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Abstract

Safi, Zeineb, Masters:

June: 2017, Master of Science Computing

Title: A CONCEPTUAL HEURISTIC FOR SOLVING THE MAXIMUM

CLIQUE PROBLEM

Supervisor of Thesis: Prof. Ali Jaoua

The maximum clique problem (MCP) is the problem of finding the clique

with maximum cardinality in a graph. It has been intensively studied for years

by computer scientists and mathematicians. It has many practical applications

and it is usually the computational bottleneck. Due to the complexity of the

problem, exact solutions can be very computationally expensive. In the scope

of this thesis, a polynomial time heuristic that is based on Formal Concept

Analysis has been developed. The developed approach has three variations

that use different algorithm design approaches to solve the problem, a greedy

algorithm, a backtracking algorithm and a branch and bound algorithm. The

parameters of the branch and bound algorithm are tuned in a training phase

and the tuned parameters are tested on the BHOSLIB benchmark graphs. The

developed approach is tested on all the instances of the DIMACS benchmark

graphs, and the results show that the maximum clique is obtained for 70% of

the graph instances. The developed approach is compared to several of the

most effective recent algorithms.
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Chapter 1: Introduction

1.1 Overview

Optimization is very important in our human life. We constantly strive to

optimize our productivity, our time consumption and even the roads we take.

Factories seek optimization of their production by optimizing their production

chains. Governments make great efforts to optimize the allocation of their

resources. As possibilities grow larger and the number of choices increases,

optimization becomes harder and harder to achieve. All of these problems are

related to what is known in information theory as “Combinatorial Optimiza-

tion”, which is a set of problems in which an optimal object is sought from a

set of objects.

The maximum clique problem has been researched intensively for decades

as an important combinatorial optimization problems. The k-clique problem,

checking if a clique of size k exists in a graph, is one of the 21 original NP-

Complete problems introduced by Karp [28]. The maximum clique problem is

not just hard to solve but also approximate solutions for it are hard to find [6].

It has many generalizations and relaxations. In the maximum weight clique

problem, graph edges have weights associated to them and the clique with

the highest weight needs to be found. The k-plex, quasi-clique, k-subgraph

problems, are all relaxations of the constraints on the density and the number

of adjacent vertices of the maximum clique to be found. All of these have
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important applications in different domains, and because of their difficulty,

efficient exact and heuristic solutions need to be developed.

In applied mathematics, Formal Concept Analysis is the field that is con-

cerned with deriving a conceptual hierarchy from a collection of objects and

their corresponding attributes. The survey conducted by Singh et. al. [47], il-

lustrates the usefulness of formal concept analysis in solving problems in various

fields of applications including Software Engineering, Social Network Analysis,

Information Retrieval, Security Analysis etc. The sound mathematical founda-

tion of conceptual methods, can be applied to devise solution to problems like

the maximum clique, and that is what we attempt to explore in the scope of

this thesis.

1.2 Maximum Clique Applications

The maximum clique problem is motivated by its significance in solving prac-

tical problems in various fields, that are both interesting and important. In

bioinformatics, the comparison of protein structures is an important task that

can help in developing medical treatments that are based on proteins. Some

methods that compare protein structures can be represented as a maximum

clique problem as in the work done by Malod-Dognin et. al. [34], Ravetti and

Moscato [40] and Strickland et. al. [50].

Determining the maximum size of a code satisfying a minimum Hamming

distance is a challenging coding theory problem. One of the solution approaches

is to construct a Hamming graph such that two sequences of length n are

vertices and they have an edge conncting them only if their hamming distance is

larger than or equal to d. Sloane [48] and Etzion and Österg̊ard [14] formulated

the bound on the hamming distance as a maximum independent set problem.
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The maximum clique and its equivalent problems also have applications in

economics. One of which is analyzing the stock market and drawing conclusions

from it. The stock market is represented by a market graph, where stocks are

vertices and a correlation between pairs of stocks is marked by an edge. An

example of this is the work done by Boginski et. al. [8].

In the field of wireless networks and telecommunication, Chen et. al. [13]

modeled the task of estimating path available bandwidth in multirate and mul-

tihop wireless network as a weighted maximum clique problem. Similarly, Jain

et. al. [26] modeled inference between neighboring nodes in a network as a con-

flict graph and modeled the problem of finding a lower bound on the optimal

throughput as a maximum independent set problem.

Social network analysis is an emerging field that is gaining a lot of popular-

ity. A social network graph has actors or users as nodes and ties between them

as edges. The maximum k-plex problem is one of the relaxations of the maxi-

mum clique problem, that entails finding subgraphs with high density and not

necessarily complete. Many social network analysis problems can be modeled

as the maximum k-plex problem, such as the work done by Balasundaram et.

al. [4]. k-plexes have also been used for data mining and graph-based clustering

applications as in the work done by Balasundaram [3].

1.3 Thesis Objective

The focus of this thesis is the extraction of maximum cliques from a simple

unweighted graph using conceptual methods. The following are the objectives

of the thesis:

• Design a heuristic solution, that uses formal concept analysis as a foun-

dation, for solving the maximum clique problem.
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– Design a new efficient greedy algorithm that is based on formal con-

cept analysis.

– Escape the local optimality of the greedy algorithm using a back-

tracking design.

– Explore a larger portion of the hyper concept tree using a branch

and bound design.

• Investigate the use of different algorithm design approaches in developing

an efficient and effective solution.

• Compare the performance of the developed method to other published

results using benchmark graphs.

1.4 Thesis Outline

In Chapter 2 we present the necessary background information and formal defi-

nitions for the maximum clique and related problems, and conceptual methods,

which we base our solution on. In Chapter 3 a review of developed exact and

approximate solutions of the maximum clique and other NP-Hard problems is

presented. Our developed solution and its different variations are presented

in Chapter 4, and the obtained results are discussed in Chapter 5. Chapter 6

concludes the thesis and presents some future work.

4



Chapter 2: Background

Here we presents the background needed for the reminder of the thesis. In

Section 2.1 we present the maximum clique problem and other problems that

are equivalent to it with examples. Section 2.2 presents a few of the main

complexity classes and the one under which the maximum clique problem falls.

Section 2.3 presents the formal concept analysis background and Section 2.4

contains a brief description of the different algorithm design methods.

2.1 Maximum Clique and Related Problems

Graph theory is a very diverse and rich field. Many different types of graphs

exist and are useful for different applications. For the purpose of this work

we are interested in studying a specific type of graphs that has the following

characteristics [10]:

• Finite: Contains finite vertex and edge sets.

• Simple: An edge always has unique ends. Two vertices can be connected

by only one edge.

• Connected: Every vertex is reachable from any other vertex.

• Undirected: Edges have no directions.

• Unweighted: Edges have no weights assigned to them.

5



Definition 1 “A graph is defined by G = (V,E) where V = {1, ..., n} is a

set of vertices and E = {e1, ..., em} is a set of edges. An edge e = (u, v) where

u, v ∈ V . If e ∈ E u and v are said to be adjacent. [10]”

Figure 2.1 shows a finite, simple, connected, undirected and unweighted

graph.

Figure 2.1: Finite Simple Connected Undirected and Unweighted Graph

Definition 2 “Ḡ denotes the complement of the graph G = (V, Ē), where Ē

is the complement of E. If e ∈ E then e /∈ Ē similarly, if e /∈ E then e ∈ Ē.”

Figure 2.2 shows the complement of the graph in Figure 2.1

Figure 2.2: Graph Complement

6



Definition 3 “A subgraph of G is the graph G
′

= {V ′
, E

′} where E
′ ⊆ E

and V
′ ⊆ V . ”

Definition 4 “The cardinality of a graph or a subgraph is the number of its

vertices.”

Definition 5 “A subgraph C of G is a clique if it is complete (all its vertices

are pairwise adjacent). Figure 2.1 contains a few cliques, the vertices {2, 4, 5}

for example form a clique of cardinality 3.”

It is important to distinguish between maximal and maximum cliques.

Definition 6 “A clique is maximal if it cannot be enlarged by adding more

vertices to it. A clique is maximum if it has the maximum cardinality.”

In Figure 2.1 vertices {0, 1, 6} form a maximal clique, while vertices {2, 3,

4, 5} form the maximum clique of the graph.

Definition 7 “The clique number ω(G) is the cardinality of the maximum

clique in a graph G.”

The clique number in Figure 2.1 is ω(G) = 4.

Definition 8 “An independent set of the graph G is a subset of the vertices

of the graph I ⊆ V where for any two vertices u, v ∈ I, (u, v) /∈ E.”

If C is a clique in G, then C is an independent set in Ḡ. Similarly, if C is

a maximum clique in G, C is a maximum independent set in Ḡ.

Definition 9 “The independence number α(G) is the cardinality of the

maximum independent set in the graph G.”

Definition 10 “If V
′

is a subset of V and every edge (u, v) ∈ E has at least

one end point in V
′
, V

′
is called a vertex cover. ”

7



In Figure 2.3 graph (c) to the right of shows a maximum clique colored in

blue. Graph (b) is the complement of (c) and the corresponding maximum

independent set is highlighted in blue, the vertex cover on the complement is

highlighted in graph (a).

(a) (b) (c)

Figure 2.3: (a) Vertex Cover (b) Independent Set (c) Clique

More information and theoretical background about these problems can be

found in [9].

2.2 Complexity Classes

We here present a brief overview of some complexity classes and the complexity

class under which the maximum clique problem falls.

Definition 11 “For any problem Π, if a polynomial time algorithm exits to

solve Π with a time complexity of O(nk), where n is the size of the input and

k is a non-negative integer then Π is called tractable, otherwise Π is called

intractable.”

Definition 12 “A decision problem can only have one of two outcomes yes

or no, while in an optimization problem the concern is to minimize or

maximize a certain quantity.”

8



The k-clique problem is a decision problem that takes a graph G and a

non-negative integer k as input and returns a decision of whether or not G

contains a clique of size k. The optimization version of it is the maximum

clique problem, it requires determining the maximum value of k in G such that

the graph contains a clique of size k and no cliques of size k + 1.

Figure 2.4 shows the relationship between the 4 complexity classes.

