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Abstract 

In this paper we investigate the problem of modeling multi-resident activities. Specifically, we explore different 

approaches based on Hidden Markov Models (HMMs) to deal with parallel activities and cooperative activities.  We 

propose an HMM-based method, called CL-HMM, where activity labels as well as observation labels of different 

residents are combined to generate the corresponding sequence of activities as well as the corresponding sequence of 

observations on which a conventional HMM is applied. We also propose a Linked HMM (LHMM) in which activities of 

all residents are linked at each time step. We compare these two models to baseline models which are Coupled HMM 

(CHMM) and Parallel HMM (PHMM). The experimental results show that the proposed models outperform CHMM and 

PHMM when tested on parallel and cooperative activities. 

 
Keywords: Activity recognition, Multiple residents, Cooperative and parallel activities, Graphical models. 

1. Introduction 

In 2020, the number of older adults aged 60 and over is supposed to reach 1 billion, and perhaps 2 billion 

by 2050. One in ten older people generally lives alone all over the world. Some of them suffer from physical 

(e.g., reduced mobility) or cognitive diseases (e.g., dementia, Alzheimer) which reduce their ability to live 

independently and sometimes keep them in risk situations (e.g., forgetting the stove on). Because there is a 

lack of infrastructures designed to manage the elderly population and a shortage of nursing staff assistance, 

recent research has focused on maintaining them at home by developing assisted living technologies which 

help them in the completion of their activities of daily living (ADLs). In this context, human activity 

recognition (HAR) aims to recognize the ADLs of residents at home. Their physical and cognitive capabilities 

could also be assessed in order to determine the type of services and assistance required for them over time.  
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So far research related to HAR has devoted a particular attention to the issue of monitoring of a single 

resident in a smart home assuming that in general elderly individuals live alone. However, the monitoring 

process is continuous and sometimes scenarios in which multiple people are simultaneously present within the 

home may take place even though the house is usually inhabited by a single resident (e.g., receive visits from 

family members or professional health care givers).The smart home solution for maintaining older people at 

home should not only focus on recognizing ADLs of single inhabitants. Extending HAR systems to multiple 

residents is necessary and should contribute to the facilitation of the deployment of these systems in real-

world environments. 

Different types of sensors have been used for multi-resident activity recognition in smart homes, but most 

of the work has considered video cameras and computer vision techniques to develop HAR systems. The use 

of camera is, however, not suitable due to privacy concerns. 

Recently, many studies have been interested in the use of pervasive sensors to recognize multi-resident 

ADLs. In this context, we clearly distinguish two main types of developments:(i) those based on wearable 

sensors such as accelerometer, gyroscope, etc. and (ii) those based on infrastructure sensors, such as motion, 

reed switches, etc. A lot of studies have been conducted using wearable sensors, where the identification of 

the person triggering the sensor individuals is straightforward. The disadvantage of wearable sensors is that 

they cause inconvenience and are impractical for situations in which individuals are opposed to wear the 

sensors, forget to wear them like elderly people with cognitive impairment. Moreover, pervasive 

infrastructure sensors offer the advantage of being non obtrusive to people as they are seamlessly placed in 

the environment. They could be either wall-mounted (e.g., Passive Infrared Sensors placed on the ceiling) or 

placed on objects (e.g., reed switches placed on doors). Using these non-intrusive sensors allows the residents 

to live as normally as possible and not feel restrained by the technology that surrounds them while they 

perform their ADLs at home. 

Living spaces are usually inhabited by more than a single person. Therefore, multi-resident HAR brings 

additional challenges related to the types of ADLs encountered in a multi-resident living space. While single 

residents generally perform sequential, interweaved and concurrent activities, multiple residents not only 

carry on all these types of activities for each resident individually but also collaborative activities that involve 

interaction.  

Interaction takes place in a setting where the residents work together in a cooperative manner to 

accomplish an activity, such that each resident performs certain actions of that activity. They can either 

perform the actions independently in parallel (e.g., one resident is chopping vegetables while the other is 

boiling broth to make soup) or together (e.g., two residents moving a table). In a multi-resident HAR system, 

the recognition of collaborative activities and parallel unrelated activities is equally important. Some studies 

addressed the problem of multi-resident HAR using non-intrusive sensors and few of them modeled 

collaborative activities. In (Chiang et al., 2010), Coupled Hidden Markov Model (CHMM) was applied. In 

(Chen and Tong, 2014) both HMM and Conditional Random Field (CRF) were applied and compared. In 

(Alemdar et al., 2013) HMM was used to model with multi-resident activities. 

  

The present paper investigates this direction further. The goal is to accurately recognize both parallel and 

collaborative activities from non-intrusive sensors. We do not focus on only one of the two types of activities 

as done in the literature related to multi-resident activity recognition, but on both types. Specifically, this 

work makes the following contributions: 

  

− We  propose a variant of the combined label approach based on HMM applied in (Chen and Tong, 

2014)(Alemdar et al., 2013), we call it CL-HMM. In addition to the use of combined labels for the 

pair of activities labels (i.e., Resident 1 activity label and Resident 2 activity label), our approach 
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also suggests the use of combined labels for the pair of observations (i.e., the observation of Resident 

1 and the observation of Resident 2).  

− We also propose a linked version of HMMs (LHMM) to model multi-resident activities and describe 

the corresponding version of the Viterbi algorithm. To the best of our knowledge this model has 

never been applied for pervasive multi-resident HAR.A baseline model that consists of parallel 

HMMs (PHMM) for the residents is developed, where each resident is modeled as one separate 

HMM. This model does not explicitly represent any inter-resident interaction. 

− We compare the performance of all of the proposed models, CL-HMM, LHMM and PHMM against 

the state-of-the-art model CHMM used in (Chiang et al., 2010). 

 

While the present paper focuses on HAR in a multi-resident environment, it is worthwhile to stress the fact 

that HAR in a single-resident environment is still an active research area as many  issues remain unresolved, 

such as the recognition of complex activities (Liu et al., 2015, p. 2) and interweaved activities (Meditskos et 

al., 2015). Several recent papers highlight the challenges encountered in this field as shown in (Amiribesheli 

et al., 2015) and (Ni et al., 2015). In a recent work, Amiribesheli et al. (2015)  discuss the challenges related 

to data processing (i.e., maintaining the security, privacy and reliability of an activity data)and  to activity 

recognition modelling (i.e., recognizing interweaved and concurrent activities, imbalanced data, online 

activity learning, applicability and adaptability of the activity model, scalability of the activity model). Ni et 

al. (Ni et al., 2015) discuss eight challenges to solve before improving the quality of life in a smart home for 

an elderly. Clearly, HAR in a multi-resident environment only represents one of the challenges to face among 

many others relevant to HAR in a single resident environment. 

