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Abstract. Unified Modeling Language (UML) 2.0 Sequence Diagrams (UML 2.0
SD) are used to describe interactions in software systems. These diagrams must
be verified in the early stages of software development process to guarantee the
production of a reliable system. However, UML 2.0 SD lack formal semantics as
all UML specifications, which makes their verification difficult, especially if we are
modeling a critical system where the automation of verification is necessary. Com-
municating Sequential Processes (CSP) is a formal specification language that is
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suited for analysis and has many automatic verification tools. Thus, UML and CSP
have complementary aspects, which are modeling and analysis. Recently, a formal-
ization of UML 2.0 SD using CSP has been proposed in the literature; however,
no automation of that formalization exists. In this paper, we propose an approach
on the basis of the above formalization and a visual modeling tool to model and
automatically transform UML 2.0 SD to CSP ones; thus, the existing CSP model
checker can verify them. This approach aims to use UML 2.0 SD for modeling and
CSP and its tools for verification. This approach is based on graph transformation,
which uses AToM3 tool and proposes a metamodel of UML 2.0 SD and a graph
grammar to perform the mapping of the latter into CSP. Failures-Divergence Re-
finement (FDR) is the model checking tool used to verify the behavioral properties
of the source model transformation such as deadlock, livelock and determinism.
The proposed approach and tool are illustrated through a case study.

Keywords: Unified Modeling Language 2.0, Hoare’s communicating sequential pro-
cesses, graph grammar, meta-modeling, model checker, AToM3 tool

1 INTRODUCTION

The Object Management Group [1] specification of sequence diagrams consists of
a concrete and an abstract syntax given with a metamodel. The first one defines
the graphical notation, whereas the second aspect describes the relation between the
diagram’s elements. Unified Modeling Language (UML) 2.0 Sequence Diagrams [2]
(UML 2.0 SD) are used to describe interactions in software systems. These diagrams
used ordered messages in time, which are structured sometimes in combined frag-
ments, to show the interactions between objects and their occurrence order. This
information is conveyed through the horizontal and the vertical axes. An UML 2.0
SD represents the details of an UML use case and models the logical flow of a simple
or complex operation. Accordingly, these diagrams allow us to describe the expected
running of the software implementation.

Model verification is the process of validating the behavioral properties of an im-
plementation model. Thus, UML 2.0 SD must be verified in the early stages of
software development to guarantee the production of a reliable system. However,
UML 2.0 SD lack formal semantics, similar to all UML specifications, which makes
their verification difficult, especially if we are modeling a critical system where the
automation of verification is necessary.

Communicating Sequential Processes [3] (CSP) is a formal specification language
that is suited for describing interaction patterns in concurrent systems and has many
automatic verification tools, such as: FDR4 [4], PAT [5], and ProB [6]. This language
belongs to the family of process algebra and offers tools to describe communication
and synchronization between processes. Thus, UML and CSP have complementary
aspects, which are modeling and analysis.
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The most important reference where UML 2.0 SD are translated into CSP is
that of [7], where the objective was to provide concise definitions of the patterns
of behaviour modeled by the different interaction operators and using the process
algebra CSP. However, no automation of this formalization has been developed. To
surmount that limitation, we propose in this study an automatic approach inspired
from [7] and a visual modeling tool to model and automatically transform UML 2.0
SD into CSPM ready for execution with FDR4 model checker. So, this approach,
based on graph transformation, aims to use UML 2.0 SD for modeling and CSP and
its tools for analysis.

There are three basic steps to achieve our goal:

Metamodeling of UML 2.0 SD: In this step, we define a metamodel of UML
2.0 SD using AToM3 tool, then generate the visual modeling tool. Constraints
are written in Python.

Automatic transformation of UML 2.0 SD into CSP expressions: In this
second step, we define the graph grammar to automatically transform UML
2.0 SD into CSPM . Actions and constraints of the transformation rules are
implemented in Python. The left hand side and the right hand side of each rule
are created in the graphical environment previously generated.

