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Abstract:  
Embedded systems development suffers from 
difficulties to reach cost, delay and safety 
requirements. The continuous increase of system 
complexity requires a corresponding increase in the 
capability of design fault-free systems. 
Model-based engineering aims to make complexity 
management easier with the construction of a virtual 
representation of systems enabling early prediction 
of behaviour and performance. In this context, 
Space industry has specific needs to deal with 
remote systems that can not be maintained on 
ground. In such systems, fault management includes 
complex detection, localisation and recovery 
automatic procedures that can not be performed 
without confidence on safety. 
In this way, only simulation and formal proofs can 
support the validation of all the possible 
configurations. Thus, formal description of both 
functional and non-functional properties with 
temporal logic formulae is expected to analyse and 
to early predict system characteristics at execution.  
This paper is based on various studies and 
experiences that are carried out in space domain on 
the support provided by model-based engineering in 
terms of: 
• support to needs capture and requirements 

analysis, 
• support to design, 
• support to early verification and validation, 
• down to automatic generation of code. 
 
Keywords: systems engineering, software 
engineering, modelling, automatic code generation 

1. Introduction 

Future space system projects are characterised by 
stringent needs in safety, autonomy and in the 
capability to include more and more functionalities. 
In these computer-based systems, the embedded 
software, which constituted only a small part of the 
global system a few years ago, has become a key 
element to meet all the needs. Facing to the ensuing 
complexity, quality and safety requirements are 

getting difficult to manage and usually lead to cost 
overrun and delays in development. 
Indeed, the new place of software at system level 
was not anticipated soon enough. System 
engineering aims at supporting the transformation of 
operational needs into a solution achieving a trade-
off between requirements, technological possibilities 
(including reusable components) and cost and delay 
constraints. However it is still a strongly empirical 
activity: 
• it consists of paper documents that cannot be 

checked with confidence, 
• it does not guarantee a full traceability, for 

instance, it is hard to know if the design fulfils all 
the requirements with consistency, 

• it includes an expensive phase of handmade 
coding, integration and tests, supporting only 
little reuse. 

It is therefore not entirely surprising that operation 
failure reports reveal more and more design errors. 
In the intention of detecting this type of errors early 
in the development cycle, new means (e.g. 
languages, methods and tools) are considered, 
evaluated and carried out in several practical studies 
in co-operation with operational units. 
The purpose of this paper is to make an overview of 
model-based contribution in support to embedded 
system engineering, based on various studies and 
experiences that are carried out in space domain: 
• ASSERT (Automated proof-based System and 

Software Engineering for Real-Time 
applications) (EC IST FP6 Integrated Project) 

• FAM (Frameworks, Architectures and Models) 
(EADS Astrium R&D internal study) 

• SCAO GEN (automatic code generation from a 
reference architecture with building blocks in 
Matlab/Simulink®) (EADS Astrium R&D internal 
study) 

• FDIR Autonomy (CNES R&D study) 
• System and software co-engineering (CNES 

R&D study) 
• R&D French Competitivity pole initiative for 

embedded systems (ISAURE Program with 
TOPCASED project) 
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This paper is organised as follows: Section 2 is first 
devoted to a general overview of selected principles, 
standards and tools. Then we split results and 
achievements upon two themes: 
• Section 3 about control engineering and code 

generation from continuous models, from needs 
capture to automatic code generation on an 
AOCS functions subset using Matlab/Simulink® 
models; 

• Section 4 about computer-based system 
engineering (hardware and software): 
requirements analysis and design and validation 
for FDIR, and provable system and software 
engineering. 

Some perspectives and conclusion are finally 
discussed in section 5. 
 

2. Principles, standards and tools 

2.1 Embedded system design 

An embedded system typically consists in a 
collection of hardware and software elements 
controlling a process. For instance, the avionics 
system of a satellite is in charge of flight, navigation 
and radio communications. It requires fine control 
application with real-time software bound to a 
specific execution platform. These three domains of 
knowledge (control, software, hardware) are 
characterized by severe constraints with efficiency 
and dependability requirements to be verified. 
 