 

The remainder of this paper is organized as follows. Section 2, introduces the state-of-art multi-resident 

activity recognition work. Section 3, describes the proposed graphical models CL-HMM and LHMM. Section 

4 discusses the evaluation of such models, their comparison against PHMM and CHMM as well as against 

existing studies which relied on the same dataset (i.e., Multi-resident ADLs of CASAS). Section 5, concludes 

the paper. 

2. Related Work 

Recently, a number of studies on multi-resident activities in the pervasive environment have been 

conducted. A survey paper by (Benmansour et al., 2015) provides an overview of existing approaches and 

current practices for HAR in multi-resident environments. Table 1, shows the most visible studies 

characterized by various features. Relying on wearable sensors, Wang et al. (Wang et al., 2009) used CHMM 

to recognize multi-resident activities. The same authors applied later CHMM along with Factorized 

Conditional Random Field (FCRF) in (Wang et al., 2011). In particular, they proposed one HMM is 

constructed for each resident to form CHMM. Hidden states in each HMM represent the set of activities 

performed by the resident. Likewise, one CRF is constructed for each resident in the FCRF. However, co-

temporal dependencies between activities of residents are represented differently in CHMM and FCRF. 

Considering, these co-temporal dependencies in CHMM, each activity in HMM does not depends on only the 

previous activity at time t-1 of the same HMM, but also on the previous activities at time t-1 from the other 

HMMs. In FCRF, activities of all CRFs corresponding to the residents are joined at each time step and the 

same observation sequence is fed to all CRFs. In this study, it was found that CHMM performs better than 

FCRF in the case of cooperative activities (e.g., the accuracy of CHMM on the cooperative activity “watching 

TV” is 100%, while that of FCRF is 70.5%).  
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Table 1: Summary of the related work studies 

Reference Type of 

sensors 

Data 

association 

Interaction 

Modeling 

Activities 

Covered 

Approach 

(Wang et al., 2011) Wearable no yes Sequential 

Parallel 

CHMM and FCRF 

(Wang et al., 2009) Wearable no yes Sequential 

Parallel 

CHMM 

(Gu et al., 2009) Wearable no yes Sequential 

Parallel 

Interweaved 

EPs (EPs for single resident activities and 

EPs for multi-resident activities) 

(Alerndar et al., 2013) Infrastructure yes yes Sequential 

Parallel 

1 HMM (combined label for multi-

resident activities) 

(Chen and Tong, 2014) Infrastructure yes yes Sequential 

Parallel 

1 HMM and 1 CRF (combined label for 

multi-resident activities) 

(Chiang et al., 2010) Infrastructure no yes Sequential 

Parallel 

PHMM, CHMM and CHMM extended 

with an interaction feature 

(Cook et al., 2010) Infrastructure yes no Sequential 2 HMMs (1 for data association and 1 for 

activity recognition) 

(Hsu et al., 2010) Infrastructure yes no Sequential 2 CRFs (1 for data association and 1 for 

activity recognition) 

no no Sequential 

Parallel 

1 CRF for each resident 

(Singla et al., 2010) Infrastructure no 

 

no Sequential 1 HMM for all activities of both residents 

Sequential 

Parallel 

1 HMM for each resident 

(Prossegger and 

Bouchachia, 2014) 

Infrastructure no no Sequential 

Parallel 

Incremental decision trees (E-ID5R) 

(Tunca et al., 2014) Infrastructure no no Sequential 1 KNN, 1 DT, 1 HMM, 1 MLP and 

1TDNN for all activities of both residents   

Sequential 

Parallel 

1 KNN, 1 DT, 1 HMM, 1 MLP and 

1TDNN for each resident 

(Emi and Stankovic, 

2015) 

Infrastructure yes no Sequential 

Parallel 

Active learning + Domain knowledge 

about activities 

(Roy et al., 2013)(Roy 

et al., 2016) 

Infrastructure 

+ Wearable 

no no Sequential 

Parallel 

Layered approach (individual HMM to 

infer location of each resident+ CHMM 

to infer multi-resident activities) 
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(Gu et al., 2009) used Emerging Patterns (EPs) to model the difference of activities. EPs can be considered 

as itemsets with support that changes significantly between datasets. They were mined for both parallel and 

cooperative activities. Using wearable sensor data, the authors noticed that EPs tend to recognize the activities 

as cooperative activities even when they are not. 

Many studies on multi-resident HAR used infrastructure sensors. In this context, some  studies focused on 

the data association problem which is about recognizing the residents (Hsu et al., 2010)(Cook et al., 2010). 

Although, we are not dealing with the problem of data association in this study, we argue that developing 

solutions for this problem is crucial for deploying HAR systems. For instance,  (Hsu et al., 2010) showed that 

the quality of data association results impacts the quality of activity recognition if both are integrated in one 

system. In this study, two-layer cascade architecture was proposed, where each layer consists of a CRF model. 

The first layer is used for model data association, while the second layer is applied to recognize the activities. 

Likewise (Cook et al., 2010) constructed one HMM model to recognize the residents followed by another 

HMM to recognize the activities. The disadvantage of these cascaded architectures is that the performance of 

the activity recognition module is low when the sensor data is incorrectly associated with the resident. 

Moreover, in the inference step of the activity recognizer, one activity label is inferred at each time step, that 

is the activity of the resident inferred by the data association recognizer.  

Other studies not dealing with data association also proposed to recognize activities without distinguishing 

the residents. For instance, (Singla et al., 2010) used a single chain HMM to model the activities of two 

residents. The hidden states represent the activities of both residents. For example, Resident 1 performs 

activity 1, 2 and 3; while Resident 2 performs activity 3, 4 and 5. In the inference step, one activity label is 

inferred; it represents either activity of Resident 1 or activity of Resident 2. (Tunca et al., 2014)  compared 

five different classifiers namely, K-Nearest Neighbor (KNN), Decision Trees (DT), HMM, Multi-Layer 

Perceptron (MLP) and Time-Delay Neural Network (TDNN). They grouped similar activities into abstract 

activities and considered only dominant activities in the case of parallel activities. The TDNN and HMM 

performed slightly better than the other classifiers. Like in (Hsu et al., 2010)(Cook et al., 2010), these 

approaches do not recognize neither parallel activities nor cooperative ones. Disregarding the data association 

problem, some studies proposed a separate model for each resident as shown in the second approach of (Hsu 

et al., 2010), the second approach of (Singla et al., 2010) and the second approach of (Tunca et al., 2014). 

These studies, however, did not deal with cooperative activities and only with parallel ones.   