P NP-Complete NP-Hard

NP

Figure 2.4: Complexity Classes

The class of problems NP (Nondeterministic Polynomial) is the set of prob-

lems Π the solution of which is verifiable in polynomial time using a determin-

istic algorithm. A deterministic algorithm is presented with only one choice at

each step of its execution. The algorithms used to solve problems in the class

NP are nondeterministic. There are two phases to a deterministic algorithm.

The guessing phase, where an arbitrary candidate solution is generated in poly-

nomial time. The verification phase, where the generated solution is verified

using a deterministic algorithm[17].

The class P (Polynomial) is a subclass of NP. It consists of decision problems

that can be solved using a polynomial deterministic algorithm.

NP-Complete problems are a subclass of intractable problems. Hundreds of

problems fall under the class of NP-Complete, and if one of these problems has

a polynomial time solution, then a polynomial time solution for all the other

problems also exists.

Formally, NP-Complete problems can be defined as:

9



Definition 13 “An NP-Complete decision problem Π must satisfy two con-

ditions:”

1. Π ∈ NP

2. ∀ Π
′ ∈ NP, Π

′ ∝poly Π

Π
′ ∝poly Π symbolizes that the problem Π is reducible to Π

′
in polynomial

time. An instance of the problem Π can be transformed into and instance of

the problem Π
′

using an algorithm that runs in polynomial time.

Definition 14 “A problem Π is in the class NP-Hard if ∀ Π
′ ∈ NP, Π

′ ∝poly

Π”

A problem is NP-Hard, if it is at least as hard as the NP-Complete problems.

The k-clique problem is an NP-Complete problem because:

1. k-clique ∈ NP since a solution to the problem can be verified using a

deterministic algorithm.

2. SAT ∝poly k-clique

The optimization version, the maximum clique problem is NP-Hard [17].

2.3 Formal Concept Analysis

Formal Concept Analysis (FCA) is the field of applied mathematics that math-

ematizes the underlying philosophical notion of “concepts”. Traditionally used

for knowledge processing and knowledge discovery, we here present another

application of FCA as basis for solving some NP-Complete and NP-Hard prob-

lems. In this section, we present the mathematical foundations of Formal Con-

cept Analysis, and hyper concepts in particular, necessary for the remainder

of this thesis. The FCA background is in the most part is taken from the first

chapter of Ganter and Wille’s book [16].

10



2.3.1 Context, Concept and Concept Lattice

Definition 15 “A formal context is a triplet K = (G,M,R) where G is a

set of objects, M is a set of attributes, and R is a relation between G and M .

(g,m) ∈ I indicates that object g ∈ G is in a relation with attribute m ∈ M

and it is read as object g has the attribute m. ”

A context may be represented by a matrix. The matrix rows are objects

and the columns are attributes. If (g,m) ∈ I, the value ‘1’ is placed in the cell

corresponding to row g and attribute m, ‘0’ otherwise.

Figure 2.5 shows an example of a formal context where the set of objects

G = {0, 2, 3, 4, 5, 6, 7} and the set of attributes M = {a, b, c, d, e, f, g, h}.

Figure 2.5: Formal Context Example

Definition 16 “A formal concept is a pair (A,B) with A ⊆ G, B ⊆ M ,

A
′
= B and B

′
= A. A

′
is the set of attributes common to all objects in A. B

′

is the set of objects common to all attributes in B. ”

A
′
:= {m ∈M(g,m) ∈ I ∀g ∈ A}

B
′
:= {g ∈ G(g,m) ∈ I ∀m ∈ B}

A formal concept is also referred to as a maximal rectangle or a non-enlargeable

rectangle.

11



Figure 2.6 shows the formal context of the previous example with a high-

lighted formal concept where the set of objects A = {1, 2} share the set of

attributes B = {a, f, g}.

Figure 2.6: Formal Concept Example

Definition 17 “The concept lattice is a hierarchical organization of all con-

cepts extracted from a context (G,M, I) in subconcept, superconcept relation.

Given two concepts (A1, B1) and (A2, B2), (A1, B1) is a subconcept of (A2, B2)

if A1 ⊆ A2. Consequently, (A2, B2) is a superconcept of (A1, B1). This is

written as (A1, B1) ≤ (A2, B2). The relation ≤ is the hierarchical order of

concepts.”

2.3.2 Hyper Concepts

Extracting all concepts from a formal context is a very time consuming process.

In addition, the concept lattice is a large structure that requires a lot of storage

space, and that grows exponentially as the size of the formal context grows.

In practice, most applications do not require the full set of concepts. Minimal

conceptual coverage aims to cover the given context by a smaller number of

concepts while preserving the knowledge. The hyper concept algorithm devel-

oped by Hassaine et. al. [22] is one such attempt where the context is covered

by optimal “hyper concepts”. In [23, 22] hyper concepts are used as textual

12



features for classification of Islamic advisory opinions [22] and classifying news

articles [23]. In [38] Otaibi el. al. used the hyper concept algorithm for feature

extraction combined with conceptual reasoning for detecting inconsistencies in

text.

Definition 18 “A relation R is a subset of the Cartesian product of two sets

X and Y ”

Definition 19 “R−1 = {(e, e′)(e′ , e) ∈ R} is the converse of the relation R.”

Definition 20 “m.R = {x ∈ G(x,m) ∈ R} is the image of m by the relation

R.”

Definition 21 “I(A) is called the identity relation. It is a subset of the Carte-

sian product A× A such that ∀m ∈M,m.I(M) = {m}”

Definition 22 “R ◦ R′
= {(e, e′)∃t((e, t) ∈ R)&((t, e

′
) ∈ R′

)} is the relative

product or composition of two binary relations. ”

Definition 23 “Given a formal context K = (G,M,R) and m ∈ M an arbi-

trary attribute. A hyper concept denoted as Hm(R) = I(m.R−1) ◦R.”

A hyper concept corresponding to an attribute m ∈ M is the union of all

concepts containing the attribute m.

Figure 2.7 shows the formal context and the hyper concept correspond-

ing to attribute a. The image of attribute a by the relation R−1 is a.R−1 =

{0, 1, 2, 4, 5}. The hyper concept shown in the figure correspond to I(a.R−1)◦R.

Definition 24 “The “importance” of a hyper concept Hm(R) is measured by

its weight W (Hm(R)).”

The calculation of the different weights depends on the following attributes:

13



Figure 2.7: Hyper Concept Corresponding to Attribute a

• d: The domain cardinality of Hm(R)

• c: The codomain cardinality of Hm(R)

• r: The cardinality of Hm(R)”

Definition 25 “The economy of a binary relation (gain in storage space) is

given by the formula: W (R) = r
d×c × (r − (d+ c))”

The quantity r
d×c is the density of the relation, while the quantity (r−(d+c))

is the economy of information [21].

The hyper concept tree is a hierarchical organization of hyper concepts.

The hyper concepts at each level are extracted from the hyper concept of the

previous level. The hyper concepts at each level are organized by weight in a

non-increasing order. Assuming that the weight of the hyper concept is just

“d”, the cardinality of the domain, Figure 2.8 shows the first level of the hyper

concept tree constructed from the formal context of Figure 2.5.

The hyper concept with the highest weight in the first level is the one

corresponding to attribute a, since a has the highest domain cardinality. Figure

2.9 shows the second level hyper concepts extracted from the hyper concept

corresponding to attribute a.
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Figure 2.8: Hyper Concept Tree First Level

Figure 2.9: Hyper Concept Tree Second Level

2.4 Algorithm Design Methods

Different variations of our proposed solution use different algorithmic design

methods. Here we introduce a few basic exact and approximate design methods.

2.4.1 Exact Design Methods

Divide and Conquer

A powerful algorithm design method that operates by dividing the problem

instance into p subinstances and recursively solves each instance separately.

Merging, or combining the solutions of the sub-instances results in a solution

to the problem [1].
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Dynamic Programming

Dynamic programming is similar to divide and conquer in that algorithms

that employ it are usually stated in the form of recursive functions. Unlike

divide and conquer, dynamic programming algorithms operate in a bottom-

up manner. Smaller problem instances are solved first, and their intermediate

solutions are saved to be used in computing the final result [1].

Backtracking

A systematic searching technique in which the search space is organized as a

tree and the tree is traversed in a depth first manner. The search stops when

a certain criterion is met [1].

Branch and Bound

A very similar design strategy to backtracking that is typically used for design-

ing solutions to optimization problems. Like backtracking, the search space is

orgranized in the form of a tree, but it does not impose any constraints on how

the tree is traversed. In a branch and bound algorithm, each node in the tree

has a bound to determine if the node is promising or not [1].

2.4.2 Approximate Design Methods

Greedy Method

Greedy algorithms are usually iterative algorithms that are also used for solving

optimization problems. Greedy algorithms make decisions that will result in

the maximum immediate gain without worrying about the future. The resulting

solution is a local optimum, which might be translate to a global optimum [1].
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Evolutionary Algorithms

Evolutionary Algorithms are inspired by the process of natural selection (in-

creasing the existence of favorable traits in future generations) and evolution

(changing the genetic makeup of populations). One type of Evolutionary al-

gorithms is genetic algorithms. It operates by first randomly initializing a

population that consists of individuals, where each one is an encoding of a

possible solution to the problem instance. Crossover (exchanging substrings of

the solution between pairs of individuals) and Mutation (adding, deleting or

replacing a part of the individual by another) are performed recursively. The

solution is evaluated in each iteration and the algorithms stop when a certain

criteria is met [37].
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Chapter 3: Literature Review

The maximum clique problem has many exact and approximate solutions. A

few comprehensive surveys of these approaches were conducted. The first dates

back to 1994 by Pardalos and Xue [39], followed by the survey of Bomze et.

al. [9]. The most recent survey for the maximum clique algorithms is the work

done by Wu and Hao [56], which is a comprehensive review of mathematical

formulations, enumerative algorithms, exact solution approaches, and heuristic

approaches for the maximum clique problem and a few other generalizations

and relaxations of it. In our review, we focus on recent exact and approximate

solution approaches of the unweighted maximum clique and related problems.