Control design: Control applications usually 
transform physical parameters. Formal models are 
based on continuous (transfer) functions using 
differential equations to model behaviours. In space 
systems, the overall survival and performances 
depend on control applications (e.g. AOCS) but 
validation tests are limited because space 
environmental conditions are difficult to recreate. 
Then, many efforts are made on studies and 
simulations that can be performed on tools such 
Matlab/Simulink® ([1]) or Scilab/Scicos®. 
Software design: In the last decades, formal 
methods and languages were proposed to specify, 
document and whenever possible validate (real-
time) software. At specification phase, B or Z 
approaches ([2], [3]), for instance, apply 
mathematical concepts (logic and assertions) to 
model and verify the system. A more practical way 
for specification is based on scenarios using 
Message Sequence Charts (MSC) included in SDL 
[4] and UML standards. Then behavioural 
description languages for reactive are mainly divided 
in two approaches. 
• Imperative languages (e.g. ESTEREL), process 

algebras (e.g. MEISE, SCCS) or languages 

based on data flows (e.g. LUSTRE, SIGNAL) 
correspond to a synchronous approach. 

• Communicating automata (e.g. ESTELLE, 
PROMELA), process algebras (e.g. CSP, 
LOTOS), Petri Nets and their specific timed 
extensions can be used for asynchronous 
systems. 

The precision of formal methods can be exploited by 
tools for simulation, tests or verification in support to 
validation. However, in the industry, formal 
languages were dismissed in favour of semi-formal 
languages (mainly model-based) which are easier to 
integrate in current processes. As an example, UML 
is intensively used for software development. On the 
other hand, there are no specific UML language 
elements for expressing explicit parallelism and we 
observe a strong lack of semantics that can imply 
incoherency between diagrams. AADL ([5]) is then 
seriously considered by the embedded systems 
community. It can represent tasks, time of execution, 
deadlines, scheduling, and useful information for 
specific real-time analysis. Indeed, in addition to 
real-time constraints, embedded systems are 
characterized by further non functional requirements 
such as memory occupation, electric consumption 
and tight relation with hardware (e.g. specific 
executive platform). 
Embedded hardware design: Programmable 
hardware (e.g. ASIC, FPGA) are more and more 
used to integrate functions on hardware (e.g. smart 
sensors or actuators). Languages for describing 
hardware, such as VHDL and Prolog, are called 
hardware description languages. They integrate 
specific means to describe concurrency and wired 
communications based on architecture which make 
them far from common software languages. 
System design: The coupling of subsystems from 
different modelling domains implies the necessity to 
manage complexity at system level. In complex 
embedded systems, both hardware and software 
must be taken into account and tests and verification 
have to be done before implementation and 
integration. Then, new formalisms are required to 
support this multi-domain approach. For example, 
SystemC ([6]) enables design, simulation and 
verification of functions, and their implementation on 
hardware or software without re-engineering. In the 
same way, AADL and UML2.0 seem to have the 
ability to manage more than only software 
components as for Matlab/Simulink/Stateflow® 
which bridges discrete and continuous domains. 
Requirements analysis, modelling and traceability 
between several domains are also objectives of this 
kind of new languages. Our last consideration is for 
the incoming SysML ([7]) that should enable the 
specification, analysis, design, verification and 
validation of a broad range of systems including 
hardware, software or mechanical parts. 



ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/9 

2.2 Selected technologies for space embedded 
systems engineering 

Model-based: Satellites are complex remote systems 
that must be safe from the first (and only) flight. 
These systems can be hardly tested in real 
conditions (space environment) before operational 
launch. In this way, the needs essentially concerns 
fine simulation (verification), formal proof (validation) 
and complexity management from requirements 
analysis down to final integration. 
The principle we are following in order to fulfil these 
requirements is Model Driven Engineering. Models 
are used to build a virtual representation (logical 
solution) of the system to enable early prediction of 
behaviour and performance before teams proceed to 
implement designs. 
The Model Driven Architecture (MDA) standard [8] is 
originally an approach to use models in software 
development. It aims to implement a system by 
transformations from a Platform Independent Model 
(PIM) that concerns only domain aspects (logical 
solution) and enables a greater understanding of the 
user and system requirements. A transformation 
uses a Platform Dependent Model (PDM) that 
consists of chosen technical components (Physical 
solution) to implement the system. This 
transformation also requires a mapping that 
associates elements from PIM to elements from 
PDM. The result is called the Platform Specific 
Model (PSM). Separation of domain and technical 
aspects may improve overall clarity, portability, 
interoperability and reusability. Moreover, using 
different viewpoints, corresponding to different levels 
of abstraction for PDM, encourages iterative 
construction and iterative verification.  
Our studies aim to adapt processes and languages 
to embedded system engineering so as to benefit 
from this kind of approach. MATLAB®, UML2, AADL 
and SystemC languages were first selected to 
support a new system process. SysML will surely act 
as a new candidate for high level analysis.  
- Matlab/Simulink®: Despite other alternatives are 
proposed, Mathworks tools are likely becoming de 
facto standards for control application development. 
However, there are still problems to implement 
control algorithms because transition from 
continuous to discrete can alter the function. 
SCAOGEN study relates to automatic generation of 
code from MATLAB models (cf. section 3). 
- UML2, AADL: As for Matlab, UML2 is a widely 
known standard with powerful associated tools. 
Several studies on critical real-time embedded 
systems also promote the use of AADL which has 
become an international standard since November 
2004. Indeed, with embedded systems we must 
consider behaviour at execution, that is to say how 
software is implemented on execution platform and 

