
Proceedings of the Third Workshop on

Models and Aspects –

Handling Crosscutting Concerns in MDSD

at the 21st European Conference on

Object-Oriented Programming (ECOOP)

Berlin, Germany

Organizing Committee
Christa Schwanninger, Siemens AG, Munich, Germany
Markus Voelter, Independent Consultant, Heidenheim, Germany
Iris Groher, Siemens AG, Munich, Germany
Andrew Jackson, Trinity College Dublin, Ireland

Michael Cebulla (Ed.)

Bericht-Nr. 2007 – 6

ISSN 1436-9915

Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

Workshop Papers

A. Beugnard and C. Kaboré
Interests and drawbacks of AOSD compared to MDE

Z. Altahat, T. Elrad, and D. Vojtisek
Using Aspect Oriented Modeling to localize implementation of executable models

A. Rummler, B. Grammel, and C. Pohl
Improving Traceability through AOSD

A. van den Berg, T. Cottenier, and T. Elrad
Reducing Aspect-Base Coupling Through Model Refinement

L. Lengyel, T. Levendovszky, and H. Charaf
Identification of Crosscutting Concerns in Constraint-Driven Validated Model
Transformations

T. Reiter, M. Wimmer, and H. Kargl
Towards a runtime model based on colored Petri-nets for the execution of model
transformations

B. Morin, O. Barais, J.-M. Jézéquel, and R. Ramos
Towards a Generic Aspect-Oriented Modeling Framework

Interests and drawbacks of AOSD compared to MDE

A position paper

A. Beugnard
ENST Bretagne

CS 83818
F-29238 Brest cedex 3

antoine.beugnard@enst-bretagne.fr

C. Kaboré
ENST Bretagne

CS 83818
F-29238 Brest cedex 3

eveline.kabore@enst-bretagne.fr

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design; D.1.5 [Programming
techniques]: Object-Oriented Programming

General Terms
Aspect programming, Model engineering

ABSTRACT
This position paper is the result of experiences we made
using model driven engineering to define an automatized
design process that injects different concerns during the de-
velopment of components. We compare our approach with
classical aspect oriented programming techniques. We argue
that the MDE approach is more flexible.

1. INTRODUCTION
The quest for modularity is a long term research activity.
Historically, functions were the first natural modules. Good
practices were promulgated to search for low coupling and
high cohesion. But functions are often interleaved and mod-
ule boundaries are difficult to identify. Software architec-
tures, architecture styles are topological abstractions that
help reasoning on modules, called components, and their in-
teractions, called connectors. But, considering functional
properties is not enough; a lot of non-functional properties
are worth trying to be isolated, placed in modules.

A few years ago, aspect oriented programming [4] was intro-
duced to separate concerns. Concerns, also called aspects,
are described independently of the functional part of the sys-
tem, and are weaved with it during the development process.
Concerns (or aspects) are a way to describe another dimen-
sion of modularity. But, concerns are, as functions, highly
interleaved [2]. To our knowledge, no standard classification
is agreed today.

More recently, the object management group (OMG) has de-
fined the model driven architecture (MDATM) [1] that pro-

poses an other class of concerns: the platform. The platform
describes the target environment with its own features. The
principle of the MDA is to merge a platform independent
model (PIM) with a platform description model (PDM) in
order to obtain a platform specific model (PSM). Beyond
this simple principle, the model driven engineering approach
generalizes and suggests to define more models and more
models merging operations (called transformations).

We experienced the MDE approach to automatize the devel-
opment of a special kind of components called communica-
tion components. These components have functional spec-
ification and we identified at least 4 concerns: data type
implementation, data distribution, data replication, data
representation. The full process is described in [3]. This
experimentation leads us to a comparison of the AOSD and
MDE approaches.

2. ASPECT ORIENTED PROCESS
Aspect oriented approaches rely on a description language
and a weaving mechanism. The language allows to spec-
ify the different concerns. The mechanism offers operations
that are used during the weaving to merge the concern with
the program. The weaving mechanism defines the aspect
technology approach; which operators are available, which
pointcuts can be used, etc. This defines the join point model.
Knowing this model, designers have to specify their concerns
using the aspect language.

When many concerns are defined one of the not yet solved
problem is to select the order of their weaving. This question
point out that weaving aspects (or concerns) is included in
a process.

The AOP process can be summarized as follows: first, select
a programming language; second, define join points and a
way to identify them (the join point model), and eventually
defines concerns. For instance: using Java, and AspectJ,
the designer defines a logging aspect and weaves it to the
program.

3. MODEL DRIVEN PROCESS
The way model driven approach is used is less formalized
than AOP, and still in construction. We used it with a spe-
cial interpretation; instead of having only a PIM and a PDM
model to merge into a PSM, we keep the PIM (considered as
an abstract specification) and define many models, one for
each the concerns we were interested in. Each concern gives

raise to a meta-model (a specific grammar) that was used
to define variants of the same concern. And for each meta-
model we defined a tailored transformation that injects this
concern into the trunk model (program).

Having many concerns we had to choose their order of appli-
cation. This is a design choice, that leads to adapted model
transformations. Transformations are developed knowing
the result of the previous concerns merging.

The MDE approach we used can be summarized as follows:
first select a modelling language, second define a meta-model
that can be used to specify the weaving transformations.

4. DISCUSSION
Separation of concern is an essential design process. Two
challenges are how to describe a concern and how apply it?

The aspect approach makes the choice to offer an universal,
generic, mechanism of weaving and requires that the con-
cern designer adopt it and expresses concerns knowing this
universal mechanism. All the flexibility is in the concern
description.

On the contrary, the model driven approach offers more flex-
ibility. In fact, the concern designers decides first the way
he describes the concern, selecting a concern meta-model,
and after, elaborates a transformation that injects concerns
into the base model. No universal merging (weaving) trans-
formation is required. Every transformation is tailored.

We argue the MDE approach can be used to separate con-
cerns in a more flexible way that the usual AOP does. Trans-
formations implement automatized steps of the design pro-
cess. Parts of this process are related to the woven concern
and, hence, can be implemented thanks to model transfor-
mations. Our approach is pragmatic and consists in selecting
an order of application of the chosen concerns. Other ap-
proaches may attempt to define transformations and (meta)
models that are independent of the order of application. At
that time, our approach seems more tractable since more
constrained; building commutative and associative transfor-
mations is difficult. The resulting transformations of our
approach depend on the development process.

We also argue that concerns must be selected, analyzed,
specified, modeled prior to their weaving process. The con-
cern model influence the weaving transformation, but the
implementability of the transformation may also influence
the concern model. This is why the flexibility offered by
MDE is so important.

5. REFERENCES
[1] A. Board. Model driven architecture (mda). Technical

report, Object Management Group, July 2001.
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01.

[2] L. Chung, B. A. Nixon, and E. Yu. Non-Functional
Requirements in Software Engineering. Springer,
January 1999. ISBN-10: 0792386663, ISBN-13:
978-0792386667.

[3] E. Kabore and A. Beugnard. Conception de
composants répartis par transformations de modèle (,
antoine beugnard). In Journées de l’Ingénierie Dirigée

par les Modèles, pages 117–131, Toulouse, France,
29–30 mars 2007.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In European Conference
on Object-Oriented Programming, volume 1241, pages
220 – 242, 1997.

Using Aspect Oriented Modeling to localize
implementation of executable models

Zaid Altahat

GE Healthcare

Illinois Institute of Technology

Zaid.Altahat@ge.com

Tzilla Elrad

Illinois Institute of Technology

Elrad@iit.edu

Didier Vojtisek

INRIA

Didier.Vojtisek@inria.fr

ABSTRACT

Executable models are essential to define the behavior of models,
such as constraints put on model elements. However their
implementation crosscut multiple model elements. Model
semantics will facilitate Model Driven Development, without it,
Design and Implementation won’t necessarily represent different
abstractions of the same system. This paper introduces a
mechanism to query executable models and weave constraints in
order to localize their implementation, which improves code
redundancy and modularity.

Keywords

Executable Models, Aspect-Oriented Modeling (AOM), Model
Driven Development (MDD), Model Driven Architecture (MDA),
Aspect-Oriented Software Development (AOSD).

1. INTRODUCTION
Models have been limited in use to design and documentation.
Designs are lost by interpretation when moved from system
architects (Design) to software engineers (Implementation). The
design doesn’t dictate the models semantics. Semantics are “the
underlying meaning of exchanged models, that is, the constraints
that models place on the runtime behavior of the specified
system.” [7]. Design By Contract (DBC) is an example of
constraints on the model behavior; however their implementation
is not localized and crosscut [3] multiple model elements.

A programming language consists of syntax and semantics.
Syntax is the language constructs, such as UML class diagrams;
while, semantics give the syntactic constructs their meaning.
Leaving out the semantics of models created a gap that lead to a
wide range of interpretations of the same model. The gap also
created a chain of tools that can only exchange the syntax of
models. Executable models came to fill in this gap.

Executable models constrain how models behave at run time.
Code generated from models should have a unique execution
behavior. Unique in the sense that if different codes, programming
languages such as Java or C++, to be generated, all should have
the same execution behavior. UML is in the process of fully
defining Executable UML [7]. KerMeta [5] on the other hand has
already defined full behavioral language to specify semantics of
models. Section 3 briefly presents KerMeta.

One way to constrain the behavior of a model element, a Class for
example is to define Invariant condition on the class, and pre and
post conditions on its operations. These three are what is referred
to as DBC, which KerMeta already provides capabilities of;
however it achieves that individually for each class and operation.
To manually define constraints for each class and operation may
lead to code redundancy and reduction in modularity. The added
constraints crosscut [3] multiple classes and operations. Aspect-
Oriented Modeling (AOM) can help in obviating this problem.

AOM provides separation of crosscutting concerns at the models
level. Most popular among these models are behavioral models,
which are used in software development, not just for design and
documentation but for code generation as well. To set foundations
for the code generation and model transformation, new standards
are being defined as part of Model Driven Architecture (MDA)
group. MDA standards are being set in parallel to AOM. MDA
transforms a model from high abstract level to platform specific
level then to code. AOM also help in keeping crosscutting models
separate, as well as transforming Platform Independent Models
(PIM) to Platform Specific Models (PSM) by weaving in platform
dependent model implementation.

Using AOM approach we will demonstrate how to localize the
implementation of a crosscutting behavior that intersect multiple
classes and/or operations. In AOM a pointcut model, and an
advice model are defined. Both models and the original models
are fed into a weaver. The weaver adds the advice, added
behavior, to the join points matched by the pointcut in the model.
This paper introduces a novel approach for the modularization
and weaving of executable models.

The main contribution of this paper is to provide a model driven
approach to query and weave executable model elements into
models. The problem this approach tackles is to localize the DBC
constraints for executable models; moreover, localize the
implementation of operations. Which reduces code redundancy
and increases modularity. The project was done in KerMeta for
both querying and weaving executable model elements, it is a
pure model driven approach that operates on executable models.

Listing 2. KerMeta definition of method isInstance()

operation isInstance(element : Element) : Boolean is do

// false if the element is null

if element == void then result := false

else

// true if the element is an instance of this
type

// or a subclass of this type

result := element.getMetaClass == self or

element.getMetaClass.allSuperClasses.cont

ains(self)

end

end

Paper is organized as follows: Section 2 presents related work and
section 3 briefly describes KerMeta. Section 4 is the core of this
paper; it presents the details of the metamodels used, as well as
the weaving process. Besides, Section 5 demonstrates the
querying and weaving process on an example model. Original
model and modified model are presented in Appendices A and B,
respectively.

2. Related Work
There are other attempts to localize DBC constraints. However
they were designed with a specific programming language in
mind. A C++ approach [10] presented a mechanism to localize
DBC implementation using Constraint-Specification Aspect
Weaver (C-SAW) [9]. ECL [4] was used to locate operations, in
addition to weave assertions at the beginning and end of an
operation to represent pre and post conditions, respectively. No
support for Invariant condition. Another approach, Contract4J [2],
uses AspectJ to support DBC in Java. It uses Java 5 annotations to
mark elements to be amended and define the pre, post, and
Invariant conditions. It uses AspectJ behind the scenes to weave
in the added code. In contrast with my approach, both of these
approaches are geared more towards a specific programming
language and are not based on executable models.

3. KerMeta
Meta-languages such as MOF1.4 [5] , MOF2.0 [6] , and Ecore[1] are
used to specify the structural and syntax parts of a model but not
its behavior. For example EMOF specifies an operations
signature and stops there, without defining its behavior. A mix of
pseudo code and natural language is used to define its behavior.
KetMeta on the other hand uses an operational semantic to specify
the precise behavior of models. The example [11] presented in
Listings 1 and 2 shows how the definitions of the same method in
both MOF and KerMeta.

Operation isInstance(element : Element) :

Boolean

“Returns true if the element is an instance of this

type or a subclass of this type. Returns false if the

element is null”.

Listing 1. MOF definition of method isInstance()

KerMeta proposes a rich model oriented environment for
metamodeling. It provides support for many use cases, including:

• Implementation of operations directly in metamodels.

• Execution of simulation of metamodel behavior.

• Transformation and weaving of models.

• Verification and validation of models against
metamodels (as given by a set of static and dynamic
constraints).

• Building new Domain Specific Languages under the
shape of metamodels, Building any model-driven tools,
including tools that generate tools (generative
programming).

This work is a demonstration of several of them. The most
important is that it reflectively applies MDA to itself[12]. In this
paper, KerMeta is applied at two levels. First, the language is used
to define the transformation that constitutes the metamodel
weaver. Second, the weaving is applied to KerMeta itself by
introducing the advices in models written in KerMeta.

4. Metamodel Weaver
The weaver consists of several metamodels, a pointcut
metamodel, an advice (added behavior) metamodel, a link
metamodel, and the weaver itself, presented in Figure 1. The
following sections present each of these metamodels in details.

Figure 1 Weaver Metamodel

Weaver::weave, shown in Figure 1, is the starting operation, it is
passed a collection of Link and a collection of Model. Link defines
a relation between a pointcut MatchPattern and an Advice. For
ach join point matched by a pointCut behavior is added.

Advice has multiple operations getInvariant, getPreCond, and

getPostCond to retrieve Invariant, pre and post condition,
respectively. An instance advice inherits from Advice and
overwrites operationAbs in order to define pre and post
conditions. Instance advice can also hold other operations
definitions that needs be added to the model. They are retrieved
using the operation getOps. This is to provide an operation
implementation into a class. Section 5 presents an example with
added behavior.

Figure 2 shows the pointcut metamodel, MatchPattern. All
elements, except MatchPattern, inherit from MatchPattern and
with it they inherit the string namePattern to define its name
signature. The matching signature consists of a ClassPattern class
that has a collection of AttributePattern and a collection of
OperationPattern, which in turns has a collection of
ParamPattern. All elements inside ClassPattern are optional,
that’s a pointcut in its simplest format is a class name pattern, for
example *Account that will match all classes that end with
Account. Match patterns used here are similar to AspectJ name
matching. Section 5 presents an example with pointcut.

Figure 2 Pointcut metamodel

5. Example
Next we’ll introduce an example where blocks of executable
models were weaved into model elements, classes and operations.
Figure 3 introduces a basic Bank system with different type of
accounts. One thing to note about the class Account is that the
class itself doesn’t have Invariant condition and none of its
operation has a pre or a post condition, which will be added using
the weaver. Also the operation applyInterest is abstract where its
implementation will be weaved in for two of Account subclasses
only. KerMeta representation of the model is presented in
Appendix A.

Figure 3 Bank metamodel

* Class Account doesn’t have Invariant. None of the
operations has pre or post conditions, and applyInterest
is abstract.

