
HAL Id: hal-02270353
https://hal.archives-ouvertes.fr/hal-02270353

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward model-based engineering for space embedded
systems and software

J-P Blanquart, A Rossignol, D. Thomas

To cite this version:
J-P Blanquart, A Rossignol, D. Thomas. Toward model-based engineering for space embedded systems
and software. Conference ERTS’06, Jan 2006, Toulouse, France. �hal-02270353�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/227322134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02270353
https://hal.archives-ouvertes.fr

ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/9

Toward model-based engineering
for space embedded systems and software

J-P. Blanquart1,*, A. Rossignol1, D. Thomas2

1: EADS Astrium, Toulouse (France)
2: LESIA-INSA, Toulouse (France)

*: Contact author: jean-paul.blanquart@astrium.eads.net, EADS Astrium, 31 avenue des cosmonautes, F-31402 Toulouse Cedex 4, France

Abstract:
Embedded systems development suffers from
difficulties to reach cost, delay and safety
requirements. The continuous increase of system
complexity requires a corresponding increase in the
capability of design fault-free systems.
Model-based engineering aims to make complexity
management easier with the construction of a virtual
representation of systems enabling early prediction
of behaviour and performance. In this context,
Space industry has specific needs to deal with
remote systems that can not be maintained on
ground. In such systems, fault management includes
complex detection, localisation and recovery
automatic procedures that can not be performed
without confidence on safety.
In this way, only simulation and formal proofs can
support the validation of all the possible
configurations. Thus, formal description of both
functional and non-functional properties with
temporal logic formulae is expected to analyse and
to early predict system characteristics at execution.
This paper is based on various studies and
experiences that are carried out in space domain on
the support provided by model-based engineering in
terms of:
• support to needs capture and requirements

analysis,
• support to design,
• support to early verification and validation,
• down to automatic generation of code.

Keywords: systems engineering, software
engineering, modelling, automatic code generation

1. Introduction

Future space system projects are characterised by
stringent needs in safety, autonomy and in the
capability to include more and more functionalities.
In these computer-based systems, the embedded
software, which constituted only a small part of the
global system a few years ago, has become a key
element to meet all the needs. Facing to the ensuing
complexity, quality and safety requirements are

getting difficult to manage and usually lead to cost
overrun and delays in development.
Indeed, the new place of software at system level
was not anticipated soon enough. System
engineering aims at supporting the transformation of
operational needs into a solution achieving a trade-
off between requirements, technological possibilities
(including reusable components) and cost and delay
constraints. However it is still a strongly empirical
activity:
• it consists of paper documents that cannot be

checked with confidence,
• it does not guarantee a full traceability, for

instance, it is hard to know if the design fulfils all
the requirements with consistency,

• it includes an expensive phase of handmade
coding, integration and tests, supporting only
little reuse.

It is therefore not entirely surprising that operation
failure reports reveal more and more design errors.
In the intention of detecting this type of errors early
in the development cycle, new means (e.g.
languages, methods and tools) are considered,
evaluated and carried out in several practical studies
in co-operation with operational units.
The purpose of this paper is to make an overview of
model-based contribution in support to embedded
system engineering, based on various studies and
experiences that are carried out in space domain:
• ASSERT (Automated proof-based System and

Software Engineering for Real-Time
applications) (EC IST FP6 Integrated Project)

• FAM (Frameworks, Architectures and Models)
(EADS Astrium R&D internal study)

• SCAO GEN (automatic code generation from a
reference architecture with building blocks in
Matlab/Simulink®) (EADS Astrium R&D internal
study)

• FDIR Autonomy (CNES R&D study)
• System and software co-engineering (CNES

R&D study)
• R&D French Competitivity pole initiative for

embedded systems (ISAURE Program with
TOPCASED project)

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/9

This paper is organised as follows: Section 2 is first
devoted to a general overview of selected principles,
standards and tools. Then we split results and
achievements upon two themes:
• Section 3 about control engineering and code

generation from continuous models, from needs
capture to automatic code generation on an
AOCS functions subset using Matlab/Simulink®
models;

• Section 4 about computer-based system
engineering (hardware and software):
requirements analysis and design and validation
for FDIR, and provable system and software
engineering.

Some perspectives and conclusion are finally
discussed in section 5.

