity than the conventional test

development for a single application, given the huge number of applications which

can be derived out of the product line.

• Although reuse is a core concept in software product line development, testing has

not yet fully benefited from reuse. If not addressed appropriately or addressed late

in the development process, testing becomes a serious bottleneck in product line

development.

• Software product line testing faces challenges e.g. faces the challenge of variability

leading to many applications and the extensive reuse of components, that cannot

be tackled by traditional testing techniques. Therefore, testing techniques from the

development of single systems have to be adapted and integrated towards a new

method.

• A method should be created for developing test models that can mange large numbers

of feature combinations.

• Another challenge is the variability in the domain engineering. Each variation point

increases the number of possible behaviors to be tested, which makes testing more
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difficult.

• With early validation testing efforts can be minimized. Accordingly, quality is main-

tained, which is one aim of software product lines.

• Verification is insufficiently addressed in product lines. The test method suggested

consider verification of product lines early.

• Powerful elements and concepts of Colored Petri Nets are adopted in the approach

of the Colored State Charts. This helps in diagnosing, tracing and finding errors as

it is performed in the Petri Net approach.

• Proactive reuse and the model based testing are two main aspects that should be

taken into consideration when testing a software product line.

• Statistical testing is an efficient technique to generate test cases in a systematic way.

• Statistical testing is a technology to reduce the huge test space.
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