The model in Figure 3 represents the element model in Figure 1.
The Weaver needs link element(s) to define what behavior to add
for a matched pointcut. Figure 4 introduces two of these Link
elements. In Figure 4-a a Link is created with a pointCut that
matches the operations updateBalance and withdraw. Advice1
defines the behavior to be added, it introduces the Invariant
condition to the matched class, and the post condition to the
matched operations.

Figure 4-b defines another Link with a pointCut that matches
classes CheckingAccount and BusinesAccount that inherit from
the class Account. The behavior to be added is an implementation
for the operation applyInterest. More elements could be used to
define more model queries, like number and type of parameters to
an operation and its return type. More involved queries were run
on larger models, but for sake of simplicity I introduced these
queries on the Bank system.

Figure 4-a An instance of Link with a pointcut that matches

operations updateBalance and withdraw in class Account, and

pre and post conditions.

Figure 4-b An instance of Link with a pointcut that matches

classes CheckingAccount and BusinessAccount whose parent

are Account, and implementation for operation applyInterest.

The weaver iterates on each element in the Bank model and
applies each link on it. It iterates on the elements twice, once for
each link. In the first pass it adds the Invariant condition to the
class Account and the post condition to the operations
updateBalance and withdraw. In the second pass it adds the
operation applyInterest to the classes CheckingAccount and
BusinessAccount. Appendix B presents the generated modified
model, and Appendix A present the original model before any
modifications.

6. Conclusion and future work
Executable models are getting high attention in order to add
semantics to PIM models. In this paper we presented a novel way

to query and weave executable models. We chose to localize the
implementation of DBC constructs and shared operations
implementations in order to improve code redundancy and
modularity.

In pointcut metamodel we used strings to define many of the
match pattern elements, as shown in Figure 2. In the future we’d
like to change the parameter type and operation return type to
kermeta::language::structure::Type. This will enable us to check
for types and super-types, such as Integer and Collection, without
having to use strings. It will also enable us to check for validity of
operation arguments. However, using the element Type will
complicate writing queries and the actual querying process.

7. REFERENCES
[1] Budinsky, F., Steinberg, D., Merks, E., Ellersick, R. and

Grose, T. Eclipse Modeling Framework. Addison Wesley
Professional, 2003.

[2] Dean Wampler, “AOP@Work: Component design with
Contract4J”.
http://www28.ibm.com/developerworks/java/library/j-
aopwork17.html

[3] Diotalevi, F., “Contract Enforcement with AOP,” IBM

DeveloperWorks, July 2004, http://www-
106.ibm.com/developerworks/library/j-ceaop/

[4] Gray, J., Sztipanovits, J., Schmidt, D., Bapty, T., Neema, S.,
and Gokhale, A., “Two-level Aspect Weaving to Support
Evolution of Model-Driven Synthesis,” in Aspect-Oriented

Software Development, (Robert Filman, Tzilla Elrad,
Mehmet Aksit, and Siobhán Clarke, eds.), Addison-Wesley,
2004.

[5] OMG. Meta Object Facility (MOF) Specification 1.4, Object
Management Group,http://www.omg.org/cgi-
bin/doc?formal/2002-04-03, 2002.

[6] OMG. MOF 2.0 Core Final Adopted Specification, Object
Management Group,http://www.omg.org/cgi-bin/doc?ptc/03-
10-04, 2004.

[7] OMG, “Semantics of a Foundational Subset for Executable
UML Models” 2006.

[8] http://www.kermeta.org/

[9] http://www.gray-area.org/Research/C-SAW/

[10] Jing Zhang, Jeff Gray and Yuehua Lin. "A Model-Driven
Approach to Enforce Crosscutting Assertion Checking".

[11] Pierre-Alain Muller, Franck Fleurey, Didier Vojtisek, Zoé
Drey, Damien Pollet, Frédéric Fondement, Philippe Studer
and Jean-Marc Jézéquel. “On Executable Meta-Languages
applied to Model Transformations”

[12] Jean Bézivin, Nicolas Farcet, Jean-Marc Jézéquel, Benoît
Langlois, and Damien Pollet. -- Reflective model driven
engineering. -- In G. Booch P. Stevens, J. Whittle, editor,
Proceedings of UML 2003, volume 2863 of LNCS, pages
175--189, San Francisco, October 2003. Springer.

8. Appendix A

/* Class Customer was not modified, it was left out from this
appendix.*/

class Account

{

 attribute balance : kermeta::standard::Integer

 operation updateBalance(amnt :
kermeta::standard::Integer)

 is do

 balance := amnt

 end

 operation getBalance() : kermeta::standard::Integer

 is do

 result := balance

 end

 operation withdraw(amnt : kermeta::standard::Integer)

 is do

 balance := balance - amnt

 end

 operation applyInterest(ratio : kermeta::standard::Real)

is

abstract

}

class CheckingAccount inherits Account

{ }

class SavingAccount inherits Account

{ }

class BusinessAccount inherits Account

{ }

9. Appendix B
This Appendix shows only modified classes and operations.
Unmodified classes were left out and are identical to the originals
presented in Appendix A. Weaved code is in the red box.

class Account

{

 inv balanceValue is

 do

 balance.isGreaterOrEqual(0)

 end

 attribute balance : kermeta::standard::Integer

operation applyInterest(ratio : kermeta::standard::Real):

kermeta::standard::~Void is abstract

operation

updateBalance(amnt:kermeta::standard::Integer) :

kermeta::standard::~Void

 post post1 is do

result.isNotSameAs(void).~and(balance.isGre

aterOrEqual(0))

 end

 is do balance := amnt end

 operation getBalance() : kermeta::standard::Integer is

do result := balance end

 operation withdraw(amnt : kermeta::standard::Integer) :

kermeta::standard::~Void

post post1 is do

result.isNotSameAs(void).~and(bal

 ance.isGreaterOrEqual(0))

 end

 is do balance := balance.minus(amnt) end

}

class CheckingAccount inherits Account

{

 operation applyInterest(ratio : kermeta::standard::Real) :

kermeta::standard::~Void is do

 stdio.writeln("Adding fund$...")

 end

}

class BusinessAccount inherits Account

{

 operation applyInterest(ratio : kermeta::standard::Real) :

kermeta::standard::~Void is do

 stdio.writeln("Adding fund$...")

 end

}

woven models.

Improving Traceability through AOSD

Andreas Rummler
SAP Research CEC Dresden

Chemnitzer Str. 48
01187 Dresden, Germany
andreas.rummler@

sap.com

Birgit Grammel
SAP Research CEC Dresden

Chemnitzer Str. 48
01187 Dresden, Germany

birgit.grammel@
sap.com

Christoph Pohl
SAP Research CEC Karlsruhe

Vincenz-Priessnitz-Str. 1
76131 Karlsruhe, Germany

christoph.pohl@
sap.com

1. INTRODUCTION
In real world business applications traditional software prod-
uct line engineering and model-driven software development
(MDSD) [6] often cannot properly reflect the decomposi-
tion of system features. For instance, Governance, Risk
and Compliance (GRC) checks or late introduction of se-
curity properties often crosscut the architectural design of
a system. To overcome these issues Aspect-Oriented Soft-
ware Development (AOSD) [1] modularizes such crosscut-
ting concerns in independent aspects. Although aspects can
already be captured at requirements stage [2, 7], there is
no clear mapping to later development stages. MDSD can
address this by model transformation. However, AOSD still
increases the complexity of traceability (and hence, main-
tainability) because it adds yet another dimension of vari-
ability [3]. This issue is one of the most important arguments
against applying AOSD techniques in an industrial context.
Future research has to take care of this issue in order to lay
the basis for industry acceptance of AOSD. According to an
internal audit of customers of SAP, missing traceability dur-
ing the whole development cycle is the top-rated weakness.
In addition missing traceability information was explicitly
mentioned as weakness in 2005 in an external ISO certifica-
tion audit.

2. TRACEABILITY SUPPORT INSIDE SAP
The current state of trace support implemented in SAPs in-
ternal development process is outlined in figure 1. Market
requirements are linked to software specifications compris-
ing software requirements that can be linked to test cases.
Further linkage of requirements to design and development
artefacts, or linkage of those artefacts to test cases is possible
in general, but not sufficiently supported by tools (indicated
by dashed lines). Currently, several interesting questions
typically arising during the development process cannot be
answered automatically: Have all high-level market require-
ments really been designed and implemented properly? How
can this implementation be tested against these require-
ments? Have artefacts been developed whose behaviour is
not covered by any requirements or which is even unwanted?
Why has one artefact been chosen over another, alternative
one? These question can be answered on a fine-grained level
by experts involved in the development process, but not by
people dealing with a coarse-grained view. Therefore tools
are needed that are able to give reasonable answers to these
questions or at least help people in finding those answers.
MDSD has its merits for transforming artefacts into each
other based on certain models, but crosscutting functional-

Figure 1: Linking of Artifacts in SAPs Development
Process

ity as outlined above tangles not only code but also such
models.

3. IMPROVING TRACEABILITY
THROUGH AOSD

There are approaches to Aspect-Oriented Requirements En-
gineering (AORE) [2, 7] that can help address some of these
questions. For instance relationships, dependencies and in-
teractions among existing requirements can be identified at
early stages of the development lifecycle. However, AORE
approaches do not explicitly define mechanisms for mapping
information gathered at the requirements level to later devel-
opment phases. There is a need for defining mapping guide-
lines, rules, and heuristics for mapping of entities and trace
information across the entire development lifecycle. Assets
repositories are also required that may collect and main-
tain product line assets and the mapping rules, guidelines,
and heuristics. In addition, there is a need for a traceabil-
ity meta-model that defines which trace information: assets,
concerns, relationships, dependencies, behaviours, composi-
tions, mappings, needs to be captured and managed.

SAP Research is currently involved in an European funded
project called AMPLE, which stands for Aspect-Oriented,
Model-Driven Product Line Engineering.1 The focus is on
providing a holistic treatment of variability by addressing
each stage in the software life cycle. Another point of inter-
est in AMPLE is providing effective forward and backward
traceability of variations and their impact.

The approach followed in AMPLE relies on the modular-
ization of cross cutting concerns at model level. Starting
already at the stage of requirements engineering will foster
traceability. To be able to track dependencies between AO
and non-AO artefacts along the development cycle, explicit
aspect interfaces need to be defined. To rely on earlier work
already made available in [4] and [5] seems to be promising.
The intrusive nature of AO techniques is reduced in its in-
tensity by defining aspect interfaces that form some kind of
contract between the to-be-extended system and the extend-
ing aspects. Other ongoing work concerns a metamodel for
variability including the support of AO concepts and appro-
priate tracing information. Based on this metamodel a tool
chain is designed that supports the definition of SPL, prod-
uct generation and full support for tracing relationships and
dependencies among automatically generated or manually
created artefacts. A comprehensive case study is currently
being implemented, consisting of a complete example from
SAPs core application business.

4. CONCLUSIONS
To summarise this position paper, tracing artefacts through-
out the whole development process is a key issue in industry,
driven by internal and external forces. Handling variability
and documenting decisions on variations is the core issue of
traceability. AOSD approaches introduce interesting con-
cepts to modularise cross-cutting concerns at various devel-
opment stages but it also complicates traceability. Explicit
aspect interfaces are one requirement for easier tracking of
dependencies between AO and non-AO artefacts. At the
workshop, we would like to share our industry perspective
on how AOSD and MDSD could further fertilise each other
for improving traceability issues, among other challenges.

5. REFERENCES
[1] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit.

Aspect-Oriented Software Development.
Addison-Wesley, 2005.

[2] J. Grundy. Aspect-oriented requirements engineering
for component-based software systems. In Proceedings
of the 4th IEEE Symposium on Requirements
Engineering, 1999.

[3] S. Katz and A. Rashid. From aspectual requirements to
proof obligations for aspect-oriented systems. In
Proceedings of the 12th IEEE International Conference
on Requirements Engineering, 2004.

[4] G. Kiczales and M. Mezini. Aspect-oriented
programming and modular reasoning. In Proceedings of
the ACM International Conference on Software
Engineering, 2005.

[5] U. Kulesza, V. Alves, A. Garcia, C. Lucena, and
P. Borba. Improving extensibility of object-oriented

1The website for the project can be found at http://www.
ample-project.net

frameworks with aspect-oriented programming. In
Proceedings of the International Conference on
Software Reuse ICSR 06, 2006.

[6] T. Stahl and M. Völter. Model-driven Software
Development. John Wiley, 2006.

[7] B. Tekinerdogan, A. Moreira, J. Araujo, and
P. Clements. Early aspects: Aspect-oriented
requirements engineering and architecture design. In
Workshop Proceedings at AOSD Conference, 2005.

Reducing Aspect-Base Coupling
Through Model Refinement

Aswin van den Berg

Motorola Software Group, Motorola
1303 E. Algonquin Rd,

Schaumburg, IL 60196, USA
+1 (847) 538-2597

Aswin.vandenberg@motorola.com

Thomas Cottenier
Motorola Software Group, Motorola

1303 E. Algonquin Rd,
Schaumburg, IL 60196, USA

+1 (847) 538-2597
Thomas.cottenier@motorola.com

Illinois Institute of Technology
3100 S. Federal Street,
Chicago, IL 60696, USA

Cottho@iit.edu

Tzilla Elrad
Illinois Institute of Technology

3100 S. Federal Street,
Chicago, IL 60696, USA

+1 (312) 567-5142
Elrad@iit.edu

ABSTRACT

Aspect-Oriented Programming languages allow pointcut
descriptors to quantify over the implementation points of a
system. Such pointcuts are problematic with respect to
independent development because they introduce strong mutual
coupling between base modules and aspects. This position paper
addresses the aspect-base coupling problem by defining pointcut
descriptors in terms of abstract views of the base module. These
abstract views should be towards the architectural viewpoints of
the system under development.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Design Tools and Techniques –
modules and interfaces. D.2.1 [Software Engineering]: Design
Tools and Techniques – Object-oriented design methods. D.3.3
[Programming Languages]: Language Constructs and Features
– classes and objects, modules, inheritance.

General Terms
Languages, Theory, Algorithms.

Keywords
Aspect weaving, modeling, refinement, aspect-oriented
modeling. model-driven software engineering, aspect-oriented
programming.

1. INTRODUCTION

Since the inception of Aspect-Oriented Software Development
(AOSD) in 1997, it has been known that Aspect-Oriented
Programming (AOP) languages introduce strong coupling

between base modules and aspects. AOP languages allow
pointcut descriptors to refer directly to the implementations of
modules to capture joinpoints, points where aspects inject
behavior through advices. This practice is problematic with
respect to modularity and independent development. Aspects
need fine-grained control over the modules they advice and,
vice versa, the advised modules need to be aware of those
aspects. Therefore, both aspect and base module become hard to
evolve independently.

There are three main research directions in addressing this
aspect-base coupling problem. The first direction of research
advocates restricting the expressiveness of aspects by forfeiting
the obliviousness of modules [1][2][3]. A second approach
favors investigating alternative ways to modular reasoning in
the presence of aspects. In [4], the authors argue that a global
analysis of the system configuration is required before the
interfaces of the system modules can be determined. A third
direction of research focuses on methods that allow pointcut
descriptors to be defined at a higher level of abstraction, in
terms of the program semantics [5]. Our work with Motorola
WEAVR in [6] introduces pointcut descriptors that can infer
implementation joinpoints from higher level descriptions. This
paper proposes an approach to AO modeling that is integrated
with a model refinement approach with the purpose to reduce
the aspect-base coupling.

