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ABSTRACT Several methods have been proposed in the last two decades to recognize human activities
based on sensor data acquired in smart-homes. While most existing methods assume the presence of a single
inhabitant, a few techniques tackle the challenging issue of multi-resident activity recognition. To the best
of our knowledge, all existing methods for multi-inhabitant activity recognition require the acquisition of a
labeled training set of activities and sensor events. Unfortunately, activity labeling is costly and may disrupt
the users’ privacy. In this article, we introduce a novel technique to recognize multi-inhabitant activities
without the need of labeled datasets. Our technique relies on an unlabeled sensor data stream acquired from
a single resident, and on ontological reasoning to extract probabilistic associations among sensor events and
activities. Extensive experiments with a large dataset of multi-inhabitant activities show that our technique
achieves an average accuracy very close to the one of state-of-the-art supervised methods, without requiring
the acquisition of labeled data.

INDEX TERMS Activity recognition, multi-resident activities, hybrid reasoning, unsupervised reasoning.

I. INTRODUCTION
The ability to recognize the activities going on in smart-
homes is a central requirement in several application
domains, including healthcare and home automation [1]. As a
consequence, a plethora of activity recognition methods have
been proposed in the last decades to recognize activities
based on sensor data and artificial intelligence algorithms [2].
However, most activity recognition methods assume the pres-
ence of a single person in the home, while it is a common
situation for people to live together and to concurrently exe-
cute activities. Unfortunately, techniques for single-resident
activity recognition are ineffective when multiple persons
concurrently execute activities in the smart space. Indeed,
multiple streams of sensor events generated by the execu-
tion of different activities by different persons are treated as
a whole by the single-resident activity recognition system.
In general, the resulting single stream of sensor events does
not match any activity model, thus confusing the recognition
system. This fact limits the applicability of single-resident
methods to restricted scenarios or to specific user categories.
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A few previous works have tackled the challenging issue
of recognizing multi-resident activities [3]. Existing multi-
resident techniques generally apply two steps-recognition.
In the first step, ‘‘data association’’ is applied to identify the
resident who triggered each sensor event. In the second step,
the result of data association is used to recognize the activities
of each resident. Activity recognition is generally achieved by
probabilistic models, such as Hidden Markov Models [4] and
Conditional Random Fields [5], or by other machine learning
algorithms.

To the best of our knowledge, all existing multi-resident
activity recognition systems are based on supervised learning:
they rely on a labeled training set of sensor data and activities.
Unfortunately, activity labeling by an external observer may
undermine the inhabitants’ privacy. Moreover, the acquisition
of such datasets incurs high overhead. In the literature, it is
reported that labeling one hour of single-user activities may
require from 30 minutes to 10 hours, depending on the data
acquisition modality, and on the level of detail of annota-
tions [6], [7]. Of course, labeling is even harder whenmultiple
activities are executed concurrently by multiple persons in a
smart environment.

In this article, we propose a novel method to recog-
nize multi-resident activities without the need of labeled
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datasets. Our method relies on a weaker form of data asso-
ciation, which we name ‘‘resident separation’’, that consists
in determining whether a pair of observed sensor events
was generated by the same resident or by different resi-
dents. We propose an unsupervised data mining method to
perform resident separation based on a a stream of sensor
events acquired in the smart-home during the execution of
everyday activities by a single resident. Then, we apply
knowledge-based reasoning to recognize the multi-resident
activities going on in the smart-home considering the mined
resident separation model and the stream of observed sen-
sor events. Unsupervised activity recognition is achieved
exploiting semantic correlations among sensor events and
activity classes, which are extracted by reasoning with an
OWL 2 ontology [8].

We have implemented our algorithms, and experimented
our system with a well-known dataset of multi-resident activ-
ities performed by 26 couples of individuals in a smart-
home instrumented with several kinds of sensors. The results
show that our unsupervised method for resident separation is
accurate, correctly classifying 87.9% pairs of sensor events
as either being generated by the same resident or by different
residents. Moreover, our multi-resident activity recognition
algorithm achieves an accuracy close to the one obtained by
a state-of-the-art supervisedmethod based onHiddenMarkov
Models, without requiring any data labeling.