2. Principles, standards and tools

2.1 Embedded system design

An embedded system typically consists in a
collection of hardware and software elements
controlling a process. For instance, the avionics
system of a satellite is in charge of flight, navigation
and radio communications. It requires fine control
application with real-time software bound to a
specific execution platform. These three domains of
knowledge (control, software, hardware) are
characterized by severe constraints with efficiency
and dependability requirements to be verified.

Control design: Control applications usually
transform physical parameters. Formal models are
based on continuous (transfer) functions using
differential equations to model behaviours. In space
systems, the overall survival and performances
depend on control applications (e.g. AOCS) but
validation tests are limited because space
environmental conditions are difficult to recreate.
Then, many efforts are made on studies and
simulations that can be performed on tools such
Matlab/Simulink® ([1]) or Scilab/Scicos®.
Software design: In the last decades, formal
methods and languages were proposed to specify,
document and whenever possible validate (real-
time) software. At specification phase, B or Z
approaches ([2], [3]), for instance, apply
mathematical concepts (logic and assertions) to
model and verify the system. A more practical way
for specification is based on scenarios using
Message Sequence Charts (MSC) included in SDL
[4] and UML standards. Then behavioural
description languages for reactive are mainly divided
in two approaches.
• Imperative languages (e.g. ESTEREL), process

algebras (e.g. MEISE, SCCS) or languages

based on data flows (e.g. LUSTRE, SIGNAL)
correspond to a synchronous approach.

• Communicating automata (e.g. ESTELLE,
PROMELA), process algebras (e.g. CSP,
LOTOS), Petri Nets and their specific timed
extensions can be used for asynchronous
systems.

The precision of formal methods can be exploited by
tools for simulation, tests or verification in support to
validation. However, in the industry, formal
languages were dismissed in favour of semi-formal
languages (mainly model-based) which are easier to
integrate in current processes. As an example, UML
is intensively used for software development. On the
other hand, there are no specific UML language
elements for expressing explicit parallelism and we
observe a strong lack of semantics that can imply
incoherency between diagrams. AADL ([5]) is then
seriously considered by the embedded systems
community. It can represent tasks, time of execution,
deadlines, scheduling, and useful information for
specific real-time analysis. Indeed, in addition to
real-time constraints, embedded systems are
characterized by further non functional requirements
such as memory occupation, electric consumption
and tight relation with hardware (e.g. specific
executive platform).
Embedded hardware design: Programmable
hardware (e.g. ASIC, FPGA) are more and more
used to integrate functions on hardware (e.g. smart
sensors or actuators). Languages for describing
hardware, such as VHDL and Prolog, are called
hardware description languages. They integrate
specific means to describe concurrency and wired
communications based on architecture which make
them far from common software languages.
System design: The coupling of subsystems from
different modelling domains implies the necessity to
manage complexity at system level. In complex
embedded systems, both hardware and software
must be taken into account and tests and verification
have to be done before implementation and
integration. Then, new formalisms are required to
support this multi-domain approach. For example,
SystemC ([6]) enables design, simulation and
verification of functions, and their implementation on
hardware or software without re-engineering. In the
same way, AADL and UML2.0 seem to have the
ability to manage more than only software
components as for Matlab/Simulink/Stateflow®
which bridges discrete and continuous domains.
Requirements analysis, modelling and traceability
between several domains are also objectives of this
kind of new languages. Our last consideration is for
the incoming SysML ([7]) that should enable the
specification, analysis, design, verification and
validation of a broad range of systems including
hardware, software or mechanical parts.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/9