2. REQUIREMENTS FOR ASPECT-BASE
DECOUPLING

Let M1 be the current refinement of a software system. We
show five requirements for moving towards our goal (see Figure
1):

1. There needs to be an abstract view M0 of the
refinement M1 of the system under development that is
sufficiently describing the behavior of its specification
towards a particular architectural viewpoint.

2. There needs to be a precise definition of what it means
that a refinement is realizing an architectural view.
This realization can be described by a well-defined
mapping f from the refinement M1 to the view M0.

3. The development process/tool needs to enforce that the
refinement of the view is actually realizing the view.
That is, the process/tool needs to enforce the realization
invariant M0 = f(M1).

4. Define pointcut descriptors in terms of the view M0.
The matching produces a set of joinpoints in M0
(denoted by JoinpointsM0)

5. Translate these joinpoints in terms of the refinement
M1 and instantiate the advice at corresponding points
in M1. The resulting woven model M2 is more refined
than M1 because it has a new concern incorporated in
it.

Since the pointcut descriptor is written in terms of M0 it is
completely independent from the refinements that are
introduced in M1. Since M0 is an abstract view towards an
architectural viewpoint it is not a view that is dependent on the
pointcut descriptor. And because M0 is not dependent on the
pointcut descriptor it follows that also M1 is not dependent on

it. Therefore there is no aspect-base coupling between the aspect
and the refinements introduced from M0 to M1.

3. REFERENCES

[1] Aldrich, J. Open Modules: Modular Reasoning about

Advice. In Proceedings of the 19th European Conference on
Object-Oriented Programming, Glasgow, Scotland, LNCS
3586, pp. 144-168, Springer, 2005

[2] Griswold, W.G., Shonle, M., Sullivan, K., Song, Tewari,
N., Cai, Y., Rajan, H.: Modular Software Design with
Crosscutting Interfaces. IEEE Software, 23:1, pp. 51–60,
IEEE Computer Society, 2006

[3] Gybels, K., Brichau, J.: Arranging Language Features for
More Robust Pattern-Based Crosscuts. In proceedings of
the International Conference on Aspect-Oriented Software
Development, , Boston, USA, pp 60–69, ACM Press, 2003.

[4] Kiczales, G., Mezini, M.: Aspect-Oriented Programming
and Modular Reasoning. In proceedings of the
International Conference on Software Engineering, St.
Louis, USA, pp 49–58, ACM Press, 2005

[5] Ostermann, K., Mezini, M., Bockisch, C.: Expressive
Pointcuts for Increased Modularity. In Proceedings of the
19th European Conference on Object-Oriented
Programming, Glasgow, Scotland, LNCS 3586, pp. 214-
240, Springer, 2005

[6] Cottenier, T., van den Berg, A., Elrad, T., Joinpoint
Inference from Behavioral Specification to Implementation,
In Proceedings of the 21st European Conference on Object-
Oriented Programming (ECOOP), Berlin, Germany, 2007

M0 = f(M1)

M1

f

Pointcut Descriptor

match

f -1

JoinpointsM0

M2 = Woven_M1

Refinement

Advice Descriptor

+ =

instantiate

JoinpointsM1

M0 = f(M1)

M1

f

Pointcut Descriptor

match

JoinpointsM0+ =

f -1

M2 = Woven_M1

Refinement

Advice Descriptor

instantiate

JoinpointsM1

Figure 1: Aspect weaving seen as a model refinement expressed in terms of a realization mapping (f)

Identification of Crosscutting Concerns in
Constraint-Driven Validated Model Transformations

László Lengyel
Budapest University of

Technology and Economics
1111 Budapest, Goldmann

György tér 3., Hungary
lengyel@aut.bme.hu

Tihamér Levendovszky
Budapest University of

Technology and Economics
1111 Budapest, Goldmann

György tér 3., Hungary
tihamer@aut.bme.hu

Hassan Charaf
Budapest University of

Technology and Economics
1111 Budapest, Goldmann

György tér 3., Hungary
hassan@aut.bme.hu

ABSTRACT
Domain-specific model processors facilitate the efficient syn-
thesis of application programs from software models. Of-
ten, model compilers are realized by graph rewriting-based
model transformation. In Visual Modeling and Transfor-
mation System (VMTS), metamodel-based rewriting rules
facilitate to assign Object Constraint Language (OCL) con-
straints to model transformation rules. This approach sup-
ports validated model transformation. Unfortunately, the
validation introduces a new concern that often crosscuts the
functional concern of the transformation rules. To sepa-
rate these concerns, an aspect-oriented solution is applied for
constraint management. This paper introduces the identifi-
cation method of the crosscutting constraints in metamodel-
based model transformation rules. The presented algorithms
make both the constraints and the rewriting rules reusable,
furthermore, supports the better understanding of model
transformations.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Algorithms, Design and Languages

Keywords
Aspect-Oriented Constraints, Constraint Weaving, Identify-
ing Crosscutting Constraints, Model Transformation

1. INTRODUCTION
Model-driven development approaches (for example Model-
Integrated Computing (MIC) [19] and OMG’s Model-Driven
Architecture (MDA) [14]) emphasize the use of models at
all stages of system development. They have placed model-
based approaches to software development into focus.

Model transformation lies at the heart of the model-driven
approaches [11] [20]. Transformations appear in many, dif-
ferent situations in a model-based development process. A
few representative examples are as follows. (i) Refining the
design to implementation; this is a basic case of PIM/PSM
mapping. (ii) Aspect weaving; the integration of aspect
models/code into functional artifacts is a transformation on
the design [1]. (iii) Analysis and verification; analysis algo-
rithms can be expressed as transformations on the design
[2].

One can conclude that transformations in general play an
essential role in model-based development, thus, there is a
need for highly reusable model transformation tools that
support validated model transformation.

At the implementation level, system validation can be achieved
by testing. Various tools and methodologies have been de-
veloped to assist in testing the implementation of a system
(for example, unit testing, mutation testing, and white/black
box testing). However, in the case of model transformation
environments, it is not enough to validate that the transfor-
mation engine itself works as it is expected. The transforma-
tion specification should also be validated. There are only
few and not complete facilities provided for testing offline
transformation specifications in an executable style. How-
ever, online validated model transformation can guarantee
that if the transformation finishes successfully, the generated
artifact is valid, and it is in accordance with the required
output [8] [9].

For example, require a transformation that transforms class
model to relational database management system (RDBMS)
model (transformation Class2RDBMS) to guarantee the fol-
lowings: a class that is marked as non-abstract in the source
model is transformed into a single table of the same name
in the target model, each table has primary key, each class
attribute is part of a table, each many-to-many association
has a distinct table, and so on.

These types of requirements can be specified by Object Con-
straint Language (OCL) [14] constraints assigned to the trans-
formation rules. Unfortunately, often, the same constraint
is repetitiously applied in many different places in a trans-
formation, therefore the constraints crosscut the transfor-
mation rules and their management becomes hard.

In [7], a solution of the case study Class2RDBMS is provided
where a transformation is presented with 9 transformation
rules and two constraints are emphasized, from which the
first one appears 30 times in 9 transformation rules and
the second one 16 times in 6 transformation rules. This is
very difficult to manually manage crosscutting and scatter-
ing constraints, because all of the modifications have to be
done on all occurrences of the constraints. Constraints ap-
pearing several times in a transformation increase the time
of constraint handling and the possibility of making a mis-
take during the modification. Using aspect-oriented con-
straints, a method has been given to solve the problem of
the crosscutting constraint in model transformations [7] [9].
The main idea is to handle constraints similarly to Aspect-
Oriented Programming (AOP) aspects, to provide the trans-
formation constraints with the properties of the AOP as-
pects. AO constraints are created separately from transfor-
mation rules and, using a weaver method, they are woven
back to the transformation rules before the execution of the
transformation. The result of this method is a consistent
constraint management (modification, deletion, and propa-
gation) with crosscutting constraint separation and weaving.

The current work proposes a method to identify the cross-
cutting constraints in model transformations. Our motiva-
tion is driven by the fact that transformation designers pre-
fer defining transformation rules directly with constraints.
Therefore, a solution should be provided to extract con-
straints from existing transformation rules. The proposed
method makes both the constraints and the rewriting rules
reusable, furthermore, facilitates the better understanding
and maintainability of the metamodel-based model trans-
formations.

2. BACKGROUNDS
This section as a background information introduces the
Visual Modeling and Transformation System (VMTS), the
problem of the crosscutting constraints in metamodel-based
model transformation rules, and the methods provided by
VMTS to define and apply transformation constraints as
aspects.

Graph rewriting [17] is a powerful technique for graph trans-
formation with a strong mathematical background. The
atoms of graph transformations are rewriting rules, each rule
consists of a left-hand side graph (LHS) and right-hand side
graph (RHS). Applying a graph rewriting rule means find-
ing an isomorphic occurrence (match) of LHS in the graph
to which the rule is applied (host graph), and replacing this
subgraph with RHS.

2.1 Visual Modeling and Transformation Sys-
tem

Visual Modeling and Transformation System (VMTS) [21]
supports editing models according to their metamodels, and
allows specifying constraints written in Object Constraint
Language (OCL) [14]. Models are formalized as directed,
labeled graphs. VMTS uses a simplified class diagram for
its root metamodel (”visual vocabulary”). Also, VMTS is
a model transformation system, which transforms models
using graph rewriting techniques. Moreover, the tool facili-
tates the validation of the constraints specified in the trans-

Figure 1: Example transformation rule:
ClassToTable

formation rule during the model transformation process.

In VMTS, LHS and RHS of the transformation rules are
built from metamodel elements. This means that an instan-
tiation of LHS must be found in the input graph instead of
the isomorphic subgraph of LHS.

Rewriting rules can be made more relevant to software engi-
neering models if the metamodel-based specification of the
transformations allows assigning OCL constraints to the in-
dividual transformation rules. This technique facilitates a
natural representation for multiplicities, multi-objects and
assignments of OCL constraints to the rules with a syn-
tax close to the UML notation. An example metamodel-
based transformation rule that generates database tables
from UML classes is depicted in Fig. 1.

The constraints assigned to the transformation rule guar-
antee our requirements. After a successful rule execution,
the conditions hold and the output is valid, this cannot be
achieved without constraints.

2.2 Crosscutting Constraints
In model transformation, the dominant decomposition is the
functional behavior of the transformation rules. The con-
straints ensure the correctness of the transformation only
if they are well-defined by the designer. Although they
are responsible for the correctness, the constraints are usu-
ally treated with secondary importance. They crosscut the
transformation, and it is almost impossible for the designer
to perform the intuitive activity of verifying the transforma-
tion.

Our motivating example (transformation ClassToRDBMS)
is presented in the previous section. Constraints such as
NonAbstract, PrimaryKey, and ClassAttrsAndTableColls (Fig.
1) cannot be encapsulated in any of the rules or rule nodes.
However, they express the same constraint concerns on the
rules: therefore they should be defined separately from the
transformation rules and woven automatically to the appro-
priate rule nodes later.

Since there is not enough space to present all transforma-
tion rules and all occurrences of the constraints appearing
in rule CreateTable, we provide statistical data only, and
the details can be found in [9] and [21]. The transforma-

tion Class2RDBMS contains nine transformation rules. In
these rules the constraint NonAbstract appears 30 times,
constraint Abstract, which requires the presence an abstract
class, appears 16 times. Furthermore, the constraints Pri-
maryKey and PrimaryAndForeignKey are linked 6 times,
and constraints OneToOneOrOneToMany and ManyToMany,
which are related to processing the associations between
classes, appear 4 times [7]. This means that one of the open
issues with respect to the transformation is that the same
constraints appear several times.

2.3 Aspect-Oriented Constraint Management
in VMTS

As it was presented in the previous section, in model trans-
formation, some constraints assigned to transformation rules
represent the crosscutting concerns.

In VMTS, aspect-oriented constraints are OCL constrains
defined separately from the transformations and transfor-
mation rules, and are woven to the rules later using a weaver
method. Recall that in VMTS, transformation rules are
built from metamodel elements, where a metamodel element
can appear arbitrary times in a transformation rule. A rule
is not an instance of the metamodel, both of them are on
the same meta level. The input and output models are the
instances of the metamodels. Each transformation rule node
and edge has a metatype that corresponds to a metamodel
type. The context information of the aspect-oriented con-
straints can be used as a type-based pointcut that selects
rule nodes based on their metatype. The weaving process
driven by the type-based pointcuts is referred to as type-
based weaving [10]. In Fig. 1, Class is the context of the
constraint NonAbstract and the target rule nodes (rule node
Class in LHS and rule node Class in RHS) of the propaga-
tion are selected based on this metatype.

To refine the weaving procedure, weaving constraints are
applied. A weaving constraint is similar to a property-
based pointcut, it is also an OCL constraint, which specifies
the weaving, but it is not woven to transformation rules,
and thus, it is not used during the transformation process.
Weaving constraints facilitate optional conditions during the
weaving process. Therefore, it is referred to as constraint-
based weaving in VMTS [10]. A weaving constraint can
be used to represent one or many characters as a means
of specifying more than one attribute during a search pro-
cedure. This enables to select multiple rule nodes with a
single specification. For example, the propagation of con-
straint PrimaryKey (Fig. 1) can be refined with weaving
constraints. The constraint PrimaryKey can be separated
from the transformation rules, and using the weaving con-
straint table.name = ’Table*’ it can be woven to rule nodes,
whose names start with the ’Table’ character sequence.

Having separated the constraints from rule nodes, we also
need a weaver which facilitates the propagation (linking)
of the constraints to the rule nodes. Our approach solves
the aspect-oriented constraint propagation with the Global
Constraint Weaver (GCW) algorithm [9] (Fig. 2).

This mechanism facilitates our approach towards managing
constraints using aspect-oriented techniques. Similarly to
aspects, the constraints are specified and stored indepen-

Figure 2: The weaving process and the input and
output of the GCW

dently of any model transformation rule or rule node and
are linked to rule nodes by the GCW.

The output of the weaver is not stored as a new transfor-
mation rule. The result is handled as a link between the
constraints and a transformation rule. This link is referred
to as weaving configuration [10]. A weaving configuration
can be executed similarly to a transformation. The differ-
ence is that it contains the links between the transformation
rule nodes and the constraints, therefore, during the execu-
tion the transformation engine applies the constraints woven
to the transformation rules. Weaving configurations are cre-
ated once, they are stored in the database, but they require
significantly less space than transformation rules, because
weaving constraints represent only the rule-constraint rela-
tions. Furthermore, this representation makes the transfor-
mation rule management transparent: it is not required to
modify the rules in each weaving configuration, but only on
their original place.

2.4 Constraint Normalization in VMTS
OCL constraints often contain complex expressions with sev-
eral navigation steps. The constraint evaluation consists of
two parts. (i) Selecting the object and its properties that
the constraint needs to be checked on, and (ii) executing
the checking. In general, the larger part of the evaluation
is the first step, because of its computational complexity.
Each navigation step in a constraint means several queries
on the model database. Therefore the original motivation
of the normalization method was to reduce the navigation
steps contained by the constraints, because the eliminated
navigation steps accelerate the first part of the constraint
evaluation. In [9] a method is provided with algorithms to
normalize OCL constraints in metamodel-based transforma-

tion rules. This normalization method with the results of the
constraint relocation and decomposition algorithms support
the aspectification of the crosscutting constraints in model
transformations.

3. IDENTIFICATION OF ASPECT-ORIENTED
CONSTRAINTS

This section provides a method with algorithms to support
the detection of the crosscutting constraints in metamodel-
based model transformations. The input of the method is
a transformation (transformation rules and a control flow
model), and the expected output is the crosscutting con-
straints separated as aspects. A simple but promising idea
is the following:

1. Collect the constraints appearing in the transforma-
tion.

2. Identify the repetitive constraints.

3. In fact, not all of the repetitive constraints are cross-
cutting constraints. Therefore, for each repetitively
appearing constraints decide if the actual constraint is
crosscutting for the transformation or not.