AADL allows these implementation choices to be 
described. Semi-formal and graphical methods were 
preferred because formal methods seem too 
specialised and cannot satisfy system level 
requirements. Selected languages give intuitive 
notation which makes communication between 
analysts and customers easier. Moreover, UML lack 
of semantics and real-time elements can now be 
avoided by the introduction of profiles (e.g. 
OMG/SPT [9]) and design patterns. Indeed, UML2 
authorises customization with stereotypes and 
tagged-values to easily adapt specific domain 
aspects. For example, additional information from 
formal models can be associated to system model 
by annotations (tagged values). These elements 
should be used to generate (by transformation) 
implementation code or simulation and analysis 
models for specific tools. AADL presents the same 
concepts using annexes and user properties. 
ASSERT project and FDIR study (cf. section 4) are 
practical overviews of information processing 
systems engineering using AADL and UML2. 
Commercial I-Logix Rhapsody tool for UML and 
OpenSource OSATE Eclipse plug-in for AADL are 
used in our current studies. 
- SystemC: HW/SW interfaces must be considered 
for errors avoidance. SystemC is based on ANSI-C 
and uses additional libraries to manage software 
/hardware programming and co-simulation. The 
HW/SW CODESIGN study aims to introduce a new 
system/software/hardware co-design process. Tools 
from Mathworks®, Magilem®, Celoxica® and 
Nepsis® are first considered. 
 

3. From needs capture to automatic code 
generation on an AOCS functions subset using 

Matlab/Simulink® models 

Up to now for each new satellite, Attitude and Orbit 
Control System (AOCS) software is mainly 
developed from scratch with few reuse at functional 
and software levels. Technologies and domain 
analysis are now ready to improve this situation by 
allowing efficient design and components reuse of 
AOCS software. 
After defining and implementing an efficient co-
engineering and co-validation process between 
AOCS studies team and AOCS software team, 
EADS Astrium intends to go further. We will present 
how EADS Astrium prepares implementation of such 
an enhanced development process based on the 
following approach and technologies: 

• A common reference process both for AOCS 
and software engineering teams able to support 
needs capture, requirements definition, design 
analysis, code generation, functional simulation, 
functional and software verification. 
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• Reference AOCS software architecture 
definition: through development experiences on 
a large set of operational or on-going projects 
(Earth observation, telecommunication, 
scientific, deep space probes), we are now able 
to define a generic and robust architecture to 
implement AOCS needs for many new 
programs.  

• Matlab/Simulink® models definition and use as a 
common description of AOCS functional blocks, 
AOCS software requirements, source for on-
board software automatic code generation and 
support of a functional validation test bench. 

• Based on previous projects, selection and 
definition of some first AOCS software building-
blocks which are good candidates to be reused 
as a generic component for new projects. 

 
This on-going preparation and the first following 
results are mainly supported by an EADS Astrium 
internal study (SCAO GEN) with software, AOCS 
and simulators teams on a case study application 
with CNES satellite Pleiades AOCS. This case study 
will be part of an ESA external study (ACG) with 
others European space partners aiming at 
assessment and introduction of Automatic Code 
Generation ins Space software development. 
 
3.1 Stakes and objectives 
The different stakes of introducing Matlab/Simulink® 
models and automatic code generation in AOCS 
software development can be summarised in: 
 
� Automatic code generation (ACG) from models: 

• To avoid multiple AOCS descriptions: for 
modelling (language Matlab/Simulink®), for 
requirements (language natural text), for 
software (language C or Ada), 

• Common language to describe an AOCS 
software product in an environment enabling 
global simulation (executable specification), 

• Reducing evolutions implementation life-cycle 
time, 

• Less software coding effort, 
• Less software verifications (Coding standard 

rules could be supported by tool), 
• Reducing manual coding faults  by 

automatisation, 
• Potential reduction of software tests effort. 
 