The rest of the paper is structured as follows. Section II
discusses related work. Section III introduces our multi-
inhabitant activity recognition system. Algorithms for resi-
dent separation are illustrated in Section IV, while Section V
explains the algorithms for activity recognition. Section VI
reports experimental results, while Section VII concludes the
paper and illustrates directions for future work.

II. RELATED WORK
Techniques for multi-resident activity recognition are gener-
ally composed by two parts: data association, and activity
recognition. The goal of the former is to associate each sensor
event to the resident who triggered it. The latter aims at
recognizing the activity of each resident based on the result
of data association. Some studies, including [9]–[12], focus
on the problem of data association, while others consider this
problem already solved, and directly focus on the recognition
of activities [13]–[16].

Activity recognition systems may be classified in two
categories: data-driven or knowledge-based ones [2]. To the
best of our knowledge, all existing methods for recognizing
multi-resident activities adopt a data-driven approach based
on supervised learning [3]. On the contrary, in our work,
we propose a hybrid technique combining data-driven resi-
dent separation (i.e., a weaker form of data association) and
knowledge-based activity recognition. A strong point of our
work is that it does not rely on labelled activity datasets,
whose acquisition is costly and may negatively impact the
resident privacy. Furthermore, we do not need any tech-
nique or device to perform data association, because we apply

resident separation based on streams of unlabeled sensor
events.

Different techniques and tools have been proposed to per-
form accurate data association using cameras or wearable
devices [17], [18]; however, those tools are often perceived as
obtrusive by several people [19]. Hence, in our work, we aim
at performing multi-resident activity recognition without the
use of cameras or specific wearables.

Crandall et al. propose to use Hidden Markov Models
(HMM) for resident identification [9]. In their model, the hid-
den states represent the possible residents, while observa-
tions represent the sensor events emitted as a consequence
of the residents’ activities. Their supervised method achieved
around 90% accuracy on different datasets. However, their
method relies on a dataset of sensor events labeled with the
resident that triggered the event, while our method does not
require any labeled training set. Cook et al. propose the use
of event density maps and Bayesian models to automati-
cally track resident movements and sensors activations in
sensor-dense environments such as smart-homes and smart-
workplaces [10]. The result of resident tracking is later
used to recognize resident interactions through supervised
machine learning using HMM. The use of Conditional Ran-
dom Fields was proposed by Hsu et al. for both data asso-
ciation and multi-resident activity recognition [11]. Chen
and Tong propose the use of combined labels to represent
the activity performed simultaneously and independently by
multiple residents [12], and adopt supervised probabilistic
models for activity recognition.

Singla et al. propose the use of HMM for multi-resident
activity recognition assuming exact knowledge of data asso-
ciation [13]. With exact data association, a HMM is built
for each resident, achieving 73.15% accuracy on activity
recognition on the CASAS multi-resident dataset, which is
the same dataset that we use in this work. Without data
association, a single HMM is built for the two residents,
and accuracy drops to 60.6%. Their results indicate that the
ability to associate sensor events to different inhabitants is of
foremost importance for multi-resident activity recognition.
Exact knowledge of data association is also assumed by Ul
Alam et al., which mine association rules from labeled data
to reduce the complexity of a Hierarchical Dynamic Bayesian
Network to capture correlations among sensor events and
activities [14]. Other researchers assumed exact knowledge
of data association, and applied different supervised learning
algorithms, including Recurrent Neural Networks used by
Tran et al. in [15], and Incremental Decision Trees used by
Prossegger and Bouchachia in [16].

Most existing techniques for multi-resident activity recog-
nition do not explicitly consider the interaction among
inhabitants. However, modeling interaction may increase
recognition rates when the residents perform collaborative
activities. For this reason, Chiang et al. introduce a binary
‘‘interaction feature’’ attribute stating whether two residents
are in the same room [20]. Gu et al. use Emerging Patterns
distinguishing individual and collaborative activities [21].
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FIGURE 1. High-level flow chart of our multi-resident activity recognition
framework.

However, all these methods require the acquisition of labelled
training sets, and accurate tools or devices to associate each
sensor event to the resident that triggered it. On the contrary,
our technique does not require labeled data, and relies on the
existing smart-home sensor infrastructure, without the need
to wear or install additional hardware for data separation.

III. MULTI-INHABITANT ACTIVITY
RECOGNITION SYSTEM
Before explaining our algorithm for resident separation,
we provide a formal description of the problem. We denote
by event type the pair:

event_type = 〈sensor, value〉 (1)

which indicates a possible value of a given sensor. For
instance, the event type 〈fridge_door_sensor, open〉 indicates
that the door of the fridge has been opened.

