@ https://ntrs.nasa.gov/search.jsp?R=20090036803 2019-08-30T08:11:40+00:00Z

Model Based Analysis and Test Generation for Flight Software

Corina S. Pasdreanu, Johann Schumann, Peter Mehlitz, Mike Lowry Gabor Karsai, Harmon Nine, Sandeep Neema

NASA Ames Research Center
Email: name@nasa.gov

Abstract

We describe a framework for model-based analysis and
test case generation in the context of a heterogeneous model-
based development paradigm that uses and combines Math-
Works and UML 2.0 models and the associated code genera-
tion tools. This paradigm poses novel challenges to analysis
and test case generation that, to the best of our knowledge,
have not been addressed before. The framework is based on
a common intermediate representation for different modeling
formalisms and leverages and extends model checking and
symbolic execution tools for model analysis and test case
generation, respectively. We discuss the application of our
framework to sofiware models for a NASA flight mission.

1. Introduction

This paper reports on an on-going project at NASA Ames,
whose goal is to develop automated techniques for error
detection in the flight control software for the next manned
space missions. Such software needs to be highly reliable.
The developers of the flight software chose an innovative
heterogeneous model-based paradigm that combines model-
based design using MathWorks! with UML 2.0 statechart
models, together with the associated code generation tools.
The MathWorks tools are used to develop math-intensive
control software, while the UML-based tools are used for the
rest of the software, including flight, ground, and simulation
software.

The flight software will be complex, where errors can
be caused by interactions among many components, whose
dynamic behavior will be described using different model-
ing formalisms. The model-based approach not only pro-
vides leveraged generation of code for current and future
platforms, but also enables early life-cycle (design stage)
detection of errors because the software models are both
formal and abstracted from some details of the target code.

In the past two decades the avionics software community
has increasingly applied model-based software engineering,
where models are used to specify software designs, and often
executable code is generated automatically from the mod-
els. The models are expressed in domain-specific modeling

1. http://www.mathworks.com

ISIS, Vanderbilt University
Email: {gabor|hnine|sandeep }@isis.vanderbilt.edu

languages with higher-level abstractions that are well-known
and convenient for domain engineers. Flight control software
have been developed for various vehicles using Matrix-X?
and MathWorks’ Simulink/Stateflow, which supports models
based on dataflow diagrams and hierarchical finite state
machines.

In spite of the popularity of model-based software engi-
neering (in the style of the two leading products mentioned
above), the current approaches to the Verification and Valida-
tion of model-based software are still very limited (see ¢.g.,
MathWorks’ Design Verifier and Section 5). Furthermore, the
particular characteristics of the model-based paradigm using
heterogeneous models poses the additional challenges of
handling the different semantics of the modeling formalisms,
while keeping the analysis tractable, and providing means of
validating the model analysis results on the code that is gen-
erated from the models. To the best of our knowledge, these
challenges are not addressed by any existing approaches or
tools.

In order to study integration issues between components
described using different modeling formalisms, we have
developed a framework that is based on a common infer-
mediate representation for different models and that lever-
ages existing formal verification and test case generation
technologies developed at Ames [6], [17]. The framework
aims to provide automated techniques for analysis and test
case generation for UML and Simulink/Stateflow models of
mission-critical systems and to provide seamless integration
with model based development frameworks.

We describe how we applied our framework to parts of
the flight control software that is being developed for a
NASA mission. Although we make our presentation in the
context of a NASA project, we believe that our work should
be relevant to other complex, safety critical model-based
software that is built from heterogeneous components.

The rest of the paper is organized as follows. In the next
section we give some background on modeling languages
and associated tools. We then describe the our model based
analysis and test case generation framework (Section 2),
followed by a detailed description of the framework com-
ponents: model transformation (Section 2.1), model analysis
(Section 2.2) and test case generation (Section 3). We then

2. http://www.matrixx.com

More! SmodFror

Moual Corr aegon

o 0T L A5 AT O

Wodainy
EFT O ATLE

i Mora
smallks | | Trane oom oo
==) H

umL L

Anatyssand
THST 0750 GATIRDNT

anE st Emulation ! Error
dava FatnAndsr Traces

TeutCa e Ganeration TestCases
simbolle Pt ANdar 1 fcomage

S I

Figure 1. Model Based Analysis and Testing

Conector
Lbmry o=
==

Cota Garar@moT Cows Tasmrg

describe the application of our framework (Section4), related
work (Section 5) and conclusions (Section 6).