2.2 Selected technologies for space embedded
systems engineering

Model-based: Satellites are complex remote systems
that must be safe from the first (and only) flight.
These systems can be hardly tested in real
conditions (space environment) before operational
launch. In this way, the needs essentially concerns
fine simulation (verification), formal proof (validation)
and complexity management from requirements
analysis down to final integration.
The principle we are following in order to fulfil these
requirements is Model Driven Engineering. Models
are used to build a virtual representation (logical
solution) of the system to enable early prediction of
behaviour and performance before teams proceed to
implement designs.
The Model Driven Architecture (MDA) standard [8] is
originally an approach to use models in software
development. It aims to implement a system by
transformations from a Platform Independent Model
(PIM) that concerns only domain aspects (logical
solution) and enables a greater understanding of the
user and system requirements. A transformation
uses a Platform Dependent Model (PDM) that
consists of chosen technical components (Physical
solution) to implement the system. This
transformation also requires a mapping that
associates elements from PIM to elements from
PDM. The result is called the Platform Specific
Model (PSM). Separation of domain and technical
aspects may improve overall clarity, portability,
interoperability and reusability. Moreover, using
different viewpoints, corresponding to different levels
of abstraction for PDM, encourages iterative
construction and iterative verification.
Our studies aim to adapt processes and languages
to embedded system engineering so as to benefit
from this kind of approach. MATLAB®, UML2, AADL
and SystemC languages were first selected to
support a new system process. SysML will surely act
as a new candidate for high level analysis.
- Matlab/Simulink®: Despite other alternatives are
proposed, Mathworks tools are likely becoming de
facto standards for control application development.
However, there are still problems to implement
control algorithms because transition from
continuous to discrete can alter the function.
SCAOGEN study relates to automatic generation of
code from MATLAB models (cf. section 3).
- UML2, AADL: As for Matlab, UML2 is a widely
known standard with powerful associated tools.
Several studies on critical real-time embedded
systems also promote the use of AADL which has
become an international standard since November
2004. Indeed, with embedded systems we must
consider behaviour at execution, that is to say how
software is implemented on execution platform and

AADL allows these implementation choices to be
described. Semi-formal and graphical methods were
preferred because formal methods seem too
specialised and cannot satisfy system level
requirements. Selected languages give intuitive
notation which makes communication between
analysts and customers easier. Moreover, UML lack
of semantics and real-time elements can now be
avoided by the introduction of profiles (e.g.
OMG/SPT [9]) and design patterns. Indeed, UML2
authorises customization with stereotypes and
tagged-values to easily adapt specific domain
aspects. For example, additional information from
formal models can be associated to system model
by annotations (tagged values). These elements
should be used to generate (by transformation)
implementation code or simulation and analysis
models for specific tools. AADL presents the same
concepts using annexes and user properties.
ASSERT project and FDIR study (cf. section 4) are
practical overviews of information processing
systems engineering using AADL and UML2.
Commercial I-Logix Rhapsody tool for UML and
OpenSource OSATE Eclipse plug-in for AADL are
used in our current studies.
- SystemC: HW/SW interfaces must be considered
for errors avoidance. SystemC is based on ANSI-C
and uses additional libraries to manage software
/hardware programming and co-simulation. The
HW/SW CODESIGN study aims to introduce a new
system/software/hardware co-design process. Tools
from Mathworks®, Magilem®, Celoxica® and
Nepsis® are first considered.

3. From needs capture to automatic code
generation on an AOCS functions subset using

Matlab/Simulink® models

Up to now for each new satellite, Attitude and Orbit
Control System (AOCS) software is mainly
developed from scratch with few reuse at functional
and software levels. Technologies and domain
analysis are now ready to improve this situation by
allowing efficient design and components reuse of
AOCS software.
After defining and implementing an efficient co-
engineering and co-validation process between
AOCS studies team and AOCS software team,
EADS Astrium intends to go further. We will present
how EADS Astrium prepares implementation of such
an enhanced development process based on the
following approach and technologies:

• A common reference process both for AOCS
and software engineering teams able to support
needs capture, requirements definition, design
analysis, code generation, functional simulation,
functional and software verification.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/9

• Reference AOCS software architecture
definition: through development experiences on
a large set of operational or on-going projects
(Earth observation, telecommunication,
scientific, deep space probes), we are now able
to define a generic and robust architecture to
implement AOCS needs for many new
programs.

• Matlab/Simulink® models definition and use as a
common description of AOCS functional blocks,
AOCS software requirements, source for on-
board software automatic code generation and
support of a functional validation test bench.

• Based on previous projects, selection and
definition of some first AOCS software building-
blocks which are good candidates to be reused
as a generic component for new projects.

This on-going preparation and the first following
results are mainly supported by an EADS Astrium
internal study (SCAO GEN) with software, AOCS
and simulators teams on a case study application
with CNES satellite Pleiades AOCS. This case study
will be part of an ESA external study (ACG) with
others European space partners aiming at
assessment and introduction of Automatic Code
Generation ins Space software development.