Verification: In this third step, we define CSPM assertions and use FDR4 model
checker to verify the behavioral properties of the source model transformation.

The proposed approach covers all message types (synchronous, asynchronous,
and acknowledgement) and formalizes the following interaction operators of com-
bined fragments: Seq, Strict, Par, Alt, Opt, Break, Loop, Ignore, Consider, and
Assert. The remainder of the paper is organized as follows. In Section 2, we survey
related works. In Section 3, we review some basic concepts of the field of study. In
Section 4, we describe the proposed approach that transforms UML 2.0 SD to CSP
code. More precisely, we show the proposed metamodel and the graph grammar
that allows the mapping between the source and the target models of the transfor-
mation. In Section 5, we illustrate the approach through a case study. In Section 6,
we conclude the paper and provide an outlook regarding future work.

2 RELATED WORK

In the literature, several studies attempt to formalize UML 2.0 SD in CSP. In [7], the
authors provided UML 2.0 SD a CSP semantic in an implementation independent
fashion; they viewed sequence diagrams in terms of occurrence observations in place
of messages. In addition, their work covers all interaction operators. [8] proposed
an automatic translation of UML 2.0 SD into CSP by using XSLT [9] programming
language. The proposed approach has many restrictions, such as the formalization
of combined fragments with only four interaction operators: Opt, Break, Loop,
and Alt. [10] defined new CSP operators for the synthesis of sequence diagrams
to verify the correctness property; however, it passes over the combined fragments.
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[11] generated a CSP code from sequence diagrams and developed a verification tool
by using the PAT model checking tool to verify them. If a counter example is found,
then it can be translated back to a sequence diagram for correction. Nevertheless,
this approach does not treat combined fragments.

UML 2.0 SD are automatically verified after translation into labeled generalized
stochastic Petri net [12] models in [13], colored Petri nets [14] in [15] and [16], and
Petri nets in [17].

[18] showed a translation of sequence diagrams to Promela [19] codes to verify
the consistency between sequence and statechart diagrams. However, [20] and [21]
proposed a formal verification and validation technique for sequence diagrams. They
created a Promela code and used the Spin [22] model checker to verify properties
written in linear temporal logic (LTL).

[23] developed a tool supporting the transformation of sequence diagrams to
Event B [24]. [25] showed the use of multi layer transformations to generate Büchi
automata [26] from UML 2.0 SD. [27] defined a method for translating UML se-
quence diagrams annotated with MARTE stereotypes to time Petri nets with action
duration specifications.

Several studies focus on formalizing other UML diagrams in CSP. State diagrams
are given a CSP semantic in [28], where activity diagrams are formalized in CSP
in [29] and [30]. This last formalization has been implemented in [31] by using
diverse graph transformation tools, in [32] by using AToM3 tool, and in [33] by using
AToMPM [34] tool for meta-modeling and GROOVE [35] tool for transformation and
properties verification. [36] proposed a graph transformation approach to generate
Maude specifications from UML activity diagrams using AToM3 tool.

The subject of verifying model transformations was discussed in [37, 38, 39, 40].
[41] verified the model transformations by using Isabelle/HOL [42] and Scala [43].

3 BACKGROUND

3.1 UML 2.0 SD

The sequence diagram is one of the important UML interaction diagrams, and it
allows representing exchanges between the different objects and actors of the system
in the function of time. If the system to be modeled is complicated, then we cannot
model the overall dynamics of the system in a single diagram. Therefore, we will call
upon a set of sequence diagrams each corresponding to a subfunction of the system.
Combined fragment is a part of the sequence diagram that defines a combination
of interaction fragments. This mechanism allows the user to describe a number of
traces in a compact and concise manner. A combined fragment contains interac-
tion operands and operator, which define the message execution order. Figure 1
represents an example of UML 2.0 SD.