4. Extract crosscutting constraints as aspects.

The separation of concerns principle states that a given
problem involves different kinds of concerns that should be
identified and separated to cope with complexity, and to
achieve the required engineering quality factors such as ro-
bustness, adaptability, maintainability, and reusability. The
principle declares that each concern of a given software de-
sign problem should be mapped to one module in the system.
Otherwise, the problem should be decomposed into modules
such that each module has one concern. The advantage of
this is that concerns are localized and as such can be easier
understood, extended, reused, and adapted.

Many concerns can indeed be mapped to single modules.
Some concerns, however, cannot be localized and separated
easily, and given the design language we are forced to map
such concerns over many modules. This is called crosscut-
ting concern or aspect. Aspects are not the result of a bad
design but have more inherent reasons. A bad design includ-
ing mixed concerns over the modules could be refactored to
a neat design in which each module only addresses a sin-
gle concern. However, if we deal with these crosscutting
concerns, this is not possible in principle that is, each refac-
toring attempt will fail and the crosscutting will remain. A
crosscutting concern is a serious problem, since it is harder
to understand, reuse, extend, adapt and maintain a concern
because it is spread over many rule nodes. Finding the places
where the crosscutting occurs is the first problem, adapting
the concern appropriately is another problem.

Our crosscutting constraint identification method can be di-
vided into two main parts: coloring (Section 3.1) and ex-
tracting (Section 3.2) constraints. Based on the user de-
fined or automatically identified concerns the coloring al-
gorithm assigns colors to the constraints of the processed
model transformation. Each color represents a concern that

should be modularized. Ideally each constraint will have
exactly one assigned color, which means there is no cross-
cutting. After the coloring, when we realized that there are
constraints with more than one color, the extracting is ap-
plied to realize crosscutting constraints as aspects (aspect-
oriented constraints). Extracting is supported by constraint
decomposition [9].

3.1 Coloring Algorithm
The input of the coloring algorithm is the model transfor-
mation with the propagated constraints. The output is the
coloring, where each of the colors represent a concern. Of
course the relevant concerns are also specified by the trans-
formation designer.

A concern, which represents a color can be related to an op-
tional property that is expressed by a constraint: e.g. an at-
tribute value or the existence of specific type adjacent nodes.
For example:

context Class inv NonAbstract:

not self.abstract

The constraint NonAbstract represents the concern, which
states that the processed class should be non-abstract.

context Table inv SourceClass:

self.helperNode.class->exists(c |

(c.name = self.name))

The constraint SourceClass represents the concern, which
predicates that a generated table has a source class with the
same name.

If we have only these two constraints, then the coloring is
simple: the algorithm assigns to each of the constraint con-
cerns a different color. But if a constraint comprises more
concerns, then the coloring will be compound:

context Class inv NonAbstractAndProcessed:

not self.abstract and not self.isProcessed

The constraint NonAbstractAndProcessed incorporates two
concerns: (i) the matched class should be non-abstract, and
(ii) the matched class should be non-processed. In this case
two colors are assigned by the coloring algorithm to the con-
straint.

The concerns that should be taken into account by the color-
ing algorithm are defined by meta OCL constraints. These
meta OCL constraints form an OCL Set. Each element of
this Set represents a color (concern ID). These constraints
are evaluated for the model transformation constraints. The
result is the coloring, which is refactored by the extracting
algorithm (Section 3.2).

Meta OCL constraints are defined as {context, constraint
expression, color} triplets. Example simple meta OCL con-
straints for boolean type attributes: {Class, abstract, Color

1} {Class, isProcessed, Color 2}. Example meta OCL con-
straint for existing adjacent nodes {Class, self.helperNode.table-
>size() > 0, Color N }.

An important requirement that the whole method should
provide is that each concept can have only one color, e.g. it
is not allowed that abstract has two or more colors. This
means that the elements of the meta OCL Set should be
unique.

Algorithm 1 presents the pseudo code of the Coloring algo-
rithm. The model transformation T and the meta OCL Set
metaOCLs are passed to the algorithm, which iterates on
the constraints propagated to the rule nodes of the transfor-
mation T (line 3). In an embedded loop, for each constraint
the algorithm iterates on the meta OCL constraints (line 4),
and evaluates the relevance of the actual meta constraint
(metaConstraint) for the actual constraint (C) (line 5). If
the constraint C contains the concern represented by the
actual meta constraint metaConstraint then the color of
the meta constraint metaConstraint is assigned to the con-
straint C (line 6). Finally the coloring is returned by the
algorithm.

Algorithm 1 Pseudo code of the Coloring algorithm

1: Coloring (Transformation T , OCLSet metaOCLs):
ColoringTable

2: ColoringTable coloringTable = new ColoringTable();
3: for all Constraint C in T do
4: for all Constraint metaConstraint in metaOCLs do
5: if CheckConstraintRelevance(C,

metaConstraint) then
6: UpdateColoringTable(coloringTable, C,

metaConstraint.Color)
7: end if
8: end for
9: end for

10: return coloringTable

This is obvious that meta OCL constraints contain the un-
derstanding of the concepts, and this is provided by the
developer. Theoretically, this method can provide a 100%
solution for our problem. At this point the main question
is the quality of the meta OCL constraints, because meta
OCL constraints should cover all concerns and should take
into account everything from the point of transformations
view. To obtain a useful result we should ensure the com-
pleteness of the defined meta constraints. (Currently this
is the developers responsibility.) Otherwise, the result is
relevant only for the covered part of the concerns.

3.2 Extracting Algorithm
The inputs of the constraint extracting algorithm are the
model transformation and the result of the coloring algo-
rithm. The outputs are the constraints extracted into as-
pects.

If the coloring is unambiguous, each constraint has maxi-
mum one color, then aspects can be created based on the
colors. Constraints without color are not extracted as as-
pects. But complex constraints may have several colors at
the same time. On the level of the source code, crosscutting

resulted by the bad design can be solved with refactoring.
In the domain of the metamodel-based model transforma-
tion, we can apply constraint relocation and decomposition
in order to eliminate the annoying consequences of the bad
design (crosscutting constraints).

Algorithm 2 presents the pseudo code of the Extracting
algorithm, which uses the constraint relocation and con-
straint decomposition provided by our constraint normal-
ization method [9].

Algorithm 2 Pseudo code of the Extracting algorithm

1: Extracting (Transformation T , ColoringTable
coloringTable): AspectList

2: AspectList aspectList = new
AspectList(coloringTable.Colors.Size);

3: Transformation decomposed = DecomposeCon-
straint(T)

4: for all ColoringItem coloringItem in coloringTable do
5: for all Color color in coloringItem do
6: UpdateAspectList(aspectList, color,

decomposed.GetDecomposedConstraint(
coloringItem.GetConstraintByColor(color)))

7: end for
8: end for
9: return aspectList

The transformation T and the coloring coloringTable is passed
to the Extracting algorithm. The algorithm decomposes
the constraints of the transformation (line 3) [9]. The algo-
rithm iterates on the coloring items provided by the coloring
(line 4), and for each item iterates on the colors assigned to
the actual coloring concern (line 5). Based on the actual
color the algorithm retrieves the relevant constraint from
the actual coloring item. Using this constraint the corre-
spondent constraint is queried from the decomposed version
of the transformation. Based on the decomposed constraint
the algorithm updates the already prepared aspect list (line
6). Finally the aspect list is returned.

4. RELATED WORK
An aspect-oriented approach is introduced in [5] for software
models containing constraints, where the dominant decom-
position is based upon the functional hierarchy of a physi-
cal system. This approach provides a separate module for
specifying constraints and their propagation. A new type of
aspect is used to provide the weaver with the necessary infor-
mation to perform the propagation: the strategy aspect. A
strategy aspect provides a hook that the weaver may call in
order to process the node-specific constraint propagations.

At the time of the writing we have no knowledge about
that any other approach supports aspect-oriented constraint
management in model transformation rules, therefore, there
is no other method for identifying crosscutting constraints
in model transformations. But there are other software de-
velopment fields, where identifying crosscutting concerns is
also crucial.

In [4] an evaluation of clone detection techniques for identify-
ing crosscutting concerns is presented. [6] introduces a tool
that finds clones and displays them to the programmer. The

approach is based on program dependence graphs (PDGs)
and program slicing. In [18] a method is provided for iden-
tifying crosscutting concerns in requirements specifications.
[3] provides support for developers to identify aspects early
in the software lifecycle. A method is presented for aspect
identification and analysis in requirements documentation.
The Prism project [22] develops tools and techniques for
discovering non-localized units of modularity in large soft-
ware systems. [12] proposes a model to identify and specify
quality attributes that crosscut requirements including their
systematic integration into the functional description at an
early stage of the software development process.

5. CONCLUSIONS
This paper has introduced an aspect-oriented solution for
the problem of crosscutting constraints in metamodel-based
model transformations. We have presented the aspect-oriented
constraint management of Visual Modeling and Transforma-
tion System. So far VMTS is the only environment that pro-
vides aspect-oriented methods for constraint management.
The main contribution of the paper is the identification of
crosscutting constraints in model transformations. We have
presented an approach with algorithms that semi-automatically
identifies the crosscutting constraints and separates them
into aspects.

Of course we would like to automate the largest possible
part of the meta constraint definition. Therefore, the next
question is: which concerns can be identified automatically,
and, of course, in which way. The method can be supported
by providing concern suggestions for the developer. This
method will not provide a 100% solution, but the suggested
concerns can be refined by the developer. Our first sug-
gestion (Suggestion 1) is to identify the constraints of the
transformation: simple constraints and the subterms of com-
plex constraints based on the boolean separators (and, or,
xor). The suggested constraints will be the ones, which are
propagated at least twice to any of the rule nodes of the
transformation.

A heuristic-based solution could improve the flexibility and
usability of the current coloring method: suggestions, men-
tioned above, should be defined on a higher level. A lan-
guage should be provided that facilitates to define what
should be checked, and the source code that performs the
checking is generated automatically based on it. For exam-
ple: Suggestion 1 is defined as a heuristic on higher abstrac-
tion level, and the checker that performs the control is auto-
matically generated. The research related to the heuristic-
based solution is the subject of our future work.

6. ACKNOWLEDGMENTS
The fund of ”Mobile Innovation Centre” has supported in
part, the activities described in this paper.

7. REFERENCES
[1] U. Assmann and A. Ludwig, Aspect Weaving by Graph

Rewriting, Generative Component-based Software
Engineering, Springer, 2000.

[2] U. Assmann, How to Uniformly specify Program
Analysis and Transformation, Int. Conference on
Compiler Construction (CC) 96, LNCS 1060, Springer,
1996.

[3] E. Baniassad, S. Clarke, Finding Aspects in
Requirements with Theme/Doc, Early Aspects 2004.

[4] M. Bruntink, A. van Deursen, R. van Engelen, T.
Tourw, On the Use of Clone Detection for Identifying
Crosscutting Concern Code, IEEE Trans. on Software
Engineering, 2005, Vol. 31, No. 10, pp. 804-818.

[5] J. Gray, T. Bapty, S. Neema and J. Tuck, Handling
Crosscutting Constraints in Domain-Specific Modeling,
Communications of the ACM, October 2001, pp. 87-93.

[6] R. Komondoor, S. Horwitz, Using slicing to identify
duplication in source code, 8th Int. Symposium on Static
Analysis, pp. 40-56, 2001.

[7] L. Lengyel, T. Levendovszky, H. Charaf, Eliminating
Crosscutting Constraints from Visual Model
Transformation Rules, ACM/IEEE 7th Int. Workshop
on AOM, Montego Bay, Jamaica, October 2, 2005.

[8] L. Lengyel, T. Levendovszky, H. Charaf, Constraint
Validation Support in Visual Model Transformation
Systems, Acta Cybernetica, ISSN 0324-721X, Vol. 17(2),
pp. 339-357, 2005.

[9] L. Lengyel, Online Validation of Visual Model
Transformations, PhD thesis, Budapest University of
Technology and Economics, Department of Automation
and Applied Informatics, 2006.

[10] L. Lengyel, T. Levendovszky, H. Charaf, Optimizing
Constraint Weaving in Model Transformation with
Structural Constraint Specification, 8th Int. Workshop
on AOM, March 21, 2006, Bonn, Germany.

[11] A. Metzger, A systematic look at model
transformations, In Model-driven Software Development,
Vol. II of Research and Practice in Software Engineering.
Springer, 2005.

[12] A. Moreira, J. Arat’ujo, I. Brito, Crosscutting Quality
Attributes for Requirements Engineering, 14th Int. Conf.
on Software Engineering and Knowledge Engineering,
pp. 167-174. ACM Press, 2002.

[13] OMG MDA Guide Version 1.0.1, 2003. Document
number: omg/2003-06-01,
www.omg.org/docs/omg/03-06-01.pdf

[14] OMG OCL Spec., Version 2.0, 2006.
http://www.omg.org/

[15] OMG QVT, MOF 2.0 Query/Views/Transformation
Specification,
http://www.omg.org/cgi-bin/apps/doc?ad/05-03-02.pdf

[16] OMG UML Spec., Version 2.1.1, 2007.
http://www.uml.org/

[17] G. Rozenberg (ed.), Handbook on Graph Grammars
and Computing by Graph Transformation: Foundations,
Vol.1 World Scientific, Singapore, 1997.

[18] L. Rosenhainer, Identifying Crosscutting Concerns in
Requirements Specifications, 2004.

[19] J. Sztipanovits and G. Karsai, Model-Integrated
Computing, IEEE Computer, Apr. 1997, pp. 110-112.

[20] J. Sztipanovits, GPCE, vol. 2487 of LNCS, pp. 32-49,
Pittsburgh, October 2002.

[21] VMTS Website, http://www.vmts.aut.bme.hu

[22] C. Zhang, H.-A. Jacobsen, A Prism for Research in
Software Modularization through Aspect Mining,
Technical report, Middleware Systems Research Group,
University of Toronto, 2003.

Towards a runtime model based on colored Petri-nets for

the execution of model transformations
Thomas Reiter

Information Systems Group
Johannes Kepler University

Altenbergerstr. 69
4040 Linz, Austria
+43-732-2468-9236

reiter@ifs.uni-linz.ac.at

Manuel Wimmer
Business Informatics Group

Vienna University of Technology
Favoritenstr. 9-11

1040 Vienna, Austria
+43-1-58801-18829

wimmer@big.tuwien.ac.at

Horst Kargl
Business Informatics Group

Vienna University of Technology
Favoritenstr. 9-11

1040 Vienna, Austria
+43-1-58801-18837

kargl@big.tuwien.ac.at

ABSTRACT

Existing model transformation languages, which range from

purely imperative to fully declarative approaches, have the

advantage of either explicitly providing statefulness and the

ability to define control flow, or offering a raised level of

abstraction through automatic rule ordering and application.

Existing approaches trying to combine the strengths of both

paradigms do so on the language level, only, without considering

the benefits of integrating imperative and declarative paradigms in

the underlying execution model. Hence, this paper proposes a

transformation execution model based on colored Petri-nets,

which allows to combine the statefulness of imperative

approaches as well the raised level of abstraction from declarative

approaches. Furthermore, we show how a Petri-net based

execution model lends itself naturally to the integration of an

aspect-oriented style of transformation definition, as

transformation rules can be triggered not only upon the input

model, but on the state of the transformation execution itself.