3.1 Stakes and objectives
The different stakes of introducing Matlab/Simulink®
models and automatic code generation in AOCS
software development can be summarised in:

� Automatic code generation (ACG) from models:

• To avoid multiple AOCS descriptions: for
modelling (language Matlab/Simulink®), for
requirements (language natural text), for
software (language C or Ada),

• Common language to describe an AOCS
software product in an environment enabling
global simulation (executable specification),

• Reducing evolutions implementation life-cycle
time,

• Less software coding effort,
• Less software verifications (Coding standard

rules could be supported by tool),
• Reducing manual coding faults by

automatisation,
• Potential reduction of software tests effort.

� Development and reuse of AOCS components:

• Plug and play : to reduce/avoid analysis and
development of already existing building-blocks,

• To focus on function use context validation than
on function itself.

To assess the interests and impacts of introducing
this new technology in the existing process, the
following main objectives of this study are:

• Demonstrate the feasibility and the interest of
the code generation from Matlab/Simulink®
models,

• Evaluate and determine the best tools for
embedded software (RTW embedded coder®,
Targetlink®),

• Identify to which kind of AOCS functions the
code generation is applicable (algorithms,
automata, FDIR, …),

• Analyse the consequences of code generation
on modelling, simulations, documentation,

• Define a common process between AOCS
studies and software teams, allowing code
generation from functional simulation models

• Analyse the feasibility of defining reusable
building blocks

• Warrant the feasibility and availability of a very
representative functional simulator (HIFI
simulator) with flight software in-the-loop and
based on Matlab/Simulink® models.

3.2 Process

From prototype model to ACG model: ACG has a
great impact on the AOCS studies development
process. Right now modelling in the
Matlab/Simulink® environment was considered has
a prototyping activity performed during the
preliminary A/B phases. So, no specific rule or
standard was written. The main effort was brought
on the C phase simulator which is a high fidelity
simulator including the actual AOCS software. The
AOCS software was written from AOCS
specification, itself partially written from preliminary
Matlab/Simulink® models. Once the HIFI simulator is
available, the Matlab/Simulink® models are no more
really maintained.
With ACG, the reference becomes the models
themselves. So many constraints appear. The
models must permit not only the auto-coding but
they have to be readable and maintainable. These
constraints make the modelling activity heavier,
which is no more compatible of fast prototyping
approach used during preliminary A/B phases. This
leads to conclude that two kinds of modelling can be
managed at AOCS studies level:
• Fast prototyping modelling approach similar to

the current usage of modelling, maybe lightly
improved by introducing general rules favouring
the readability.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/9

• ACG modelling approach that has to account
strict rules allowing determinism of execution
and code generation.

The prototyping model is not supposed to be
maintained and used to initialise the final model.
The proposed new process is illustrated in the
following Figure 1 and its main steps described
further below the figure.

in
cr

em
en

ta
l

AOCS preliminary
design

AOCS preliminary
design

AOCS detailed
design

AOCS detailed
design

AOCS / software
co-engineering

AOCS / software
co-engineering

AOCS Software
development (1)

AOCS Software
development (1)

AOCS models
functional validation

AOCS models
functional validation

AOCS modificationAOCS modification

[OK]
[KO]

SW engineeringSW engineering

SW designSW design

AOCS code generationAOCS code generation

AOCS SW validationAOCS SW validation

Software
development (2)

Software
development (2)

SW integrationSW integration

SW validationSW validation

1

2

3

4

5

7

6

P
ha

se
 B

P
ha

se
 C

/D

AOCS functional
validation (perfo)

AOCS functional
validation (perfo)

[OK][KO]

[SW error]

[model error]

[AOCS
design
error]

AOCS real-time
validation

AOCS real-time
validation

8

9

Figure 1: AOCS and software new process

Initial AOCS model building: the ACG model is first
developed by the AOCS team form the AOCS
reference model template and the preliminary
prototype model. At this stage, the reference
architecture shall be respected and as far as
possible all modelling rules. During this phase of
AOCS design, the software team can support the
AOCS team to instantiate the AOCS reference
model and especially on parts that are nut usually
integrated in the AOCS models like the modes
management and the FDIR aspects.

This first model is tested in closed loop in the
Simulink® environment by the AOCS studies team.

AOCS model co-engineering: once the AOCS
concepts are considered validated and documented,
the co-engineering phase between the AOCS and
the software teams starts to refine the model and
add all the functionalities which were not mandatory
to validated the AOCS concept. During this phase,
the software team checks the whole models against
the modelling rules and especially the auto-code-
ability. Both teams work together on the same
model.