Table 1 shows interaction operator kind values (IOK), designations (Dsgn) and
descriptions.
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Figure 1. An example of UML 2.0 SD

3.2 CSP

CSP is a notation for describing and analyzing concurrent systems. This lan-
guage has many extensions with the corresponding supporting tools, such as FDR,
CSP++ [44] and ProB for CSPM [45] and PAT for CSP# [46]. The user can choose
the extension and the appropriate verification tool according to the system charac-
teristics [47]. In CSP, processes are independent entities that can communicate with
each other. A process can execute events that describe the behavior of processes.
The set of events that process P can perform is called its alphabet. The interac-
tions between processes or with its environment are described using a set of process
algebraic operators. CSP operators sufficient to describe sequence diagrams can be
summarized in the following expression (the notations used are: P , Q: process; X,
Y : sets of events; e: event; and b: Boolean condition):

P =̂ (P |Stop|Skip|e → P |if b then P else Q|P []Q|

P | ∼ |Q|P\X|P ;Q|P [X||Y ]Q|P [|X|]Q|P |||Q) . (1)

The description of these operators is shown in Table 2.
FDR provides a number of replicated operators that allow the composition of

the processes using the same operator. In Table 3, we present a brief description of
some of these operators.

3.3 Graph Transformation

Model-Driven Architecture (MDA) [48] is a framework based on many industry stan-
dards for visualizing, storing, and exchanging software designs and models. MDA
offers another way of software development, and it is an approach to use models
instead of the traditional source code. Portability, interoperability, and re-usability



Verification of UML 2.0 Sequence Diagrams 1289

IOK Dsgn Description

Alt Alternative Combined fragment represents a choice of behavior. The
chosen operand must have its guard expression evaluated to
true (one operand at most will be chosen).

Opt Option Combined fragment represents choice of behavior, and has
only one operand. If the guard expression is evaluated to
true the operand happens else nothing happens.

Break Break Combined fragment has one operand and represents break-
ing scenario. If the guard expression is true, the operand is
chosen and the rest of the enclosing interaction is ignored.
Else, the operand is ignored and the rest of the enclosing
interaction is chosen.

Par Parallel Behaviors of the operands within this combined fragment can
be executed in parallel.

Seq Weak Se-
quencing

1. In each operand, the ordering of occurrence specifications
is maintained in the result. 2. Occurrence specifications
within different operands on different lifelines may come in
any order. 3. On the same lifeline, occurrence specifications
of the first operand comes before that of the second operand.

Strict Strict Se-
quencing

This interaction operator defines strict ordering of the
operands.

Neg Negative Combined fragment represents a set of invalid traces.

Critical Critical Combined fragment represents a critical region that it traces
cannot be interleaved by other occurrence specifications.

Ignore/
Consider

Ignore/
Consider

“Ignore” interaction operator designates that some message
types can be considered as insignificant, so they are ignored.
At the other hand, “Consider” interaction operator desig-
nates considered messages in the combined fragment.

Assert Assertion In this case the only valid continuations are the sequences of
the assertion operand.

Loop Loop The operand will be iterated a number of times and the loop
will terminate if the guard is evaluated to false.

Table 1. Interaction operator kind of UML 2.0 SD combined fragment

are the main goals of MDA. Models can be accessed and automatically transformed
by tools for various platforms [49]. The MDA model transformation is conducted
by mapping an initial model to an equivalent target model. Each model must be
described by a metamodel, which identifies the characteristics of this model. Then,
the mapping is defined as a translation between the initial and the target metamod-
els. Graph grammars [50] are a generalization of Chomsky grammars for graphs.
These grammars are composed of rules or productions of the left and right hand
sides: P = (LHS,RHS). The application of each rule allows the transformation of
an initial graph called host graph by replacing one of its parts by another graph.
The main problem of this replacement is how to relate RHS to the context of the
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Expression Description

Stop Deadlock CSP process. Denotes the most simple behavior, it does
nothing.

Skip Process that models successful termination.

e → P Prefix: Performs the event e and then behaves as the process P .

if b then P else Q Guarded expression: Behaves as P if the Boolean guard b is true,
and as Q otherwise.

P []Q External (deterministic) choice: offers the environment to choose
between the initial events of P and Q.

P | ∼ |Q Internal (nondeterministic) choice: choose one of P and Q, and
then run the chosen process.