On the contrast, some investigations (Alemdar et al., 2013)(Chen and Tong, 2014)(Chiang et al., 2010) did 

consider interaction between residents. In particular, (Alemdar et al., 2013)(Chen and Tong, 2014) used 

conventional HMM and CRF showing the advantage of fitting such classical graphical models for single 

resident activity recognition. They used respectively a single HMM chain and a single CRF chain to model 

multi-resident activities by defining “combined labels”. The same process was applied in both studies but on 

different datasets. Specifically, each observation in the dataset was associated to a label pair (activity label of 

Resident 1, activity label of Resident 2).  The pair was then converted into a scalar to represent one combined 

label. The hidden states represent the combined labels and observations represent mixed multi-resident 

observations. In the inference step, the combined label state is inversely mapped onto the corresponding 

individual activity labels. (Chen and Tong, 2014) compared the HMM-based method against the one applied 

in (Hsu et al., 2010)(Singla et al., 2010) on the same dataset, showing that their method was on average better 

by almost 10% and that HMM performed slightly better than CRF.  

To explore whether human interaction increases the accuracy of multi-resident recognition models, 

(Chiang et al., 2010) investigated an approach to analyze close-proximity interaction. The study uses a binary 

interaction feature that indicates if the two residents are in the same region of the environment or not. They 

compared the performance of three models: PHMM, CHMM and CHMM with the interaction feature. The 

results showed that the extended CHMM performs slightly better than CHMM. Moreover, the conventional 
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CHMM out-performs PHMM which indicates that ignoring dependencies between the activities, as done by 

PHMM, has a negative impact on the recognition rate. The study demonstrated also that the presence of 

residents in the same room does not imply that the residents are involved in cooperative activities.  

Unlike traditional classification decision trees (DT) usually applied in single resident activity recognition, 

(Prossegger and Bouchachia, 2014) suggested the use of an incremental DT algorithm called E-ID5R which 

can represent single or multiple activities at time to recognize both parallel and cooperative activities. The 

experimental evaluation on real-world datasets showed that E-ID5R performs differently. 

(Afrin Emi and Stankovic, 2015) presents an activity recognition platform based on active learning 

techniques called SARRIMA. The proposed work extends the AALO approach presented in (Hoque and 

Stankovic, 2012) by considering the co-existence of multiple residents at home. SARRIMA relies on domain 

knowledge about activities (e.g., locations, objects involved, most likely time of the day) and specific 

assumptions on these ones (e.g., preparing dinner is usually performed in the kitchen). SARRIMA solves both 

the data association problem by the use of the person identification module and the activity recognition 

problem (i.e., parallel and sequential ones) by the use of the ADL recognition module. These modules can 

operate independently and separately of each other when only one of the latter problems is posed. They can 

also exchange information in order to identify a person and to check the choice of a recognized ADL. This 

approach detected about 97% of activity instances.  

 

Some interesting studies rely used wearable sensors (i.e., embedded sensors in Smartphones and 

infrastructure sensors (i.e., motion sensors) to recognize parallel activities in a mutli-resident environment 

(Roy et al., 2013)(Roy et al., 2016). Authors in these studies applied a layered approach. First, the 

Smartphone accelerometer data for different postures (e.g., walking, sitting, etc.) is extracted. Then, an HMM 

is constructed for each resident where the hidden states are the   locations (e.g., kitchen, bathroom, etc.) of the 

resident. Finally, CHMM is applied to recognize complex activities of all residents. The observations in each 

of the CHMM’s HMM represent both the posture (i.e., inferred in the first layer) and the location (i.e., 

inferred in the second layer), while the hidden states represent the activities.  The experimental results 

obtained on a five residents showed an accuracy of 70% compared to 40% using only the accelerometer data. 

However, in this study cooperative activities were not considered. 

 

3. Proposed Models for Multi-Resident HAR 

To model multi-resident activities, we propose in this paper the HMM-based combined label approach 

(CL-HMM) and the linked hidden Markov model (LHMM). In the following both models are described. 

Without loss of generality, we assume that we have two residents living in the same home. Let N and M be 

the number of activities performed by Resident 1 and Resident 2 respectively and let Q be the number of 

sensors present in the living space and trigged by the two residents. The description presented below can be 

easily generalized to any number of residents and is based on the following assumptions: 

− The data association variables are given (i.e., we know who triggered which sensor). 

− In each resident's HMM of the LHMM, the hidden states represents the activities performed by the 

resident while observable states correspond to the sensor events generated by the resident. 

− We are dealing with discrete data for both the activities and the sensory data. 

− We have the ground truth activity corresponding to each resident's observation in the dataset, we 

therefore apply a supervised learning which means that parameter estimation is achieved by frequency 

counting of occurrences of states, transitions and observations (Rabiner, 1989). 
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− The Viterbi algorithm is applied only in the test step to infer the sequence of hidden states (i.e., the 

activities) that best explains a new sequence of observations (i.e., sensor events).  

 

We describe in the following parameter estimation as well as the Viterbi algorithm for each of the two 

models. 

3.1. Hidden Markov Model based Combined Label(CL-HMM) 

3.1.1. Definition 

Each resident has own sequence of sensor events that the activities. Thus, each resident has an observation 

at each time step as part of an activity. In an environment including k residents, this would result into a vector 

of length k for the observations and a vector of length k for activity labels at each time step. CL-HMM 

primarily consists of converting and combining the activities (L1j, L2j, …, Lkj) and the corresponding data (o1j, 

o2j, …, okj) of individual residents into a single observation (o) and a single combined activity label (L). Once 

this pre-processing step is completed, the learning process can start. 

3.1.2. Setup 

Instead of considering that each resident's activities A
1
 and A

2
 have their corresponding observations O

1
 

and O
2
, in a two-resident environment, we suppose that each pair of activities at each time step generates a 

pair of observations. That is, the pair of activities (at
1
, at

2
) generates the pair of observations (ot

1
, ot

2
) at time t. 

The CL-HMM approach can be divided into five main steps: 

a. Define the sets CLA and CLO of combined label of activity pairs and combined label of observation pairs 

respectively. If we consider all activities of the two residents that can appear in parallel, the number of 

resulting combined labels is N×M. However, some activities cannot occur in parallel in real world 

situations. For instance, Resident 1 cannot take a shower if the bathroom is occupied by the Resident 2; 

thus the number of combinations can be reduced. Using the experimental data, we extract non redundant 

pairs of activity labels and attribute to each pair a scalar resulting then into the set of combined labels for 

activities CLA. For instance, CLA consists of = {1, 2, 3, 4} as the set of combined labels for activities pairs 

(1, 2), (2, 1), (1, 3), (3, 4).The same process is applied to extract non redundant pairs of observation labels 

from the data. This will result in Q×Q possible values for the CLO set. However, due to the fact that some 

sensors do not occur in parallel in real-world situations (e.g., the phone sensor cannot be trigged by both 

residents at the same time), the cardinality of CLO will be smaller than Q×Q. 

b. Using the CLA set, we then convert each pair of multi-resident activities labels (a
1
, a