SW development: this point concerns the part of
AOCS software that could not be auto-coded. The
process would then be similar to the current one.
The both team agree first together the software
specification then the code is developed and unit
tested before generating "S-function" to be inserted
in the Simulink® model.

AOCS model functional validation: this phase is
realised by AOCS studies teams with support of
software team if debug is required. This phase is not
much impacted with respect to the current process.
In this phase all tests are performed on models but
not yet on the generated code in order to ease the
tuning and the debug of the model.

Code generation: once the model is completely
validated the code generation can be performed. An
"S-function" of AOCS software is generated to be
inserted in the Simulink® environment. A subset of
test is run to check that code generation has not
introduced error.

AOCS functional validation and performances: this
step remains similar to what it is in the current
process. The whole performance tests campaign is
run on the AOCS flight software.

3.3 Architecture
The analyses performed commonly by AOCS
studies and software teams shown that it was
possible to define together an AOCS reference
architecture that favours, on one hand, the reuse of
AOCS functions by defining building blocks and on
the other hand, the code generation because it
accounts elements of software architecture
standard.
This AOCS reference architecture imposes new
constraints for AOCS teams but also provides
advantages that were already experimented at
software point of view. Once the architecture is
understood, it's easier to move inside the model,
because all modes, all projects follow the same
standards. This makes the models more readable
and eases the maintainability of the models.
It also eases the reuse of building blocks, because
building blocks are thought to be inserted in this kind
of architecture. So when a new project respects the
reference architecture, it is then possible to reuse
existing building blocks.

3.4 Modelling rules and code generation issues

Coders' performances: code generation on
Simulink® models gives quite good results if
accounting few constraints in the definition of the
models.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/9

Code generation from StateFlow® models is less
efficient than for Simulink but remains acceptable.
Code generation from Matlab® models is still
problematic: generated code is not easy to read and
is quite inefficient especially in matrices handling.
The analysis shall continue to define if it is possible
according to the following criteria:

• Ratio of Matlab® algorithm with respect to the
rest of AOCS;

• Capability to translate Matlab® models in
Simulink® models;

• Acceptability of AOCS software performance
degradation according to current margins;

• Capability of improvement of the Mathworks
Matlab® code generator.

Code generation applicability: code generation is
applicable to the whole AOCS model and it is
possible to complete the AOCS model in order to
generate the whole AOCS software from the model.
This induces to add at model level, stubs of the
interface of the AOCS software with the data
handling software layers and components
(Telecommand, Telemetry, monitoring and Input /
Output).

Modelling standards and rules: quality of generated
code depends directly on the quality of the models.
So standards or rules previously applicable to
software development become new standards or
rules applicable to models development. They are of
two kinds: standards and rules for models writing to
ease the code generation configuration and ensure
generated code readability; and standards and rules
for models architecture which ensure models (and
software) readability and maintainability.
In order to benefit of the software experience in
terms of software architecture that accounts not only
AOCS needs but also operability and maintainability
needs, it is foreseen to apply to models development
the same approach that the one currently applied on
software development. That is, an AOCS reference
models is defined that accounts all constraints either
AOCS, or FDIR or operability.
Then, this reference models defines the framework
for any AOCS models development. It defines the
backbone of the model and the software
architecture. It defines:

• Standard model breakdown
• Code generation configuration
• Standard interfaces
• Standard dynamic behaviour
• Standard activities scheduling profile

Models sharing: with the ACG approach the models
become the reference from which the code is
generated. That means that the models have to be
complete, in terms of which functionalities will have
to be in the final software. They also have to include
all information necessary for code generation. This
means that the models have to be shared by the
AOCS studies team and the software team. The first
one creates the models from the AOCS models
framework. The second one completes them with
code generation information, eventually updates
them to permit auto-code-ability and add missing
functionalities. The AOCS and the software teams
shall then be able to share the same model to make
it evolve.