P \X Hide: behaves like P , but the events of X are hiden and turned
into internal events.

P ;Q Sequential composition: behaves as P until its successful termina-
tion, then behaves as Q.

P [X||Y ]Q Alphabetised Parallel: synchronised parallel run of P and Q on
the set of events X ∩ Y .

P [|X|]Q Generalised Parallel: synchronised parallel run of P and Q on
events in X.

P |||Q Interleave: unsynchronised parallel run of P and Q.

Table 2. Description of CSP operators

target graph. Figure 2 shows the rule-based modification of graphs associated to
the model transformation architecture.

Figure 2. Model transformation architecture
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Expression Description If composition
result is empty

[]⟨set statements⟩@P Replicated External Choice: for
each value of the statements, P is
evaluated then the resulting pro-
cesses are composed using [] oper-
ator.

Return STOP.

| ∼ |⟨set statement⟩ > @P (x) Replicated Internal Choice: for each
value of the statements, P is eval-
uted then the resulting processes are
composed using | ∼ | operator.

Display error.

||⟨set statements > @[A]P Replicated Alphabetised Parallel:
for each value of the statements,
P and its alphabet A are evalu-
ated then the resulting processes are
composed using alphabetised Paral-
lel operator.

Return SKIP.

[|X|]⟨set statements > @P Replicated Generalised Parallel: for
each value of the statements, P is
evaluated then the resulting pro-
cesses are composed and Synchro-
nise on X using Generalised Parallel
operator.

Return SKIP.

|||⟨set statements⟩@P Replicated Interleave: for each value
of the statements, P is evaluated
then the resulting processes are
composed using Interleave operator.

Return SKIP.

Table 3. Description of CSP replicated operators

3.4 AToM3

AToM3 is a visual tool for modeling and metamodeling multiformalisms. This tool
relies on rewriting graphs that use graph grammar rules for the definition of the
transformations between the formalisms and the generation of code and the speci-
fication of simulators. The user must define the rules (LHS, RHS), priorities, and
conditions. The two main tasks of AToM3 are metamodeling and model transforma-
tion. The main metaformalisms used are Entity-Relation and UML class diagram
formalism. [51] showed a survey and classification of existing metamodel-based
transformation tools and a comparison between them using a qualitative framework.
Among the Graph-based tools, we can cite TGG-INTERPRETER [52], AGG [53],
and GreAT [54].
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4 THE PROPOSED APPROACH

In this study, we adopt from [7] the idea of mirroring the structure of a sequence
diagram. In this formalization of UML 2.0 SD in CSP, each lifeline is mapped to
a process named Lifeline(). Each message is mapped to a process Message(), and
every occurrence observation is mapped to a CSP event. Sending and receiving
messages are detached, and a message cannot be received before it was sent. The
temporal order of the occurrence observations on the corresponding lifeline is re-
spected using process PrefixComposition(). Strict sequencing is defined using an
additional process Enforce(), which guarantees the message order over all partici-
pating lifelines. Lifelines() and Messages() processes model the parallel composition
of PrefixComposition() and Message() processes, respectively. Figures 3 and 4 show
the formalization of Message() and PrefixComposition() processes, respectively.

Figure 3. Formalization of Message() process

Figure 4. Formalization of PrefixComposition() process
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To have a better understanding of UML 2.0 SD adopted formalization, the reader
can be referred to [7].

We propose a metamodel of UML 2.0 SD and a graph grammar to reach the goal
of transforming UML 2.0 SD into CSP code. CD-ClassDiagramsV3 metaformalism
and AToM3 tool are used to perform the modeling and the transformation of UML
2.0 SD. FDR is a model checking tool used to verify the behavioral properties of
the source model transformation. Figure 5 shows the architecture of the proposed
approach.

Figure 5. Architecture of the proposed approach

The steps of our approach are as follows:

1. Metamodeling of UML 2.0 SD

(a) Define the metamodel of UML 2.0 SD (SDiagram META).

(b) Generate the visual modeling tool for modeling UML 2.0 SD models.