1. INTRODUCTION
As model transformations play a key role in model driven

development, several dedicated languages have emerged that

allow to define and execute transformations between source and

target metamodels. Compared to transformations implemented in

a general purpose programming language or XSL transformations

which operate on a models serialization, model transformation

languages provide a layer of abstraction by allowing to manipulate

models in terms of their abstract syntax given by its metamodel.

Apart from this basic commonality, different kinds of model

transformation languages exist. These approaches range from

purely imperative styles allowing to define how an transformation

is carried out, to fully declarative transformation definition styles

focusing on what a transformation's output should be like,

according to a certain input.

Declarative approaches (i.e. graph transformations) are typically

based on defining rules that are later on interpreted by an

execution engine to produce the desired result. Hence, the actual

transformation execution as well as the order of rule application

generally need not be handled by the user, although approaches

based on graph transformations like AGG, or VMTS [7] allow to

specify precedence of certain rules. Declarative rules typically

consist of a semantically corresponding source and target patterns,

whereby for each match of the source pattern in the input model, a

target pattern is instantiated in the output model. Additionally,

Triple Graph Grammars (TGG) [5] maintain the state of a

transformation by traces that link matched source and instantiated

target model elements.

Imperative approaches are similar in usage to traditional

programming languages and allow the developer to explicitly

manipulate transformation execution state and control flow.

Although approaches such as the EOL [4], MTL or Kermeta [6]

offer great flexibility and ease of use, the programming model

does not support the intuitive alignment of concepts that is

prevalent in metamodel or schema integration tasks, and one often

needs to implement manually what a more succinct declarative

description would achieve. However, what a declarative approach

gains in abstraction, it loses in flexibility. Naturally, declarative

specifications are convenient language constructs for recurring

transformation tasks, but for “tricky” problems, a rule-based

paradigm can become unwieldy.

To alleviate these limitations, hybrid approaches like ATL [3] or

Xtend [8][9] combine imperative and declarative styles of

transformation definition. (We regard Xtend as hybrid due to its

functional style and rule-like “create” extensions.) Thus, the

imperative part of a hybrid language is available to accomplish

tasks that cannot be adequately solved declaratively. However,

allowing to intermix imperative and declarative statements

requires a developer to be aware of how exactly the engine

orchestrates transformation execution. For instance, when writing

imperative program parts in ATL, one has to be aware that their

execution is subject to the engine’s scheduling, and one may not

assume that certain declarative rules have yet been dealt with, or

that a certain internal state is reached. Hence, the imperative part

is often necessary simply to work around the confines of the

engine’s execution procedure, as opposed to enable algorithmic

computations. As an example, a common work-around is to

explicitly maintain and observe custom state information in global

variables, for instance to be able to manually trigger rules at

certain points during a transformation's execution, in case the state

information (i.e. trace between source and target model) that is

automatically maintained by the execution engine does not

suffice.

In general, existing declarative and hybrid approaches, are

governed by an underlying execution procedure implemented in

This work has been partly funded by the Austrian Federal Ministry of

Transport, Innovation and Technology (BMVIT) and FFG under grant

FIT-IT-810806, and the Austrian Federal Ministry for Education,

Science, and Culture, and the European Social Fund (ESF) under grant

31.963/46-VII/9/2002

the respective transformation engine. In our opinion, this

rigidness is the main cause for trouble when attempting to solve

tricky problems with declarative approaches, or when integrating

them with imperative styles. As the actual transformation

definitions can be seen as merely parameterizing an intrinsically

rigid, pre-defined procedure, we view declarative approaches as

data-oriented, in the sense that they specify how input data is

mapped onto output data. This is reflected in the rationale, that

models are seen as graphs, and therefore graph transformations

are used to describe and implement model transformations.

As opposed to declarative approaches, imperative approaches

express transformations on a very fine-grained level, which is

flexible but incurs explicit handling of control flow without

support for the alignment of concepts as it is prevalent in schema

integration tasks, for instance. Instead of specifying what input

data is mapped onto what output data, imperative approaches

follow a procedure-oriented paradigm and allow to

algorithmically define a function that computes the output model

from the input model.

We propose to rethink the notion of models as input and output

data which is subject to a transformation that is seen either as an

explicit or implicit procedure, but understand a transformation as

a process. In a process-oriented view, a transformation execution

is carried out by interacting entities that control streams of

information from source to target models. The flowing

information stems from the models themselves, and the actual

transformation logic is made up by the behavior of individual

entities and their interaction which each other.

 Consequently, we propose the transformation net formalism,

which is based on conditional, colored Petri-nets, to represent

transformation processes. Such an execution model provides the

explicit statefulness of imperative approaches through markings

contained in the net's places. The abstraction of control flow from

declarative approaches is achieved as transitions can fire

autonomously depending on their environment. To describe

specific firing rules for transitions, we resort to pre/post rules

known from graph transformations.

The following section gives an overview of the transformation net

formalism and describes how models and metamodels can be

mapped onto transformation nets. The example in section three

will describe how higher-level languages can be built on-top of

transformation nets and how a process-oriented view favors the

incorporation of aspect-oriented rules. Section four concludes

with an outlook on future work.

2. TRANSFORMATION NETS
What sets transformation nets apart form existing approaches is

their ability of making the transformation process explicit, as

opposed to assuming a certain predefined execution rigor. Of

course, the Petri-net based formalism needs an execution engine,

too. But the Petri-net execution engine is generic and not tailored

to a specific task unlike declarative model transformation engines.

This makes the transformation net formalism a flexible execution

environment to be targeted by generators of higher-level

transformation languages, such that specific transformation and

integration operators can be defined using the semantics offered

by transformation nets.

As symbolically displayed in Figure 1, the “compilation” step

produces a transformation net in its initial state (i.e. ready for

execution) that uniformly represents models, metamodels and

transformation specifications. The static parts of a transformation

net that correspond to the transformation process’ inputs and

outputs, are generated from models and metamodels, whereas the

part that corresponds to the process’ execution logic is created

from the integration specification by a custom generator for a

certain higher-level language.

Source

Metamodel

Target

Metamodel

Source

Model

Target

Model

Integration

Specification

Source Places Target PlacesTransformation Logic

Transformation Net

conforms
conforms

derive
derive

derive

derive

instantiate

The gap between the modeling and the transformation net

technical space is bridged by the mapping described in the

following. For reasons of brevity, we give a mapping only for the

three main elements of metamodels, that are classes, references

and attributes, and leave other constructs (e.g.: enumerations)

aside.

Classes, references and attributes of metamodels are mapped to

places of a transformation net.

Objects, as instances of classes are mapped to one-colored tokens

within a place that corresponds to the object’s class. The token’s

color represents an object’s unique ID.

Links between objects conforming to a certain reference are

mapped onto two-colored tokens within a place that corresponds

to the link’s reference. The two colors represent a link’s source

(ring color) and target (center color) and stand for the ID of the

linked objects.

Values of attributes are mapped onto two-colored tokens within a

place that corresponds to the values’ attribute. The two colors

represent an object’s unique ID and the denoted value.

To complete the transformation net and to provide the actual

process logic, a system of transitions and places has to be

established that is capable of streaming tokens from the places

corresponding to the input metamodels to places corresponding to

the output metamodel. Thereby, the transitions represent

interacting entities that control the token streams by firing and

removing tokens from their input places and adding tokens to

their output places accordingly. During execution, state

information is explicitly provided by the markings of places,

which makes it possible, to trigger transitions according to a

certain runtime state, as opposed to only act upon data comprising

Figure 1. Overall transformation procedure.

the input model. The notion of triggering transitions according to

runtime events or states is similar to the notion of point-cuts

determining the execution of advice in aspect-oriented

programming. Hence, transformation nets naturally cater for the

use of aspect-oriented techniques on the runtime level. How to

incorporate a weaving mechanism on the language level will be

discussed as part of next section’s example which introduces a

high-level integration language and demonstrates transformation

net generation and execution.

3. EXAMPLE
The example in this chapter deals with the specification of a

transformation between two metamodels, which is compiled into a

net that finally executes the transformation process. Figure 2

shows the source and target metamodels, as well as the input

model and the desired output model. As shown, a transformation

between these two metamodels has to transform array input

models into linked-list output models.

The transformation specification in-between the metamodels is

given in an example language, which comprises several operators

whose exact transformation net semantics will be given in the

following section when describing the runtime level. On the

language level, every operator stands for a certain processing

entity, which has inputs and outputs by which individual

operators can be assembled in a component-based way. For

instance, the C2C (Class2Class) component takes objects from the

“Element” class as input, and outputs them into the “Node” class.

Analogously the R2R (Reference2Reference) component streams

links from “contains” to “head”. The C2C component offers

another output port “history”, of which all this components yet

handled tokens can be accessed. The 2-Buf component connected

to C2C’s “history” sequentially fills an internal buffer of size two,

which is again provided as output port. A Linker component takes

the two objects in the buffer, and produces a link between them

which is streamed into the “next” place. A back-link is produced

by the Inverter component that produces back-links from the

“next” place and streams them into the “prev” place.

Additionally to these “manually” assembled components, certain

operators can cross-cut a transformation specification: Because

the target metamodel classes do not have ID attributes, these

should be stored within an annotation for eventual round-tripping.

This can be accomplished by the Att2Annot component, which

henceforth crosscuts the transformation of every object and is

therefore woven with every C2C component. The transformation

specification is itself a model, and due to the component-like

assembly, existing model weavers can be used to merge the aspect

operator into the base transformation specification. The top of

Figure 2 shows the aspect’s definition in a notation inspired from

XWeave [2]. The query in the aspect selects all C2Cs, with three

additional sub-queries “in.id”, “history” and “out”, relative to the

current C2C operator. The results of “in.id” and “history” are

bound to the “values” and “objects” ports of the Att2Annot

operator, which for every transformed object instantiates a new

Annotation object (“class” port) which is linked up (“ref” port)

with the according Node object and sets its text attribute (“att”

port) to the value of the source objects “id” attribute.

Additionally, the “Annotation” class is woven into the target

metamodel, as indicated through the dotted lines in Figure 2.

Thereby, the result of the “out” query determines the classes to

which an “annot” reference will be added.

LinkedList

Node

prevnext

head

Array

Element

contains

* *

*
1

C2CArray2List

C2C

R2R

Att2Annot

aspect Annotation

%allC2C

contains2head

Elem2Node

id : String

id : String

historyin.id

2-Buf

Linker
Inverter

in

in

in out

out

out
history

history

one two
fromto

out

outin

objects

annot
out

Annotation

text : String

values

next

Example Source Model Desired Target Model

E1:Element

id = „E1“

E2:Element

id = „E2“

E3:Element

id = „E3“

E4:Element

id = „E4“

Arr:Array

id = „Arr “

N1:Node

N2:Node

N3:Node

N4:Node

L1:LinkedList

A1:Annot.

text = „E1“

A2:Annot.

text = „E2“

A3:Annot.

text = „E3“

A4:Annot.

text = „E4“

prev

head
annot

contains

ref att class Annotation

text : String

annot

annot

After the weaving process is carried out on the language level,

generation takes place to produce a transformation net out of an

integration specification. Thereby Petri-net patterns are

instantiated according to the transformation net semantics of the

operators and assembled according to the overall integration

specification. Every such pattern declares input and output arcs

which represent the component ports of the respective language

operators. The top of Figure 3 shows a transformation net

resulting from the above integration specification. The transitions’

firing rules are defined with a visual notation that uses pattern-

filled tokens that can match for certain input tokens and produce

output tokens whose color is either different, the same, or a

combination (two-colored tokens) of the matched input colors.

Places marked as “ordered” index contained tokens and provide

them in a sorted fashion. For instance, the R2R component’s

transition matches “ArrE1” – the “first” input token. Furthermore,

according to the multiplicity of a reference, a place (e.g. “head”)

can have a capacity, which constrains the amount of tokens a

place can hold. Places holding two-colored tokens (references and

attributes) have a double-lined border for easier differentiation.

For simplicity reasons, the example assumes only a single array

object, and since there is only a single ordered reference, the

Element place is compiled into an ordered place as well, as not to

unnecessarily complicate the example.

Figure 2. Integration specification between metamodels

with example models.

Figure 3. Transformation net execution.

Array

contains

LinkedList

Node

head

E1 E2

E3 E4

Arr

Arr

E1

prevnext

1

Arr

E2Arr

E3

Arr

E4

Initial state…

ordered

StringAnnotation

text

annot

annotArr

‚Arr‘

E4

‚E4‘

E1

‚E1‘E2

‚E2‘E3

‚E3‘

‚E1‘

‚E2‘
‚E3‘

‚E4‘

‚Arr‘

id

id

String

Array MM

LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

Linker

history

hist.

out

one two

from
to

obj.

val.

in

in
out

out

in

out

obj.

val.

att

class

ref

ref

class

att

hist.

Element

in out

Array

contains

LinkedList

Node

head

prevnext

1

ordered

StringAnnotation

text

annot

annot

id

id

String

Array MM

LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

LinkerE4

Arr

E1

Arr

E2Arr

E3

Arr

E4

‚E1‘

‚E2‘

‚E4‘

‚A‘

Arr

‚Arr‘

E4

‚E4‘

E2

‚E2‘E3

‚E3‘

‚E3‘

E1

Arr
‚E1‘

A1

E1

A1

A1

‚E1‘

E3 E2

E1

E2

E2E3

E3
E2

Arr

history

hist.

out

one two

from
to

obj.

val.

in

in
out

in

out

obj.

val.

att

class

ref

ref

class

att

hist.

…running…

Element

in out

Array

contains

LinkedList

Node

head

prevnext

1

ordered

StringAnnotation

textannot

annot

id

id

String

Array MM

LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

Linker

E1

E2
E3

E4

Arr

Arr

E1

Arr

E2
Arr

E3

Arr

E4

‚E1‘

‚E2‘
‚E3‘

‚E4‘

‚A‘

‚Arr‘

‚E1‘ ‚E2‘

‚E3‘ ‚E4‘

E1

E2

E2

E3
E3

E4

E2

E1

E3

E2
E4

E3

A1 A2

A3

A5

A4

E1

A1
E2

A2
E3

A3
E4

A4

Arr

A5

A1

‚E1‘
A2

‚E2‘

A3

‚E3‘

A4

‚E4‘

A5

‚Arr‘

history

hist.

out

one two

from
to

obj.

val.

in

in
out

in

out

obj.

val.

att

class

ref

ref

class

att

hist.

…final state

Element

in out

Array

contains

LinkedList

Node

head

E1 E2

E3 E4

Arr

Arr

E1

prevnext

1

Arr

E2Arr

E3

Arr

E4

Initial state…

ordered

StringAnnotation

text

annot

annotArr

‚Arr‘

E4

‚E4‘

E1

‚E1‘E2

‚E2‘E3

‚E3‘

‚E1‘

‚E2‘
‚E3‘

‚E4‘

‚Arr‘

id

id

String

Array MM

LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

Linker

history

hist.

out

one two

from
to

obj.

val.

in

in
out

out

in

out

obj.

val.

att

class

ref

ref

class

att

hist.

Element

in out

Array

contains

LinkedList

Node

head

prevnext

1

ordered

StringAnnotation

text

annot

annot

id

id

String

Array MM

LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

LinkerE4

Arr

E1

Arr

E2Arr

E3

Arr

E4

‚E1‘

‚E2‘

‚E4‘

‚A‘

Arr

‚Arr‘

E4

‚E4‘

E2

‚E2‘E3

‚E3‘

‚E3‘

E1

Arr
‚E1‘

A1

E1

A1

A1

‚E1‘

E3 E2

E1

E2

E2E3

E3
E2

Arr

history

hist.

out

one two

from
to

obj.

val.

in

in
out

in

out

obj.

val.

att

class

ref

ref

class

att

hist.