3.5 Tools evaluation
Among tools available for code generation from
Matlab/Simulink® models (Mathworks®, d-SPACE®
and Esterel SCADE®), two tools were selected for
evaluation:
• The Real Time Workshop Embedded Coder

(RTW-EC®) from the Mathworks®
• The TargetLink® 2.0 from d-SPACE®

RTW/EC® seems yet less mature and intuitive than
TargetLink®, but it accepts all Simulink® blocks and
already integrates interesting features (like bus and
embedded Matlab® function) that, even not yet
completely operational, are very promising for
targeted kind of model. It seems therefore providing
a better capability of improvement in the short-term
and will be used at least for the study. This choice
will have to be confirmed at the end of the study.

4. Model-based engineering for embedded
systems

The development of embedded systems, in
particular for critical applications, calls for methods to
master their complexity and the many interactions
between their components and interrelations
between hardware and software.
EADS Astrium has engaged a set of studies, pilot
projects and experiments investigating the potential
benefits of model-based approaches for the
development and validation of embedded systems.
Among them, two studies are highlighted in this
section, addressing on the one hand model-based
approaches for the development of embedded fault
and error management functions, and on the other
hand model-based approaches as a support to the
provable development of embedded hardware-
software systems.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 7/9

4.1 Embedded fault management functions (FDIR)

The dependability of space systems is ensured (in
addition to a set of fault prevention and robust
design approaches) by specific on-board functions
dedicated to the detection and diagnosis of faults
and the selection of appropriate recovery or
reconfiguration actions. These functions constitute
globally what is called FDIR in space systems (for
Fault Detection, Identification and Recovery).
The FDIR function must be able to maintain (or
restore) the best achievable level of mission in case
of adverse events such as faults or failures of on-
board components. For advanced autonomous and
complex space systems, the FDIR function must
react to a very large number of potential events and
combinations of events, taking into account the fact
that not all events may be fully covered and that an
appropriate balance must be found between the
need to maintain or restore the mission (availability)
and the need to maintain the ultimate survival
capabilities of the spacecraft (safety).
Space systems FDIR is therefore designed as a
complex architecture, generally highly hierarchical,
of detection and reaction mechanisms whose many
explicit or implicit (based e.g., on different reaction
time) interactions make FDIR development and
validation particularly difficult.
In a recent study [10] we investigated model-based
approaches for the development and validation of
FDIR for advanced autonomous space systems.
For this study, AADL appeared as particularly
interesting, thanks to its capability to model the
actions of the FDIR function on the very
configuration of the physical architecture (through
the definition of modes, each associated to a
particular configuration of physical components and
a particular mapping of functions and software
components).
We also aimed at defining a modular progressive
approach for the construction of complex FDIR
functions, both to support complexity mastering and
to provide enough flexibility to further adapt or
update the FDIR functions during late development
or even in-orbit maintenance.
We therefore elaborated a library of elementary
“FDIR components” that can be progressively
composed into a complex FDIR function.
This approach also exploits the capability of AADL to
model both functional elements and components of
the physical architecture and model their
relationships and mapping. Similarly, we defined
elementary components both for FDIR strategy (e.g.,
timeout, re-try, switch nominal and backup) and for
FDIR architecture (e.g., hot duplex, cold duplex,
majority voting).

As illustrated in Figure 2, this approach allows a
progressive construction and validation of a
complete FDIR to be performed by composition of
architectural elementary components on the one
hand, and of procedural elementary components on
the other hand (defining the global strategy to exploit
the various reconfiguration possibilities provided by
the available architecture).

Action1 Action2 Action3 Action4 To higher
level

Error

Function
or resource

actions

Mode1

Mode2

passive

CONTROL
SYSTEM ACTUATOR

2X

SENSOR

active

OBCU2

OBCU1

PROCESSOR ACTUATOR
SENSOR
SS1

SS2

ACT1

ACT2

SS3

2X3X

voter

Figure 2: Progressive model-based FDIR
construction approach

This Figure 2 above illustrates the composition of
elementary FDIR procedures, mapped on functions
or physical resources, into a strategy (topmost part),
and the hierarchical composition of the dependability
architecture with elementary building blocks
(bottom).

However we also aimed at providing a powerful
support to the validation of complex FDIR functions,
including for instance the verification of the
correctness of the various possible sequences of
events and reconfiguration actions or the estimation
of the reconfiguration duration.

Though there may not be “built-in” obstacles to
perform such analyses on an AADL model, the
current status of its definition and of its support tools
does not provide the support we needed in particular
terms of detailed behavioural description and
analysis.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 8/9

We then complemented the AADL models with UML
models of the detailed behaviour, especially the
transient behaviour, on event occurrence (fault),
from one configuration to another. As illustrated in
Figure 3, the models can be used to support various
analyses or simulation (on automatically generated
code).