2. Graph grammar. Define the graph grammar (SD2CSP GG) to transform UML
2.0 SD into CSPM .

3. Verification

(a) Define CSPM assertions.

(b) Use an FDR4 model checker to verify the CSPM program by using CSPM

assertions. Then, generate the verification result (passed if the property is
satisfied and failed plus counter example otherwise).

4.1 Metamodeling of UML 2.0 SD

Given that the AToM3 tool is used to describe formalisms and generate tools,
we used the metaformalism CD-ClassDiagramsV3 to create the metamodel (SDi-
agram META) to process UML 2.0 SD. This last diagram consists of interactions,
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interaction operands, combined fragments, and lifelines with ordered messages be-
tween them. The proposed metamodel contains four classes linked by six asso-
ciations. Constraints and actions are expressed in Python [55] code. The visual
representation of each class or association is specified in this step. The metamodel
is composed of the following classes:

Interaction: This class has a Name and represents an interaction in the sequence
diagram.

CombinedFragment: This class describes a combined fragment and has two at-
tributes: Name and IOKind, which represents the interaction operator kind.

InteractionOperand: This class describes an interaction operand and has two
attributes: Name and IOConstraint, which represents the interaction operand
constraint.

LifeLine: This class depicts a lifeline and has two attributes, namely, Name and
ClassName. These classes are linked by the following associations:

IContains: This association exists between an interaction and a lifeline or combined
fragment. The concept expresses the notion of hierarchy: lifelines and combined
fragments are inside an interaction.

CFContains: This association expresses the notion of hierarchy between a com-
bined fragment and its interaction operands.

IOContains: This association expresses the notion of hierarchy between an in-
teraction operand and lifelines and combined fragments (in the case of nested
combined fragments, the interaction operand has combined fragments inside it).

AMessage: Represents an asynchronous message between two lifelines.

SMessage: Represents a synchronous message between two lifelines.

Acknowledgement: Represents an acknowledgement between two lifelines.

The proposed metamodel is shown in Figure 6.
The graphical environment for modeling sequence diagram models generated

from SDiagram META by AToM3 tool with a dialog box to edit an asynchronous
message is presented in Figure 7.

The proposed approach covers the interaction operators of combined fragment
shown in Figure 8.

4.2 Graph Grammar for the Transformation of UML 2.0 SD
to CSP Expressions

The researchers have proposed a graph grammar that contains eleven rules, initial
action, and final action to generate a CSP code from sequence diagrams. The
generated code is written in CSPM . The machine readable dialect of CSP is the
accepted input type by the FDR4 tool. Figure 9 shows the graphical representation
of the rules where their description is as follows:
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Figure 6. Sequence diagram metamodel

Initial Action: The role of the initial action is to open the file where the CSP code
will be generated and to create temporary attributes to be used in the rules.

Rule 1: rule AMessage (Priority 1): This rule is applied to locate an asynchronous
message that has not been previously processed, and it generates: event sent,
event received, and Message() process.

Figure 7. Sequence diagram tool
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Figure 8. Interaction operators

Rule 2: rule SMessage (Priority 1): It is applied to locate a synchronous message
that has not been previously processed, and it generates two events and a pro-
cess: event sent, event received, and Message() process.

Rule 3: rule Acknowledgement (Priority 1): It is applied to locate an acknowledge-
ment that has not been previously processed, and it generates: event sent, event
received, and Message() process.

Rule 4: rule IOcontainsLLam (Priority 2): It generates PrefixComposition() pro-
cess for both lifelines: sender and receiver of an asynchronous message.

Rule 5: rule IOcontainsLLsm (Priority 2): It generates PrefixComposition() pro-
cess for the lifelines: sender and receiver of a synchronous message.

Rule 6: rule IOcontainsLLack (Priority 2): It generates PrefixComposition() pro-
cess for the lifelines: sender and receiver of an acknowledgement.

Rule 7: rule IOcontainsCF (Priority 3): It is applied to locate the combined frag-
ment, which is a child of an interaction operand.

