1,100 research outputs found

    From UML to SIMULINK CAAM: Formal Specification and Transformation Analysis

    Get PDF
    UML and Simulink are attractive languages for embedded systems design and modeling. An automatic mapping from UML models to Simulink would be an interesting resource in a seamless design flow, allowing designers to use UML asmodeling language for the whole system and at same time to use facilities for code generation based on Simulink. In a previous work, the UML to Simulink translation was prototyped using a Java implementation. In this paper, we present the formal definition of this translation using graph grammars, as well as its automation, which is supported by the AGG system. With the formalization of the metamodels and translation rules, we can guarantee the correctness of the translation. We also illustrate theeffectiveness of our methodology by means of a case study

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    Model Based Analysis and Test Generation for Flight Software

    Get PDF
    We describe a framework for model-based analysis and test case generation in the context of a heterogeneous model-based development paradigm that uses and combines Math- Works and UML 2.0 models and the associated code generation tools. This paradigm poses novel challenges to analysis and test case generation that, to the best of our knowledge, have not been addressed before. The framework is based on a common intermediate representation for different modeling formalisms and leverages and extends model checking and symbolic execution tools for model analysis and test case generation, respectively. We discuss the application of our framework to software models for a NASA flight mission

    Toward model-based engineering for space embedded systems and software

    Get PDF
    International audienceEmbedded systems development suffers from difficulties to reach cost, delay and safety requirements. The continuous increase of system complexity requires a corresponding increase in the capability of design fault-free systems. Model-based engineering aims to make complexity management easier with the construction of a virtual representation of systems enabling early prediction of behaviour and performance. In this context, Space industry has specific needs to deal with remote systems that can not be maintained on ground. In such systems, fault management includes complex detection, localisation and recovery automatic procedures that can not be performed without confidence on safety. In this way, only simulation and formal proofs can support the validation of all the possible configurations. Thus, formal description of both functional and non-functional properties with temporal logic formulae is expected to analyse and to early predict system characteristics at execution. This paper is based on various studies and experiences that are carried out in space domain on the support provided by model-based engineering in terms of: • support to needs capture and requirements analysis, • support to design, • support to early verification and validation, • down to automatic generation of code

    Cyber-physical systems design: transition from functional to architectural models

    Get PDF
    Normally, the design process of Cyber-Physical Systems (CPSs) starts with the creation of functional models that are used for simulation purposes. However, most of the time such models are not directly reused for the design of the architecture of the target CPS. As a consequence, more efforts than strictly necessary are spent during the CPS architecture design phase. This paper presents an approach called Assisted Transformation of Models (AST), which aims at transforming functional (simulation) models designed in the Simulink environment into architectural models represented in the Architecture Analysis and Design Language. Using AST, designers can perform a smooth transition between these two design phases, with an additional advantage of assuring the coupling between functional and architectural models. The use and benefits of AST are exemplified in the paper in a study devoted to for the design of a typical CPS: an Unmanned Aerial Vehicle.CAPE

    A model for requirements traceability in an heterogeneous model-based design process. Application to automotive embedded systems

    Get PDF
    Requirements traceability modeling is a key issue in real-time embedded design process. In such systems, requirements are of different nature (software-related, system-related, functional and non functional) and must be traced through a multi level design flow which integrates multiple and heterogeneous models. Validation and Verification (V&V) activities must be performed on models and on the final product to check if they are matching the initial require-ments. Results of a design and of V&V activities must impact the traceability information. We propose the DARWIN4REQ metamodel for requirement traceability based on three indepen-dent flows (requirement model, solution model and V&V model). The DARWIN4REQ metamodel establishes the link between these flows and allows a full traceability of requirements including the heterogeneous models. This paper presents the DARWIN4REQ metamodel and its use in the context of heterogeneous models for requirement modeling, design and V&V. An automotive application illustrates the approach with SYSML, EAST_ADL2 and MARTE for the design and SIMULINK, SyNDEx and TIMESQUARE for V&V activities
    • …
    corecore