An actual occurrence of an event type is given by a sensor
event, that is a tuple:

sensor_event = 〈timestamp, event_type, resident〉. (2)

A sensor event indicates that a certain event_type occurred at
a certain timestamp as a consequence of the action of a given
resident. For simplicity, we denote that the sensor event was
triggered by a given resident. For instance, the sensor event
〈‘2019-05-29 11:58:01.424’, fridge_door_sensor, open,
Alice〉 indicates that the fridge door has been opened on
2019-05-29 at 11:58:01.424 due to an action of the resident
Alice.

Resident separation consists in determining whether a
pair of sensor events were triggered by the same (possibly
anonymous) resident, or by different residents. The objective
is to facilitate activity recognition when multiple residents
are doing activities in the same environment. Note that this
problem does not correspond to the data association problem
described in Section II, which aims at identifying the specific
individual that activated the sensor.

A. FRAMEWORK
In this work, we assume that two residents live together in a
smart home. Through an infrastructure of sensors, the smart
home system detects the basic actions of residents (e.g., open-
ing the fridge, entering the kitchen), which generate sensor
events. Sensor events are processed by an artificial intel-
ligence module to recognize the residents’ activities (e.g.,
cooking, cleaning).

The high-level scheme of our system is represented in
Figure 1. The first step Sensor installation consists in setting
up the sensor infrastructure. As in any smart-home system,

when a new sensor is installed, it is necessary to assign
a semantics to the data it produces, in order to profitably
use the data for activity recognition. For example, for the
recognition of the ‘cooking’ activity, it is useful to knowwhen
the sensors connected to the stoves have been triggered by a
resident. In some cases, it may also be necessary to specify
the position of the sensor within the home. We assume that
the infrastructure includes a network system to convey the
data to an artificial intelligence module, deployed either in
the home or on the cloud, for processing.

In the second step (Data acquisition), for a certain initial
period the system acquires unlabeled sensor events to be used
for resident separation. Those data are acquired when only
a single resident is doing activities in the home. Different
methods may be used to automatically detect the presence of
a single person in the home, based on power consumption
analysis or inexpensive sensors [22], but this aspect is out
of the scope of this article. Single-resident sensor events are
used by our system to build the model for resident separation.
As shown in our experiments reported in Section VI, a few
days of unsupervised data acquisition are sufficient to reliably
build the model.

Once enough data has been acquired, our system processes
the data to build the model for Resident separation. In partic-
ular, for each couple of sensor events 〈se1, se2〉 generated at
time t1 and t2, respectively, the model states whether se1 and
se2 were likely triggered by the same resident or by different
residents. The model of resident separation is built offline.
The model can be refined incrementally when new single-
resident sensor events are available by re-executing the model
construction algorithm.

Finally, considering the predictions of online resident sep-
aration, the Activity recognition algorithm is in charge of
recognizing the current activities carried out in the home,
as described in Section V. We denote by activity class an
abstract activity (e.g., eating or working), and by activity
instance the actual occurrence of an activity of a given class
during a certain time period.

B. PROBLEM FORMULATION
We model the resident separation problem as a binary classi-
fication task, in which each record is a pair of sensor events:

record = 〈se1, se2〉, (3)

and the class of the record is 1 if se1 and se2 were triggered
by the same resident; it is 0 otherwise. Consequently, in order
to evaluate the accuracy of our resident separation algorithm,
we define:
• True Positive (TP): records in which the sensor events
are activated by the same resident, and correctly classi-
fied by our algorithm,

• False positive (FP): records in which the sensor events
are activated by different residents, and misclassified,

• True negative (TN): records in which the sensor
events are activated by different residents, and correctly
classified,
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FIGURE 2. Architecture for multi-inhabitant activity recognition.

• False negative (FN): records in which the sensor events
are activated by the same resident, and misclassified.

As explained before, in order to make our system fea-
sible to real-world applications, we adopt an unsupervised
approach. In fact, a supervised approach requires, in an initial
period, the annotation of the activities performed by the
inhabitants, but it is well known that activity annotation is
costly and obtrusive. In an unsupervised system, on the other
hand, no manual annotation is required: this brings benefits
in terms of costs, comfort and usability of the system in a
real-world context.