3.1 Exact Algorithms for the Maximum Clique

Problem

Most of the exact solutions of the maximum clique and the related problems

are based on a branch and bound algorithms. The algorithm enlarges an initial

small clique until one with a maximum cardinality is found. Given a graph

G = (V,E), the algorithm maintains a list Q for the vertices of the current

clique and a list Qmax for the largest clique already found, both of which are

intially empty, and a candidate list R ⊆ V that is initially set to V . The

algorithm operates by adding a vertex p ∈ R to Q, p is then removed from

R along with all the vertices that are not connected to it. When R = ∅, if
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Q > Qmax, Qmax is replaced by Q. The algorithm then backtracks and another

vertex p is selected.

Most algorithms start from the general framework above and add improve-

ments to the branching and pruning strategies, some approaches use approx-

imate coloring to color the candidate set of vertices. χ(G) is the chromatic

number of a graph. A clique in any given graph can never be larger than the

chromatic number. This set of solutions uses approximate graph coloring of

the candidate set of vertices as an upper bound.

Tomita and Seki [53] presented MCQ, an improvement to the basic algo-

rithm that an approximation of χ(G) to set an upper bound and prune the

search space. Colors are greedily assigned to vertices of the candidate set R.

Each color class Ck is represented by an integer k. Colors are assigned to ver-

tices as follows. A vertex v1 is assigned a color k = 1, if vertex v2 is adjacent

to v1 then v2 is assigned a color k = 2, otherwise v2 is assigned k = 1. Vertices

in R are sorted based on their assigned colors in ascending order. The vertex

selected from R to be added to Q is the one with the maximum color value. If

adding the vertex of maximum value to Q will result in a clique that is smaller

in size than Qmax (Q+Max{k} ≤ Qmax) then the branch is disregarded.

The vertices in MCQ [53] before coloring are sorted in descending order of

their degree in the graph G. MCR [52] developed by Tomita and Kameda,

improves the initial ordering of vertices. Vertices are ordered into a list L =

{v1, v2, ..., vn} such that vn has the lowest degree of G, vn−1 has the lowest

degree of G\{vn}, vn−2 has the minimum degree in G\{vn, vn−1} and so on.

The remaining steps operate as in MCQ. In MCR, vertices chosen to expand

the current clique are those that have the maximum color. As stated earlier,

vertices that have colors that are smaller than a threshold will not produce a

maximum clique eventually and the corresponding branches are pruned.
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To further improve MCR, Tomita et. al. introduced MCS [54] that fur-

ther reduces the search space for a maximum clique by employing a recoloring

strategy. Not all vertices with colors greater than the threshold are promis-

ing. Vertices that do not fit a certain criteria and will not lead to a maximum

clique, but still have colors greater than the threshold are recolored to have

colors smaller than the threshold to prevent them from being selected.

The order by which the vertices are introduced to the coloring algorithm is

important. While Tomita and Seki [53] order the vertices by their color in the

candidate set R, Konc and Janezic [30] present an improvement to the algorithm

in which the current clique is enlarged by vertices with large color number.

The vertices are reordered by their degree in a decreasing order, keeping the

vertices that have color numbers below the threshold in their original order.

This makes the new developed approach, MaxCliqueDyn, faster than Tomita

and Seki’s original MCQ algorithm.

An improvement to MaxCliqueDyn is presented in the work of Segundo et.

al. [41]. BB-MaxClique is an efficient bit parallel implementation, that uses

basic operations between bit strings to obtain induced subgraphs during the

search. The main contribution of the algorithm is that the order of the vertices

in the set R does not change. The vertices are ordered in an increasing order

of their degree and then presented to the coloring algorithm. The authors also

present an improvement to the coloring algorithms, BB-Color, which obtains a

color class in each iteration instead of assigning colors to vertices independently.

BB-MaxClique was later improved by Segundo et. al. [44] by integrating

the recoloring strategy introduced in MSC into the bit parallel implementation.

Segundo and Tapia [42] introduced a relaxation to the basic coloring algo-

rithm [53] in which they only compute kmin − 1 color classes at each iteration,

where kmin is the minimum order of hidden clique in the induced subgraph that

might lead to a clique larger than Qmax in the branch.
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MCT is a final, recent improvement to MCS by Tomita et. al. [51] which

is based on the observations that the algorithm used to find an initial clique

from which the lower bound of the solution is obtained is important for the

efficiency of the algorithm. The algorithm they used for finding an initial

solution is k-opt local search [29] developed by Katayama et. al., that will be

discussed later in Heuristic Solutions section. While the algorithm does not

always produce the best solutions, it is used because of its high speed. The

numbering and renumbering process used in MSC reduces the search space, but

also introduces an overhead to the running time of the algorithm. MCT uses

a three stage operation technique. In the first stage, the vertices are sorted

based on their degree. At certain level of the tree, the algorithm switches to

the regular sorting based on numbering (coloring). Finally, near the leafs of the

tree, the ordering of the vertices is inherited from previous levels. The level at

which the switching occurs depends on the density of the graph at that level.

The work introduced by Segundo et. al. [45] presents an improvement to the

initial sorting of vertices that is intended to work with different algorithms. The

paper presents the NEW SORT algorithm that automatically switches between

two novel sorting strategies, a degree based sorting and a color based sorting

based on the density of the given graph. The degree based sorting operates

by first sorting the vertices based on their width, and then sorting the fist k

vertices in descending order based on their degrees. The color based ordering

operates as follows. Initially, all vertices of the set V are copied to a set w1.

Iteratively, a vertex v ∈ W1 is removed and assigned to a color Ck. Vertices

connected to v are removed from W1 and copied to W2. When W1 = ∅ the next

color class is built.

The maximum clique problem is reducible to maximum satisfiablity prob-

lem, but max sat solvers are not very useful when it comes to finding maximum

cliques. However, they can be used to improve the value of the upper bound.
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Li and Quan presented the first attempt to use max sat and propositional logic

as an upper bound in [33]. In their approach, MaxCLQ, Li and Quan first par-

tition the graph into independent sets, and an independent set based encoding

of the maximum clique into max sat is devised. A set of soft and hard clauses

are extracted from each independent set. If the graph contains k independent

sets in the graph, and the independent set MaxSat encoding contains s disjoint

soft clauses, it is proven that ω(G) ≤ k − s.

Improvements to MaxCLQ are presented by Li and Quan [32] that adopts

the incremental computation of the maximum clique degree presented in Max-

CliqueDyn [30], and a relaxation of the soft clauses which allows the detection

of more inconsistent subsets of clauses. Further improvements presented by Li

et. al. [31] consist of incremental upper bound computation resulting in a more

efficient algorithm.

A combination of MCS, and MaxSat [54, 32, 33] is presented by Maslov

[36], resulted in an efficient exact maximum clique algorithm.

Cliquer is an algorithm developed by Österg̊ard [49] that uses a completely

different approach for finding maximum cliques. The algorithm starts by trying

to find the maximum clique in a subset of the vertices of size Sn = {vn},

and then proceeds to finding the maximum clique in Sn−1 = {vn, vn−1} the

Sn−2 = {vn, vn−1, vn−2} and so on until the maximum clique in S1, which is the

original graph is found. The algorithm uses information from the previously

found larger graphs as a bound. This algorithm is not as fast as other developed

approaches.

Exact algorithms guarantees extracting the maximum clique from any given

graph but are usually very time consuming. In some applications, efficiency is

more important than the size of the obtained cliques.
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3.2 Heuristic Approaches for the Maximum

Clique Problem

Some maximum clique applications are more sensitive to time constraints, and

can tolerate some error in the size of the maximum cliques founds. For this

purpose, many heuristic approaches have been developed, that use different

strategies for finding maximum cliques, we present some of these approaches

in this section.

3.2.1 Greedy Algorithms

Very few greedy algorithms for the maximum clique and related problems exist

in the literature. Greedy algorithms are generally efficient but not very effective

in finding maximum clique and in most cases face the problem of local opti-

mality. The general framework for greedy algorithms is to either begin with an

empty set of vertices and add vertices to it in a greedy manner until a maxi-

mum clique is found. Or starting with the full set of vertices, greedily remove

vertices until a maximum clique is found. To avoid finding locally optimal so-

lutions, some algorithms use a multi-start strategy. An example of this is the

approach developed by Jagota and Sanchis [25], in which an initial, possibly

empty clique C is expanded by adding vertices from the set S = {v ∈ G\Cv

is adjacent to every vertex in C}. Positive integer weights are associated to

vertices in S which determine the probability by which the vertex vi can be

added to the current clique. Vertices with larger weight values have higher

probability of being selected. In the nonadaptive version (NA), the algorithm

restarts k times with the same set of weights, and the largest clique in all iter-

ations is recorded. In the adaptive weights (AW) version of the algorithm, the

weights are modified between restarts. The last version is the adaptive initial
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state (AI) version, in which the initial state of each iteration is influenced by

whether or not a larger clique was found in the previous iteration.

The deep adaptive greedy search approach (DAGS) developed by Grosso

et. al. [18] is a greedy approach that is based on swap moves and vertex

weights. The swap moves are used to replace the current clique by another,

more promising clique of equal size. As in [25], the vertecies are weighted and

the weights are adaptively adjusted in each iteration.

3.2.2 Search Heuristics

Search heuristics are the most successful approach used for solving the max-

imum clique and related NP-Complete problems. The general framework of

search heuristics is trying to satisfy an evaluation function by exploring a de-

fined search space using a neighborhood function.

STABULUS [15] is one of the earliest attempts for utilizing tabu search as

a solution to the maximum independent set problem. In their approach Friden

et. al. first fix an upper bound k for the cardinality of the independent set α(G)

to be obtained. A feasible solution partitions the set of nodes V into two sets,

S, the set of nodes that are independent or almost independent, and S̄, the set

of remaining nodes. The neighborhood N(s) of a solution s = (S, S̄) is the set

of all solutions that can be obtained as a permutation of one node x ∈ S with

one node y ∈ S̄. The new solution s′ is obtained from the initial solution s such

that s
′
= (S\{x}∪ {y}, S̄\{y}∪ {x}). A Tabu list T is maintained, it contains

the T last solutions. The selected pair (x, y) at each step is the pair that has

the smallest value of E(S\{x} ∪ {y}), and that is not a member of T . If after

nbmax iterations an independent set was not found, another initial solution

is randomly generated and the procedure is applied on it, where nbmax is an
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preset parameter. If after q initial solutions an independent set of size k is still

not found, the size of k is reduced by 1 and the process is repeated.