2
)(1:T)  (i.e., {(a

1
(1), 

a
2

(1)), (a
1
(2), a

2
(2)),..., (a

1
(T), a

2
(T))})  into combined activities a(1:T)

C
. Likewise, using the CLO set we convert 

each pair of multi-resident observations labels (o
1
, o

2
)(1:T) into combined observations o(1:T)

C 
respectively. 

c. Estimate the HMM parameters - An HMM is then applied on the data resulting from the previous step to 

build an activity model. In this HMM, hidden states represent the combined activity label a(1:T)
C
, while the 

observed states represent the combined observations of both residents o(1:T)
C
. The HMM consists of the 

initial state vector, the transition matrix and the observation matrix as follow: 

)()( 1 iaPi CC 
,            (1) 

)( 1 iajaPQ C

t

C

t

C

ij  
,      

(2)
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)()( iaoPiB C

t

C

t

C

t 
,  

(3)
         

where i=1... N×M, and B
C

t(i) is an (N×M)  by (QxQ) matrix
  

As mentioned earlier, parameter estimation is simply achieved by frequency counting of occurrences of 

initial states, transitions and observations (Rabiner, 1989). For example, π
C
(1) represents the number of 

training sequences in which the combined label state (1) appears at the beginning divided by the total 

number of training sequences. Likewise, for the transitions, Q31
C
represents the number of transitions from 

the combined activity label 3 to the combined activity label 1 divided by the number of outgoing 

transitions from the combined activity label 3. Similar frequency count for the observations can be done for 

example B
C
(2) is a vector indicating the observation probability of all the combined observations (1...Q

2
) 

from the combined activity label 2. To count the probability of a specific observation from the combined 

activity label 2 that is  P(ot
C
=1|at

C
=2), we compute  the number of occurrence of combined activity labels 2 

in which the combined observation label 1 appears divided by the occurrence frequency of the combined 

label 2. 

d. Inference for the HMM - Given an observation sequence O
C
 we need to find a state sequence A

C
 which 

maximizes P(A
C
|O

C
). The Viterbi algorithm for HMM (Rabiner, 1989) outputs the best state sequence A

C
 

which represents the best state sequence of the combined activities. This results in a computational 

complexity of O(T
2
N

2
M

2
) where T is the total number of events of the dataset. Considering, R residents 

each having a number of corresponding activities Ni for i=1...R, the computational complexity would be 

O(T
R
∏i=1

R
 Ni

2
). 

e. Extract each resident activity sequence A
1
 and A

2
 - The obtained combined activity label, A

C
, from the 

previous step is then converted back into the original individual activities of the two residents A
1
 and A

2
. 

3.2. Linked Hidden Markov Model (LHMM) 

3.2.1. Definition 

 

LHMM was introduced for the first time in (Brand, 1997). The latter represents a combination of multiple 

HMMs, where each HMM consists of a set of hidden states and a set of observed states. It is called Linked 

HMM because there are direct edges from hidden states of an HMM to the hidden states of the other HMMs 

as shown in Fig.1. 

When a LHMM is applied to HAR, an HMM is constructed for each resident in the environment. For 

instance, in a two-resident setting, {A
1
, O

1
} and {A

2
, O

2
} represent the sequence of activities and sensor 

events from Resident 1 and Resident 2 respectively. In each HMM chain, hidden states represent the activities 

of the corresponding resident, whereas the observations represent sensor events. That is, A
i
={a(1:T)

i
} (i=1,2) 

are the hidden states and O
i
={o(1:T)

i
}  are the corresponding observations for Resident i. The pair of HMMs is 

combined to obtain LHMM (see Fig. 1). When two residents in a smart home perform cooperative activities, 

the activity of one resident at time t can affect not only the activity at time t+1 in the same model, at
n 
to at+1

n
, 

but also the activity of the other resident, at
n 
to at

m
. Since both HMMs are not independent, the posterior of the 

activity sequences given all the observations can be expressed as: 
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Fig.1: Topology of LHMM (blank squares indicate the hidden states, the shaded squares indicate the observed states) 
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,
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According to the condition of independence given in the structure (Fig.1), we can factorize P(O
1
, O

2
| A

1
, 

A
2
) and P(A

1
, A

2
) as follow: 

 

     )2()1()2()1()2(

1

)1(

1

)2(

1

)1(

1

)2()1()2()1( ,,...,,,, TTTT aaooPaaooPAAOOP   (6) 

where: 

       )2()1()2(

1

)2()1()1()2()1()2()1()2(

1

)1(

1

)2(

1

)1(

1 ,,,,...,, ttt

T

t

tttTTTT aaoPaaoPaaooPaaooP 


  (7) 

and 

a1
(1) 

 
a2

(1) 

 

o2
(1) 

 

a1
(2) 

 
a2

(2) 

 

o1
(2) 

 
o2

(2) 

 

a1
(1) 

 

o1
(1) 

a2
(1) 

 

o2
(1) 

 

a1
(2) 

 
a2

(2) 

 

o1
(2) 

 
o2

(2) 

 

o1
(1) 
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P(at
(1)

, at
(2)

) is a hidden state pair at time t as a combination of the hidden states of the chains A
1
 and A

2
 . 

P(at
(1)

, at
(2)

| at-1
(1)

, at-1
(2)

) is the transition probability of the hidden state pairs, P(ot
(1)

|at
(1)

, at(2)) is the 

observation probability of o(1:T)
1
from all possible hidden state pairs and P(ot

(2)|
at

(1)
, at

(2)) 
is the observation 

probability of o(1:T)
2 
from all possible hidden state pairs.  

We proceed like in the case of CL-HMM, we combine and convert the pair of activities corresponding to 

Resident1 and Resident 2 into a single combined activity label (L) to obtain the sequence A
C
. To do that, we 

define the CLA set (see step one in section 3.1.2) and use it to convert each pair of multi-resident activities 

labels (a
1
, a

2
)(1:T) into combined activities a(1:T)

 C
. 

 

3.2.2. Parameter estimation 

 

Considering the pair of activities (at
(1)

, at
(2)

) as one activity at
(C) 

(see Eqs. (4)-(8)), the parameters of our 

LHMM are: 

)()( 1 iaPi CC 
,  (9)                        

)( 1 iajaPQ C

t

C

t

C

ij  
,  (10)                     

)()( 11 iaoPiB C

ttt 
,  (11) 

)()( 22 iaoPiB C

ttt 
,  (12)        

where i=1...N×M and both Bt
1
(i) and Bt

2
(i) are N×M by Q matrix. π

C
(i) is the initial state vector of the 

combined activity label sequence A
C
, Qij

C
  is the transition matrix of A

C
. Bt

1
(i) and Bt

2
(i) are the probability of 

observing O
1
= o(1:T)

1
, O

2
= o(1:T)

2 
from A

C
 respectively. Like with CL-HMM, all parameters of  LHMM are 

easily computed using frequency counting of occurrences of initial state vector, transitions and observations 

(Rabiner, 1989). It does not differ from CL-HMM to LHMM when computing the initial state vector and the 

transition matrix of the single combined activity label sequence A
C
. 