2. Framework for Model Based Analysis and
Testing

Figure 1 depicts our framework that takes models created
using different modeling environments and enables their
analysis (model checking [?] and test-case generation) in
a common, neutral environment. OQur framework targets
Mathwork’s Simulink/Stateflow tool and Rhapsody’s UML
modeler, because this heterogeneous combination of mod-
eling tools is used within our NASA project and it is
also a good representative of a heterogeneous modeling
environment. We focus in this paper on the analysis and
test case generation of hierarchical state-machine models
(i.e. Simulink/Stateflow and UML), since they form some
of the most complicated parts of the flight software that we
analayzed (c¢.g. mode logic).

We note however that our framework also provides au-
tomated support for translating, executing and analyzing
Mathworks’Simulink data-flow models and Embedded Mat-
lab (eML) code (out-of-scope for the current paper).

The framework is based on a common intermediate
representation (a safe subset of Java) for flight-software
models produced using different modeling environments.
This representation is meant to bridge the gap between the
semantics of different modeling formalisms via translating
into a common format; this representation is executable and
amenable to simulation, visualization and analysis using
existing powerful V&V and test-case generation technology
developed at NASA Ames.

The framework uses model transformation techniques []
to translate models into the common representation, based
on meta-models built for Simulink/Stateflow and UML state-
machines respectively.

The analysis of heterogeneous models is driven by the
software architecture that defines the system in terms of
components and connectors. Components, modeled using
different formalisms, are running concurrently andhave

well defined, typed interfaces (encoding the services pro-
vided/required by a component to/from its environment).
The common representation is equiped with a communica-
tions infrastructure to support component interactions. An
extensible library of connectors captures the different types
of communication policies of interest in the target flight-
software systems.

As mentioned, the common representation is specially
tailored for analysis and it is tightly integrated into the
JPF verification tool-set [?]. This enables us to leverage the
verification technologies of JPF to validate and check for
integration problems in heterogeneous models.

Properties to be checked with JPF are given in terms
of assertions or safety monitors encoding software require-
ments, flight rules, etc. The error traces and the debugging
information reported by JPF are used by the developers to
correct the models.

Once the developers have enough confidence in the mod-
els, they can generate test cases (test vectors and test se-
quences) encoding the input values and the expected outputs.
The user can also specify the desired code coverage criterion
to be achieved by the test cases (e.g., state, transition, path
coverage, or some other, user-specified coverage criteria).
Also test cases for testing of user defined, domain-specific
properties can be generated.

Test cases can be fed back to model simulators (e.g.,
Matlab’s simulator) or can be used to test the actual code
generated from the models. The code does not need to
be auto-generated, but we assume a close correspondence
between models and code.

Test cases can be used for the following activities: test-
ing the code, validating the model transformation (e.g. by
running them against Matlab’s simulator), and validating
the code generators. The model based test cases can reveal
problems such as un-covered code, undesired discrepancies
between models and code, etc. We believe that such testing
should complement other analysis and testing activities at
the code level.

Model execution semantics are implemented in the
StateMachine class that is used for analysis or simu-
lation. StateMachines have to provide a run () method
that implements a driver for the state machine, that usually
loops until appropriate end conditions are detected. The
driver maintains a set of active states and a set of enabling
events, and it systematically goes through the set of events
to advance the state machines to the next set of active
states, using the step method. One can obtain different
execution semantics by customizing this driver. Off-the-
shelf, the framework includes two implementations. The first
one is suitable for model checking, and is designed to keep
model and program states as closely aligned as possible. The
second implementation allows stand alone execution outside
JPF, and can be used for - possibly interactive - simulation.
The framework also has preliminary support for running

multiple (homogeneous and heterogencous) state machines
concurrently.