Model

EN V aSCAO _Pro
cess

C reat e()

toModeSHM

C reat e()

error()

goToSTAcq()

R es et STA

C reat e()

ResetSTB

C reat e()

Recon f SC A
O

C reat e()

Recon f D HS

C reat e()

Proces sorA

C reat e()

p owerO n()

EquipSC AO

C reat e()

Equipem ents
SCAO. St arTr

a ckerA
C reat e()

p owerO n()
p owerO n()

get Pos it ion ()
get Pos it ion ()
get Pos it ion ()

get Pos it ion ()
e v Blind()

get Pos it ion ()

get Pos it ion ()

get Pos it ion ()

Equipem en ts
SC AO. St arTr

ackerB

C reat e()

F il t re5s

C reat e()

error()

error()

Code
generation

Running

Nominal

SHM

goToSTAcq
STAcquired

goToSTAcq
STAcquired

ProcessWithA

ProcessW ithB

ScaoError/SCAO_Process_AllToB(me);

ReportErrorToDHS

ScaoError

/SCAO_Process_AllToA(me);

ScaoError/SCAO_Process_AllToB(me);

ScaoError

goToSTAcq
STAcquired

/SCAO_Process_AllToA(me);

ScaoError/SCAO_Process_AllToB(me);

ScaoError

Simulation

Figure 3: Model-based behavioural analysis and

simulation

4.2 Provable engineering of embedded systems
Considering the complexity, criticality and also cost
of embedded systems, there is a strong need of
development and validation approaches capable to
provide the desired level of confidence in a
reasonable amount of cost and time. EADS Astrium
has engaged studies towards this aim and in
particular through its participation to the ASSERT
project1.
The ASSERT project aims at improving the system
and software development processes for critical
embedded real-time systems in the aerospace
domain by:
• Identifying and developing proven critical system

families’ architecture, using a proof-based
development process supported by formal
notations, component models, processes and
tools;

• Developing associated building blocks that can
be composed, tailored and verified in open
frameworks.

Among other activities, modelling tasks cover the
elaboration of models of system families and models
of their components to be instantiated and

1 ASSERT: Automated proof based System and Software

Engineering for Real-Time applications, Integrated Project
(n°4033) of the 6th Framework Programme, Information
Society Technology, European Commission. The ASSERT
project has started in September 2004 for 3 years, with 29
academic and industrial partners under the coordination of the
European Space Agency, ESA.

composed as building blocks of a given target
system. Three modelling levels are considered:
functional, software and physical architecture. This is
illustrated in Figure 4 on a space system with a
subset of applications (GNC, Guidance and
Navigation Control, TMTC, Telemetry and
Telecommand and Thermal control) mapped on an
architecture provided for illustration, characterised
by the existence of specific processors dedicated to
highly critical functions (which could be achieved
with appropriately managed criticality levels within a
processor, as also investigated in the study).

Physical architecturePhysical architecture

NOMINAL_POOLNOMINAL_POOL SAFETY_POOLSAFETY_POOL

Functional decompositionFunctional decomposition

Nominal applicationNominal application

ThermalThermalGNCGNC TMTCTMTC

Safety applicationSafety application

GNCGNC

Software designSoftware design

10 Hz thread10 Hz thread10 Hz thread10 Hz thread 1 Hz thread1 Hz thread

GyrometerGyrometer

GyrometerGyrometer

H
W

 &
 S

W
 a

rc
hi

te
ct

ur
e

H
W

 &
 S

W
 a

rc
hi

te
ct

ur
e

Figure 4: Three levels of modelling (example of
architecture)

In the final process elaborated by the ASSERT
project, the model of a given system will be defined
as an adaptation of the system family model, by
composition of properly instantiated or tailored
building blocks, with provable composability
properties.
These properties, and their proofs, address mainly
real-time properties and assumptions (synchrony or
asynchrony characteristics, deadlines, worst-case
execution time etc.) and dependability properties
(fault assumptions, failure modes, properties such as
atomicity etc.).