C. ARCHITECTURE
Figure 2 shows our architecture for multi-inhabitant activity
recognition. The smart-home is instrumented with sensors
to detect presence at certain locations, and interactions with
items, devices and furniture. Raw sensor events are collected
by the smart home infrastructure, and passed to the Semantic
aggregation module. That module is in charge of applying
simple preprocessing rules to transform raw data into sen-
sor events. For example, if at time t the fridge door binary
sensor S_11 produces a raw value of type ‘‘1’’, the mod-
ule transforms the raw sensor data into the sensor event
〈t, fridge_door_sensor , open, r〉. The stream of sensor events
is passed to the Resident separation module, that applies res-
ident separation according to the trained model, as explained
in Section IV. Finally, the stream of sensor events, as well
as the classified sensor records, are used by the Activity

FIGURE 3. Extraction of the resident separation model according to the
consecutive events approach.

recognition module to recognize the activities occurring in
the smart home based on an ontological model, as explained
in Section V.

IV. RESIDENT SEPARATION ALGORITHMS
Since our algorithm is unsupervised, we use unlabeled
records to extract statistics useful for our classification task.
In particular, our intuition is that if two sensor events of given
types often occur in consecutive temporal order (e.g., events
of type open_fridge_door and close_fridge_door, respec-
tively), or within a small time interval, they are likely trig-
gered by the same person in order to perform a certain
activity or a set of concurrent activities. On the contrary,
if two sensor events of given types are rarely observed in
temporal proximity (e.g., events of type open_fridge_door
and flush_the_toilet, respectively), they are likely triggered
by different residents executing different activities in the
home. Hence, for building our resident separation model,
we mine the training set of sensor events to extract statistical
information about the co-occurrence of events of given sensor
types, and use it to perform the classification of new records.

Formally, we represent the training set as a temporal
sequence of sensor events:

T = 〈se1, se2, . . . , sen〉,

where, for each couple (sei, sej) with i < j, sei was generated
before sej. We denote by type(se) the event type of the sensor
event se.
We have devised different approaches and algorithms for

building the resident separation model. The first approach is
named consecutive events. With this approach, the model
considers two statistical measures. The first measure is named
event type occurrences. For each couple of event types
c = 〈eti, etj〉, we count the number of consecutive events
〈sek , sek+1〉 in T of types eti and etj, irrespectively from their
order:

nc =
∣∣∣{〈sek , sek+1〉 ∈ T :(
type(sek ) = eti ∧ type(sek+1) = etj

)
∨

(
type(sek ) = etj ∧ type(sek+1) = eti

)}∣∣∣. (4)
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FIGURE 4. Extraction of the resident separation model according to the
temporally close events approach.

Then, when we observe a consecutive pair of sensor events
〈sek , sek+1〉 of types eti and etj, respectively, we compute the
value of nc, where c = 〈eti, etj〉. If the value of nc is below a
certain threshold τ , we classify those events as triggered by
different residents; we classify them as triggered by the same
resident otherwise.

The second measure is named event type frequency fc,
and relies on the following formula:

fc(r) =
nc
nsek

, (5)

where nc is the number of occurrences of the event types
c in T , and nsek is the number of occurrences of type(sek )
events in T . Event type frequency is introduced because the
number of occurrences of the couple of event types does
not consider the numerousness of the individual types com-
posing the couple. For example, we could have an event
type et1 with 3 occurrences only in T , which in all 3 cases
is observed immediately before a sensor event of type et2.
In this case, although the number of occurrences of events of
those types is low, its event type frequency is high, possibly
indicating that the two events are related to the execution of
a certain activity. Then, in order to classify pairs of sensor
events, we adopt the same method explained above. The
algorithm pseudo-code for building the model is reported in
Algorithm 3.

The second approach is named temporally close events.
With this approach, we consider all the couples of sensor
events generated within a time window of ε seconds, includ-
ing non-consecutive sensor events. In fact, it is likely that sen-
sors generated within a restricted time windowwere triggered
by the activity of a single resident. We denote by τ (se) the
UNIX timestamp of a sensor event. Given a couple of event
types c = 〈eti, etj〉, we compute its event type occurrences
measure nc according to the formula below:

n′c =
∣∣∣{〈sel, sek 〉 ∈ T :(
type(sel) = eti ∧ type(sek ) = etj

)
∧ | τ (sel)− τ (sek )| ≤ ε

}∣∣∣. (6)

FIGURE 5. Hidden Markov Model for activity recognition.