We are working on equipping the common representation
environment with a communications infrastructure to sup-
port interactions between heterogencous components. Inter-
actions will take place through explicit, typed component
interfaces. Specific communication policies governing these
interactions will be captured by connectors that will instanti-
ate the generic communications infrastructure as required by
a targeted application. Since connectors provide application-
independent interaction mechanisms, we will equip the
framework with an extensible library of connectors that
can be reused across applications. For example, we have
already added support for connectors that model procedure
calls and event-based synchronization. We plan to extend
the conncetor library towards domain-specific protocols and
standards, such as ARINC 653, an RTOS API Specification
with support for space and time partitioning in an Integrated
Modular Avionics architecture, that will be used in the
context of our NASA project. This work is in a preliminary
phase and it will be performed in close collaboration with
the developers of the Flight software, since the definition for
component inter-communication is still under active debate
among the development project.

2.1. Model Transformation

The model transformation component of our framework
is used to translate various models into a common Java
representation that is suitable for analysis. Model transfor-
mation is based on Model-Integrated Computing (MIC) [11],
a technology for building domain-specific software devel-
opment tools, which is supported by a tool suite [10] that
includes a metaprogrammable model editor GME, a model
transformation tool GReAT, and a software infrastructure for
integrating model-based software development tool chains,
called OTIF.

We have used the MIC tool infrastructure to build a
translation tool chain whose main task is to bridge the gap
between the analysis tools and the source Simulink/Stateflow
models. The model translators have been implemented as
graph transformation programs, where the input models are
treated as typed, attributed graphs. The type system of the
graphs is defined by a metamodel, which is constructed as
a UML class diagram (for details see [10]).

Our translation tool chain includes the following elements:
an import translator converts Simulink/Stateflow models
into a format compatible with the MIC tools. This translator
uses Matlab’s API to access all necessary details of the
Simulink and Stateflow models, and transcribes them into an
equivalent model for the translation process. This approach
avoids the necessity to develop a parser to directly read
Mathwork’s own and ever changing internal format.

The models, as imported from Simulink/Stateflow, do
not contain sufficient information for the translation. In
particular, data types of internal signals are missing. A type
inference analyzer calculates this information. It starts from
the input *ports’ of the toplevel model, which must be typed,
and propagates their type through the dataflow operators
used in the Simulink model. Every elementary operator in
the Simulink diagram is well-defined, so the output data
type of the operator instance can be easily determined. By
forward tracing the dataflow graph our algorithm computes
the data type for each intermediate ’signal’.

Three model translators, for Simulink, Stateflow and Em-
bedded Matlab, respectively, translate the imported models
into a language-independent executable format, SFC (a data
structure similar to Abstract Syntax Trees used in compilers).
The first two of the generators were implemented using
graph transformations, as discussed above. Finally, a code
printer converts the SFC data structures into a safe subset
of Java.

The translated Simulink/Stateflow models follow the se-
mantics as specified in the language documentation from
Mathworks.

We note here that the model transformation component
can perform several preliminary analyses on the imported
models, which are complementary to the analyses performed
by JPF and SPF. Specifically, we validate that the models
follow the MAAB guidelines [13] that constrain the models
to make them suitable for generating safe and efficient em-
bedded code. We also analyze the call graph of the generated
code and verify that there is no infinite recursion (which
would lead to unbounded stack growth during execution,
thus a catastrophic failure). The analysis takes advantage of
the fact that recursive calls (if generated at all), are always
protected with conditions. Other verification activitics are
also possible, as the tool chain is built using open interfaces,
and XML is used for interchanging information between the
elements of the toolchain.

For UML, we are working on defining new model trans-
formations using the XML Metadata Interchange (XMI), an
OMG standard that is commonly used for UML models.

2.2, Model Analysis with Java PathFinder

JPF is an explicit state software model checker for Java
bytecode programs, and includes its own Java Virtual Ma-
chine (JVM) implementation that supports state storing and
matching. Given the well known scalability problem of
software model checking, JPF is focused on finding defects
and producing and analyzing respective error traces. Defects
can refer to non-functional properties like deadlocks and data
races, or can be defined by user-provided, application or
domain specific property modules.

The primary design goal of JPF is its extensibility, es-
pecially to achieve the required scalability. In addition to

mechanisms like partial order reduction and heap sym-
metry, JPF provides an array of extension mechanisms
to define alternative search strategies, implement complex
properties, abstract standard libraries using the Model Java
Interface (MJI), observe system-under-test execution, define
state space branches, and to implement different bytecode
execution semantics. For details see, ¢.g., [6].