…running…

Element

in out

Array

contains

LinkedList

Node

head

prevnext

1

ordered

StringAnnotation

textannot

annot

id

id

String

Array MM

LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

Linker

E1

E2
E3

E4

Arr

Arr

E1

Arr

E2
Arr

E3

Arr

E4

‚E1‘

‚E2‘
‚E3‘

‚E4‘

‚A‘

‚Arr‘

‚E1‘ ‚E2‘

‚E3‘ ‚E4‘

E1

E2

E2

E3
E3

E4

E2

E1

E3

E2
E4

E3

A1 A2

A3

A5

A4

E1

A1
E2

A2
E3

A3
E4

A4

Arr

A5

A1

‚E1‘
A2

‚E2‘

A3

‚E3‘

A4

‚E4‘

A5

‚Arr‘

history

hist.

out

one two

from
to

obj.

val.

in

in
out

in

out

obj.

val.

att

class

ref

ref

class

att

hist.

…final state

Element

in out

The middle and the bottom of Figure 3 show the transformation

net during execution and in its finished configuration. For

instance, one can see how the tokens streamed through the C2C

component are stored in its “history” place. (The history place is

duplicated in the lower C2C, as both the Att2Annot and the 2-Buf

components are bound to it.) The 2-Buf component takes in these

tokens and fills its two-place buffer. Once the buffer is full (both

places have a capacity of just one token), the Linker component’s

transition can fire and empty the buffer, producing a two-colored

token which is streamed into the “next” place. Thereby it is to

note, that the creation of two-colored tokens for the “next” link is

based on a certain state of the execution, rather than on the input

model alone.

Furthermore, one can see how the previously weaved operators

form Petri-net patterns that become active after an Array or

Element token was streamed. As an example, in the “running” net,

the lower Att2Annot pattern has already created an annotation

with the according value for the “E1” object, and is currently

enabled to do the same for “E2” and ”E3”, as both have already

been handled by a C2C component. Analogously, the rest of the

patterns stream tokens from source to target places, possibly

depending on other patterns in turn. The actual firing order,

however, is handled by the underlying Petri-net engine. Once the

transformation process has finished, the final net configuration is

used to instantiate a model that conforms to the target metamodel,

as shown in the bottom-right corner of Figure 2.

4. CONCLUSION AND FUTURE WORK
In this paper we have presented a new execution model for model

transformations based on colored Petri-nets. Such a process-

oriented execution model embodies the strengths of imperative

and declarative paradigms and is able to explicitly represent a

transformation’s execution state, which furthermore allows for the

natural integration of aspect-oriented transformation rules.

Furthermore, although transformation nets are intended as a low-

level execution model, transformation tasks like establishing the

correct links in the above linked-list example can be expressed

elegantly and encapsulated in reusable components.

Currently we have developed the TROPIC prototype

(TRansformations on Petri-nets In Color) which can transform

integration specifications established with the CARMEN mapping

framework [10] into colored Petri-nets that can be executed using

the ExSpecT [1] tool. After execution, the resulting Petri-net is

transformed into the actual target model. The CARMEN

framework builds upon an integration language that provides

operators for bridging schematic heterogeneities between

metamodels and ontologies. Future work will deal with extending

the existing set of integration operators and generators. Due to the

fact, that the transformation net approach is very generic, we will

furthermore investigate in how well the approach is applicable to

other model management tasks, such as model merging or

incremental transformations.

Another advantage of a process-oriented view is that a

transformation net represents a single artifact which embodies

metamodels, models and execution logic altogether. Therefore, we

deem a Petri-net based execution model beneficial for debugging

purposes and visualization of a transformation’s state.

Consequently, besides developing generators for further

integration languages (e.g.: model merging) or existing model

transformation languages, our next steps will focus on developing

dedicated tool support in the form of editors and debuggers for the

transformation net formalism.

5. REFERENCES
[1] ExSpecT – Executable Specification Tool.

http://www.exspect.com

[2] I. Groher and M. Völter. XWeave: models and aspects in

concert. Proceedings of the 10th international workshop on

Aspect-oriented modeling, (AOSD 2007),Canada,

Vancouver: 35-40.

[3] F. Jouault and I. Kurtev. Transforming Models with ATL. In

Proceedings of the Model Transformations in Practice

Workshop at MoDELS 2005, Montego Bay, Jamaica. 2005.

[4] D. S. Kolovos, R. F. Paige, and F. A.C. Polack. The Epsilon

Object Language (EOL). In Proc. of European Conference in

Model Driven Architecture (EC-MDA) Bilbao, Spain:128-

142, 2006.

[5] A. Königs. Model Transformation with Triple Graph

Grammars. Model Transformations in Practice, Satellite

Workshop of MODELS 2005, Montego Bay, Jamaica, 2005.

[6] P. –A. Muller, F. Fleurey, D. Vojtisek, Z. Drey, D. Pollet, F.

Fondement, P. Studer, and J.-M. Jézéquel. On executable

meta-languages applied to model transformations. In Model

Transformations In Practice Workshop, Montego Bay,

Jamaica, October 2005.

[7] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel,

T. Levendovsky, U. Prange, D. Varro, and S. Varro-Gyapay.

Model Transformation by Graph Transformation: A

Comparative Study. In Proc. Workshop Model

Transformation in Practice, Montego Bay, Jamaica, October

2005.

[8] M. Völter, B. Kolb, . Efftinge and A. Haase. Introduction to

openArchitectureare 4.1.x. MDD Tool Implementers Forum,

TOOLS Europe, 2007.

[9] M. Völter, B. Kolb, . Efftinge and A. Haase. From Front

End To Code - MDSD in Practice. Eclipse Corner Article,

June 2006. http://www.eclipse.org/articles/Article-

FromFrontendToCode-MDSDInPractice/article.html

[10] M. Wimmer, H. Kargl, M. Seidl, M. Strommer and T. Reiter.

Integrating Ontologies with CAR-Mappings. First

International Workshop on Semantic Technology Adoption

in Business (STAB'07), Vienna, Austria, May 2007.

Towards a Generic Aspect-Oriented Modeling Framework

Brice Morin
Olivier Barais

Jean-Marc Jézéquel
IRISA Rennes Projet Triskell

Campus de Beaulieu
F-35 042 Rennes Cedex

���������������	
�
�

�����������

Rodrigo Ramos
Centre of Informatics
Federal University of

Pernambuco
P.O. Box 7851, CEP

50732970, Recife, Brazil
��������
��
���

ABSTRACT
���������	�
����
���	
� ����
����� ��
�
�� �
 �
��� ����
����� ��������
� ��
�������	
� �

���
�� ���� ��
 �� �����

�
��
��� 	
�
 ���	
�� ���� �������� ����� ����
����� ���

���
 �	�	��� �
 � ����	����� �
��	
� ��� ����� �	������
�� ��� �����
�� �	������� � � � �
� ������
�� ���� ��

�
���	�� �� ������� �

���� �
��	
�� �
 ��	� ������ � ��
�
�
�� �
 �!��
� ���

�	

� ������ �
 ���
����� �

��

�
���
�����
� �
��	
�� "� �����
�
�� #�
��	� �������
��	�
��� �
���	
� $����
�% �
� ��
 �
 	� ��
 ���	��
�� ����	��	&�� �
� �
� ����	'� �
��	
�

1. INTRODUCTION
���������	�
��� �
���	
� (���) ����
�����
��� �
 ����
 	�� �
 ��	
 ���	�	�	��� 	��
�	��	
� 	
 � ���� �
��� �
	
��

� 	
������
� ���� ������� ���� �
 �
��
�� �������� �
�
�
��
�	
� ��� ������� 	
�
 ��� ���� �
���� ���
�	��	
� ����
������ 	
 � ���� �
��� ����	�� � �����
	�� �
 ����	�� ���
����� �
	
��� ��� ��������� �
 �
��
� ��� ��� ����
����
��� ��� �������� 	� � �������� �
��� �
�� �����
�� ��

����� ���� ������� ���
� ��� ������ ��
 ��
��
 	
�
 ���
���� �
��� ���
%� �
 � �
��
�	�	

 ��
�
�
��
� ���	
� �	�
����	���� *
�� ��� �������� �!�����	

 �
� ��� �
��
�	�	

��
�
�
� ��� �
��	
�����
��
��

�
 �
��
� ��� ��� ����
������ ����� �
 ���	�	�	�� ���

���
 �	�	��� �
 � ����	����� �
��	
� ��� +���� ,	������

� -����
�� ,	������ ./0� -���� ����	
�� .10� 2	��������
������� -���� +����� .30� "� ����� ���� ��� ��������
�!�����	

 �
� ��� �
��
�	�	

 ��
�
�
� �
��� �� ��
��	��
���
�	��	
� ���� ������ 	
 � ����� �	�����
� 	
 � $	
	�� -����
����	
� ($-�) ���	��

 ��� ���� ��	
�	���� �����	
�
�
��� �����
��� -���	��	
� � �
��
�	�	

 ��
�
�
� �
� �����
�	�����
� � $-�
���� �
��	
�����	'� ���	
� �	����	����
��� ��� �
�����	
� ��
���� 	� �	�	��� 	
 �
�� ����� �
� �
	��
�

 �
 �
��
�� �
��� �����
���

�
 ��	� ����� � ��
�
�� � ��
��	� �������
�	�
��� �
���	
�
�����
�% ���� ��
 ���	�� �� ������� �
 �	4���
� �
��	
��
"� ��'
� ��� �������� �� � �
��� �
	���� �
� ��� �
��
�
�	�	

 ��
�
�
� �� � ���
� �������	

�
� ���	
� �	����	����
��� ����	
���
� ��	� ����� 	�
���
	&�� �� �
��
 �� ���

��� �
� � ��
��	� �������
�	�
��� �
���	
� �����
�% 	�
�
�	����� 	
 -���	

 /� -���	

 5 �����
�� ��� ��
��	� ����
����� �����
	�� � ��� �
 �
	
�
�� ���� ������ �	�� -���
�	

 1 �����
��
�� ��
��	� �������	

 �����
���� -���	

 6
�����
�� �
 ����	���	

�
� ��� �����
�% �
� -���	

 3
�

�������

2. A MOTIVATING EXAMPLE
��	� ����	

 	���������� ���
��� �
� � ��
��	� �������
�	�
���
�����
�%� ��������� �
 ���
�� ����� �
��	
� �
 ��	� �!�
������ � 	�� �
��
�� �
 7�
��������8 ������� ��
� �

�	4���
� �
��	
�� +���� ,	����� �
� $	
	�� -���� ����	
�
($-�)� $	���� 9 	���������� � �	���� ����� �	����� �
� �
$-��

������ �� �	
 �
��
� ��
� �	
 �������� �
�����

�
 ��� ����� �	������ ��� ������ �

�	���
� ��%	
� ��� ���
������� 	
���	�	
� ��
� � �
	��� �

� ����� 7:

�+����8� �

����
���� ��� ��� ������� 	��

 ����� ����� 	�� 	
���	�
��
� 7:

�+����8� �
 ��� $-�� ��� ������ �

�	��� 	
 	
��
�
���	
� �
� ����� 7$	
��8���� ��
 �� ������� ��
� ��� ���

���� ������� �

����
���� ��� ��� ������ 	��

���
	
�
���
�	�	

 	�� �� �	
%�� �
 7$	
��8� $	���� / ��
 � ��� ����
������ ���� ��� ������ ��
 �� �
��
���� 	
 ���� �
����

��� ���	
�
� ���� ������
�%� �� �
��
 �� �
 ��� �����
�	������ 7+�����8 �
� 7+����*8 ��� 	
���	�	
� ��
� 7:

��
+����8 �	�� 	
 ��� $-� �
���� 7$	
��8 ��
 �� ������� ��
�
7*8 �
� 7+8� $	���� 5 	���������� ��� ������
� ��	� �
��
�	�
�	

�

"� ��
 ��� ���� ����� �
 ������� ���� ���

� �	�	���	�	���
	
 �
�� ����� �
� �����
� 	� 	
��
����� �
� ���
 	� 	�
�	
%�� �
 �!	��	
� �
��� �����
��� "� ����� ���� �
 �������

������ �� �
�� �
���� ��
����
� �� �
�� �
��
�

������ �� �
��
����
�
� ��� ������ �� �
�� �
��
�

�	�
��� ����
��� ��
��� �� ���� �
 ���� 	�� �	4���
� �
�
��	
�� ��� ��
��	� �������
�	�
��� �
���	
� �����
�% 	�
�����
��� 	
 ���
�!� �
 ����	

��

3. TEMPLATE MECHANISM
�� ��������� 	
 ��� 	
��
����	

� 	
 �
��
� ��� ��� ���
��
������ ��� �������� 	� � �������� �
��� �
�� �����
��
��
 ����� ���� ������� ��	� �������� �
��� �	��� �� �!�
������� �� 	�
�� ��������� ���� �� ��� ��� ��������� .50 	

$	���� 1� 2��	
� ������
� �!������� 	
 ��	� ��� 	� 	� �
��	�
��� �
 ���
 � ���� �
 ��� ������
� ��	
� ��	�
�� ���� �� 	�
���� �
� ��
 ��� 	
� ��� �
���� ���� �� 	
��
�� �
 ������
��	� ����	

 �����
�� ��� �

����
� �
��� �
	����� �
 �
��
 ��	�� � �������� �����
	�� �
� �
� �
��	
 �
� �

 � ����
�� ��� ������
 �����	
� .9/0�

3.1 Model snippet
;��� �
�����
	���� ��'
�� � ���
� 	
�
����	

 �!	��	
� 	

��� �
��� ���� � 	�� �
 ������ $
� �!������ 	
 $	��
��� 1� � �����
���� ����� 	� �������� 	�� �
 ����
��
(���������� �
� ������	
�)� "��
����� � ����� �

��	
�
��� ����
��� �
� ����
��� 	� ������� 	�� ������ ���	�

����� ��� ������� ����� �	��� ���� ���
 �
�� 	
�
����	

�
���� �� ����
��� ����	�����
� ���
�	��	

��

��� �
	���� 	
 $	���� 1 �� �

�������� �
� ��� �
���� .50�
��
�
���� �
��	
 ����	'� ��
������ �
��� ��%� ����
����

� � �	�	��� ����
���� �
 ��	��� � ��
 ��'
� 	�
�� ��������
���

� ���
�
�<���� - 	� � ����� ������	
� �
�����
��� �� 	4�

� �����
�<��� 	
 - 	� �
 	
���
��
� � �����
����� ��'
�� 	
 ��=

� ����� �!	��� � ��� � ���� � 	� � >��	� �
��
�� ����� �� �
� - 	� ������
� ����� �
 ��

 ����� � ������ ���� � �
��� �
� � �����
���
��� �������	���� ����
� ;��$
�<���� �
� ������
���

;���� ���	� �
��� 	� ���
 � �
	���� (���� 	��

 �����
��
��) �
� �
 	� ����� �
��� ���� ��
 ��
���	
�� �� ���
�	
�

������ �� �� ����
����
� � �
��� ��� !���� "�#

�����

�<���� ��
� ���� �
���� *��

� ����� �
��� ���� ��� ��

���	
�� �� ���	
�
�<���� �
 ���� � �
����

"	�� ��	� 	
 �	
�� � ��
 �
 � ��
 �!����� �
����
�
	����� 	
 �
� �
��	
� "� �����
� 	
 -���� 5�/ � ������
�
�����
�% 	�� ��� �	
	��� �����
�� ���� �
�� � ������
�
�
 -���� 5�5� � ��
 �
 �
 ������ ����� ������	� �
� �

����
�	�� ��	� �����
�% ���
��	
� �
 � ������ �����
����

3.2 Pattern-framework metamodel
��%	
� � ��
��� �

% �� ��� �
�����
	���� 	
 $	���� 1� � ��

��� ��� �
	���� �� �
 	
���
��
� ��� ��� �����
���� ���
�����
�� 	
 ��� �
	����� ��� 	
���
���
� � ��� �����	'���
�
� ��������
�� 	
���	� ��
� � ���������� ��
�����
����
$
� 	
���
��� ����� 	� �
 	
���
��
� � ��� ����� 	��
�	�
'�� 	�� � ������� ��
� ����� �
 �������� �
� ��� ����
�
���������� 	� �
 	
���
��
� �������� 	�� ��
� ����� �

������������� ��� ���� �����
� 	
 ��� �
��� ���� � �
�
�
 ������ �
 	��
���
� '
�	
� ��
� ��	�
�������	

 	� ����
� �
	���� ����	'�� � ������
� 	
���
���� �
�
� ���
�	��	

�
��

� ����� 	
 ��� �
��� ���� � �
� �
 ������ ��	� ���

� 	
���
��� 	� ��� 	
�
����	

 ���� � ��� �
 ����� �
�����
2
 ����� � ������
 ����� �
 �� � �	���� �
�� �
����! ���

<��� � ���
� 	
���
���
� � �����
����

�� 	� ����� ��
� $	���� 1 ���� � ������
 	� ��	
�� �
���� �� �
������� ���� (
 ���� ���%���
� ��� '����) �
� � �����
��
�
��������	�����
��� ��	� ������� ���� (
 �����
���

 ��� �
��
�	��� �	��
� ���� ���%���)� ��� ����
��
� ���	����� 	� �

��'
� ��� ������	

 ��	���	� �
� � ����	����� �
��� �����
��
� ���	�
� ��
 ���
 �� �

��������� ���
 �� � ������
���� �
�
�
� �����
� 	
 ��� �����
�
 	�
�� ���� 	� ������� �
 	�� �

�
�� ������ ���	����� �������
� �����
�� ���� ���� � �	�
	'�
��
� �
�� 	
 ��� ������
� �
� ���� � ���� � ����	�� 	
������
	
 �����	
� 	��� +

����� �
 ���	������

����	����� ����
�� �	������ ���
�	���� �
 � �
	��� �����
� 	
 ��� �����
�

	�
��� �

��	
	
� ��� �������� �	�� 	��
�	�� ��� �����
��

?����� ��� �����
���� ��'
� � ����	�� ������� ���� �
	�����
	��
�	'�� ���� �����
�
� ���	� �
����� �� � 	�� �
 ��
���� �
 ����� ���	����� 	�� �
�� ���

� �����
� 	
 ���
�
���� � �

� ��%� 	
�
 ���
�
� ��	� 	��
�	'�� ���	
�
������
������	
�
� ���	������ $
� 	
���
��� ����������� 	�

� ���	���� 	
 $	���� 1� -
 	� ������� �
 �
� ������ 	�� �
�

���� ���� ��� ��� ���� ����
�� ���
 ����������� �
�
�
 ���
�	��	

 �
 � �����
���� �������� ����� 	� �

�
���	����� �
�� ��������
��� � ��%� 	
�
 ���
�
� 	�� ��
�
���	
� ������
������	
�� �� 	
 �
��
� ��� ������ ��� ����
� ������� ��
� �� �
 	��
�	'��� 2
 ����� ��� ������� ��

���
�� 	

���� �����
�����

��� �
�� 	
�
����	

 	� �!������� 	
 ��� ���������� ����
�
��� ������
� ��� �
�� ����	�� 	� ��� ������
������	
�� 2
 �
����� �
 �!����	�� �
� ����	��� ������� �	��� ���
 �
�
���
��� �
�	�	�� �������� $
� ��	� ����

� �� �
� �
���� � ����
���
 ��
 ���� ���	�	

�� �

����	
��� �	�� ���� �
 ������
�����	�� ��� ������
 �
� �
 ������ ���	����� 	��
���� ����
��
�� 	
 ��� �
����

?
�� ���� �

����	
�� ��� ��
 ���	����� �
�

����	����� 	

� ������
 ��
��� ��	�� �� ���	� ����� ���� ���� ���
 �������
 	�� �����
�� 	
 ��� �����
�
 	�
��� $�
� ��	� ���
��
	
��
�

����	
�� �	��� ���
 ���� �
 �����	�� ����� �
�	�	��� 	
 �
������
� 	���
�	
� ��� ��������
� ��� ������
������	
��

*����

 ��� �

����� �����
��� ��
��� � ��
�
�� � ��
���
	� �����
��� �
� ������
� 	���������� 	
 $	���� 6� �
 ��	�
�����
���� ������� �������
�� ��� �
�� ������
� �
�
���������������� �������
�� 	�� ���������� ��� ����������
���� �

��	
� � ������ 	�� � ���
� 	
���
���
� ������
�� (���
����) ��
� � �	��
 �����
���� ������� �
 ��� �
�
��	
 �����
��� ���� �����	��� �
���� 	
 �	�� � �

%
�
� ������� (�����
�
 	�
��)� ���������������� ��� ���

� ���
� ����� �	�� �!����� ������
 ���	����� 	
 ��� ������
����� ����� ���	�	

����� ��� ������
 ��
 ���
 ���� �
��
�

����	
���
� ��
�������� ����� ����� �	��� �� �!������� 	

�+�
� @������ .9A0�

$	���� 6 �����
�� ��� � ���� � ������� ���	������
������ 	� ��� �
	
� (��� �����) ���� ��� �����
�% ��

�� �������
� ����	��	&�� �� ��� �����
���� ��� ����	��	���
�	

�
�� �����
�% �
 ��� �����
��� ���� �����	��� ���
�����
�
 	�
��� 	� �����	��� 	
 ���
�!� ����	

�

������ $� �����
��

� ��� ������� �����	
�%

3.3 Constructing model-snippets
�
��
� ��� �	��� ��� �����
��� (��)
� ��� �����
�

	�
�� 	� �

 �����	��	�� �
 �������
� ������
�� ��� ����

�
� ���� 	� ���� �	����= ������
� ���� �
 �� �!������� 	

� �	���� �����
� ��������	

� ���� �� 	�
����������� (���
��'
	�	

 	
 ��� ���	

	
�
� -���� 5�9)� $
� �!����� 	
 ���
����� ����	
� �����
���� 	� 	� �
����� �
������
����� ����
�
��

� �
��

� �
� �
 ��
�	�� ��� ��
���
�� �����
�
� �����
�
���
� ���
 �
� �
 	
���
�	��� � � ����	� �	��
	� ��'
�� �� ��������� 	

���� �
 �����
��� 	
���
���
�
�����
� ������������ "� �
� � �
	���� �
 ���� �� ����
�� �
��	���

 ��� ���� �

�����
� �� � �

���� �
 �

����� � �

������

 ����
� � �
�� B�!	��� �����
���
(�� �) ���� ���
 � �� �
 �������
� �������� ������
� 	��
��� �

�����
� ��� �����
���
� ��� �����
�
 	�
��� ���
B�!	��� �����
��� �� � 	� ������ �
 �� � �!���� �����

� ?
 	
���	�
�
� �����

�	�	

 	� ��'
�� 	
 �� �=

� ��� ��������
� ��� ������� 	
 �� � ���
��	

��=

� �� � ���

 �������� �����
��

���
� � ��

�	�� ���� ��� �

����� 	
 �� ��� ���
 ����
����
��� 	
 �� �� �� � �����	�� � 	��� ��
��
� �
�����
	
����	
� ��� �
���� �����	��� �� �� (��� $	���� 3)� ��	�
	�
���	
�� �� ���
�	
� ��� ��� �����	��	

� ���� �!	�� 	

�� � 	
���	�
��� ��
���
�� ���������

�!	���
��
� 	
�
���
���
� �����	
 ������ �
 ���
 � ������� �
 ��
��	

���
 � <��� ��� 	�� �
 �� �
�
� �� &��
� ��� ����� �����	��	

�
��
 �� �!������� �� 	
���	�
��
��� � ��
��
� ������� �� �
�
�
� ��
��
� ������� 	�� � ��%�� 	
���	�
� �
��� �� ��%�

�� � ��
����	���	

� � .910�

?
�� ���� �
� �
��� ���� �

�
��� �
�� ���
 �

�
��� �

�� �� �
�� ��������
��� �
� �
�����
	���� ���� �

�
���
�
�� ���
 �

�
��� �
�� �� ��	� 	� �
 	��
���
� �������
	� ��
 � ���� � ��
 ��	�� ��� �!	��	
� �����	��� ��	�
�� �

��� ������
 �
	����� �
� ��� ���� �
� ������
������	
��
�� ���
 ���
� ���� �
� �����
��� ���� ��
����	&�� �� ��

�� ���� �
 ����	�� �
�� �������� ������
��

$
� �!������ � ��
 ��
����� �
� �
� B�!	��� �����
�
��� (�� �) ��
� � ����� ����	
� �����
��� (��)�
�� � �	��� �����	��� �
� 	
���
��� � ���
�� 	�� &��

��
�
��������
� � ����� 	��

 ���
�
��� �� ���
 �����	���
� ����	 �� � �

����� ������ ���
 	
� 	
���
���
� 	��

$	
���� �
��� �
 �����
�� ��
���� �����
�% �
� ����
���
� ($	���� 6) 	�� ��	� B�!	��� �����
��� (�� �)� ����
��
����	&�� ��� 	
��
��� �
��	
 (��)� ��	� �
��
�	�	

	� ������ � ���	
� ������� 	� 	
�������� ������� ��
� ���
������� ��
�!��"� �� � ����������
� ��� ��� ������������
	
 �� �� ��	� ���
��
����	

 ��
 �� �
������ �
 �
 	
�
������� 	
��
����	

 	
 ������C .90 ���� ���� �
� ������
����� �
 � ����� ��� ���	
� ��
���� 	� ���	����
� �
 ��	�
�����
	��� ��� 	���	�	� �
	
���� ���� 	

�� ���	
� ���
��	�� ��� 	
��
����	

� ��� ������� ���������� 	
�
 ��� ���
����������� 	��

 ����������� ��� �
�� ��
���� �
 ���	��
�� � ��
� �� �
� �
 ����	� ��� ����	'���	

� ���	�
������
 �������(����������) 	� �����
��� 	
 $	���� D�

$
� �!������ � ��
 ��
����� �
� �����
��� ���� �����

�� ������� ���	����� �
� ��� ����� ����	
� �����
���� ��
	
������ ������� ��
� �
�� �����
�% �
� �����
���� �
�

������ &� ��
���� �
� ����'��� � �����
��
 �
� ���#

���� ������	�(

������)� ��
���� �
� ����
������ ��� ������� �����#

	
�%(

���	�	

���� �

% ��� ������� ��
� ��� ������ 	�� ��������
���
� ��� ������� ���� �

� ���� � ����� ������� 	
 �� �

	
���	� ��
� ������� ����� ��� ���	
� ��
����� �� � �������
 �
���	
 � �����
��� ���� ��
 �� ���� �
 �!����� �
����
�
	����� �
� ���
 ��
 �� ��%�
 �� �
 	
���
� ��� ������
�
�����	
� �����
	���

3.4 Template Matching
��� �
 ����	
�� �������	

� �����
� �
 �
 ��	�� � �
��	
�
����	'� ������
 �����	
� �����
�%� �
� �
� �
��	
� 2
 �
����� �
 �Æ�	�
� 	������
���	

� ��� ������
 �����	
�
�	���

� �� �
 ���� �
 �

������� ��	� 	� �
 �!��
�	�� �
��
	�
� ��������� �	�� ��� ��
����� ������� �!	��	
� ��
������
�
� �E�� 	�� �������� ������
������	
� �����
	��� .95�
960� $
� ���� ����

� � ���� ���	��� �
 ����

 ����� �!	���
	
� �

�� �� ���� �� �
��	��� 	

���� �
 	
�������
�� 	����
�
� �
 �

��	���� 	�� �!	��	
� �

�� 	
 ��	� �������� �
�	��

��� 	������
���	

 ���	��

 ��� @������ ��
����� .9A0� �

�!�������� �
�
�<����
�	�
��� ,-� (,
��	
 -���	'� ��
�
�����) �
� �����
��� �
�	
���	
�� @������ 	� ��	�� �� �
�

������	�� �!��
�	

� ;��$� �	�	
� ����	�� ����
�	

 �

��� ����	'���	

� �������� ��
��!� ����	� ����
�	� (�+�)
�
�
�����	

�� ����
�	�� �� ��� �� �

�!	

 �
 ��� �

�
����� ��
��! .990� +

�����
���� �
 ;�$ �
��� 	� ���
 �� �
@������ �
��� 	��
��
�����	

�� ����
�	��� ���
���
��
	������
���	

� � �

��	���� 	�� ������
������	
� �����
�
	��� �
 ��� �����
��� �
�	
���	
� �
�	�

��
� ���	�����
 	�� @������� �	�� 	
������ �
��� ���
��
����	

�� ������
 ���	
� �
� �
��	
�
� ;�$ �
�����

$
�
�� ����
��� � ���� 	������
��� � ������
������	
�
��

���
� 	
 @������� ��	� ��

���
� ������� �� �
 ��������
	
������� ��� ��

�� �����
�% �
� ������
������	
� �
�
�!	��	
� �
�	
�� 	�� �������� ������
������	
� ������

	���� �

���� �
 �������� �
������	

 �
 ����� �
�	
���
 � ����	�� ��� 	������
���	

� � ����	��	��� ���%��
� �
�
���� �
�	
��

�� � ��

�
� �

����� � ���� �

�������� � ���%��
� ����
���� � E�
�
� �
�	
� �
 ����
�� ������
������	
�� ��	
�
��	� ����
���� ����� ��� ���	��� ��
� ��� ���� �
��� 	
 �	��
 � �
� �
 ����� � ������
� �
� ��� 	
������ 	
 � %

 ��
���� ����
� ��� �
�	
�� ���
� ����	�� ��� ��
������ ��
�
��� ������
 �
� ��� ����	��� �
 ��� %

 ����� ����� $	�

����� �������
� ��� ����� ���� ������� 	�� ��� ������
 (
�
�	
�	
��) ��� �
�������

��	� ��
��	� ������
 �����	
� �����
�% 	� 	
�������� 	

�� ��
��	� ��� �����
�%� � ��� ������
� �� �
	
�����
�
� ��� �	
�	
�� ������	
� ��
� ��� ������
 �����	
� ���
��� <
	
 �
	
���

4. ADAPTATION METAMODEL
�
 ��	� ����	

� � '��� �����
�
�� ��
��	� �������	

 �����
�
��� �	�� 	� 	
��	��� ��
� ��� -������������ .F0 ���
��
��� �
� ��� �
��
�	�	

� C��� ��
������ ���
� �
�!���	
 �
 �
 ����	��	&� ��	� �����
�% �
� � ����	'� �
�
��	
 �����
����

4.1 Generic Adaptation Metamodel
��� �

� �����
�
� ��� �������	

 �����
��� 	� ���
�
������ �
 �
����� 	� �
��
���
� �
 ������ �
� �
�����
������ �
 ������ 	� �
��
���
� � ���������
�� (��	�����)
���� 	� ���� �
 ����� ���� �
��� �����
��� �
� � ���
��
(���������) ���� �������
�� ��� ������ ���������� �
���������
� ����� �
 �������� (����	�����) ��
� ��� ��������
� ���
������ ���������� �
� �����	�� ��� �
��
�
�	