The event type frequency measure is computed as:

fc(r) =
n′c
nsek

, (7)

where nsek is the number of occurrences of type(sek ) events
in T . The classification method is the same used in the
consecutive events approach.

V. RECOGNITION OF MULTI-INHABITANT ACTIVITIES
The Activity recognition module receives the stream of
sensor events, as well as the results of the resident sep-
aration algorithm. The goal of activity recognition is to
associate each sensor event to the class of the activity that
generated it.

We propose a novel unsupervised methods for activ-
ity recognition, which relies on Hidden Markov Models
(HMM). In the literature, HMMs have been extensively
used for supervised activity recognition [2]. HMM is a sta-
tistical Markov model, characterized by joint probabilities
among random variables representing hidden and observable
states [23].

Figure 5 represents our formulation of HMM for activ-
ity recognition. The observable layer consists of the sensor
events, while the hidden layer consists of the performed
activities. We denote by A the set of activity classes, and by
E the set of event types. The system is characterized by the
following probability distributions:

• emission probabilities represent the probability that a
sensor event type sei ∈ E is observed given that the
current activity class is aci ∈ A;

• transition probabilities represent the probability of the
current activity class being aci+1 given that the previous
activity class was aci;

• initial probabilities represent the probability distribution
of the first activity class ac1.

Based on an observed sequence of sensor events and on the
HMM parameters, we use the Viterbi algorithm [24] to derive
the most likely sequence of activities that may have generated
the observations.

In the following, we present two approaches to instan-
tiate the parameters of the HMM. The first, named base-
line, is supervised, and it is commonly used for activity
recognition [2]. The second is unsupervised, and it is based
on automatic extraction of the HMM parameters through
knowledge-based reasoning. We use the former as a baseline
to evaluate the latter, which is the unsupervised HMM-based
approach that we propose in this work.
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A. BASELINE SUPERVISED HMM-BASED METHOD
In the baseline method, we extract the HMM parameters
from a labelled dataset D of sensor data acquired during the
execution of a set of activities.

The emission probability matrix EPM contains in each cell
[aci, sej] the conditional probability of observing a sensor
event type sej given that the current activity class is aci. This
value is computed according to the following formula:

EPM [sej, aci] =
occurrences(sej, aci)
occurrences(aci)

, (8)

where we denote by occurrences(sej, aci) the number of
times that sej is observed during aci in D, while
occurrences(aci) is the number of times that aci occurs in
D.

The transition probability matrix TPM is calculated for
each cell [aci, acj] according to the following formula:

TPM [aci, acj] =
occurrences(aci, acj)
occurrences(aci)

, (9)

where we denote by occurrences(aci, acj) the number of
times that a sensor event emitted by aci is observed in D,
followed by the observation of a sensor event emitted by acj.
We denote by occurrences(aci) the total number of sensor
events emitted by aci in the dataset.
The initial probability array IPA contains for each activity

class aci the probability that it is the first performed activity
class. The formula is:

IPA[aci] =
occurrences(aci)t1

Nres
, (10)

where occurrences(aci)t1 is the number of times that the first
activity of a resident k inD is aci, andNres denotes the number
of residents in D.

B. UNSUPERVISED HMM-BASED METHOD
In order to avoid the acquisition of a labelled dataset of
activities, we propose a novel technique to derive the HMM
parameters using a knowledge-based approach. In particu-
lar, our method relies on semantic correlations [25], which
represent probabilistic dependencies among event types and
activity classes. Given an event type et ∈ E and an activity
class ac ∈ A (where E is the set of event types and A is the
set of activity classes), the semantic correlation function SC :
E × A → [0, 1] gives the probability of et being triggered
by the execution of an activity of class ac. As a consequence,
given any event type, SC is a probability distribution over all
activity classes:

∀ et ∈ E
∑
ac∈A

SC(et, ac) = 1. (11)

By definition, semantic correlations correspond to the
emission probabilities of our HMM. In order to derive them in
an unsupervised fashion, we compute semantic correlations
extending the knowledge-based method described in [26].
In particular, we re-use an OWL 2 ontology [8] modeling

activities, context, and sensors in the smart home. The ontol-
ogy is available online.1 In the ontology, activities are defined
in terms of the key objects that are typically used during their
execution.
Example 1: For instance, the ontology defines Prepar-

ingHotMeal as an activity that requires the usage of a
CookingInstrument.