Adaptive Multistart Tabu Search (AMTS) is a more recent approach devel-

oped by Wu and Hao [55] for solving the maximum clique problem. It is based

on STABULUS and introduces a few improvements to it. The neighborhood

in N(s) is replaced by the constrained neighborhood CN(s) that is restricted

to permutations of vertices u ∈ A, where A contains the nodes that have the

smallest degrees relavent to the subset S, and that do not appear in the tabu

list. And v ∈ B, where B the nodes of S\V not in the tabu list T and that have

the largest degree relevant to the subset S. This improvement allows for a more

focused search space that is smaller in size than the one used in STABULUS.

Some probabilistic move selection rules are applied when the search is stuck in

local optimum to allow the exploring the search space.

Swap-Based Tabu Search (SBTS) developed by Jin and Hao [27] has one

the best performances in the literature, it successfully finds the maximum in-

dependent set for all instance of the two most used benchmarks. The general

idea of the algorithm is to randomly generate an initial solution S and then

improve it using a set of intensification and diversification steps. The basic

operation of this approach is the (k, 1) − swap, where (k = 0, 1, 2,≥ 2). The

swap operation consists in swapping a vertex from V \S with k adjacent vertices

from current maximal independent set S. The set V \S is divided into 4 subset

NS0, NS1, NS2 and NS>2 where the subscript corresponds to the number of

vertices vj ∈ S that are adjacent to vertex vi ∈ V \S. When the value of k in

a (k, 1) − swap is 0 or 1, the performed operation is called an intensification

step, it aims at obtaining a local optimum from the current solution by either

adding a randomly selected vertex from the set NS0 to S or replacing one ver-

tex of NS1 by one vertex of S following a set of rules that will guarantee an

improvement to the current result. When the value of k in a (k, 1) − swap is
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2 or > 2, the performed operation is called an diversification step, it aims at

perturbing the current solution to explore other search regions by replacing 2

or more vertices of S by one vertex of NS2 or NS>2. The vertices removed from

the set S are added to the tabu list to ovoid cycling. Intensification operations

are preferred over diversification operations and are given priority. A diversifi-

cation operation is only performed when the sets NS0 and NS1 are empty, or

when the vertices in them are members of the tabu list.

Reactive Local Search (BLS) by Battiti and Protasi [5] is a local search

heuristic that dynamically determines the amount of diversification using his-

torical information.

Variable Neighborhood Search (VNS) by Hansen et. al. [20] is a com-

bination of a greedy heuristic and a local search heuristic that changes the

neighborhood by computing choosing a solution with a closer distance.

Hoos and Pullan [24] presented a Dynamic Local Search (DLS) algorithm

that alternates between two phases. During the iterative improvement phase

the algorithm adds vertecies to the current clique to enlarge it. During the

plateau search phase, swap operation with vertices outside the clique occur.

Breakout Local Search (BLS) developed by Benlic and Hao [7] is a local

search strategy that can be used as a solution to the maximum weight clique

and the maximum clique problems. BLS generates an initial solutions greedily

by randomly selecting a vertex v and adding it to the set C. Vertices u ∈ V \C

are iteratively added to the set C such that ∀c ∈ C {u, c} ∈ E. This process

ends when no nodes can be added to C, it requires no initial upper bound on

the size of the clique to be found, and it results in a valid clique. The proposed

approach first uses local search to find a local optimum from the initial solution

C by either adding v to the set C such that ∀c ∈ C {v, c} ∈ E, by adding a

vertex v to C such that v is connected to all vertices of C except for one vertex

u which is then excluded from C, or by just removing a vertex v from C. The

26



move that will result in a more improved solution is the one that is considered.

The previously mentioned three moves are called directed perturbations to the

initial solution C. The purpose of directed perturbations is to move the search

from one local optimum to another. When no improved result is found after a

certain number of iterations, the search is said to be stagnating, and stronger

random perturbation is applied. The purpose of the random perturbation is

to restart the search and explore another unseen area of the search space. The

probability of performing one type of perturbation or another is determined by

the search state, the probability of performing a random perturbation becomes

higher as the number of non-improving local optima visited increases.

3.2.3 Evolutionary Algorithms

Evolutionary Algorithms are very efficient in practice but they do not give good

results when used on their own and are usually paired with other approaches.

In 1993 Carter and Park [12] conducted an experiment to evaluate the use-

fulness of genetic algorithms in solving the maximum clique problem. They

came to the conclusion that at the time, genetic algorithms are not as pow-

erful as other general purpose heuristics. Since then, genetic algorithms have

been used in combination with statistical information and search heuristics and

produced acceptable results.

Marchioni’s algorithm [35] GENE is a hybrid genetic algorithm, local

search approach, When a local optimal solution is obtained, genetic opera-

tors, crossover and mutation, are applied to it. The stopping criteria of the

algorithm is when a solution is reached or when a preset maximum number of

iterations is exceeded.
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Guturu and Dantu’s [19] algorithm is another more recent example of the

combination of evolutionary algorithms with search heuristics. The algorithm

integrates several features of previous, successful approaches.

Zhang et. al. [57] developed an approach that outperformed GENE, that

combines a genetic algorithm with statistical information. The algorithm in-

troduced an evolutionary algorithm guided mutation (EA/G) operator, which

uses global statistical information and the location of the current solution to

make more informed decisions in the generation of the offsprings.

Singh and Gupta’s Algorithm [46] consists of genetic algorithm where a

steady state population replacement method is used, a greedy heuristic and an

exact algorithm. While their algorithm outperformed some of the best genetic

algorithms of the time, it did not perform better than heuristics that are not

based on evolutionary methods.
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Chapter 4: Methodology

Three main algorithm design approaches were used in our solution, a greedy

approach, a partial backtracking approach and a partial branch and bound

approach, all of which are based on the hyper concept algorithm presented

earlier with some minor alterations made to it. Here we present the general

framework used 4.1 and the details of each approach 4.2, 4.3 and 4.4.

4.1 General Framework

The first step of the solution is mapping the graph to a formal concept. The

graph is initially stored in a text file that contains some metadata about the

graph, like the method of generation, the density, the number of vertices and

edges. The file also contains all edges of the graph in a two column format

that indicate the source vertex and the destination vertex, proceeded by the

letter “e” to indicate that the line corresponds to a graph edge. The file is

read line by line and the formal context is built from it. The formal context is

represented by a two dimensional array C in which both the rows and columns

represent vertices of the graph. Ci,j = 1 in the produced context signifies that

there is an edge between the nodes, Ci,j = 0 signifies that an edge does not

exist. Even though the graphs are simple and they do not contain loops, the

diagonal is set to 1 to facilitate the extraction of hyper concepts. Figure 4.1

shows the representation of the graph in the input file, and the formal context

constructed from the input file.
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1 2 3 4 5 6 7

1 1 1 1 0 0 0 1

2 1 1 1 0 0 0 1

3 1 1 1 1 1 1 0

4 0 0 1 1 1 1 0

5 0 0 1 1 1 1 0

6 0 0 1 1 1 1 1

7 1 1 0 0 0 1 1

Sample Graph

p 7 31
e 1 2 
e 1 3
e 1 7 
e 2 3
e 2 7 
e 3 4 
e 3 5 
e 3 6 
e 4 5 
e 4 6
e 5 6
e 6 7

Figure 4.1: Graph to Formal Context

The hyper concept tree is constructed from the generated formal context

by computing the hyper concept corresponding to each attribute and sorting

them according to their weights. To maintain the symmetry of the relations,

vertices that are not contained in the domain of the resulting hyper concept are

also removed from the co-domain. Figure 4.2 shows the formal context built

from the graph on the left, the hyper concept corresponding to attribute “1”

in the middle, and the modified hyper concept on the right. The vertices in

the domain of the original hyper concept are {1, 2, 3, 7} and the vertices in the

co-domain are {1, 2, 3, 4, 5, 6, 7}. Because vertices “4”, “5”, and “6” are not

contained in the domain, they are also removed from the co-domain.

1 2 3 4 5 6 7

1 1 1 1 0 0 0 1

2 1 1 1 0 0 0 1

3 1 1 1 1 1 1 0

4 0 0 1 1 1 1 0

5 0 0 1 1 1 1 0

6 0 0 1 1 1 1 1

7 1 1 0 0 0 1 1

1 2 3 4 5 6 7

1 1 1 1 0 0 0 1

2 1 1 1 0 0 0 1

3 1 1 1 1 1 1 0

7 1 1 0 0 0 1 1

1 2 3 7

1 1 1 1 1

2 1 1 1 1

3 1 1 1 0

7 1 1 0 1

Context

Original Hyper Concept Modified Hyper Concept

Figure 4.2: Hyper Concept from Graph

Hyper concepts are prioritized by their weight as presented earlier. Different

weight formulas have been used. The weight formulas are summarized in Table

4.1.
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Table 4.1: Hyper Concept Weights

Weight ID Original Formula Modified Formula

weight1 d d

weight2 r r

weight3 r
d×c × (r − (d+ c)) r

d×d × (r − (d+ d))

weight4 log10(
r

d×c)× (r − (d+ c)) log10(
r

d×d)× (r − (d+ d))

weight5 3 +

√
9−8∗(d−r)

2
3 +

√
9−8∗(d−r)

2

Weight1 and weight2 are the cardinality of the domain and of the relation

respectively. Weight1 gives priority to hyper concepts corresponding to vertices

with higher cardinality, while weight2 give priority to hyper concepts containing

the largest number of edges. Weight3 is the gain of a relation defined earlier.

In weight4, the quantity r
d×c in the gain formula is replaced by log10(

r
d×c). The

change made gives less value to the density of the relation than the economy

of information. Finally, weight5 is a theoretical upper bound to the size of the

maximum clique in a graph defined in [2]. Weight5 prioritizes hyper concepts

that might contain larger cliques.