The main difference between our Linked HMM and our CL-HMM lies in the conditional independencies 

of the observations O
1
 and O

2 
over the single combined activity label A

C
. Because, in CL-HMM, O

1
 and O

2
 

are converted too into a single combined observation label O
C
, they are considered to be relatively dependent 

over the single combined activity label sequence A
C
.O

1
, O

2 
in LHMM are conditionally independent over A

C
. 

 

3.2.3. Inference 

LHMMs inference is formulated as follows. Given an observation sequence O={O
1
, O

2
}, we need to find a 

state sequence A
C
 which maximizes P(A

C
| O

1
, O

2
).We apply the Viterbi algorithm for HMM (Rabiner, 1989). 

The latter outputs the best state sequence A
C
 which represents the best state sequence of the combined 

activities. According to Eq. (7), the sequences of observations O
1
, O

2
  are conditionally independent over the 
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single combined activity label A
C
,  that is, P(O

1
, O

2
|A

C
)= P(O

1
|A

C
)× P(O

2
|A

C
)(i.e., Bt

C
(i)= Bt

1
(i)× Bt

2
(i)). The 

description of the Viterbi is shown in the following: 

Let δt(i) be the maximal probability of state sequences of the length t that end in state i and produce 

the t first observations for the given model. 

  iaooooooaaaPi C

ttt

C

t

CC

t   )(),(),...,,(),,();()...,(),(max)( )2()1()2(

2

)1(

2

)2(

1

)1(

1121    (13) 

The matrix ψ is used to retrieve the optimal hidden states  at the backtracking step. 

 

 Initialization 
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 Recursion 
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 Termination 

 

   )(maxarg

)(max*

ia

iP

Ti

C

T

Ti









   (16)   

 Path backtracking 

   C

tt

C

t aa 11 
 , t=T-1, T-2...1   (17)                                

where P
*
 is the maximum likelihood of δT(i) at time T and aT

C
 is the most probable combined label for the 

activities at time T. The obtained combined activity label, A
C
, from the previous step is then converted back 

into the original individual activities of the two residents A
1
 and A

2
.  

This Viterbi algorithm results in a computational complexity of O(T N
2
M

2
) where T is the total number of 

events in the dataset. Considering, R residents each having a number of corresponding activities Ni for i=1...R, 

the computational complexity would be O(T∏i=1
R
 Ni

2
). 
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4. Experiments 

In the following we will describe the dataset as well as the preprocessing associated with before 

introducing two models PHMM and CHMM against which our models LHMM and CL-HMM are compared. 

Two main experiments are studied. In the first we present the results of the individual residents using all 

models; while in the second experiment joint results after preprocessing are discussed. Special attention is 

given to the performance of the models on cooperative and parallel activities.   

To evaluate the models proposed in this study we use a publically available multi-resident dataset which is 

the CASAS "Multi-resident ADLs" dataset
2
(Singla et al., 2010). This dataset was collected through 26 

volunteer pairs performing 15 scripted activities. Some activities are individual like 'filling medication 

dispenser', 'hanging up clothes', 'reading magazine', 'sweeping floor', 'setting the table', 'watering plants', and 

'preparing dinner'. Others are cooperative activities like 'moving furniture', 'playing checkers', 'paying bills', 

and 'retrieving dishes from a kitchen cabinet'. Such activities were pre-determined and repeatedly performed. 

This collection accounts for inter-subject variability, yet it is not sufficient for explaining real-world 

situations. 

The dataset consists of 26 files; each contains the sensor events of the corresponding pair of volunteers 

performing each of the 15 activities. In all, the dataset contains 17 232 events described by (Date, Time, 

SensorID, Value, ResidentID, TaskID). If an event is trigged by the two residents, it is then represented by 

(Date, Time, SensorID, Value, ResidentID, TaskID, ResidentID, TaskID).  

Activities were manually annotated by recording their start and end time. Although, the smart home 

includes a variety of sensor types (i.e., motion sensors, item sensors, burner sensor, water sensors, light 

controllers, phone sensor), only 27 motion sensors, 2 item sensors and 8 door sensors were used to collect this 

dataset. All these sensors produce binary values: ON/OFF for motion sensors, PRESENT/ABSENT for item 

sensors, OPEN/CLOSE for the cabinet sensor. The motion sensors provide the real-time location of the 

residents. In their absence, the location of the person corresponds to the location of the last object used.  

Because this dataset stemmed from a laboratory experiment on a voluntary basis, the recording of the 

activities is not continuous in time and is spread over two months. However, it is a very good benchmark for 

the community and was used in most of the studies in the context of multi-resident HAR(Chen and Tong, 

2014)(Chiang et al., 2010)(Cook et al., 2010)(Hsu et al., 2010)(Singla et al., 2010). Additional details on the 

dataset are given in (Singla et al., 2010). 

Finally note that the activities 3, 7, 11 and 13 are cooperative, while the 11 remaining ones are parallel 

ones. 

4.1. Pre-processing 

In order to compare the performance of our multi-resident models against other models like CHMM,  we 

followed the same data pre-processing procedure applied in (Chiang et al., 2010). The pre-processing 

approach aims to represent at each time step the sensor event, its corresponding value as well as the given 

activity label for each resident (i.e., Date, Time, Resident 1 <SensorID, Value, Activity label>, Resident2 

<SensorID, Value, Activity label>). Then, we generate the sequence of activities performed by each resident 

by simply separating the events according to the Resident ID. 

 

 
2 http://ailab.wsu.edu/casas/datasetdlmr.zip  
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The data contains 16 activities for each resident, 15 known activities and one void (Null) activity that 

represents unknown activities. In all, there are 37 different binary sensors in the dataset resulting in 75 

observation values for each resident including the null value. 

Moreover, in order to accurately learn the activity model parameters, we need to produce sequences from 

the raw data. The design of the training sequences does not affect much observations and transitions 

estimation, in contrast to initial state estimations. The initial states do get a better estimate when accurate 

activity data segmentation is applied. The design of sequences strongly depends on the type of activities 

monitored in the environment. Generally, studies consider each day of registration as a sequence when 

activity data reflects the natural human behavior of residents as in (van Kasteren et al., 2008). But in the case 

of CASAS "Multi-resident ADLs", many days represent activity data of a single pair of volunteers, while 

others represent activity data of two pairs of volunteers. Segmenting activity data on a daily basis would result 

in a lot less samples for initial and transition estimates. Therefore, each file serves to build one sequence. We 

run leave-one-out cross-validation on our 26 sequences of activity data. 