Moreover, the ontology is filledwith instances of sensors in
the smart home that are related to the usage of certain objects.
Example 2: Suppose that the smart home includes a power

sensor monitoring the usage of the oven. Then, an instance
of Sensor in the ontology is related by the property detect-
sUsageOf to an instance of the class Oven, which is a subclass
of CookingInstrument.

Then, though ontological reasoning, we compute the cor-
relations among sensor types and activity classes.
Example 3: Continuing the above example, the ontologi-

cal reasoner determines that the oven power sensor is related
to the activity ‘‘preparing hot meal’’, since it detects the usage
of a cooking instrument, which is a key object for that activity
according to its ontological definition.

The method to derive semantic correlations among object
sensors and activity classes is described in detail in [26].
In our extension, we also consider the presence of the user
at certain locations as an indicator of a given activity. For
instance, PreparingMeal is defined in our ontology as an
activity that is typically executed in the kitchen. Hence, using
the same method described above, we derive semantic corre-
lations among presence sensors deployed at certain locations
and activity classes.

We manually set transition probabilities based on common
sense. Since a user normally performs the same activity for
a given lapse of time before changing activity, we assign a
higher probability p to transitions between the same activity
class, and we uniformly distribute the remaining (1−p) prob-
ability to transitions to the other classes. However, depending
on the set of considered activities, the transition matrix can
be fine-tuned based on the typical order of activity execu-
tion. For instance, it is common that ‘‘eating’’ happens after
‘‘cooking’’, while the contrary is unlikely.

Finally, we set the initial probability to the uniform dis-
tribution, since activity recognition may start at any time
of the day and on every possible context condition; hence,
we have no knowledge to set initial probability values based
on common sense.

C. UNSUPERVISED HMM-BASED METHOD WITH
RESIDENT SEPARATION
In the unsupervised HMM-based method with resident sep-
aration, we exploit the result of resident separation to
assign each observed sensor event to an anonymous resident.
Of course, the number of residents has in impact on the
resident separation algorithm. For the sake of this work,
we assume that there are two residents in the smart-home.

1http://sites.unica.it/domusafe/adlont/
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TABLE 1. List of activities in the CASAS dataset.

The first event is assigned to an arbitrary ‘‘resident 0’’.
Then, if the record composed by the first and second events
are classified as generated by the same resident, also the sec-
ond event is assigned to ‘‘resident 0’’. Otherwise, it is
assigned to a different ‘‘resident 1’’. We repeat the same
procedure for the record composed by the second and third
sensor events, and so on.

Finally, we separately apply the unsupervised HMM-based
method described in Section V-B to each resident’s stream of
sensor events.

VI. EXPERIMENTAL EVALUATION
In this section, we report our experiments about resident
separation and multi-inhabitant activity recognition.

A. DATASET AND EXPERIMENTAL SETUP
In our experiments, we used a real-world dataset acquired and
labeled by researchers of the Center for Advanced Studies in
Adaptive Systems (CASAS) at Washington State University.
The dataset is available online.2

The dataset was acquired in a smart-home instrumented
with more than 60 sensors, including passive infrared motion
sensors, temperature sensors, and sensors attached to doors,
furniture, and items. Based onmanual inspection, each sensor
event was manually annotated with the resident that triggered
it, and with the activity that he/she was performing.

The data were collected while two participants performed
a set of fifteen scripted activities in a smart-home. The activ-
ities were executed by 26 pairs of residents. The considered
activities are listed in Table 1.

Since our activity recognition method does not aim at
recognizing the identity of the actor, we had to disregard
certain activities. In particular, we disregarded activities 4 and
10 because they are identical, except for the actor’s iden-
tity. For the same reason, we disregarded activities 14 and
15, since they only differ on the actor and used tools, and
the smart home does not provide any sensor to detect the

2http://casas.wsu.edu/datasets/adlmr.zip

interaction with those tools. Finally, we disregarded activity
5 (watering plants), since the smart home does not provide
enough sensors to recognize it. Indeed, the sensor infrastruc-
ture cannot detect events related to the interaction with the
watering can or with plants, which are essential to detect that
activity. Hence, in the following, we report on experiments
performed using the remaining 10 activities only.