Due to the symmetry in the resulting hyper concept, the cardinality of the

domain is equal to the cardinality of the co-domain (d = c). “c” is replaced in

weight3 and weight4 by “d”. Figure 4.3 shows the hyper concept tree corre-

sponding to the context of Figure 4.1 and taking the cardinality of the domain

as a weight (weight1). The leaf node of each branch is represents by a maxi-

mal clique. The graph contains three maximal cliques {3, 4, 5, 6}, {1, 2, 3} and

{1, 2, 7}, all of which are extracted by the hyper concept algorithm at different

levels of the tree. Each node is represented by the nodes that are contained

in the domain and codomain of the hyper concept. Some redundancy between

hyper concepts might occur. For example, the hyper concept corresponding to
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both node “1” and node “2” is {1, 2, 3, 7}. Only the hyper concept correspond-

ing to node “1” is added to the tree.

{1,2,3,4,5,6,7}

1
{1,2,3,7}

3
{1,2,3,4,5,6}

4
{3,4,5,6}

6
{3,4,5,6,7}

7
{1,2,6,7}

1,3
{3,4,5,6}

3,4
{1,2,3}

6,3
{3,4,5,6}

6,7
{6,7}

1,2
{1,2,3,7}

1,3
{1,2,3}

1,7
{1,2,7}

7
{1,2,7}

7
{6,7}

1,2,3
{1,2,3}

1,2
{1,2,7}

Figure 4.3: Hyper Concept Tree

Algorithm 1 shows the pseudocode of the hyper concept extraction proce-

dure, which is the main step of the developed approach.

The algorithm takes a context or a hyper concept as and a “tabuList”. At

the first level of the tree, the context is passed to get HC and the hyper concept

with the highest weight is returned. At any given level l of the tree, the hyper

concept with the highest weight extracted from the current hyper concept in

level l + 1 is returned. The method also takes a tabu list of vertices as input.

The tabu list contains vertices that have already been chosen as vertices with

highest weight in previous levels, and prevents them from being chosen again.

In lines 2 to 8, the cardinality of the domain of hyper concepts corresponding

to all vertices are computed and the values are stored in the array d. Lines 11

to 16, show the computation of the value of “r”. The index with the highest

weight is recorded and the rows are copied from the context to the new hyper
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Algorithm 1: Hyper Concept Extraction

1 get HC(context, tabuList);
Input : A formal context in the form of a 2D Integer array and a Tabu

list
Output: The hyper concept with the highest weight

2 for columnIndex ∈ columns do
3 for rowIndex ∈ rows do
4 if C[columnIndex][rowIndex] == 1 then
5 countd+ +;
6 end

7 end
8 d[i] = countd;
9 countd = 0;

10 end
11 for columnIndex ∈ columns do
12 for rowIndex ∈ rows do
13 if C[columnIndex][rowIndex] == 1 then
14 r+ = d[i];
15 end

16 end
17 //use value of r and d[i] to compute weight[i] according to the

selected formula
18 if weight[i] > largestWeight and tabuList[i]! = 1 then
19 largetWeight = weight[i];
20 largestWeightIndex = iı

21 end

22 end
23 TabuList[largestWeightIndex] = 1
24 //Copy HC rows and return HC

concept. If two vertices have the same value for any given weight value the one

that occurs first is selected.

Taking the operation at line 14 “r+ = d[i]” as basic operation, the worst

case time complexity of this procedure is O(n2) where n is the number of

attributes in the hyper concept.

Figure 4.4 shows how the computation of the cardinality of the relation is

computed in a graphical form. The table in the middle shows the computation

of the domain cardinality of each vertex, which is done by lines 2 – 10 of the
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algorithms. The second table shows the computation of an r value of a specific

vertex in each iteration of the loop starting at line 11.

1 2 3 4 5 6 7

1 1 1 1 0 0 0 1

2 1 1 1 0 0 0 1

3 1 1 1 1 1 1 0

4 0 0 1 1 1 1 0

5 0 0 1 1 1 1 0

6 0 0 1 1 1 1 1

7 1 1 0 0 0 1 1

Array d

d[1] 4

d[2] 4

d[3] 6

d[4] 4

d[5] 4

d[6] 5

d[7] 4

r computation

r[1] d[1]+d[2]+d[3]+d[7] = 19

r[2] d[1]+d[2]+d[3]+d[7] = 19

r[3] d[1]+d[2]+d[3]+d[4]+d[5]+d[6] = 31 

r[4] d[3]+d[4]+d[5]+d[6] = 19

r[5] d[3]+d[4]+d[5]+d[6] = 19

r[6] d[3]+d[4]+d[5]+d[6]+d[7] = 23

r[7] d[1]+d[2]+d[6]+d[7] = 17

Figure 4.4: Graphical Representation of Algorithm1

In some cases a list of hyper concepts with highest weights needs to be

returned instead of a single hyper concept. In this case, the process of recording

extracting the highest weight index in lines 18 to 21 is discarded. The array

weights is sorted and a list of the highest weight indecies is returned. The time

complexity of the sorting process is O(nlogn), this makes the time complexity

of get HCList O(n2 + nlogn) which is equivalent to O(n2).

Three different approaches have been used for extracting maximum cliques

from a graph that are based on the hyper concept algorithm. The first is the

greedy approach, which is our baseline, and the two improvements made to it,

a partial backtracking approach, and a partial branch and bound approach.

4.2 Greedy Approach

The greedy algorithm is designed to provide a conceptual basis for solving the

maximum clique problem and investigate the usefulness of the hyper concept

algorithm in solving the maximum clique problem. Other greedy methods do

exist in the literature, but a conceptual greedy algorithm is needed as a basis

for further development of the solution.

The greedy approach is a depth first traversal of the tree, that only considers

the first branch. At each level of the tree, the hyper concept with the highest
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weight is selected. Figure 4.5 shows a depth first traversal of the hyper concept

tree that starts with a formal context and ends with a clique in the leaf of the

first branch. Here we use “d” as the weight of the hyper concept. The hyper

concept corresponds to a clique when the cardinality of the relation is equal to

the number of vertices squared r = d2.

1 2 3 4 5 6 7

1 1 1 1 0 0 0 1

2 1 1 1 0 0 0 1

3 1 1 1 1 1 1 0

4 0 0 1 1 1 1 0

5 0 0 1 1 1 1 0

6 0 0 1 1 1 1 1

7 1 1 0 0 0 1 1

1 2 3 4 5 6

1 1 1 1 0 0 0

2 1 1 1 0 0 0

3 1 1 1 1 1 1

4 0 0 1 1 1 1

5 0 0 1 1 1 1

6 0 0 1 1 1 1

3 4 5 6

3 1 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

Figure 4.5: Clique Extraction Using the Greedy Approach

Algorithm 2 shows the recursive procedure followed for finding the max-

imum clique using the greedy method. Line 2 of the algorithm checks if the

current context is a clique, in which case the size of the clique found is returned

and the algorithm terminates. If it is not a clique, the function get HC(context)

is called in line 5. get HC(context) extracts all hyper concepts from the con-

text, computes their weights according to the selected formula and returns the
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hyper concept with the highest weight. greedy getClique(context) procedure is

then called recursively until a clique is found. The worst case time complexity

of the greedy approach is equivalent to O(n3)

Algorithm 2: Finding the largest clique using the greedy approach

1 greedy getClique (context);
Input : A formal context in the form of a 2D Integer array
Output: the size of the maximum clique

2 if isClique(context) then
3 return clique size;
4 else
5 context = get HC(context, tabuList);
6 greedy getClique(context);

7 end

4.3 Partial Backtracking

The greedy method often falls in the trap of local optimality. The backtracking

method was designed to escape the local optimum and extract cliques from

different branches.

Partial backtracking is an improvement to the greedy approach. Based

on the assumption that the first clique obtained using the greedy approach is

not necessarily the largest in the graph. After the largest clique is obtained,

a normal backtracking algorithm would backtrack to the first node with an

unvisited child, in our case, we backtrack all the way to the first level of the tree

and select the node with the next highest weight. Figure 4.6 shows the order

in which the nodes of the hyper concept tree are traversed in the backtracking

approach. This approach entails traversing all the nodes of the first level, and

for each node, the hyper concept with the highest weight is extracted and the

algorithm proceeds similar to the greedy method. At each level of the tree at

most n nodes are traversed and get HC(context) is called in each node, where

n is the cardinality of a graph.
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2 5 8

63 9

Figure 4.6: Backtracking Illustration

The backtracking procedure is explained in Algorithm 3. First, the indecies

of the hyper concepts of the first level of the hyper concept tree are sorted

according to their weights and stored in indexList using sortCliques(context).

greedy Cliques(index, context) in line 4 is used to get the clique at the leaf of

the branch corresponding to the first level hyper concept of the current index.

The index is a parameter that can be used to limit the number of branches

traversed. In each iteration, the largest clique of each branch is returned,

and the largest clique obtained from all iterations is reported by backtrack-

ing getClique(context). The worst case time complexity of the backtracking

approach is O(mn3), where m is the number of branches to be explored.

Algorithm 3: Finding the largest clique using the backtracking approach

1 backtracking getClique (context);
Input : A formal context in the form of a 2D Integer array
Output: The size of the maximum clique

2 indexList = sortCliques(context);
3 for index ∈ indexList do
4 cliqueSize = greedy getClique(index, context) ;
5 if cliqueSize > largestClique then
6 largestClique = cliqueSize ;
7 end

8 end
9 return largestClique ;
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4.4 Partial Branch and Bound

The branch and bound method was developed to escape the local optimum

faced by the greedy method by exploring a larger area of the hyper concept

tree.

Branch and bound is traditionally used for finding exact solutions for op-

timization problems. We here explore its use for obtaining an approximate

solution by exploring only a portion of the tree by limiting the depth and the

width at which the branching stops. In Figure 4.7 the depth is set to 2 and the

width is set to 3. The nodes that are visited are highlighted in gray. For level

1 and level 2, the 3 nodes with the highest weight are considered, for the rest

of the tree only the node with the highest weight is considered. It is clear here

that the number of node that will be visited is significantly larger than that of

the backtracking approach, and it grows fast as the values of depth and width

increase.