Rule 8: rule CFcontainsIO (Priority 4): It is applied to locate an interaction ope-
rand (not previously processed) and generates processes: Messages(), Lifelines(),
Seq(), and Strict().

Rule 9: rule NestedCF (Priority 5): It is applied to locate a complex interaction
that contains two nested combined fragments.

Rule 10: rule IcontainsCF (Priority 6): This rule is applied to generate the ade-
quate process to the interaction operator kind (IOKind).

Rule 11: rule Interaction (Priority 7): It generates the principal process P of the
principal interaction.

Final Action: The role of the final action is to erase the temporary attributes and
close the output file.
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Figure 9. Graph grammar to transform UML 2.0 SD into CSP expressions
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We only present in detail the first rule of the graph grammar, as shown in
Figure 10, due to the space constraint.

Figure 10. Python code of an asynchronous message transformation

4.3 Verification

We can distinguish three ways to obtain the mathematical understanding of the
meaning of a CSP program. These ways are algebraic, operational, and denotational
semantics.

The different denotational semantics for CSP are based on traces, failures, and
divergences [56]. The traces model associates with each process P the finite se-
quences of events allowed by this process. Thus, this model enables us to represent
the possible behaviors of processes in the form of traces. Traces(P ) denote the traces
of process P .

The stable failures model of process P , denoted by failures(P ), associates with
each process P couples of the form (s,X), where s is a finite trace admitted by P ,
and X is the set of events that cannot be executed after executing the events of s.

Finally, the failures-divergences model associates with each process P all of its
stable failures and divergences. Process P is divergent if it is in a state in which
the only possible events are the internal events. This state is said to be divergent.
The set of divergences(P ) is the set of traces s; accordingly, the process is found in
a divergent state after performing s. The refinement concept consists of calculating
and comparing the semantic models of two processes.

FDR4 is a refinement checker for CSP designed to analyze models written in
CSPM . The machine readable dialect of CSP combines Hoare’s CSP operators with
a functional programming language. The primary aim is not to describe algorithms
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in an executable form but to support the description of parallel systems in an au-
tomatic manipulation form. FDR4 allows various forms of assertions to check the
properties of deadlock, livelock, determinism, and specified partial order reduction
and refinement assertions.

If P and Q are two processes, and S is one of the three semantic models (T :
Traces, F : Failures, FD: Failures-Divergences), then FDR can simply check if Q
refines P (P ⊑S Q) by inserting the following assertion in the CSPM code: assert
P [s = Q.

We can use trace refinement model to check the safety and stable failures model
to verify the liveness property.

4.4 Illustrative Example

a. Presentation

This interaction shows the communication between two lifelines “S” and “R”
through an asynchronous message “m1”. It is part of an interaction operand
which belongs to the combined fragment “Seq”. Figure 11 presents this interac-
tion created in our tool.

Figure 11. Illustrative example created in our tool

b. Translating sequence diagram to CSP expressions

The execution of SD2CSP GG graph grammar on the interaction presented in
Figure 11 leads to the execution of the following rules: Initial Action,
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rule Amessage, rule IOcontainsLLam, rule CFcontainsIO, rule IcontainsCF,
rule Interaction and Final Action. The obtained result is presented in Figure 12.

Figure 12. Generated CSP code

In the following, we give in details the results of the execution of each rule.

Initial Action: Opens the file mycspfile.csp to save the generated CSP code
and creates temporary attributes.

rule Amessage: The execution of this rule generates:
Event sent: msg.asynch.AMsg0.snd.S.R.m1,
Event received: msg.asynch.AMsg0.rcv.S.R.m1,
Message() parameters: asynchronous, AMsg0, S, R, m1,
Message() process: lines (21, 22) and Message() alphabet: lines (23, 24).

rule IOcontainsLLam: This rule generates PrefixComposition() process:
line (17).

rule CFcontainsIO: This rule generates Messages() process in lines (18, 19),
Messages() alphabet in line (20), Lifelines() process in lines (13, 14) and
Lifelines() alphabet in lines (15, 16).

rule IcontainsCF: This rule generates the adequate process to Seq operator.
It generates Seq() process from the parallel composition of Messages() and
Lifelines() processes, the corresponding code is presented in lines (9. . . 12).

rule Interaction: This rule generates the principal process P, as shown in
lines (7, 8), declares datatypes and msg chanel in lines (1. . . 6).