When evaluating the recognition techniques, we count the
number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). The metrics used to
evaluate the effectiveness of our algorithms are:
• accuracy is the percentage of correct predictions of the
classifier and is defined as: TP+TN

TP+TN+FP+FN ;
• precision = TP

TP+FP ;
• recall = TP

TP+FN ;
• F1 score is the harmonic mean of precision and recall

and is defined as:
2 · TP

2 · TP+ FP+ FN
.

B. RESIDENT SEPARATION
We model the resident separation problem as a binary classi-
fication problem, in which the positive class for an instance
〈sei, sej〉 is ‘‘same resident’’ (i.e., both sei and sej were
triggered by the same resident), while the negative class is
‘‘different residents’’.

In these experiments, we evaluated our resident separa-
tion algorithms introduced in Section IV. We applied cross-
validation with 26 iterations, iteratively using one couple
of residents data for test, and the other 25 couples data for
training the model. We recall that, since our technique is
unsupervised, while training themodel for resident separation
we do not consider the dataset labels (residents and activities),
but only the unlabeled sensor events.

1) CONSECUTIVE EVENTS APPROACH
At first, we evaluated the consecutive events approach. The
results of our algorithm based on event type occurrences are
listed in Table 2. We evaluated the technique using increasing
values of the τ threshold. The best results are obtained with

VOLUME 8, 2020 201991



D. Riboni, F. Murru: Unsupervised Recognition of Multi-Resident Activities in Smart-Homes

TABLE 2. Results with consecutive events approach, event type
occurrences.

TABLE 3. Results with consecutive events approach, event type frequency.

TABLE 4. Results with temporally close events approach, event type
frequency, 1 second time window.

τ = 8, achieving and accuracy of 0.8741. In general, reducing
the value of τ , we reduce the number of false negatives (i.e.,
consecutive sensor events generated by the same resident
but wrongly classified), but we increase the number of false
positives. Values of τ between 6 and 8 provide the best trade-
off between false positives and false negatives.

We achieve slightly better results using the event type
frequency measure. Results are reported in Table 3. The best
results are obtained with values of threshold τ of 0.01 and
0.02. Even with event type frequency, reducing the τ value
determines a reduction of false negatives and an increase of
false positives.

2) TEMPORALLY CLOSE EVENTS APPROACH
Results obtained with the temporally close events approach
are in line with those of the consecutive events one. In partic-
ular, the best results are obtained using the frequency-based
measure; we do not report results achieved by the occurrency-
based measure due to lack of space. Results using a time
window of 1, 2, and 3 seconds are shown in Tables 4, 5 and 6,
respectively.

TABLE 5. Results with temporally close events approach, event type
frequency, 2 seconds time window.

TABLE 6. Results with temporally close events approach, event type
frequency, 3 seconds time window.

Overall, the achieved accuracy is slightly lower than the
one obtained with the consecutive events approach. This
result may be due to the nature of the dataset, which contains
scripted activities carried out in short time periods. When
training the model with activities carried out in naturalistic
environments for longer time periods, we expect to obtain
higher accuracy using the temporally close events approach.

In the rest of the experiments, we adopt the consecutive
events approach, using the event type frequency measure.
Overall, with that method we achieved an accuracy close to
88%. Compared to other approaches, we consider this result
as a positive one. For instance, the supervised HMM-based
method for data association proposed in [9] achieves accu-
racy of around 90%. The accuracy of our method is slightly
lower, but our method has the advantage of not requiring the
acquisition of a training set of sensor events labeled with the
resident that triggered the events.

C. ACTIVITY RECOGNITION
In the following experiments, we evaluate our activity recog-
nition method based on resident separation. For each sensor
event se, the objective is to identify the class of the activity
that triggered it.

1) BASELINE SUPERVISED HMM-BASED METHOD
As explained in Section V-A, we use this supervised method
as a baseline to evaluate our unsupervised technique. For the
sake of this experiment, we extract theHMMparameters from
the data, using the same cross validation approach explained
in Section VI-B. However, the activities in the dataset were
scripted imposing a fixed order of activity execution. This
fixed order is not representative of a real-world situation,
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TABLE 7. Unsupervised HMM-based method.

in which humans perform most activities in variable order.
Hence, extracting the TPM from the data would determine a
strong bias, which would affect the results. For this reason,
we manually set the TPMmatrix with diagonal values d , uni-
formly distributing the remaining probability values among
the other cells. We choose the value d = 0.9 because it
achieves the highest recognition rates in our experiments.