 ��
�
�
�
�
��� ������� ��� ��
��	� �������	

 �����
��� 	� 	����������
	
 $	���� F�

������ *� +�������
� �����
��

��� ���	
� ��
���� 	� ��	�� �	����� $	���� ��� ��� ����
��
��
� ��� ������ ��������� ��� ��

��� ���
� ��� ������

�����	
� 	� �!������

 � ���� �
��� ��	
� ��� ������ ��	�
������ $
� ���� �
������ �	
�	
�� ��� ��� �
���������
� ���
������� ��� �!������� "��
 �
 �������	

 	
��
����� �
 ���
���
�
� ��� ������ ���������� 	� �������� 	
��
����� � ��

�

� ��	� �����
�� $	
����� �
� ��

� 	� ��
������ �
� ����

������� ������ ��������� �����
� �
� ��� ���� ��
����
	� �!������ �
� ���
�!� �	
�	
��

4.2 Specializing the Adaptation Metamodel
��� �
�������� ���������� 	� �������� �
� ������
�� ��

�
�� 	
���
�	����� ��	� ���������� 	� �
 �!��
�	

 �
	
�
�
��
�����
�%� �

���� �
 ����	��	&� ��� �����
�% �
� � ����	��
	� �
��	
� ����� ��
 ��'
� 	
 @������ .9A0 �
��	
�����	'�
�������	

� ���� �!��
�� �
��������� ����� ����	'� �����
���	

� ���� 	������
� ��� ������� ����
� �
 ����	�� �

����	����� ��� �
��
���� $
� �!������ ����� ��
 ��'
� �

�������	

 �����
������������� ���� 	
���	�� ��
� �
�����
����� �
� ����	'�� �	��
�����	

� ���
����� �
 	
��
����
� ���������� ��� ��
 � �
���� ����� �
� � ������ ������

�

���� �
������
���� �
���	

 �
 ����	��	&� ��� ������

�% �
� � ����	'� �
��	
 	� �
 ���
���	����� ��
����� �
��
�������	

� ���� �����	

� ���
���
� �
��� �����
��� "�
��� ��� ������
 �����	
� �����
�% �
 ����� �����
���
�
	����� (�/ �����)� �
� � �	��
 ����������
��� (�5 ����
�� � ;��$� ;+
��)� ;���� ������
 	� ���
�	���� 	�� �
�������� �������	

 ���� ��
��� �� �

����	&�� 	
�
 �
��

�
��	
�����	'� �������	

� �	���
 	
 @������� ���
��	
�
�
 ��� �
������ �	
�	
���

$	���� �
��� �
 ��
����� �
 �
�

����	
�� ;+
�� �����
�
��� (
� ;��$)� �� � �!���	
�� 	
 -���	

 5� ���
 �
���	�
 �
�� ������
� ������
� �
� �
�� ��
����	

 �
� �	��
�������� �������	

�� $
� �!������ 	
 �
��
� ��� �
��	
��
	�
��� �� ���� ������� �
 ��
����� �
 �������	

 ���� ����
�
� �

��
� �
 � �

��	
��� "�
��� � ���� �	���� ������

($	���� G) �
��
���
� � ����� �������� ���� 	� �
��
���

� ������� ������	��� �	� � �
��
�	�	

 �����	

��	� �	�
����
�

������ ,� �
������� �������

��	� ������
 	� ���
�	���� 	�� � �������� �������	

 ($	��
��� 9A)�

������ �-� ����
��� ��������
�

"� ��
 ������ �
� ��	� ������
 	
 ����� �����
���� �
� �!�
����� ��� $-� �����
���� ����� ��� �
 �
��	��� �	
�	
��
������� ����� ��� �
 �

��	
��
� �����	

��	� 	
 ��	� �����
�
���� � ��� �

��	
� ������ (�����) �
� ���
�	�	

� (�����
������)� ���
�

� �������	

 	� ��
������ �
� ���� �	
�	
��
�������� ���������� ��� �����	����� 	�� �
�����

�	
� ���
���
�� ������� 	
 ��� $-� �����
���� $	���� 99 ��
 �
��� ��
������ �������	

 ���� ���� �
� ����� 	
�
 � $-��
#�
����	

� �

����� �������	

 	� �
�������� �
 �����
����	'���	

 .G0�

5. APPLICATION
"��
 ��� �����
�% 	� ����	��	&��� ��� ���� ��
 ���	�
 �

�������� ����	��	
� ��� ��������� ��� ���������
� ��� �������
�
� ������� �������	

� �����	
� �
 ��� ������ ��������
�
��������� �
��� �����
�� 	

���� �
 ����	�� �
 ��� ������

��� �� �
��
��� 	
�
 ��� ���� �
���� ;����
��
� ���
�������� ��� �����	����� 	�� �
�����

�	
� �����
��
� ���
���� �
��� ������ �����
��
� ��� ��������� ��� �����	�����
 	�� ��

�� �����
���

"� 	�� �����	�� ��� ������ �����
��� 	
 -���	

 /� �
� ���
$-� �
��	
� ��� ������ 	� 	���������� 	
 $	���� 9/ �
� �	��
�� 	
��
���	
� � '
�� ����� �
� ��� ��� ������ 	��
��
���
	
�
���
�	�	

�� ���
� ��� ������
 �����	
� 	� �!������

 ���
���� �
��� 	����������

 ��� ����
� $	���� 95�

������ ��� .�������� �
������ ��������
�

������ ��� "�������� ��� ������ �
� �!�

��� �
��
�	�	

 ��
�
�
� 	� ���� �	����� �
 �������	

 	
�
��
����� ��� ����� 7$	
��8 	
�
 ��� ���� $-�� �
 �

����
�������	

 	
��
����� ��� ���
�	�	

 ��� ��
 ��� ����� �����
	
� ��� �
�� 7�
�8 �
� ��� ����� 7$	
��8� ��� ����� 7$	
��8
	� ������� �
 	� 	� 	
��
�����

��

��� �	�� ��� ���
�	�	

	�

� ������� �
 �
� ��

� 	� 	
��
����� �
� ����� �	
��
	
�� ��	� ��
�
�
� 	� ����	�� �
� ��� ��� �	
�	
�� �� ��

 	

$	���� 95� ?
�� ���� 	� 7$	
��8 ���

� ������� �����
���
�� �
 ������ 7$	
��8 ����� �
��
�	�	

�

� �
� 7*8 �
�

�
�
� 7+8�

������ ��� /��'��� ��� ������ ���
 ��� ���� �
��

?
 � � ��
 ����	��	&� ��� �����
�% �
� ����� �
���� �
�
����� ��� ������ �����
��� 	
 -���	

 /� "� ��'
� ��� ������
� 	
 $	���� 91 ���� 	� ��
����	����� ���� ��
�� �
 ��� ����	
��

� 	
 ��� �

��!�
� $-��� ��	� ������ �	�� �� 	
��
���	
�
� �

� ����� 	
 � ������ ����� �
���� ���
� � �!����� ���
������
 �����	
� �
� �
��
�� ��� ������ �
� ���� �	
�	
��
�� ��

 	
 $	���� 96

��� �
��
�	�	

 ��
�
�
� 	� �	�	��� �
 ��� ����	
��

� 	

��� �

��!�
� $-��� �
 �������	

 	
��
����� ��� �����
7:

�+����8 	
 ��� ���� ����� �
���� �
� � ���

� �������
�	

 ��%�� ��� ����� �
�
� �
 7�
�8 	
���	� ��
� 7:

��
+����8� ��� ���� ��
���� 	� ����	�� �
� ��� ��� �	
�	
��� ��
	���������� 	
 $	���� 96�

*
�� ����	���	

� ��� ��
����	����� ���� ��
��� ��� 	�� �
�	4���
� ����
�	� �
�����

�	
� �
 ���	� �������	�� �
��	
�
��� �����
�% ��
 ���	�� �� ����	��	&�� �
� �	4���
� �
�
��	
� �
� ��
 ����	&� �
�� ����	���	

��

������ ��� "�������� ��� ������ �
� �
��� �
��

������ �$� /��'��� ��� ������ ���
 ��� ���� �
��

6. CONCLUSION
�
 ��	� ����� � ���� �����
���
�� ��
��	� �������
�	�
���
�
���	
� �����
�% �����

 ��� @��
�� ������
���	
�
��
����� @������� .9A0� ��	� �����
�% 	� 	
��	��� �� ���
-������������ ����
��� .F0� ��� ��� �������� �����
	��
� ��� ���
 ���	���� $�������
��� ��� -������������ ���
��
��� 	� �
��	
�����	'�� 	� '��� �
�����

 C��� ��
����
�
��
�	�	

 .F0 �
�
�% 	� 	
 ��
����� 	
 ��� �
��	

�
;�$ �
�����

�
 ������
�%� � 	�� 	���
�� ��� ���
���	� ��
����	

� �
��	
�����	'� �������	

�� �
 ���� ��� ���� ��� ���

����
�% �
 �
� +����
��� � ���
�%	
�

 ��� 	
��
����
�	

� ���	��	�	�� �����
	��� 	

�� ����
��� �
 ��%�
��
�����
�% �
�� B�!	��� .D0� $
� �!������ 	� 	�� �
��	��� �

�
��
�� �
 ������ 	
 �	4���
� ���� ������	
� �
�� �����

� ��� ��
�
�
� �� �����
��	��� 	�� ������� �
��	��� ���	�
��

� �
��
�	�	

� "� 	�� ���
 �������� ���

�	

� �
���
���	
� .910� +����
���� ��
 ��� �����
�% 	� ����
�	&��
�
� � �	��
 �
��	
 �����
���� ������� ��

�� �� �
��
�
��� 	
�
 ���� �
���� �
��
��	
� �
 ��	� �����
���� "�
 �
� �
 ��
����	&�
�� ����
���� ��%	
� 	� �
��	��� �
 ���
��� �
 ������

 ����� �
��� �
��
��	
� �
 � �������
�
��� �����
���� $	
���� � 	�� ���
 ����� �
 �
 ��
�
�� �
�
������ �������
�	�
��� ����	
 ��
���� ���� �� .60 �����

�� ����
���� �
 ����	������ � 	�� ���� �
 �
���

 ������
��	�	��� �
� �!������ � ��
 ������ ���� ��� ����� �	�����
�
� ��� $-� �����
��� 	
 ��	� ����� �
�����

� �
 �
 �	��
����
� �	� �
� ��� ���� ������� �
� �
 �	4���
� ������
�
��� �	�������� "�
��� �
 �� ���� �
 ����� ��� ������ ��
�

� ����� �
 ���
�!�H����	
���

7. REFERENCES
.90 ������C ����� ��� ������C ��
�����	
� ��	���

 ����	����
��H������<H�
�H��������H��
���	���
/AA/�/AA5�

./0 ;� *�
	����� �
� -� +���%�� ������ �
 ����
��� �
�
���������	�
��� �
����	� �
� ,��	�
� �
 � �! "#$%
������
��&� �� ��� '(�� ������������� ��������� ��
�������� !�&�������&� ����� 96FI93D� "���	
��

�
,+� �-�� /AA1� �;;; +
������ -
�	����

.50 -	
��J�
 +���%� �
� :
���� C� "��%��� +
��
�	�	

���� �%�������
��

������
�� �
 ����
��� �
 ���	�
	
� �������� ��������
�
 ')�
 ������������� ��������� �� ��������
!�&�������&* � �!"#+� ����� 6I91� "���	
��

� ,+�
�-�� /AA9� �;;; +
������ -
�	����

.10 �� +
���
	��� �� ��
 ��
 *���� �
� �� ;����� ���
�
�
�
�� ";�>:� �
��� "���	
� 	
 � �����
�
�����	�� +

��!�� ���,"#(% ������
��&� �� ��� -��
������������� ��������� �� ��������������
 ��������
,�
����	���* ��
����. ������ /AA3�

.60 �� C��%�

 �
� -� +���%�� �
 ���� � #�
��	� ������
��	�
��� ,��	�
 E�
����� /�� ������������� 0�������
�� ��������������
 ��
����&*1��� '##-2 ��
����
/AA6�

.30 C� @��	
� �� 2J��
�K��� �
� C��� CJ�&J������
-���
�	������� ���	
�
� ���
��	
�� ���,"#(%
������
��&� �� ��� -�� ������������� ��������� ��
��������������
 �������� ,�
����	���� ����� /DI5F�
/AA3�

.D0 E�� ���	��� *� �
�	
� #� >�

���
����
�� #�	�
���� �� *���	�� �
� C��� CJ�&J������
�
��
���	
� ���	��	�	�� 	
�
 �������
�	�
��� �
���	
�
����
������ �
 ��,!3� "#/% ��
�� ,��
��
!�&�������& 3��&��&�� ��
 �.���	�* +#��
������������� ���������* ��,!3� '##/* 4���
����*
���������* �����	���)# � ������� -* '##/�

.F0 E�� ���	�� �
� �� L�	
�	�
� ?� E�������	�� �

����
�� :�����	�	�� 	
 ��<������	�
��� ��
�������
5������ �� ������ ��������&. 15��2� 6(9)�99DI95F�
/AA3�

.G0 ?�	� �
�����
 �
� � �	� :���	�� $����� ��������
-���
��	
� ���	��	�	�� �
� �

'�����	�	�� �
� �
�� �

� �6� �
���� 59AD
� 3������ 4���� �� �	�����
�������� ����� 9/DI91A� -��	
���� /AA1�

.9A0 E��� ������� $� $������� �
� C��� CJ�&J������ "���	
�
;!������	�	�� 	
�
 ��<������	�
��� �������
������� �

������
��&� �� ��,!3�78�3"'##-� �
���� �?+-
5D95� -��	
����>������ ���
��� /AA6�

.990 E	��������	
 ������� $��
�% $������� $�J��J��	�
$

����
�� �	���� 2����
�
����� :J��	
-��
��%�
������� -J�����	�
 #J������ �
� C��
�����
CJ�&J������ �
������	��
 �
����	� �
� ��
����	�
�
�

����� ��
��!� �
 ����� ?	�������&� C

 "�	�����
,��	� 2����� �
� #	�

� :���	
� ��	�
��� ��,!3��
�
���� 19GG
� 3������ 4���� �� �	����� ��������
����� GFI99A� -��	
���� /AA3�

.9/0 :� :��
�� �� *���	�� �
� C��� CJ�&J������ �����	
�
�
�����
	������ �
 ��,!3� "#/% ��
�� ,��
��
!�&�������& 3��&��&�� ��
 �.���	�* +#��
������������� ���������* ��,!3� '##/* 4���
����*
���������* �����	���)# � ������� -* '##/�

.950 C� -��	
%��� �� ���� ��� �� ����
�
��&%�� $� -�	� �
�
#� @����	� ,
��	
 �
��� ���
����	

 ��	
� �����
���
��
����	

�� �
 ������������� ���������
!�&�������& �� �	������9���
 �.���	�� �����
96GI93F� /AA5�

.910 C� -���� �
� C��� CJ�&J������ �
 �
��� ���	
��
�������� ��
 �.���	 ��
����&% ���.�� /AAD�

.960 #� ���
�&��� �##� � ����� ���
��
����	

�
�	�

��
� �
� �
���	
� �
� ���	���	

� �
�� ����
�
 '�
 ���: 0������� �� ������������ �� ;����
��������	������ �
���� 5A3/
� 34 �� �����
113I165� -��	
����>������ /AA1�

	4.pdf
	1. INTRODUCTION
	2. REQUIREMENTS FOR ASPECT-BASE DECOUPLING
	3. REFERENCES