Final Action: This rule erases the temporary attributes and closes the output
file. CSPM assertions stated in lines (25. . . 27) will be explained in Section 5,
part c.
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c. Verification

We applied FDR4 to the CSPM specification stated in Figure 12 and we got the
result shown in Figure 13.

Figure 13. Illustrative example verification using FDR4

5 CASE STUDY

a. Presentation

In this case study we create, transform and verify UML 2.0 SD of an Auto-
mated Teller Machine (ATM). It is a modified version of a tradition case study
proposed in [21]. This interaction consisting of three objects: The user, the
ATM and the bank, and twenty two messages passed between these objects and
organized in seven combined fragments. It shows inserting card, verifying card
and personal identification number (PIN), ejecting card and performing some
operations. Figure 14 shows this interaction created in our tool.

b. Translating ATM sequence diagram to CSP code

The execution of SD2CSP GG graph grammar on the ATM sequence diagram
presented in Figure 14, provides a CSP code. A part of the obtained result is
presented in Figure 15.

c. Verification

We applied FDR4 to the CSPM specification stated in Figure 15. and obtained
the result shown in Figure 16. Deadlock, livelock and determinism properties
were checked as follows:
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Figure 14. ATM sequence diagram created in our tool
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Figure 15. Generated CSP code

Figure 16. ATM sequence diagram verification using FDR4

Deadlock: In FDR4, to assert that a process P is deadlock free in the failures-
divergences model, we can simply write: assert P : [deadlock free], or write:
assert P : [deadlock free [F ]] if we want to check the assertion in the failures
model. If the checking is failed, a counter example can be displayed, as
shown in Figure 16.

Livelock: We say that a process P can diverge if it executes infinite internal
actions (livelock). So, checking that P is a livelock freedom can be stated
as: assert P : [divergence free], or assert P : [divergence free [FD]].
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Determinism: We can check that a process P is deterministic by using one of
the following assertions: assert P : [deterministic] or assert P : [deterministic
[FD]].

The check of deadlock property was failed, but those of livelock and determinism
were passed.

6 CONCLUSION

In this study, we have proposed a graph transformation approach and a visual mod-
eling tool to model and automatically transform UML 2.0 SD to CSP expressions
using the metamodeling tool AToM3. To reach this goal, we have proposed a meta-
model for UML 2.0 SD and a graph grammar to achieve the transformation. We
have used a CD-ClassDiagramsV3 as a metaformalism and Python code to specify
constraints and actions. Then, we have performed the verification of some properties
such as deadlock, livelock and determinism using the FDR4 model checker. Finally,
we have illustrated the approach through a case study.

In future work, we plan to transform other UML diagrams to CSP expressions
and verify the equivalence between the source and the target models of the trans-
formation. We will also use other model checkers of CSP, such as PAT and ProB,
to deal with the limits of refinement testing of FDR. Finally, we plan to tackle the
problem of formal correctness of the transformation itself by using theorem provers,
such as Isabelle and Coq [57].
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[15] Custódio Soares, J. A.—Lima, B.—Pascoal Faria, J.: Automatic Model
Transformation from UML Sequence Diagrams to Coloured Petri Nets. Proceed-
ings of the 6th International Conference on Model-Driven Engineering and Soft-
ware Development – Volume 1: AMARETTO, SciTePress, 2018, pp. 668–679, doi:
10.5220/0006731806680679.

[16] Mozaffari, M.—Harounabadi, A.: Verification and Validation of UML 2.0
Sequence Diagrams Using Colored Petri Nets. 2011 IEEE 3rd International Con-
ference on Communication Software and Networks, 2011, pp. 117–121, doi:
10.1109/ICCSN.2011.6013675.
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