3. Test Case
PathFinder

Generation with Symbolic

For model-based test case generation we use Symbolic
PathFinder [17], a recent extension to JPF that combines
symbolic execution and constraint solving for automated
test case generation. Symbolic PathFinder implements a
symbolic execution framework for Java byte-code. It can
handle mixed integer and real inputs, as well as multi-
threading and input pre-conditions.

Symbolic execution [12] is a well-known program analy-
sis that uses symbolic values instead of actual data as inputs
and symbolic expressions to represent the values of program
variables. As a result, the outputs computed by a program
are expressed as a function of the symbolic inputs. The state
of a symbolically executed program includes the (symbolic)
values of program variables, a path condition (PC), and a
program counter. The path condition is a boolean formula
over the symbolic inputs, encoding the constraints which the
inputs must satisfy in order for an execution to follow the
particular associated path. These conditions can be solved
(using off-the-shelf constraint solvers) to generate test cases
(test input and expected output pairs) guaranteed to exercise
the analyzed code.

Symbolic PathFinder implements a non-standard interpre-
tor for byte-codes on top of JPF. The symbolic information
is stored in attributes associated with the program data and
it is propagated on demand, during symbolic execution. The
analysis engine of JPF is used to systematically generate and
explore the symbolic execution tree of the program. JPF is
also used to systematically analyze thread interleavings and
any other forms of non-determinism that might be present
in the code; furthermore JPF is used to check properties of
the code during symbolic execution. Off-the-shelf constraint
solvers/decision procedures choco and TASolver [3] are
used to solve mixed integer and real constraints. We handle
loops by putting a bound on the model-checker search depth
and/or on the number of constraints in the path conditions.
Furthermore we have extended Symbolic PathFinder to
handle input arrays of fixed size (in addition to inputs of
primitive type).

By default, Symbolic PathFinder generates vectors of
test cases, each test case representing input-output vector
pairs. In order to test looping, reactive systems, such as
the state-chart models in our model-based framework, we
have extended Symbolic PathFinder to also generate test

Ascent

!

Prelaunch failure() Pad @
Check Abort
srblgnition()
[altitude <= 1.2e5] Abort
. LowActive ~
First abort (altitude) LAS
Stage
stage1Sep()
[altitude >= 1.2e5]
e
Abort
sseg;';d HighActive
abort() LAS
lasJettison()
stage2Sep()

EarthOrbit Entry
——]

Figure 2. Model of the Ascent and EarthOrbit flight
phases of a spacecraft

sequences (i.e., sequences of test vectors) that are guaranteed
to cover states or transitions in the models (other coverages
such as condition, or user-defined are also possible). This
works by instructing Symbolic PathFinder to generate and
explore all the possible test sequences up to some user pre-
specified depth (or until the desired coverage is achieved)
and to use symbolic, rather than concrete, values for the
input parameters.

We have also customized SPF to print the generated test
cases in terms of test drivers (for testing the auto-generated
code) and in terms of simulation scripts; SPF’s output can
be customized easily for such purposes.

The models that we need to analyze perform complex
mathematical computations. To generate test cases for them
Symbolic PathFinder uses JPF’s native peers mechanisms
for modeling native libraries, i.e., to capture math library
calls and to send them to the constraint solvers. The same
mechanism was used to handle native code embedded in the
models.

3.1. Example

We illustrate model based test case generation using the
state-machine model of the Ascent and EarthOrbit flight
phases of a spacecraft (Figure 2), where transitions are
labeled with both events and guards on event parameters.
The model has an error: there is an ambiguous transition
going from state First Stage on an abort event when the
value of the altitude is exactly 1.2e5. Exposing this error
requires a test sequence srblgnition(); abort(l.2e5) that
depends on both event and parameter choice, i.e., it is not

Table 1. Generated test cases for model in Figure 3

v Coverage VAL;, | RCip, | dmin | nmy, | badin | omout | badout
/ CHECK! X Tr 12 VAL 0 0 0 0 0 0 1
Tr 2 1 RC!=0 0 1 0 0 0 0 0
Tr1 0 0 0 0 0 0 1
- Tr12 0 0 0 0 0 0 1
TE— _ [RG=s0p—{ - [VAL==1jjgm=nm} Tr11 1 0 0 0 0 0 0
St CHECK2 0 0 0 0 0 0 1
> Tr2 0 1 0 0 0 0 0
| [R&==0Rom=dmi} [VAL~=1{om=dm;bad=Had+1:}
I
{
boclean T af guardl = false;
if (af junct? DWork.is active cl af junct? == 0j {
af junct2 DWork.is active cl sf jumetd =~ 1U;
af junck2 DWork.is el sf junct2 = {(uint8 T}af jumck2 IN CHECK;
Figure 3. Stateflow example } slas
af gaardi = false;