Consequently the ASSERT modelling framework,
based on AADL and UML, will include a set of
extensions proposed to AADL, to cover the formal
expression of all the properties defined in the
ASSERT process, to enable their verification by
support tools, and to support the generation of
system glue code with predicted performance
attributes. This extended AADL will be implemented
through an UML profile ensuring continuity of the
modelling, proofs and code generation chain, from
system level down to software level.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 9/9

5. Conclusion

After very good results on using Matlab/Simulink®
models and automatic code generation for rapid
prototyping, the same technology is now explored for
operational software provided that:
• It implements a well defined process;
• Modelling is compliant to a reference

architecture and some design rules;
• The Code Generator is customisable and

produces source code that is efficient, easy to
integrate and with the right level of quality.

Concerning system and software modelling,
methods and languages such as AADL and UML,
present some important and interesting
characteristics. Among them, we can mention the
AADL capability to formally define the links between
the software (or functional) elements and their
execution support, and the capability to identify how
a function is implemented and executed. It then
supports the system development and validation, at
least theoretically, in particular through detection (or
prevention) of mapping errors and through analyses
(e.g., data or control flow, real-time properties or
partitioning properties). In addition, AADL provides a
natural support to the modelling of functions which
act on the configuration of the physical architecture,
which is particularly well suited for FDIR functions
modelling.
However AADL is still limited, at least in its current
definition, in terms of detailed behavioural
description, and moreover is still missing powerful
support tools.
UML provides useful features in terms of e.g., high-
level modelling, and behavioural modelling and
verification. However the semantics does not fully
support the consistency between the different
diagrams (though this may be solved through
additional profiles).
AADL and UML finally provide complementary
solutions for the development and validation of
complex embedded systems and software, which
strongly calls for the definition and implementation of
gateways between them.
These preliminary results show that all these new
methods and languages support at least partially the
system and software engineering needs and that, to
a large extent they are very promising in terms of
definition, verification and validation. However the
selection and utilisation of these different
formalisms, and languages still necessitate:
• To complete for each of them a detailed

assessment;
• To integrate them into a well defined process;
• To be supported by a rigorous method usable

within an operational industrial domain.

6. Acknowledgement

The authors acknowledge the contribution of their
colleagues to this work and in particular Pierre Yves
Farges and Michel Horblin (EADS Astrium).

The authors wish also to thank CNES and the
European Commission, which funded all or part of
the studies supporting the results and discussions
presented in this paper.

7. References

[1] Matlab/Simulink, http://www.mathworks.com
[2] ISO: Information technology "Z formal specification

notation" syntax, type system and semantics (2002)
ISO/IEC 13568:2002, International Standard.

[3] J.M. Spivey, "The Z Notation: A Reference
Manual", 2nd edition, Prentice Hall (1992). Available
at http://spivey.oriel.ox.ac.uk/~mike/zrm/.

[4] SDL Forum Society, http://www.sdl-forum.org
[5] Society of Automotive Engineers (SAE) Aerospace

Avionics Systems Division: "Architecture Analysis &
Design Language Standards Document", version
1.0, Nov. 2004.

[6] SystemC Community, http://www.systemc.org
[7] SysML Forum Society, http://www.sysml.org
[8] Object Management Group (OMG): "Model Driven

Architecture Guide”, version 1.0.1, June 2003.
[9] Object Management Group (OMG): “UML Profile

for Schedulability, Performance, and Time
Specification” OMG document formal/05-01-02,
Jan. 2005.

[10] JP. Blanquart, P. Grandjean, M. Horblin, P. Pleczon
and D. Thomas: "Rapport d’étude: Architecture
FDIR pour satellite autonome", Edition 1.0,
September 20, 2005, reference EADS Astrium
EF.NT.MH05.00131, CNES Study DCT/SA/AB
n°04-2240. (In French)

[11] D. Lesens (coordinator): "MA3S Reference
Architecture Preliminary Definition Level 1",
ASSERT project (IST FP6 Integrated Project 4033),
deliverable 004033_MA3S_EADS.DVRB.02, 2005.

8. Glossary

ACG Automatic Code Generation
AOCS Attitude and Orbit Control System
ASIC Application Specific Integrated Circuit
CNES Centre National d’Etudes Spatiales
FDIR Fault Detection, Identification and Recovery
FPGA Field Programmable Gates Arrays
HIFI Simulator: High-Fidelity simulator with flight software

in-the-loop
SoC System on Chip