� Development and reuse of AOCS components: 

• Plug and play : to reduce/avoid analysis and 
development of already existing building-blocks, 

• To focus on function use context validation than 
on function itself. 

 
To assess the interests and impacts of introducing 
this new technology in the existing process, the 
following main objectives of this study are: 

• Demonstrate the feasibility and the interest of 
the code generation from Matlab/Simulink® 
models, 

• Evaluate and determine the best tools for 
embedded software (RTW embedded coder®, 
Targetlink®), 

• Identify to which kind of AOCS functions the 
code generation is applicable (algorithms, 
automata, FDIR, …), 

• Analyse the consequences of code generation 
on modelling, simulations, documentation,  

• Define a common process between AOCS 
studies and software teams, allowing code 
generation from functional simulation models 

• Analyse the feasibility of defining reusable 
building blocks 

• Warrant the feasibility and availability of a very 
representative functional simulator (HIFI 
simulator) with flight software in-the-loop and 
based on Matlab/Simulink® models. 

 
3.2 Process 

From prototype model to ACG model: ACG has a 
great impact on the AOCS studies development 
process. Right now modelling in the 
Matlab/Simulink® environment was considered has 
a prototyping activity performed during the 
preliminary A/B phases. So, no specific rule or 
standard was written. The main effort was brought 
on the C phase simulator which is a high fidelity 
simulator including the actual AOCS software. The 
AOCS software was written from AOCS 
specification, itself partially written from preliminary 
Matlab/Simulink® models. Once the HIFI simulator is 
available, the Matlab/Simulink® models are no more 
really maintained.  
With ACG, the reference becomes the models 
themselves. So many constraints appear. The 
models must permit not only the auto-coding but 
they have to be readable and maintainable. These 
constraints make the modelling activity heavier, 
which is no more compatible of fast prototyping 
approach used during preliminary A/B phases. This 
leads to conclude that two kinds of modelling can be 
managed at AOCS studies level:  
• Fast prototyping modelling approach similar to 

the current usage of modelling, maybe lightly 
improved by introducing general rules favouring 
the readability. 
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• ACG modelling approach that has to account 
strict rules allowing determinism of execution 
and code generation. 

The prototyping model is not supposed to be 
maintained and used to initialise the final model. 
The proposed new process is illustrated in the 
following Figure 1 and its main steps described 
further below the figure. 
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Figure 1: AOCS and software new process 

Initial AOCS model building: the ACG model is first 
developed by the AOCS team form the AOCS 
reference model template and the preliminary 
prototype model. At this stage, the reference 
architecture shall be respected and as far as 
possible all modelling rules. During this phase of 
AOCS design, the software team can support the 
AOCS team to instantiate the AOCS reference 
model and especially on parts that are nut usually 
integrated in the AOCS models like the modes 
management and the FDIR aspects. 

This first model is tested in closed loop in the 
Simulink® environment by the AOCS studies team. 

AOCS model co-engineering: once the AOCS 
concepts are considered validated and documented, 
the co-engineering phase between the AOCS and 
the software teams starts to refine the model and 
add all the functionalities which were not mandatory 
to validated the AOCS concept. During this phase, 
the software team checks the whole models against 
the modelling rules and especially the auto-code-
ability. Both teams work together on the same 
model. 

SW development: this point concerns the part of 
AOCS software that could not be auto-coded. The 
process would then be similar to the current one. 
The both team agree first together the software 
specification then the code is developed and unit 
tested before generating "S-function" to be inserted 
in the Simulink® model. 

AOCS model functional validation: this phase is 
realised by AOCS studies teams with support of 
software team if debug is required. This phase is not 
much impacted with respect to the current process. 
In this phase all tests are performed on models but 
not yet on the generated code in order to ease the 
tuning and the debug of the model. 

Code generation: once the model is completely 
validated the code generation can be performed. An 
"S-function" of AOCS software is generated to be 
inserted in the Simulink® environment. A subset of 
test is run to check that code generation has not 
introduced error. 