4.2. Comparison against Parallel HMM (PHMM) and Coupled HMM (CHMM) 

To further illustrate the performance of our two HMM-based approaches, LHMM and CL-HMM, we will 

consider comparing them against PHMM and CHMM. The models PHMM and CHMM rely on the 

assumptions we made about the CL-HMM and the LHMM. 

PHMM is obtained by modeling each resident as a separate HMM (See Fig. 2) that is {A
1
, O

1
}and {A

2
, 

O
2
} for Resident 1 and  Resident 2  respectively. The parameters of a PHMM are defined below: 

)()( 1 iaPi RR 
,  (18)                   

 

)( 1 iajaPQ R

t

R

t

R

ij  
,  (19)

              
 

)()( iaoPiB R

t

R

t

R

t 
,  (20)                    
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Fig. 2: Topology of PHMM (blank squares indicate the hidden states, shaded squares indicate the observed states) 

CHMM, on the other hand, is a combination of HMMs that interact with each other (see Fig. 3). In each 

HMM, there is a directed edge from each hidden state at time t to the hidden state at time t+1. In addition, 

there are direct edges from each hidden state at time t of an HMM to all hidden states of the other HMMs at 

time t+1 to indicate the interaction between the residents when performing cooperative activities. The only 

difference between the parameters of a PHMM and the ones of a CHMM lies in the transition matrices 

corresponding to Resident 1 chain and Resident 2 chain as shown below: 

),( 2

1

1

1,
kajaiaPQ tt

R

t

R

kji
 

,  (21)  
              

 

where R={1,2}, R  is the resident index, i=1...N in case R=1 (i.e., N is the number of activities performed by 

Resident1 while i=1...M in case R=2 (i.e., M is the number of activities performed by Resident 2). Qi|j,k
1 
is an 

N×M by N matrix and Qi|j,k
2 
 is N×M by M matrix. 
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Fig.3: Topology of CHMM 

PHMM and CHMM parameters are obtained by frequency counting of occurrences of initial states, 

transitions and observations for each resident chain, resulting then into an initial state vector, a transition 

matrix and an observation matrix for each resident's chain. For CHMM, the process doesn't differ for 

computing the initial state vector and the observation matrix of each resident chain. However, in addition to 

estimating inner-chain transition probabilities P(at
(1)

|at-1
(1)

) and P(at
(2)

|at-1
(2)

) in transition matrices of the 

individual chains, CHMM requires to estimate the inter-chain transition probabilities P(at
(1)

|at-1
(2)

) and P(at
(2)

|at-

1
(1)

) which represent the incoming transitions from Resident 2 chain to Resident 1 chain and incoming 

transitions from Resident 1 chain to Resident 2 chain respectively. These are used to estimate the likelihoods 

P(at
(1)

|at-1
(1)

, at-1
(2)

) and P(at
(2)

|at-1
(1)

, at-1
(2)

) for Resident 1 chain and Resident 2 chain respectively. For instance, 

Q 3|1,4
1 
represents the number of outgoing transitions from the pair of activities (1,4) and arriving in activity 3 

in Resident1 chain divided by the total number of outgoing transitions from the pair of activities (1,4) to 

Resident1's chain. 

In PHMM, the inference for one chain is independent of the other chain. Specifically, given an observation 

sequence O
1
 and the already learned parameters of the HMM corresponding to Resident1 that is (π

1
(i), Qij

1
, 

Bt
1
(i)), we need to find a state sequence A

1
 which maximizes P(A

1
|O

1
). Thus, the conventional Viterbi 

algorithm for HMMs (Rabiner, 1989) is applied on the observation sequence O
1 
in order to compute the most 

probable state sequence A
1
. Similarly, for inference on Resident 2 chain, the Viterbi algorithm is applied on 

O
2
 to compute the most probable state sequence A

2
. The computational complexity of the algorithm is then 

O(TN
2
+TM

2
), where T is the total number of sensor events in the dataset (i.e., length of the entire dataset). 

Considering R residents, each having a number of corresponding activities Ni, i=1...R, the computational 

complexity would be  O(∑i=1
R
T Ni

2
).

 

In contrast, inference in CHMM is not independent from Resident 1 chain to Resident 2 chain. The inputs 

of the Viterbi algorithm (Nefian et al., 2002) consist of observations of both residents O={O
1
, O

2
} and the 
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algorithm outputs the best state sequence A={A
1
, A

2
} which maximizes P(A|O). Details of the Viterbi 

algorithm are given in (Nefian et al., 2002) and its computational complexity is about O(TN
2
M

2
), where T is 

the total number of sensor events in the dataset (i.e., length of the entire dataset). Considering R residents, 

each having a number of corresponding activities Ni, i=1...R, the computational complexity would be 

O(T∏i=1
R
Ni

2
).

 

4.3. Experiment1: Results by individual residents 

4.3.1. Description 

In this experiment results are computed for each resident separately without any interference. That is the 

misclassification of the activity by Resident 1 doesn't impact the correct classification of Resident 2 and vice 

versa. In PHMM, CHMM a pair of labels is inferred representing Resident 1 activity label and Resident 2 

activity label while in CL-HMM and LHMM a combined activity label is inferred. We convert the inferred 

combined activity label for the two latter models into the corresponding inferred Resident 1 activity label and 

inferred Resident 2 activity label. As the activities come with their true labels, each inferred resident activity 

label is compared to its corresponding true label. We therefore compile for each resident a confusion matrix 

and compute the overall accuracy, precision, recall and F-measure which are given as follows: 

Ntp
C
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
1
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C
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ii fntptp
C

 
   (24) 

RecallPrecision

Recall*Precision*2
measure-F


                                                                                          (25) 

where N is the total number of events, C is the number activities, tpi is the number of true positive, fni is the 

number of false negative, fpi is the number of false positive  for activity i. 

The overall accuracy is defined as the percentage of correctly classified events. We compute the precision, 

recall and f-measure according to the definition given in (van Kasteren et al., 2010). That is, we compute the 

precision and recall for each class (i.e., activity) separately and take the average over all classes. Precision is 

defined as the percentage of inferred activity labels which was correctly classified. Recall is defined as the 

percentage of true activity labels which was correctly classified. The f-measure is a combination of the two 

latter metrics. The recall is equivalent to the average accuracy (i.e., the average percentage of correctly 

classified events per activity). Most HAR datasets are imbalanced which means that some classes (i.e., 

activities) appear much more frequently than other classes. If dominant classes yield a good recognition 

performance, the overall accuracy would be high even if all other classes are not well recognized, but, recall 

will be low. Because all activities are equally important, precision, recall and f-measure seem a better choice 

in order to demonstrate the HAR performance on each of the different activities.  