We evaluate the supervised HMM approach without data
association; i.e., considering the whole sensor data stream as
triggered by a unique resident. The achieved average accu-
racy is 0.6962.

2) UNSUPERVISED HMM-BASED METHOD
In this experiment, we evaluate the unsupervisedHMM-based
technique described in Section V-B. The achieved results
are reported in Table 7. Overall, the achieved accuracy is
0.6711. Compared with the supervised HMM-based method
without data association, the unsupervised method is less
accurate. This result is explained by the fact that seman-
tic associations derived by ontological reasoning are less
accurate than emission probabilities computed from the data.
Indeed, semantic correlations represent generic relationships
among sensor events and activities. On the contrary, emission
probabilities extracted from the data are fine-tuned to the
specific environment.

By closely inspecting the results, we notice that certain
activities are particularly hard to recognize. The lowest F1
score was achieved by activity 9 (set dining room table), prob-
ably because it is an activity involving several movements
and items use, that are difficult to distinguish from other
activity executions. On the contrary, activity 1 (fill medication
dispenser) achieved the highest F1 score, probably because it
involves the usage of specific items, and the presence at a
specific location.

3) UNSUPERVISED HMM-BASED METHOD WITH
RESIDENT SEPARATION
Finally, we evaluate the HMM-based technique described in
Section V-C, which exploits our resident separation method.
Results are shown in Table 8. Overall, the achieved accu-

racy is 0.7213. Hence, our unsupervised technique achieves
higher accuracy than the baseline supervised HMM-based
method. An additional benefit of our technique is that it does

TABLE 8. Unsupervised HMM-based method with resident separation.

not need the acquisition of labelled datasets of activities and
sensor events. Moreover, the introduction of resident sepa-
ration into the unsupervised HMM-based method improves
accuracy of 0.05.

Compared to other techniques applied to the same dataset,
the accuracy obtained by our unsupervised method is close
to the one obtained by the supervised HMM-based tech-
nique reported in [13]. Indeed, that method achieves 0.7315
accuracy assuming exact data separation. On the contrary,
our method does not assume neither data separation, nor
the existence of a labeled training set. Our method also
outperforms the supervised technique based on Conditional
Random Fields proposed in [11], which achieves 0.6416
accuracy.

By comparing the results of the unsupervised HMM-based
method with and without resident separation, we notice that
resident separation improves the F1 score of most activi-
ties. The only activities that are negatively affected by res-
ident separation are activities 3, 11, and 13. In fact, in all
those activities, a resident asks help to the other resident to
complete the task. Hence, they are group activities, which
do not benefit from separating the actors. If we consider
only the individual (i.e., non-group) activities in the dataset,
the introduction of resident separation increases the accuracy
from 0.7 to 0.77. These results show that the introduction of
our unsupervised resident separation technique determines a
relevant improvement of recognition rates.

VII. CONCLUSION AND FUTURE WORK
In this article, we tackled the challenging issue of recognizing
multi-resident activities based on sensor data acquired from
a smart-home infrastructure. We have proposed a hybrid
method based on unsupervised data mining, and on onto-
logical reasoning. To the best of our knowledge, this is the
first effort to recognize multi-resident activities without the
need of labeled training data. Experimental results show
that our method achieves an accuracy close to the one of a
state-of-the-art supervised technique. Indeed, our unsuper-
vised method achieves 0.7231 average accuracy, while the
state-of-the-art supervised technique achieves 0.7315 aver-
age accuracy.

Several research challenges remain open. First of all, our
current resident separation method assumes the presence of
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at most two persons in the home. Extending our method to
more residents is not trivial, both for the technical issues
introduced by the extension, and for the lack of extensively
labeled datasets to evaluate the technique with more than
two inhabitants. Another limitation of our resident separation
framework is the lack of specific support for handling col-
laborative activities, in which multiple persons execute the
tasks needed to perform a given activity. As future work,
we will also investigate methods to explicitly model inter-
action among inhabitants, in order to effectively recognize
collaborative activities.
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