AOCS functional validation and performances: this 
step remains similar to what it is in the current 
process. The whole performance tests campaign is 
run on the AOCS flight software. 

 

3.3 Architecture 
The analyses performed commonly by AOCS 
studies and software teams shown that it was 
possible to define together an AOCS reference 
architecture that favours, on one hand, the reuse of 
AOCS functions by defining building blocks and on 
the other hand,  the code generation because it 
accounts elements of software architecture 
standard.  
This AOCS reference architecture imposes new 
constraints for AOCS teams but also provides 
advantages that were already experimented at 
software point of view. Once the architecture is 
understood, it's easier to move inside the model, 
because all modes, all projects follow the same 
standards. This makes the models more readable 
and eases the maintainability of the models. 
It also eases the reuse of building blocks, because 
building blocks are thought to be inserted in this kind 
of architecture. So when a new project respects the 
reference architecture, it is then possible to reuse 
existing building blocks. 
 
3.4 Modelling rules and code generation issues 
 
Coders' performances: code generation on 
Simulink® models gives quite good results if 
accounting few constraints in the definition of the 
models.  
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Code generation from StateFlow® models is less 
efficient than for Simulink but remains acceptable. 
Code generation from Matlab® models is still 
problematic: generated code is not easy to read and 
is quite inefficient especially in matrices handling. 
The analysis shall continue to define if it is possible 
according to the following criteria: 

• Ratio of Matlab® algorithm with respect to the 
rest of AOCS; 

• Capability to translate Matlab® models in 
Simulink® models; 

• Acceptability of AOCS software performance 
degradation according to current margins; 

• Capability of improvement of the Mathworks 
Matlab® code generator. 

 
Code generation applicability: code generation is 
applicable to the whole AOCS model and it is 
possible to complete the AOCS model in order to 
generate the whole AOCS software from the model. 
This induces to add at model level, stubs of the 
interface of the AOCS software with the data 
handling software layers and components 
(Telecommand, Telemetry, monitoring and Input / 
Output).  
 
Modelling standards and rules: quality of generated 
code depends directly on the quality of the models. 
So standards or rules previously applicable to 
software development become new standards or 
rules applicable to models development. They are of 
two kinds: standards and rules for models writing to 
ease the code generation configuration and ensure 
generated code readability; and standards and rules 
for models architecture which ensure models (and 
software) readability and maintainability.  
In order to benefit of the software experience in 
terms of software architecture that accounts not only 
AOCS needs but also operability and maintainability 
needs, it is foreseen to apply to models development 
the same approach that the one currently applied on 
software development. That is, an AOCS reference 
models is defined that accounts all constraints either 
AOCS, or FDIR or operability. 
Then, this reference models defines the framework 
for any AOCS models development. It defines the 
backbone of the model and the software 
architecture. It defines:  

• Standard model breakdown 
• Code generation configuration 
• Standard interfaces  
• Standard dynamic behaviour  
• Standard activities scheduling profile 
 

Models sharing: with the ACG approach the models 
become the reference from which the code is 
generated. That means that the models have to be 
complete, in terms of which functionalities will have 
to be in the final software. They also have to include 
all information necessary for code generation. This 
means that the models have to be shared by the 
AOCS studies team and the software team. The first 
one creates the models from the AOCS models 
framework. The second one completes them with 
code generation information, eventually updates 
them to permit auto-code-ability and add missing 
functionalities. The AOCS and the software teams 
shall then be able to share the same model to make 
it evolve. 
 
3.5 Tools evaluation 
Among tools available for code generation from 
Matlab/Simulink® models (Mathworks®, d-SPACE® 
and Esterel SCADE®), two tools were selected for 
evaluation: 
• The Real Time Workshop Embedded Coder 

(RTW-EC®) from the Mathworks® 
• The TargetLink® 2.0 from d-SPACE®  
 
RTW/EC® seems yet less mature and intuitive than 
TargetLink®, but it accepts all Simulink® blocks and 
already integrates interesting features (like bus and 
embedded Matlab® function) that, even not yet 
completely operational, are very promising for 
targeted kind of model. It seems therefore providing 
a better capability of improvement in the short-term 
and will be used at least for the study. This choice 
will have to be confirmed at the end of the study. 
 