We separated the overall accuracy reported by each resident for parallel individual activities and 

cooperative activities as done in (Wang et al., 2009)(Wang et al., 2011)(Gu et al., 2009). For each resident, 



 A. Benmansour, A. Bouchachia and M. Feham/ Neurocomputing (2015) 1-23 17 

the labels of the cooperative activities are 3, 7, 11 and 13. The remaining activities are parallel ones. A 

resident is supposed to perform a cooperative activity at time when its corresponding activity label is included 

in {3, 7, 11, 13}, even if the other resident performs an individual activity in parallel. For each resident, we 

extract  cooperative activities accuracy which represents the overall accuracy over the activities 3, 7, 11 and 

13   and  parallel individual  activities accuracy which represents the overall accuracy on the remaining ones 

{1, 2, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16}. Cooperative activities accuracy for both residents is then obtained by 

computing the average of these one over the two residents.  Likewise for parallel individual activities 

accuracy for both residents, after computing this latter for each resident, we give the average of them over 

both residents. These ones provide more insight on the ability of each model to deal with the two types of 

activities. 

 

Please note that the code used in this study was implemented in MATLAB. The parameter estimation of all 

the models is computed by frequency counting of occurrences of initial state vector, transition of hidden states 

and observations. Some part of the code is obtained from (van Kasteren, 2010). We also used the Viterbi 

decoder of the HMM toolbox of Kevin Murphy
3
 for our PHMM, CL-HMM, and LHMM.  

4.3.2.  Results 

Results, shown in Table 2, are given for each of the proposed models, LHMM and CL-HMM, as well as 

for the state-of-the-art models used for multi-resident HAR namely PHMM and CHMM. We cycle over all 

the 26 training sequences using the leave-one-out cross validation and report the average performance 

measure for each evaluation metric. 

Table 2 shows that each model produces similar results for the overall accuracy and recall which means 

that each model recognized all the activities with an equal performance (i.e., the recognition rate does not vary 

greatly from one activity to another one).In fact, using all of the metrics, it is easy to see in Tab. 2 that LHMM 

outperforms all of the other models, while CL-HMM looks more accurate than CHMM and PHMM. The least 

accurate recognizer is PHMM, which is expected to a large extent. In particular, in comparison with CHMM, 

LHMM improves the overall accuracy, precision, recall and f-measure by roughly 5%, 4.5%,5% and 5% 

respectively; whereas CL-HMM does by about 3%, 3%, 5% and 4% respectively. Moreover, when looking at 

the accuracies separated for parallel individual resident activities and cooperative activities, it is clear that 

CHMM improves the recognition of parallel individual activities by 2.5% in comparison to PHMM. On the 

other hand, compared to CHMM, LHMM and CL-HMM improve the accuracy by approximately 7% and 6% 

respectively.  

For cooperative activities, the experiments show that CHMM outperforms PHMM with a difference of 7%, 

while LHMM improves the recognition of cooperative activities by approximately 4% in comparison with the 

CHMM. However, CL-HMM seems to be the best with an improvement of 20.65%, 14% and 9.5% in 

comparison to PHMM, CHMM and LHMM. Moreover, for cooperative activities the breakdown by resident 

shows that the performance difference is about 30% from Resident 2 to Resident 1 for PHMM, CHMM and 

LHMM. CL-HMM performs similarly for both residents (92.76% for Resident 1 and 91.22% for Resident2). 

 

 

 
3http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html 
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Table 2. Results breakdown by resident 

 

 
4
R1 indicates Resident 1 and R2 indicates Resident 2 

Results 

 

Approach 

Overall over all 

activities 

Separated for Individual and Cooperative activities 

Precision Recall F-measure Individual 

activities (1) 

Cooperative 

activities (2) 
Average on 1&2 

P
H

M
M

 

R14 84.98 ± 9.9 87.08 ± 9.07 53.27 ± 47.12 72.39 ± 23.19 86.26 ± 9.66 84.87 ± 7.98 85.42 ± 8.23 

R2 83.16 ± 8.34 79.19 ± 12.26 85.55 ± 12.73 82.37 ± 8.11 85.56 ± 7.81 83.54 ± 7.97 84.46 ± 7.56 

Average on 

R1 &R2 
84.07 ± 7.09 83.13 ± 8.17 71.68 ± 24.04 77.4 ± 12.33 85.91 ± 6.85 84.2 ± 5.98 85 ± 6.06 

C
H

M
M

 

R1 87.85 ± 9.15 89.29 ± 8.61 60.76 ± 44.82 77.05 ± 22.37 89.55 ± 8.54 87.62 ± 8.25 88.48 ± 7.96 

R2 88.37 ± 7.1 82.13 ± 10.82 92.26 ± 8.31 87.2 ± 7.39 88.52 ± 6.23 87.21 ± 7.98 87.75 ± 6.63 

Average on 

R1 &R2 
88.11 ± 7.48 85.71 ± 8 78.53 ± 23.09 82.12 ± 12.86 89.03 ± 6.21 87.41 ± 6.82 88.17 ± 6.22 

C
L

-H
M

M
 R1 91.33 ± 8.15 91.11 ± 8.41 92.76 ± 21.87 91.78 ± 11.68 92.25 ± 6.99 92.54 ± 6.59 92.38 ± 6.71 

R2 91.61 ± 7.87 92.37 ± 6.64 91.22 ± 11.07 91.8 ± 6.96 91.12 ± 7.43 91.7 ± 7.99 91.35 ± 7.5 

Average on 

R1 &R2 
91.47 ± 7.5 91.74 ± 6.07 92.33 ± 11.24 91.91 ± 7.3 91.68 ± 6.1 92.12 ± 6.42 91.89 ± 6.17 

L
H

M
M

 

R1 92.36 ± 8.48 93.86 ± 7.89 65.19 ± 43.57 81.4 ± 21.32 93.25 ± 7.46 91.93 ± 7.56 92.48 ± 6.98 

R2 94.17 ± 5.05 90.8 ± 7.52 96.42 ± 5.48 93.61 ± 5.12 93.9 ± 5.44 93.43 ± 6.4 93.61 ± 5.63 

Average on 

R1 &R2 
93.27 ± 6.21 92.33 ± 6.95 82.77 ± 21.3 87.53 ± 11.22 93.58 ± 5.41 92.68 ± 6.18 93.1 ± 5.62 
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4.4. Experiment 2: Joint results for both residents 

4.4.1. Description 

In this second experiment, we are interested to measure the recognition performance of the pair of activities 

by both residents. The pair of activity labels is assumed to be correctly classified when both Resident 1 

activity and Resident 2 activity are correctly classified, that is when the combined activity label is correctly 

classified. As a result, the misclassification of individual activities of both residents impacts the overall 

classification outcome. In the inference step of CL-HMM and the LHMM, both models infer a combined 

activity label. PHMM and CHMM, on the other hand, infer individual activity labels which are then combined 

to form pairs of combined labels. In order to run this experiment, we first define the true label of the 

combined label for each pair of activities against which the inferred combined label is compared to compute 

the evaluation measures: overall accuracy, precision, recall and f-measure. The overall accuracy is equivalent 

to the joint accuracy measure computed in (Chiang et al., 2010).  

