60 research outputs found

    Portfolios in Stochastic Local Search: Efficiently Computing Most Probable Explanations in Bayesian Networks

    Get PDF
    Portfolio methods support the combination of different algorithms and heuristics, including stochastic local search (SLS) heuristics, and have been identified as a promising approach to solve computationally hard problems. While successful in experiments, theoretical foundations and analytical results for portfolio-based SLS heuristics are less developed. This article aims to improve the understanding of the role of portfolios of heuristics in SLS. We emphasize the problem of computing most probable explanations (MPEs) in Bayesian networks (BNs). Algorithmically, we discuss a portfolio-based SLS algorithm for MPE computation, Stochastic Greedy Search (SGS). SGS supports the integration of different initialization operators (or initialization heuristics) and different search operators (greedy and noisy heuristics), thereby enabling new analytical and experimental results. Analytically, we introduce a novel Markov chain model tailored to portfolio-based SLS algorithms including SGS, thereby enabling us to analytically form expected hitting time results that explain empirical run time results. For a specific BN, we show the benefit of using a homogenous initialization portfolio. To further illustrate the portfolio approach, we consider novel additive search heuristics for handling determinism in the form of zero entries in conditional probability tables in BNs. Our additive approach adds rather than multiplies probabilities when computing the utility of an explanation. We motivate the additive measure by studying the dramatic impact of zero entries in conditional probability tables on the number of zero-probability explanations, which again complicates the search process. We consider the relationship between MAXSAT and MPE, and show that additive utility (or gain) is a generalization, to the probabilistic setting, of MAXSAT utility (or gain) used in the celebrated GSAT and WalkSAT algorithms and their descendants. Utilizing our Markov chain framework, we show that expected hitting time is a rational function - i.e. a ratio of two polynomials - of the probability of applying an additive search operator. Experimentally, we report on synthetically generated BNs as well as BNs from applications, and compare SGSs performance to that of Hugin, which performs BN inference by compilation to and propagation in clique trees. On synthetic networks, SGS speeds up computation by approximately two orders of magnitude compared to Hugin. In application networks, our approach is highly competitive in Bayesian networks with a high degree of determinism. In addition to showing that stochastic local search can be competitive with clique tree clustering, our empirical results provide an improved understanding of the circumstances under which portfolio-based SLS outperforms clique tree clustering and vice versa

    Certifying Correctness for Combinatorial Algorithms : by Using Pseudo-Boolean Reasoning

    Get PDF
    Over the last decades, dramatic improvements in combinatorialoptimisation algorithms have significantly impacted artificialintelligence, operations research, and other areas. These advances,however, are achieved through highly sophisticated algorithms that aredifficult to verify and prone to implementation errors that can causeincorrect results. A promising approach to detect wrong results is touse certifying algorithms that produce not only the desired output butalso a certificate or proof of correctness of the output. An externaltool can then verify the proof to determine that the given answer isvalid. In the Boolean satisfiability (SAT) community, this concept iswell established in the form of proof logging, which has become thestandard solution for generating trustworthy outputs. The problem isthat there are still some SAT solving techniques for which prooflogging is challenging and not yet used in practice. Additionally,there are many formalisms more expressive than SAT, such as constraintprogramming, various graph problems and maximum satisfiability(MaxSAT), for which efficient proof logging is out of reach forstate-of-the-art techniques.This work develops a new proof system building on the cutting planesproof system and operating on pseudo-Boolean constraints (0-1 linearinequalities). We explain how such machine-verifiable proofs can becreated for various problems, including parity reasoning, symmetry anddominance breaking, constraint programming, subgraph isomorphism andmaximum common subgraph problems, and pseudo-Boolean problems. Weimplement and evaluate the resulting algorithms and a verifier for theproof format, demonstrating that the approach is practical for a widerange of problems. We are optimistic that the proposed proof system issuitable for designing certifying variants of algorithms inpseudo-Boolean optimisation, MaxSAT and beyond

    A conceptual heuristic for solving the maximum clique problem

    Get PDF
    The maximum clique problem (MCP) is the problem of finding the clique with maximum cardinality in a graph. It has been intensively studied for years by computer scientists and mathematicians. It has many practical applications and it is usually the computational bottleneck. Due to the complexity of the problem, exact solutions can be very computationally expensive. In the scope of this thesis, a polynomial time heuristic that is based on Formal Concept Analysis has been developed. The developed approach has three variations that use different algorithm design approaches to solve the problem, a greedy algorithm, a backtracking algorithm and a branch and bound algorithm. The parameters of the branch and bound algorithm are tuned in a training phase and the tuned parameters are tested on the BHOSLIB benchmark graphs. The developed approach is tested on all the instances of the DIMACS benchmark graphs, and the results show that the maximum clique is obtained for 70% of the graph instances. The developed approach is compared to several of the most effective recent algorithms.NPRP grant #06-1220-1-233 from the Qatar National Research Fund (a member of Qatar Foundation)

    MaxSAT Evaluation 2021 : Solver and Benchmark Descriptions

    Get PDF
    Non peer reviewe

    Pseudo-Boolean Optimization by Implicit Hitting Sets

    Get PDF
    Recent developments in applying and extending Boolean satisfiability (SAT) based techniques have resulted in new types of approaches to pseudo-Boolean optimization (PBO), complementary to the more classical integer programming techniques. In this paper, we develop the first approach to pseudo-Boolean optimization based on instantiating the so-called implicit hitting set (IHS) approach, motivated by the success of IHS implementations for maximum satisfiability (MaxSAT). In particular, we harness recent advances in native reasoning techniques for pseudo-Boolean constraints, which enable efficiently identifying inconsistent assignments over subsets of objective function variables (i.e. unsatisfiable cores in the context of PBO), as a basis for developing a native IHS approach to PBO, and study the impact of various search techniques applicable in the context of IHS for PBO. Through an extensive empirical evaluation, we show that the IHS approach to PBO can outperform other currently available PBO solvers, and also provides a complementary approach to PBO when compared to classical integer programming techniques

    Pseudo-Boolean Optimization by Implicit Hitting Sets

    Get PDF
    Peer reviewe

    MaxSAT Evaluation 2020 : Solver and Benchmark Descriptions

    Get PDF
    Non peer reviewe
    • …
    corecore