Figure 4.7: Branch and Bound Illustration

Algorithm 4 presents the branch and bound procedure. The algorithm uses

a priority queue data structure that orders hyper concepts according to their

weight in each level of the hyper concept tree. The queue is populated by

objects of type “HC” which have the level, weight and a list the hyper concept

vertices as attributes. For each hyper concept that is popped from the priority

queue, one or more hyper concepts are extracted from it depending on the preset
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depth and width parameters. If the level of the hyper concept is less than or

equal to a preset value of the maximum level l, a list of w hyper concepts are

extracted, where w is a preset value of the width. The extracted hyper concepts

are added to the priority queue only if the size of the hyper concept is greater

than the size of largest hyper concept obtained so far. If the size of the hyper

concept is smaller than the largest clique, it is guaranteed that a larger clique

cannot be obtained from it and it is pruned from the tree. If the hyper concept

is at a level that is larger than the preset level l, then only one hyper concept

with the highest weight is extracted from it. The extracted hyper concept(s)

is added to the queue if it is not a clique. If it is a clique however, its size is

checked, if larger than the current largest clique, it replaces it. The worst case

time complexity of the branch and bound approach is O(wdn3) where w is the

value of the width and d is the value of the depth of the hyper concept tree.

Algorithm 4 starts by pushing the passed context to the priority queue in

line 2. The context is popped from the queue in line 4 and its level is checked.

If the level is less than “l”, a list of “w” hyper concepts are extracted. Each of

the extracted hyper concepts is checked whether it is not a clique and whether

its size is greater than the largest clique found so far, if that’s the case then

the hyper concept is added to the clique. If the hyper concept is a clique, and

its size is greater than the current largest size, then its size is recorded as the

largest in line 11. If the level is greater than l, only one hyper concept with

the highest weight needs to be extracted, it is added to the queue if it is not a

clique and if its size is greater that the current clique. This process is repeated

until the queue is empty.
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Algorithm 4: Finding the largest clique using the branch and bound
approach

1 branchAndBound getClique(context);
Input : A formal context in the form of a 2D Integer array
Output: The size of the maximum clique

2 HCQueue.push(context) ;
3 do
4 HC = HCQueue.pop() ;
5 if HC.level() <= l then
6 HCList = get HCList(HC,w) ;
7 for HC ∈ HCList do
8 if HC.size() > largestClique and !isClique(HC) then
9 HCQueue.puch(HC) ;

10 else if HC.Size() > largestClique and isCliqe(HC) then
11 largestClique = HC.Size();

12 end

13 else
14 HC = get HC(HC);
15 if HC.size() > largestClique and !isClique(HC) then
16 HCQueue.puch(HC) ;
17 else if HC.Size() > largestClique and isCliqe(HC) then
18 largestClique = HC.Size();

19 end

20 while !HCQueue.isEmpty();
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Chapter 5: Evaluation and Discussion

In this chapter we present the set up of the experiment 5.1 followed by a

description of the used benchmark instances 5.2. After that we present the

results of the greedy approach 5.3, the backtracking approach 5.4 and the

branch and bound approach 5.5. Finally we present a comparison between the

developed approach and the best published results 5.6.

5.1 Experimental Setup

The experiments have been performed on an HP envy laptop running windows

8.1. The PC has an Intel(R) Core i7-4702MQ processor and 16GB RAM. The

implementation of all algorithms is sequential, written in Java programming

language.

5.2 Benchmark

The 3 different variations of the algorithm are tested on DIMACS benchmark.

DIMACS is the Center for Discrete Mathematics and Theoretical Computer

Science that is a collaborative project of different institutions. The center held a

few challenges, one of which focused on three NP-Hard problems: Satisfiability,

Graph Coloring, and Maximum Clique. The graphs used during the challenge

became the most widely benchmark for testing algorithms for the maximum

clique, maximum weighted clique and even for the maximum independent set

and vertex cover problems since 1992. The benchmark contains 80 different
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cliques belonging to 12 different families. The families differ in the method by

which the clique are generated which provides a wide variety of graphs. The

graph sizes range between 28 to 4000 vertices. The following is a summary of

the families.

• brock: Based on the work done by [11] which attempts to hide large

cliques in graphs between smaller size cliques.

• C: Randomly generated graphs.

• c-fat: Generated from fault diagnosis data.

• DSJC: Randomly generated graphs.

• gen: Artificially generated graphs by Sanchis [43]

• hamming: Graphs that are based on the hamming distance between

words. If the words are at least a hamming distance apart an edge is

formed between them.

• johnson: Undirected graphs generated from systems of sets. An edge is

formed if the intersection of the sets contains at lease k-1 elements.

• keller: Graphs based on Keller’s conjecture on tilings.

• MANN: Graphs generated from converting the set covering formulation.

• p-hat: Randomly generated graphs.

• san: Randomly generated graphs.

• sanr: Randomly generated graphs.

The BHOSLIB benchmark was used to evaluate the optimal parameters for

the branch and bound algorithm. The benchmark instances are transformed

from a SAT benchmark where the vertices correspond to variables and the

edges correspond to binary clauses.
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5.3 Results of Greedy Approach

In this experiment, we tested the greedy algorithm previously presented on the

full set of benchmark files using the 5 different weight values. The obtained

results are summarized in Table 5.1. Weight, refers to the weight formula

presented in Table 4.1. The second column, Clique Count, shows the number of

maximum cliques found in the 80 benchmark files, and the percentage between

parenthesis. When the maximum clique is not found, we use the distance

between the largest clique found by the algorithm and the clique number of

the graph ω as an indication of the quality of the given weight. We report here

the maximum, minimum and average distance. Time (s) is the total time in

seconds needed to find solutions to all the graphs.

Table 5.1: Greedy Method Results
Weight Clique Count(%) max distance min distance avg distance Time (s)
weight1 17(21.25) 26 1 6.60 186.39
weight2 18(22.5) 28 1 7.01 116.44
weight3 13(16.25) 50 3 13.61 93.44
weight4 19(23.75) 28 1 7.16 174.32
weight5 18(22.5) 28 1 7.01 182.60

All Weights 19(23.75) 26 1 6.40 489.72

Weight4 produced the best result for the greedy approach which is the mod-

ified gain formula that gives more importance to the economy of information.

using weight4, 19 out of 80 maximum cliques were extracted, and the aver-

age distance from the maximum clique is 7.16 nodes. weight1, weight2 and

weight5, produced results that are close to that given by weight1. Weight1 has

a smaller minimum distance and smaller average distance. The last row is the

result of sequentially running the greedy algorithm with all possible weight val-

ues, and reporting the largest clique found. The number of cliques is the same

as that found using weight4, but it results in a smaller distance average. The

time taken to extract cliques from all the benchmark graphs is 489.72 seconds,
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which is acceptable. The full results of each weight on all benchmark graphs

are listed in the Appendix.

5.4 Results of Partial Backtracking

A similar experiment has been conducted to test the backtracking approach.

The results in Table 5.2 correspond to backtracking 50 times to the first level

for each given weight.

Table 5.2: Partial Backtracking Results
Weight Clique Count(%) max distance min distance avg distance Time (s)
weight1 32(40.0) 26 1 4.33 4323.81
weight2 33(41.25) 25 1 4.77 4323.81
weight3 15(18.75) 32 1 9.68 3760.69
weight4 33(41.25) 26 1 4.81 4235.93
weight5 33(41.25) 25 1 4.79 4538.24

All Weights 33(41.25) 25 1 4.78 56964.89

Weight2, weight4, weight5 and weight1 produce the best results of this ap-

proach, with 33 or 32 maximum cliques extracted out of 80 benchmark graphs,

which presents a slight improvement to the greedy approach. Weigh3 produces

worse results. The time taken by this approach is significantly larger than that

taken by the greedy algorithm. Performing the same experiment by sequen-

tially trying all weights results in the same number of maximum cliques, which

indicates that one weight is sufficient to find all the maximum cliques. The

detailed set of obtained results on all graphs is listed in Appendix.

5.5 Results of Branch and Bound

This is the last modification made to basic approach. We tested the method

on the different benchmark files, using the different weight measures and with

varying values of depth and width for branching. We tested the approach with
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depths 1 and 2, and width values 10 to 100 with increments of 10. Figures

5.1, 5.2, 5.3, 5.4, and 5.5 show the summary of the results obtained using each

weight formula. In each figure, the horizontal axis represents the corresponding

depth and width values, the value 1–10 signifies depth 1 and width 10. The

primary vertical axis represents the total number of maximum cliques found at

each depth and width values out of the 80 benchmark cliques. The secondary

vertical axis represents the total time in seconds. Two values for the total time

are reported, the total time taken by algorithm for the 80 benchmark graphs,

shown in red, and the total time needed to find the maximum clique in a graph,

shown in green.

Figure 5.1: Branch and Bound Summary for Weight1

Weight1 shows good performance for this approach. The number of maxi-

mum cliques obtained by weight1 ranges from 28 at depth 1 and width 10, to

56 at depth 2 width 80.

The maximum number of maximum cliques obtained by weight2 is slightly

lower than than obtained by weight1, 54 out of 80, but is still presented a good

overall performance.

Weight3 shows a poor performance, with only 28 out of 80 maximum cliques

are extracted at most.
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Figure 5.2: Branch and Bound Summary for Weight2

Figure 5.3: Branch and Bound Summary for Weight3

Weight4 and weight5 both have a similar acceptable performance with 47

out of 80 cliques extracted, but not as good as the results obtained by weight1

and weight2.

The maximum number of maximum cliques is found using weight1 at depth

2 and width 70, where 57 cliques are found out of 80 (70% of the graphs).