 

4. Model-based engineering for embedded 
systems 

The development of embedded systems, in 
particular for critical applications, calls for methods to 
master their complexity and the many interactions 
between their components and interrelations 
between hardware and software. 
EADS Astrium has engaged a set of studies, pilot 
projects and experiments investigating the potential 
benefits of model-based approaches for the 
development and validation of embedded systems. 
Among them, two studies are highlighted in this 
section, addressing on the one hand model-based 
approaches for the development of embedded fault 
and error management functions, and on the other 
hand model-based approaches as a support to the 
provable development of embedded hardware-
software systems. 
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4.1 Embedded fault management functions (FDIR) 
 
The dependability of space systems is ensured (in 
addition to a set of fault prevention and robust 
design approaches) by specific on-board functions 
dedicated to the detection and diagnosis of faults 
and the selection of appropriate recovery or 
reconfiguration actions. These functions constitute 
globally what is called FDIR in space systems (for 
Fault Detection, Identification and Recovery). 
The FDIR function must be able to maintain (or 
restore) the best achievable level of mission in case 
of adverse events such as faults or failures of on-
board components. For advanced autonomous and 
complex space systems, the FDIR function must 
react to a very large number of potential events and 
combinations of events, taking into account the fact 
that not all events may be fully covered and that an 
appropriate balance must be found between the 
need to maintain or restore the mission (availability) 
and the need to maintain the ultimate survival 
capabilities of the spacecraft (safety). 
Space systems FDIR is therefore designed as a 
complex architecture, generally highly hierarchical, 
of detection and reaction mechanisms whose many 
explicit or implicit (based e.g., on different reaction 
time) interactions make FDIR development and 
validation particularly difficult. 
In a recent study [10] we investigated model-based 
approaches for the development and validation of 
FDIR for advanced autonomous space systems. 
For this study, AADL appeared as particularly 
interesting, thanks to its capability to model the 
actions of the FDIR function on the very 
configuration of the physical architecture (through 
the definition of modes, each associated to a 
particular configuration of physical components and 
a particular mapping of functions and software 
components). 
We also aimed at defining a modular progressive 
approach for the construction of complex FDIR 
functions, both to support complexity mastering and 
to provide enough flexibility to further adapt or 
update the FDIR functions during late development 
or even in-orbit maintenance. 
We therefore elaborated a library of elementary 
“FDIR components” that can be progressively 
composed into a complex FDIR function. 
This approach also exploits the capability of AADL to 
model both functional elements and components of 
the physical architecture and model their 
relationships and mapping. Similarly, we defined 
elementary components both for FDIR strategy (e.g., 
timeout, re-try, switch nominal and backup) and for 
FDIR architecture (e.g., hot duplex, cold duplex, 
majority voting). 

As illustrated in Figure 2, this approach allows a 
progressive construction and validation of a 
complete FDIR to be performed by composition of 
architectural elementary components on the one 
hand, and of procedural elementary components on 
the other hand (defining the global strategy to exploit 
the various reconfiguration possibilities provided by 
the available architecture). 
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Error
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Figure 2: Progressive model-based FDIR 
construction approach 

 
 
This Figure 2 above illustrates the composition of 
elementary FDIR procedures, mapped on functions 
or physical resources, into a strategy (topmost part), 
and the hierarchical composition of the dependability 
architecture with elementary building blocks 
(bottom). 
 
However we also aimed at providing a powerful 
support to the validation of complex FDIR functions, 
including for instance the verification of the 
correctness of the various possible sequences of 
events and reconfiguration actions or the estimation 
of the reconfiguration duration. 
 
Though there may not be “built-in” obstacles to 
perform such analyses on an AADL model, the 
current status of its definition and of its support tools 
does not provide the support we needed in particular 
terms of detailed behavioural description and 
analysis. 
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We then complemented the AADL models with UML 
models of the detailed behaviour, especially the 
transient behaviour, on event occurrence (fault), 
from one configuration to another. As illustrated in 
Figure 3, the models can be used to support various 
analyses or simulation (on automatically generated 
code). 
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Figure 3: Model-based behavioural analysis and 

simulation 

 
4.2 Provable engineering of embedded systems 
Considering the complexity, criticality and also cost 
of embedded systems, there is a strong need of 
development and validation approaches capable to 
provide the desired level of confidence in a 
reasonable amount of cost and time. EADS Astrium 
has engaged studies towards this aim and in 
particular through its participation to the ASSERT 
project1. 
The ASSERT project aims at improving the system 
and software development processes for critical 
embedded real-time systems in the aerospace 
domain by: 
• Identifying and developing proven critical system 

families’ architecture, using a proof-based 
development process supported by formal 
notations, component models, processes and 
tools; 

• Developing associated building blocks that can 
be composed, tailored and verified in open 
frameworks. 