amenable to simulation testing (that would fix the the event
sequence apriori), to random testing, or to purely explicit
state model checking techniques (that can not “guess” the
exact value of the abort parameter that leads to error).
However, the combination of explicit state model checking
(to systematically explore all the methods sequences up
to a given depth) with symbolic execution (to discover
the right partitions on input values) allows us to discover
such sequences automatically. We believe that the analysis
of every realistically complex, reactive model with a data
acquisition part requires such combined analysis tools.

4. Case Study

In this section, we will present some results of a case
study, which applied our framework on safety-critical mod-
els for NASA flight software.

4.1. Analysis of a Sampling Port

We illustrate some of the features of our framework with
a simple Stateflow example (see Figure 3). This model is a
simplified version of one of the flight software components
that we have analyzed. This diagram implements a sampling
port. At each cycle of execution, the component first checks
to see if a new message (RC == 0) is present. If not,
the output (om) is set to a default message (dm) and the
component waits for the next cycle. If a new message is
present and it is valid, the output is set to the new message
data (om = nm). If the new message is not valid, we
increment variable bad (representing the port status) and set
the output to the default message.

Although very simple, this example illustrates some of the
problems discovered during the analysis of the real flight
software component. We used JPF to perform simulations
of the model and to check for properties, extracted from the
informal documentation provided by the developers of the

if (sf_junct? U.Inl == 0.0) {
£f (af Jupctld U.In2 == 1.0) {
8f junct? B.om = gf junctl P.Constantd Valum;
else if (af jumcel U.In2 = 1.0) {
af_ junctl D.om = sf_junctl P.ConatantZ Value;
Bf_junct? D.bad = (uintl6 T)(ef_junct2 B.bad + 1);
elaa {
S guandt - s
¥
} olas {
af guardl = true;

}

if (8f guardl == true) {
if (af Jumck2 U.Ini I= 0.0) {
af_junct2 D.om = gf junctl P.Constant? Value;
¥
}
¥
¥

Figure 4. Measuring coverage on generated code

models. For example, JPF runs out of memory on this small
example, the reason being that variable bad is unbounded,
since it is being incremented without ever being reset. Thus,
eventually an integer overflow error can occur. Interestingly,
several other models that we have analyzed exhibited similar
problems of missing resets.

We also used SPF to generate test cases for this model.
Table 1 shows the test cases that are gencrated to achieve
branch coverage.

In order to run the test cases from Table 1, we used
RealTime Workshop to generate code and used a simple test
harness. Code coverage was measured using gcov, which is
a part of the GNU C compiler. While running these test cases
on the code did not reveal any discrepancies between code
and model in terms of expected output, we did discover some
code statements that were not covered (Figure 4: unreachable
statement is highlighted). Such examples of unreachable
code in general poses a big problem in the development
of flight code, as no dead code is allowed.

4.2. Analysis of Flight Software

X t_negtrace_clean/Negative Trace *

File Edit ‘iew Simulafion Format Taols Help

We have applied our framework to several flight softwar
components written in Matlab’s Simulink/Stateflow. Thes
models were built for the Launch Abort System (LAS) — on
of the most important safety features of the new Orion spac
capsule and the ARES rocket. In particular, we analyze
the Guidance, Navigation, and Control (GN&C) part of th
software that will be flight tested in the near future.

The entire GN&C software has been modeled using Math

work’s Simulink/Stateflow system, and large portions of th
flight code are automatically generated using Mathwork’
RealTime Workshop. This model has a highly hierarchica
structure and contains Stateflow diagrams, Simulink block
for continuous calculations and signal routing, as well a
some embedded Matlab scripts. The entire system consists ¢
roughly 25,000 Simulink blocks, 100 Stateflow diagrams o
various sizes and complexity and more than 200 embeddeu
Matlab scripts.