Table 5.3 summarizes the results obtained from all the weights. The average

distance obtained using weight1, weight2, weight4 and weight5 is less than 5

nodes. This means that even when the largest clique is not obtained, the size

of the clique is close.
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Figure 5.4: Branch and Bound Summary for Weight4

Figure 5.5: Branch and Bound Summary for Weight5

Table 5.3: Branch and Bound Results

Weight Clique Count (%) max distance min distance avg distance
weight1 56 (70.0) 22 1 4.75
weight2 54 (67.5) 21 1 4.27
weight3 28 (35.0) 219 1 12.94
weight4 47 (58.7) 21 1 4.27
weight5 47 (58.7) 21 1 4.27

The time needed to find the maximum clique increases, the running time

of the algorithm also increases as the values of depth and width increase. But

the time needed for finding the maximum clique increases at a much smaller

rate, and is always much lower than the running time of the algorithm. This
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means that the clique is found in the first few branches of the hyper concept

tree, but the algorithm keeps searching until all the branches are explored.

Initially, the a time limit of 2000 seconds was used. If a solution was not

found withing the first 2000 seconds of running the algorithm, the largest clique

size is reported and the algorithm is forced to stop. The selected time limit was

not very tight, and resulted in a the running time of the algorithm being very

high, especially that the first clique if found usually found a lot before. We also

observed that the time at which the first clique is found by the algorithm is

indicative of the time needed to find the largest clique. Similarly, graphs with

higher density are more likely to have a longer running time. Based on these

observations, multivariate regression was used to obtain a dynamic estimation

of the time that the largest clique will be found based on the time that the first

clique was found and the graph densities.

As weight1 gave the best results using a depth of 2 and width of 70, we used

the time values of obtaining the first clique output by this configuration along

with the graph densities as input to the multivariate regression, and the output

was coefficients of the time and density parameters along with the intercept

shown in Table 5.4.

Table 5.4: Regression Parameter Coefficients

intercept -66.395
density 188.65

first clique time 5.74

The experiments conducted so far in this section can be seen as a parameter

tuning phase, to devise the best value of the weight, depth, width and time

limit for the running time of the algorithm. To evaluate the effectiveness and

efficiency of the tuned parameters, we tested these setting on some the graphs

of the BHOSLIB benchmark. Table 5.5 is a summary of the obtained results.
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Table 5.5: BHOSLIB Benchmark Results

graph ω(G) density
with time limit without time limit

clique size run time clique size run time
frb30-15-1 30 0.82 29 91.49 29 83.63
frb30-15-2 30 0.82 29 91.15 29 104.51
frb30-15-3 30 0.82 28 90.38 28 103.81
frb30-15-4 30 0.82 28 90.55 28 89.22
frb30-15-5 30 0.82 28 89.85 28 95.98
frb35-17-1 35 0.84 32 94.86 32 191.22
frb35-17-2 35 0.84 32 98.18 33 159.42
frb35-17-3 35 0.84 32 95.70 33 189.27
frb35-17-4 35 0.84 32 93.86 32 167.53
frb35-17-5 35 0.84 32 93.57 33 180.94
frb40-19-1 40 0.86 36 101.50 36 504.01
frb40-19-2 40 0.86 36 98.96 37 546.28
frb40-19-3 40 0.86 36 98.29 37 531.90
frb40-19-4 40 0.86 37 98.62 37 467.40
frb40-19-5 40 0.86 37 97.20 37 466.56

In most cases, the cardinality of the obtained cliques without setting a time

limit is the same as the size of the clique obtained using the time limit except

for graphs frb35-17-2, frb35-17-3, frb40-19-2 and frb40-19-3, where the size of

the clique found is one node smaller than that found after applying the limit.

The running time on the other hand, is much lower when a time limit is applied.

5.6 Comparison with Other Approaches

Table 5.6 compares the best results obtained from the developed approach,

branch and bound method using weight1 at depth 2 and width 70, to the most

effective results in the literature as reported by [56]. The table shows the

performance on the hardest instances of the benchmark. The reported times

of all the algorithms are the times reported in the respective publications. The

times are relative and only listed for comparison purposes. All the reported

results are of sequential algorithms. The reported results correspond to [5, 35,

18, 20, 29, 57, 24, 46, 19, 55, 7, 27].
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Table 5.6: Comparison Between Approaches
Instance

brock400 2 brock400 4 brock800 2 brock800 4 C2000.9 C4000.5 MANN a45 MANN a81 keller6

best(avg)
time

best(avg)
time

best(avg)
time

best(avg)
time

best(avg)
time

best(avg)
time best(avg) time best(avg) time

best(avg)
time

DAGS
29(28.10)

0.62 33 0.62
24(20.82)

3.73
26(22.60)

3.75
76(75.40)

405.33
18(17.50)

717.55
344(343.95)

426.95
57(56.40)

2739.11

IEA-PTS
29(27.52)

1.08 33 0.84
24(21.06)

1.03
26(21.4)

2.07 79(76.4) 19.71
18(17.66)

104.21
345(343.97)

9.43
1099(1097.01)

237.55
59(57.06)

45.4

VNS 29(27.4) 4.17 33 2.69 21 0.85 21 3.16 78(77.2) 22.74 18 310.71 345(344.5) 1.51
1100(1099.3)

65.47 59(58.2)
17.9

GENE 24(22.5) 0.27
25(23.6)

0.19 20(19.3) 0.75
20(18.9)

1.12 72(68.2) 4.89 16(15.4) 1.95 343(342.4) 19.56
1097(1096.3)

401.41 55(51.8)
8.71

RLS
29(26.06)

3.06
33(32.42)

7.89 21 0.34 21 0.48
78(77.58)

59.83 18 158.65
345(343.60)

28.98 1098 205.72 59
13.79

SBTS 29 11.97 33 0.49
24(22.29) 464.12 26(25.90) 249.47 80(77.29)

896.78 18 919.07 345 16.3 1100 13.43 59
446.67

DLS 29 0.12 33 0.02 24 3.97 26 2.24
78(77.93)

48.79 18 45.76 344 13.12
1098(1097.96)

66.66 59
43.05

KLS
25(24.84)

0.04 25 0.01
21(20.86)

0.16
21(20.67)

0.39
77(74.90)

4.8
18(17.02)

7.76
345(343.88)

2.02
1100(1098.07)

12.88
57(55.59)

17.08

HSSGA 29(25.1) 0.14
33(27.0)

0.29 21(20.7) 1.35
21(20.1)

0.38 74(71.0) 14.83 17(16.8) 19.97 343(342.6) 8.22
1095(1094.2)

503.99 57(54.2)
39.67

AMTS 29 0.69 33 0.35 24 19.61 26 9.01
80(78.95)

266.33 18 74.93
345(344.04)

66.77 1098 16.3 59
6.39

EA/G 25(24.7) 1.42
33(25.1)

1.42 21(20.1) 3.42
21(19.9)

3.42 72(70.9) 17.38 17(16.1) 23.46 345(343.7) 30.84
1098(1097.2)

319.04 56(53.4)
24.26

BLS 29 10.29 33 1.87
24(23.04) 637.94

26
356.05

80(78.6) 2846.84 18 387.33
342(340.82) 1094(1092.17)

59
14.67

HC 24
67.60
(1.09)

25
68.24
(27.22)

21 159.05
(131.28)

21 171.36
(49.3)

72
2000

(462.50)
17

1920.24
(71.42)

344
2000

(1732.98)
1098

2000
(1061.00)

54
2000
(6.47)
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The results show that the maximum clique found by the hyper concept al-

gorithm (in the last row) using the branch and bound design approach always

has a size that is in the same range as some of the best approaches in the

literature, the running time however, is slightly higher in most cases. Some of

the approaches rely on randomization, the results between parenthesis are the

average of 100 runs. The reported running time results are obtained without

applying the learning approach. The time needed to find the largest clique

is presented between parenthesis, it is usually a lot lower than the running

time, and it can be obtained using regression. Furthermore, the hyper con-

cept algorithm is implemented in Java, while most of the other solutions are

implemented in lower level languages like C and C++.
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Chapter 6: Conclusion

In the scope of this thesis, a heuristic conceptual approach for solving the

maximum clique problem that runs in polynomial time has been developed.

Several algorithm design approached have been designed and tested on the

DIMACS benchmark graphs. The developed greedy approach is very efficient

but the obtained results are not satisfactory in terms of obtained clique sizes.

The backtracking approach slightly improved the greedy approach in terms

of clique sizes but still does give the desired results. The branch and bound

approach was the most successful in terms of obtained clique sizes but proven

to no to be efficient. The parameters of the branch and bound approach have

been optimized in a learning phase and tested on the BHOSLIB benchmark

graphs.

The best obtained results we compared to the best result in the literature.

The actual running time was high when compared to other approaches, but the

time needed for finding the largest clique by the algorithm is much smaller and

can be predicted through regression using historical information for obtaining

previous cliques.

In the future, many improvements can be made to the algorithm to improve

its performance. The current solution is implement in Java programming lan-

guage, an implementation in a lower level language, like C might be much more

efficient. Further improvements can be done to the data structures used. Con-

ceptually, better upper and lower bounds to the branch and bound approach

can be used to increase the efficiency of the algorithm. Learning through the re-
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gression method can be extended to include the learning from the times needed

to find the first two or three cliques instead of just the first clique to obtain a

better estimation of the time time needed for finding the largest clique.

An improvement to the obtained results can be done by considering a sub

ordering method when the vertices have equal weights for the main weight

formula. For example, when the weight formula used is r
d×c × (r − d − c),

and two hyper concepts have equal highest weights, giving selecting the hyper

concept with the higher value of r
d×c might result in obtaining a better results

values faster. More consideration can be given to special numerical situations

that could be causing a disadvantage for some of the weight formulas. For

example, if the value of (r− (d+ c)) is negative, the log of it will be undefined.