Among other activities, modelling tasks cover the 
elaboration of models of system families and models 
of their components to be instantiated and 

                                                           
1  ASSERT: Automated proof based System and Software 

Engineering for Real-Time applications, Integrated Project 
(n°4033) of the 6th Framework Programme, Information 
Society Technology, European Commission. The ASSERT 
project has started in September 2004 for 3 years, with 29 
academic and industrial partners under the coordination of the 
European Space Agency, ESA. 

composed as building blocks of a given target 
system. Three modelling levels are considered: 
functional, software and physical architecture. This is 
illustrated in Figure 4 on a space system with a 
subset of applications (GNC, Guidance and 
Navigation Control, TMTC, Telemetry and 
Telecommand and Thermal control) mapped on an 
architecture provided for illustration, characterised 
by the existence of specific processors dedicated to 
highly critical functions (which could be achieved 
with appropriately managed criticality levels within a 
processor, as also investigated in the study). 
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Figure 4: Three levels of modelling (example of 
architecture) 

In the final process elaborated by the ASSERT 
project, the model of a given system will be defined 
as an adaptation of the system family model, by 
composition of properly instantiated or tailored 
building blocks, with provable composability 
properties. 
These properties, and their proofs, address mainly 
real-time properties and assumptions (synchrony or 
asynchrony characteristics, deadlines, worst-case 
execution time etc.) and dependability properties 
(fault assumptions, failure modes, properties such as 
atomicity etc.). 
 
Consequently the ASSERT modelling framework, 
based on AADL and UML, will include a set of 
extensions proposed to AADL, to cover the formal 
expression of all the properties defined in the 
ASSERT process, to enable their verification by 
support tools, and to support the generation of 
system glue code with predicted performance 
attributes. This extended AADL will be implemented 
through an UML profile ensuring continuity of the 
modelling, proofs and code generation chain, from 
system level down to software level. 
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5. Conclusion 

After very good results on using Matlab/Simulink® 
models and automatic code generation for rapid 
prototyping, the same technology is now explored for 
operational software provided that: 
• It implements a well defined process; 
• Modelling is compliant to a reference 

architecture and some design rules; 
• The Code Generator is customisable and 

produces source code that is efficient, easy to 
integrate and with the right level of quality. 

Concerning system and software modelling, 
methods and languages such as AADL and UML, 
present some important and interesting 
characteristics. Among them, we can mention the 
AADL capability to formally define the links between 
the software (or functional) elements and their 
execution support, and the capability to identify how 
a function is implemented and executed. It then 
supports the system development and validation, at 
least theoretically, in particular through detection (or 
prevention) of mapping errors and through analyses 
(e.g., data or control flow, real-time properties or 
partitioning properties). In addition, AADL provides a 
natural support to the modelling of functions which 
act on the configuration of the physical architecture, 
which is particularly well suited for FDIR functions 
modelling. 
However AADL is still limited, at least in its current 
definition, in terms of detailed behavioural 
description, and moreover is still missing powerful 
support tools. 
UML provides useful features in terms of e.g., high-
level modelling, and behavioural modelling and 
verification. However the semantics does not fully 
support the consistency between the different 
diagrams (though this may be solved through 
additional profiles). 
AADL and UML finally provide complementary 
solutions for the development and validation of 
complex embedded systems and software, which 
strongly calls for the definition and implementation of 
gateways between them. 
These preliminary results show that all these new 
methods and languages support at least partially the 
system and software engineering needs and that, to 
a large extent they are very promising in terms of 
definition, verification and validation. However the 
selection and utilisation of these different 
formalisms, and languages still necessitate: 
• To complete for each of them a detailed 

assessment; 
• To integrate them into a well defined process; 
• To be supported by a rigorous method usable 

within an operational industrial domain. 
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8. Glossary 

ACG Automatic Code Generation 
AOCS Attitude and Orbit Control System 
ASIC Application Specific Integrated Circuit 
CNES Centre National d’Etudes Spatiales 
FDIR Fault Detection, Identification and Recovery 
FPGA Field Programmable Gates Arrays 
HIFI Simulator: High-Fidelity simulator with flight software 

in-the-loop 
SoC System on Chip 