We also separate the overall accuracy results for parallel individual activities and cooperative activities. 

Note that residents are considered to perform parallel unrelated activities if Resident 1 activity and Resident 2 

activity are different (e.g., Resident1 activity label=1 and Resident 2 activity label=2). In contrast, residents 

perform cooperative activities when the activity labels are the same. Among all cooperative activities defined 

in the dataset which are 3, 7, 11, 13, only activity 13 appears for both residents at the same time in the training 

data. The activities 3, 7 and 11 appear with other parallel individual activities. 

4.4.2. Results 

Table 3 shows the results obtained by all models using leave-one-out cross validation. Clearly the outcome 

of accuracy, precision, recall and f-measure indicate that the proposed LHMM outperforms the rest of the 

models. In particular, the overall accuracy results indicate that CL-HMM performs much better than PHMM 

and CHMM; while results related to precision, recall and f-measure show that CL-HMM and CHMM perform 

similarly. Note also that although PHMM is known to report good results in the case of individual activities 

performed in parallel, results of overall recognition accuracy of individual activities show that PHMM is 

outperformed by CL-HMM, LHMM and CHMM by approximately 10.78%, 14.67% and 8.02% respectively. 

LHMM performs the best in the case of individual activities producing 3.89% and 6.65% better than CL-

HMM and CHMM respectively.  

For cooperative activities, PHMM achieves a very low performance and is less accurate than CHMM with 

a difference of 20.5% which is consistent with our expectations. The difference in performance between 
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Table 3.Joint Accuracy results for residents 

 
Results 

 

Approach 

Overall accuracy 

Overall accuracy separated for individual and cooperative 

activities 
Precision Recall Fmeasure 

Individual (1) Cooperative(2) Average on 1& 2 

PHMM 72.8 ± 11.13 74.79 ± 10.59 40.23 ± 46.22 59.55 ± 22.63 65.95 ± 9.94 71.89 ± 11.26 68.64 ± 10 

CHMM 81.65 ± 10.27 82.81 ± 10 60.72 ± 44.76 73.21 ± 22.08 73.77 ± 10.88 77.6 ± 10.74 75.5 ± 10.4 

CL-HMM 86.04 ± 10.84 85.57 ± 11.23 88.03 ± 28.77 86.78 ± 17.02 72.26 ± 11.01 76.75 ± 9.38 74.32 ± 9.81 

LHMM 88.23 ± 10.23 89.46 ± 9.58 65.21 ± 43.56 79.06 ± 21.63 81.46 ± 10.27 79.43 ± 10.35 80.3 ± 9.84 
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LHMM and CHMM, which is 4.49%, is much smaller than that between CL-HMM and CHMM (i.e., 

27.31%). This illustrates that CL-HMM is the best model for recognizing cooperative activities followed by 

LHMM. 

4.5. Comparison against existing studies on Multi-resident ADLs dataset of CASAS 

Several studies used the same dataset (Hsu et al., 2010)(Cook et al., 2010)(Singla et al., 2010)(Chen and 

Tong, 2014)(Chiang et al., 2010). The common metrics used by these studies are the average accuracy (i.e., 

recall) and the overall accuracy; hence, our decision to use these measures for evaluating the various models. 

(Cook et al., 2010) developed an integrated system for data association and activity recognition based on 

CRF and HMM respectively. This study reported an average accuracy of 50.67% and 90% respectively. 

While (Singla et al., 2010) reported an average accuracy of 60.60%  using HMMs. Nevertheless, these studies 

do not consider cooperative and parallel activities. 

(Hsu et al., 2010) reported an average accuracy of 64.16% for their independent CRFs for residents. 

(Singla et al., 2010) reported an average accuracy of 73.15% for their independent HMMs for residents (i.e., 

PHMM). The average accuracy of our PHMM is higher by 11% which is may be due to data pre-processing. 

Note that the authors did not provide details about the pre-processing of the activity data. Moreover, three-

fold cross validation was used; while in our case leave-one-out cross validation was applied. Nevertheless, 

these approaches only recognize parallel activities. 

The only studies that considered both parallel and cooperative activities are (Chen and Tong, 2014) and 

(Chiang et al., 2010). The authors in (Chen and Tong, 2014) applied a combined label approach on the pair of 

activity using HMM and CRF. They reported an average accuracy (i.e., computed from the average accuracy 

of Resident 1 and average accuracy of Resident 2) of 75.77% and 75.38% respectively. Although, the 

performance of our CL-HMM seems to be better than theirs, we do not have the same experimental setting.  

In (Chiang et al., 2010), a leave-one-out cross validation was applied producing an accuracy of 77.38%, 

82.82% and 85.58% and a joint accuracy of  61.78%, 74.78% and 78.26% for their PHMM, CHMM and 

CHMM with the interaction feature respectively. On the contrast, our PHMM and CHMM produce an overall 

accuracy of 84.07% and 88.11% and overall joint accuracy (First column in table 3) of 72.8% and 81.65% 

respectively. However, this comparison is subjective because the authors in (Chiang et al., 2010) did not 

provide details about the way they computed the accuracy. Note we used the same pre-processing as theirs.  

5. Conclusion 

In this paper we proposed two HMM-based models, Combined-label HMM and Linked HMM to 

investigate the problem of multi-resident activity recognition. These two models were compared against the 

state-of-the-art baseline methods which are Parallel HMM and Coupled HMM. Our first experiment shows 

that the proposed models outperform the baseline models for both cases of parallel individual activities and 

cooperative activities. In particular, CL-HMM not only significantly improves the recognition accuracy of 

cooperative activities but also performs equivalently in recognizing the individual activities of Resident 1 and 

Resident 2. That is, the recognition rate of the activities does not vary from Resident 1 to Resident 2 in 
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contrast to the other models.  This is an important aspect in a multi-resident setting as the recognition of the 

activities from one resident to another one is equally important.  

Our second experiment shows another important aspect of multiple-resident monitoring which is about the 

correct inference of the activities of all residents at any time. CL-HMM performed the best in the case of 

cooperative activities; while LHMM performed the best in the case of parallel individual activities. This is to 

say that the proposed models are not only valuable for dealing with cooperative activities but also for 

individual parallel ones. 

In the future, we will investigate real-world multi-residents activities in a more complex scenario as the 

data used is rather scripted and does not reflect on the real-world setting. Specifically, we plan to evaluate the 

proposed models  on another data collections like those of ARAS (Alemdar et al., 2013). 
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