17,929 research outputs found

    A Survey on Multi-Resident Activity Recognition in Smart Environments

    Full text link
    Human activity recognition (HAR) is a rapidly growing field that utilizes smart devices, sensors, and algorithms to automatically classify and identify the actions of individuals within a given environment. These systems have a wide range of applications, including assisting with caring tasks, increasing security, and improving energy efficiency. However, there are several challenges that must be addressed in order to effectively utilize HAR systems in multi-resident environments. One of the key challenges is accurately associating sensor observations with the identities of the individuals involved, which can be particularly difficult when residents are engaging in complex and collaborative activities. This paper provides a brief overview of the design and implementation of HAR systems, including a summary of the various data collection devices and approaches used for human activity identification. It also reviews previous research on the use of these systems in multi-resident environments and offers conclusions on the current state of the art in the field.Comment: 16 pages, to appear in Evolution of Information, Communication and Computing Systems (EICCS) Book Serie

    Behavior analysis for aging-in-place using similarity heatmaps

    Get PDF
    The demand for healthcare services for an increasing population of older adults is faced with the shortage of skilled caregivers and a constant increase in healthcare costs. In addition, the strong preference of the elderly to live independently has been driving much research on "ambient-assisted living" (AAL) systems to support aging-in-place. In this paper, we propose to employ a low-resolution image sensor network for behavior analysis of a home occupant. A network of 10 low-resolution cameras (30x30 pixels) is installed in a service flat of an elderly, based on which the user's mobility tracks are extracted using a maximum likelihood tracker. We propose a novel measure to find similar patterns of behavior between each pair of days from the user's detected positions, based on heatmaps and Earth mover's distance (EMD). Then, we use an exemplar-based approach to identify sleeping, eating, and sitting activities, and walking patterns of the elderly user for two weeks of real-life recordings. The proposed system achieves an overall accuracy of about 94%

    Multioccupant Activity Recognition in Pervasive Smart Home Environments

    Get PDF
    been the center of lot of research for many years now. The aim is to recognize the sequence of actions by a specific person using sensor readings. Most of the research has been devoted to activity recognition of single occupants in the environment. However, living environments are usually inhabited by more than one person and possibly with pets. Hence, human activity recognition in the context of multi-occupancy is more general, but also more challenging. The difficulty comes from mainly two aspects: resident identification, known as data association, and diversity of human activities. The present survey paper provides an overview of existing approaches and current practices for activity recognition in multi-occupant smart homes. It presents the latest developments and highlights the open issues in this field

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    Unsupervised Recognition of Multi-Resident Activities in Smart-Homes

    Get PDF
    Several methods have been proposed in the last two decades to recognize human activities based on sensor data acquired in smart-homes. While most existing methods assume the presence of a single inhabitant, a few techniques tackle the challenging issue of multi-resident activity recognition. To the best of our knowledge, all existing methods for multi-inhabitant activity recognition require the acquisition of a labeled training set of activities and sensor events. Unfortunately, activity labeling is costly and may disrupt the users' privacy. In this article, we introduce a novel technique to recognize multi-inhabitant activities without the need of labeled datasets. Our technique relies on an unlabeled sensor data stream acquired from a single resident, and on ontological reasoning to extract probabilistic associations among sensor events and activities. Extensive experiments with a large dataset of multi-inhabitant activities show that our technique achieves an average accuracy very close to the one of state-of-the-art supervised methods, without requiring the acquisition of labeled data

    A Modified KNN Algorithm for Activity Recognition in Smart Home

    Get PDF
    Nowadays, more and more elderly people cannot take care of themselves, and feel uncomfortable in daily activities. Smart home systems can help to improve daily life of elderly people. A smart home can bring residents a more comfortable living environment by recognizing the daily activities automatically. In this paper, in order to improve the accuracy of activity recognition in smart homes, we conduct some improvements in data preprocess and recognition phase, and more importantly, a novel sensor segmentation method and a modified KNN algorithm are proposed. The segmentation algorithm employs segment sensor data into fragments based on predefined activity knowledge, and then the proposed modified KNN algorithm uses center distances as a measure for classification. We also conduct comprehensive experiments, and the results demonstrate that the proposed method outperforms the other classifiers

    Modeling Interaction in Multi-Resident Activities

    Get PDF
    In this paper we investigate the problem of modeling multi-resident activities. Specifically, we explore different approaches based on Hidden Markov Models (HMMs) to deal with parallel activities and cooperative activities. We propose an HMM-based method, called CL-HMM, where activity labels as well as observation labels of different residents are combined to generate the corresponding sequence of activities as well as the corresponding sequence of observations on which a conventional HMM is applied. We also propose a Linked HMM (LHMM) in which activities of all residents are linked at each time step. We compare these two models to baseline models which are Coupled HMM (CHMM) and Parallel HMM (PHMM). The experimental results show that the proposed models outperform CHMM and PHMM when tested on parallel and cooperative activities

    A survey of user-centred approaches for smart home transfer learning and new user home automation adaptation

    Get PDF
    Recent smart home applications enhance the quality of people's home experiences by detecting their daily activities and providing them services that make their daily life more comfortable and safe. Human activity recognition is one of the fundamental tasks that a smart home should accomplish. However, there are still several challenges for such recognition in smart homes, with the target home adaptation process being one of the most critical, since new home environments do not have sufficient data to initiate the necessary activity recognition process. The transfer learning approach is considered the solution to this challenge, due to its ability to improve the adaptation process. This paper endeavours to provide a concrete review of user-centred smart homes along with the recent advancements in transfer learning for activity recognition. Furthermore, the paper proposes an integrated, personalised system that is able to create a dataset for target homes using both survey and transfer learning approaches, providing a personalised dataset based on user preferences and feedback

    A survey of user-centred approaches for smart home transfer learning and new user home automation adaptation

    Get PDF
    Recent smart home applications enhance the quality of people's home experiences by detecting their daily activities and providing them services that make their daily life more comfortable and safe. Human activity recognition is one of the fundamental tasks that a smart home should accomplish. However, there are still several challenges for such recognition in smart homes, with the target home adaptation process being one of the most critical, since new home environments do not have sufficient data to initiate the necessary activity recognition process. The transfer learning approach is considered the solution to this challenge, due to its ability to improve the adaptation process. This paper endeavours to provide a concrete review of user-centred smart homes along with the recent advancements in transfer learning for activity recognition. Furthermore, the paper proposes an integrated, personalised system that is able to create a dataset for target homes using both survey and transfer learning approaches, providing a personalised dataset based on user preferences and feedback
    • …
    corecore