Since none of the tools (inhouse and commercial) could
handle the entire system at once, we selected a number
of representative subsystems for this case study. These
examples included pure Simulink parts (to analyze the tool’s
capabilities for handling continuous and hybrid parts and sig-
nal flow), Stateflow diagrams (Statecharts), and subsystems
with embedded Mathscript. The extraction of the subsystems
under consideration proved to be far from trivial, because
data types and signal dimensions were not encoded with all
signals of the model; rather they were automatically inferred
by the Simulink system. In total, we applied our analysis and
test case generation tools to 6 selected small subsystems
(Simulink, Stateflow, embedded Mathscript) and two larger
subsystems, which mainly consisted of mode logic modeled
by several Stateflow statecharts. For each of the models, we
generated test vectors and test sequences (where applicable)
with the goal of obtaining state, transition, and path cover-
age.

Figure 5 shows one of the analyzed Simulink models,
which encodes some mathematical operations on quaternions
with 5 inputs and 4 outputs. Besides various mathematical
operations (e.g., inverse, square root), this model contains
several if-then-clse and merge blocks. With a range restric-
tion on the inputs of [—50,...,50], our tool generated 11
testcases (and in several cases our constraint solver gave
warnings that it could not find solutions).

When executing these testcases on the corresponding
generated code, only a code coverage of appr. 95% was
obtained (analysis of the coverage revealed un-reachable
code).

We analyzed several Simulink/Stateflow diagrams, rang-
ing from the simple model in the previous section to two
large SF diagrams, which contain embedded Matlab code
and which synchronize by recursive calls (Figure 6) as well
as other advanced Simulink/Stateflow features, like buses.

w1} —Mul i)
{1) B foo u(5) —lgeif(u3 > ul)
foo
u(g) wus slse v
dizgl{foo) Find ALZ3456 Fq{
N1234567 R1234
A123456 R1234
k. at foo{2.2)
[Celerf ¥
h 4 A123456 R1234 Hergel
elze 1 T at fool3,3) 9y
Foo qu 9% qu g9z az
A123456 R1234
at Fooll,1)
Wifoo uldlul2) -
foo Action Port
Figure 5. Simulink Model
validate()
Process newcmd
Sampling Port CmdStatus
rejectemd
Rejectemd

Validate NewCommand

Figure 6. Synchronizing SF diagrams

For these models, we analyzed properties encoded as
assertions; these assertions were derived from the informal
model documentation (e.g., “On entry to state Parachute,
assert that the Reaction Control System (RCS) control is
disabled”). In addition to the problems related to integer
overflow and unreachable code described above, our anal-
ysis revealed several etrrors in the models (e.g. assertion
violation for the above property due to underconstrained
environment).

It still remains for us to study the interaction between het-
erogencous models and we are working with the developers
of the code to define such interactions. However, we believe
that our framework will provide good support for this study.

5. Related Work

The work related to this paper is vast and for brevity, we
only highlight here some of the most relevant one.

The automatic generation of test cases from
Simulink/Stateflow is the subject of several approaches.
In particular, we have performed some experiments to
investigate the applicability of two commercial tools,

T-VEC and Design Verifier, in the context of our case
study. The tool T-VEC? is a commercial tool for testcase
generation based on Simulink/Stateflow diagrams; it uses
constraint solving technology.

We had been able to run the submodels from our case
study through T-VEC. Although T-VEC supports a large
subset of Simulink blocks and Stateflow, the translator
has problems with processing large diagrams and complex
statecharts, and unlike our framework, it does not support
embedded Matlab. Furthermore, in order to produce test
sequences, T-VEC has to work with multiple copies of the
diagram, thus severely limiting its scalability.

Design Verifier is a tool by Mathworks, which is even
closer integrated with the Simulink/Stateflow system. It also
translates the models into a logic representation and the
uses the Prover technology for analysis and generation of
test cases. The current version has a relatively limited func-
tionality, as it cannot handle nonlinear functions (e.g., sqrt,
trigonometric functions), Simulink bus objects, or recursive
functions. However, both T-VEC and Design Verifier are
under active development, so it is expected that the above
limitations will be soon overcome.

Another commercial tool, Reactis* is a toolset for model-
based testing and validation of Simulink/Stateflow models.
It uses random and heuristic search to exercise the behavior
of the models to reach a certain coverage.

None of the above tools attempt to address the analysis
of heterogeneous models.

There are many approaches for automatically verifying
model-based specifications (e.g., [8]). The most closely
related to ours are the ones targeting multi-formalisms
template semantics and analysis tools (e.g., [1], [18]). How-
ever, such approaches target only multiple state machine
representations. In the future, we plan to investigate the
applicability of the template semantics in the context of our
SC framework.

Model based generated test cases can be used to ensure
that the translation (code generation) from the model to
the code is working properly, as automatic code generators
or manual implementation is not necessarily error free.
Many approaches address the problem of making code
generators and/or compilers trustworthy. Such approaches
range from verifying model transformations [16] and ver-
ifying compilers/proof-carrying code [4] to instance-based
verification, e.g., the AutoCert system [5].

6. Conclusion

We described a framework for model based analysis and
test case generation based on Simulink/Stateflow and UML
representations. We applied our framework to the analysis

3. http://www.t-vec.com
4. http://www.reactive-systems.com

of various safety-critical parts of the flight code for NASA
Orion. Our analyses and test cases revealed various deficien-
cies in the models (e.g., ambiguity in statechart transitions,
potential integer overflows) as well as problems in the code
generation phase (e.g., dead code).

Although this tool chain is currently used for Simulink/-
Stateflow and UML models, the underlying framework for
translation and analysis is very flexible and could be cus-
tomized to handle other formalisms (e.g., multiple statechart
semantics).

In the future, we plan to make the framework more robust
and to apply it further to the analysis of heterogeneous
models.

References

[1] J. M. Atlee and J. Gannon. State-based model checking of
event-driven systems requirements. I[EEE Transactions on
Software Engineering, 19(1):24-40, 1993.

[2] Kennedy Carter. hitp://www.kc.com

[3] Choco Constraint Solver.
http://choco.sourceforge.net.

[4] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and
K. Cline. A certifying compiler for Java. In Proc. PLDI 2000,
pp 95-107, 2000. ACM Press.

[5] E. Denney and S. Trac. A software safety certification tool
for automatically generated guidance, navigation and control
code. In IEEE Aerospace, 2008. TEEE.

[6] Java Path Finder.
http://javapathfinder.sourceforge.org.

[71 G. Hamon and J. Rushby. An operational semantics for
Stateflow. In Proc. 7th FASE, vol 2984 LNCS, pp 229243,
2004. Springer.

[8] D. Harel and A. Naamad. The Statemate Semantics of
Statecharts. ACM TOSEM, 5(4):293-333, 1996.

[9]1 R. Heckel. Graph ftransformation in a nutshell. In
Language Engineering for Model-Driven Software Develop-
ment, number 04101 in Dagstuhl Seminar Proceedings, 2005.
http://drops.dagstuhl.de/opus/volltexte/2005/16.

[10] G. Karsai, A. Ledeczi, S. Neema, and J. Sztipanovits.
The model-integrated computing toolsuite: Metaprogrammable
tools for embedded control system design. In 2006 IEEE
International Symposium on Computer-Aided Control Systems
Design, pp 50-55, 2006.

[11] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
integrated development of embedded software. In Proceedings
of the IEEE, volume 91, pp 145-164, 2003.

[12] J. C. King. Symbolic execution and program testing. Com-
mun. ACM, 19(7):385-394, 1976.

[13] Control algorithm modeling guidelines using Matlab,
Simulink, and Stateflow - Version 2.0. Mathworks Automotive
Advisory Board.
http://www.mathworks.com/industries/auto/maab.html.

[14] P. Mehlitz. Trust your model - verifying aerospace system
models with Java pathfinder. In Proc IEEE Aerospace, 2008.

[15] Guidelines for the use of the C language in critical sys-
tems. The Motor Industry Software Reliability Association.
http://www.misra.org.uk/.

[16] A. Narayanan and G. Karsai. Using semantic anchoring to
verify behavior preservation in graph transformations. Elec-
tronic Communications of the EASST: Graph and Model Trans-
Jformation 2006, 4, 2006.

[17] C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-
Burlet, M. Lowry, S. Person, and M. Pape. Combining unit-
level symbolic execution and system-level concrete execution
for testing NASA software. In Proc. ISSTA’08 (to appear),
2008.

[18] M. Pezzé and M. Young. Constructing multi-formalism state-
space analysis tools. In Proc. ICSE, pp 239-249. ACM Press,
1997.