In addition, squaring the matrix immediately after obtaining the vertex of the

highest weigh then checking if the obtained hyper concept is clique will decrease

the running time even further for the greedy approach. The performance of

the developed approach might be assessed using many other weight formulas,

for example the formula r
d

might produce better results.
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Chapter A: Detailed Results

Table A.1: Greedy Method Results - Brock Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)
brock200 1 21 18 0.112 19 0.070 14 0.058 19 0.049 19 0.087
brock200 2 12 8 0.008 9 0.007 8 0.007 9 0.006 9 0.009
brock200 3 15 12 0.011 13 0.008 10 0.010 13 0.010 13 0.009
brock200 4 17 14 0.014 14 0.013 10 0.007 14 0.010 14 0.008
brock400 1 27 22 0.076 22 0.043 16 0.023 22 0.024 22 0.050
brock400 2 29 22 0.047 22 0.041 22 0.030 22 0.028 22 0.040
brock400 3 31 21 0.047 23 0.038 17 0.025 21 0.024 23 0.040
brock400 4 33 22 0.049 22 0.039 17 0.026 22 0.027 22 0.044
brock800 1 23 17 0.186 18 0.106 15 0.090 18 0.206 18 0.107
brock800 2 24 18 0.204 17 0.114 15 0.077 17 0.215 17 0.100
brock800 3 25 17 0.178 17 0.113 14 0.076 17 0.155 17 0.082
brock800 4 26 18 0.183 18 0.095 14 0.071 18 0.128 18 0.090
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Table A.2: Greedy Method Results - keller Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

keller4 11 9 0.005 7 0.002 7 0.001 7 0.003 7 0.004

keller5 27 24 0.131 15 0.052 17 0.039 16 0.093 15 0.093

keller6 59 49 5.929 31 1.403 35 1.020 32 3.542 31 4.169

Table A.3: Greedy Method Results - C Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

C1000.9 68 57 0.848 58 0.391 48 0.229 59 0.814 58 0.891

C125.9 34 33 0.011 33 0.007 28 0.003 33 0.016 33 0.017

C2000.5 16 12 0.692 13 0.236 12 0.845 13 0.880 13 0.587

C2000.9 80 68 3.573 67 3.205 55 1.164 67 3.522 67 1.406

C250.9 44 40 0.056 39 0.031 36 0.010 39 0.045 39 0.026

C4000.5 18 14 3.152 14 1.541 11 0.948 14 3.451 14 1.043

C500.9 57 50 0.147 51 0.239 45 0.031 51 0.203 51 0.053
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Table A.4: Greedy Method Results - c-fat Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

c-fat200-1 12 12 0.004 12 0.002 12 0.001 12 0.002 12 0.002

c-fat200-2 24 24 0.005 24 0.003 24 0.001 24 0.003 24 0.003

c-fat200-5 58 58 0.017 58 0.007 58 0.008 58 0.009 58 0.010

c-fat500-1 14 14 0.015 14 0.007 14 0.004 14 0.011 14 0.007

c-fat500-10 126 126 0.167 126 0.084 126 0.004 126 0.123 126 0.073

c-fat500-2 26 26 0.026 26 0.012 26 0.004 26 0.017 26 0.016

c-fat500-5 64 64 0.062 64 0.039 64 0.027 64 0.043 64 0.033

Table A.5: Greedy Method Results - DSJC Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

DSJC1000 5 15 13 0.129 13 0.260 12 0.053 13 0.220 13 0.058

DSJC500 5 13 11 0.036 11 0.084 9 0.011 11 0.058 11 0.013

Table A.6: Greedy Method Results - gen Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

gen200 p0.9 44 44 37 0.026 37 0.040 35 0.006 37 0.030 37 0.008

gen200 p0.9 55 55 39 0.018 38 0.042 32 0.005 38 0.038 38 0.009

gen400 p0.9 55 55 47 0.081 49 0.160 40 0.023 47 0.125 49 0.047

gen400 p0.9 65 65 45 0.076 45 0.136 40 0.026 45 0.129 45 0.033

gen400 p0.9 75 75 49 0.074 47 0.176 43 0.023 47 0.149 47 0.05061



Table A.7: Greedy Method Results - hamming Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

hamming10-2 512 512 6.392 512 5.682 496 0.524 512 6.731 512 7.028

hamming10-4 40 36 0.488 36 0.190 19 0.072 36 0.273 36 0.385

hamming6-2 32 32 0.003 32 0.001 32 0.000 32 0.002 32 0.003

hamming6-4 4 4 0.001 4 0.000 4 0.000 4 0.000 4 0.001

hamming8-2 128 128 0.105 128 0.036 121 0.008 128 0.085 128 0.117

hamming8-4 16 16 0.009 16 0.003 6 0.002 16 0.009 16 0.010

Table A.8: Greedy Method Results - jhonson Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

johnson16-2-4 8 8 0.003 8 0.001 8 0.001 8 0.002 8 0.003

johnson32-2-4 16 16 0.041 16 0.016 16 0.014 16 0.028 16 0.048

johnson8-2-4 4 4 0.000 4 0.000 4 0.000 4 0.000 4 0.000

johnson8-4-4 14 14 0.004 14 0.002 8 0.002 14 0.005 14 0.007

Table A.9: Greedy Method Results - MANN Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

MANN a27 126 125 0.203 125 0.096 123 0.124 125 0.165 125 0.346

MANN a45 345 342 3.942 342 2.079 335 1.953 342 4.781 342 4.303

MANN a81 1100 1096 153.756 1096 93.391 1084 83.404 1096 141.621 1096 156.028

MANN a9 16 16 0.000 16 0.001 16 0.000 16 0.001 16 0.00162



Table A.10: Greedy Method Results - p hat Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

p hat1000-1 10 9 0.035 9 0.082 4 0.095 9 0.064 9 0.095

p hat1000-2 46 45 0.691 45 0.336 24 0.181 44 0.387 45 0.391

p hat1000-3 68 62 0.665 61 0.911 34 0.356 61 0.821 61 0.930

p hat1500-1 12 10 0.213 10 0.354 6 0.190 10 0.337 10 0.278

p hat1500-2 65 60 0.704 61 1.714 26 0.493 61 1.414 61 1.100

p hat1500-3 94 86 1.680 86 1.749 44 0.494 86 1.441 86 1.208

p hat300-1 8 7 0.009 7 0.009 4 0.004 7 0.006 7 0.007

p hat300-2 25 24 0.026 25 0.027 14 0.006 25 0.038 25 0.022

p hat300-3 36 33 0.036 34 0.033 24 0.021 34 0.073 34 0.029

p hat500-1 9 8 0.016 8 0.017 5 0.016 9 0.029 8 0.016

p hat500-2 36 34 0.070 32 0.074 22 0.028 32 0.129 32 0.079

p hat500-3 50 46 0.115 46 0.112 26 0.045 45 0.202 46 0.094

p hat700-1 11 8 0.035 8 0.035 7 0.029 8 0.053 8 0.037

p hat700-2 44 43 0.154 43 0.150 23 0.044 43 0.228 43 0.164

p hat700-3 62 58 0.229 59 0.202 42 0.095 59 0.373 59 0.187
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Table A.11: Greedy Method Results - san - sanr Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

san1000 15 9 0.087 9 0.075 8 0.086 9 0.157 9 0.078

san200 0.7 1 30 16 0.006 17 0.005 16 0.005 17 0.012 17 0.008

san200 0.7 2 18 14 0.008 14 0.005 12 0.005 14 0.015 14 0.006

san200 0.9 1 70 47 0.021 47 0.015 34 0.009 48 0.042 47 0.020

san200 0.9 2 60 38 0.017 41 0.013 27 0.009 39 0.028 41 0.017

san200 0.9 3 44 34 0.010 34 0.011 25 0.008 34 0.019 34 0.011

san400 0.5 1 13 9 0.013 9 0.010 7 0.014 9 0.022 9 0.011

san400 0.7 1 40 21 0.024 21 0.018 21 0.022 21 0.039 21 0.029

san400 0.7 2 30 18 0.022 17 0.020 16 0.020 17 0.038 17 0.022

san400 0.7 3 22 16 0.024 16 0.021 12 0.023 16 0.036 16 0.025

san400 0.9 1 100 80 0.084 82 0.066 76 0.025 82 0.120 82 0.079

sanr200 0.7 18 16 0.005 15 0.004 13 0.003 15 0.008 15 0.006

sanr200 0.9 42 41 0.017 40 0.008 35 0.006 41 0.026 40 0.015

sanr400 0.5 13 11 0.015 12 0.009 8 0.008 12 0.022 12 0.014

sanr400 0.7 21 18 0.023 18 0.014 16 0.013 18 0.030 18 0.025
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Table A.12: Backtracking Method Results - Brock Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

brock200 1 21 20 0.95 20 0.68 19 0.42 20 0.35 20 0.48

brock200 2 12 11 0.46 11 0.32 10 0.21 11 0.16 11 0.17

brock200 3 15 14 0.57 14 0.38 12 0.23 14 0.19 14 0.21

brock200 4 17 16 0.62 16 0.45 14 0.24 16 0.22 16 0.26

brock400 1 27 23 3.16 23 3.61 20 1.33 23 1.15 23 1.25

brock400 2 29 24 3.29 24 3.59 22 1.21 24 1.22 24 1.22

brock400 3 31 24 3.41 24 3.11 20 1.03 24 1.09 24 1.29

brock400 4 33 24 3.22 24 2.09 20 0.94 24 1.12 24 1.25

brock800 1 23 20 9.6 20 4.79 18 2.53 20 3.36 20 3.91

brock800 2 24 20 8 19 3.16 17 2.27 20 3.7 19 3.8

brock800 3 25 20 4.4 20 4.66 18 5.71 20 3.74 20 3.56

brock800 4 26 20 2.88 20 5.05 17 2.91 20 3.86 20 3.52

Table A.13: Backtracking Method Results - keller Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

keller4 11 11 0.12 11 0.11 9 0.07 11 0.12 11 0.12

keller5 27 26 4.19 21 3.42 19 2.3 20 3.38 20 3.41

keller6 59 52 124.8 43 96.15 35 60.99 43 96.41 43 99.26
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Table A.14: Backtracking Method Results - C Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

C1000.9 68 61 14.19 63 16.22 57 9.82 62 15.16 63 15.53

C125.9 34 33 0.24 34 0.22 32 0.11 34 0.23 34 0.23

C2000.5 16 15 15.85 15 17.04 13 13.63 15 14.61 15 15.19

C2000.9 80 69 60.49 70 64.41 61 44.31 70 64.06 70 67.33

C250.9 44 43 0.77 44 0.89 40 0.46 44 0.96 44 0.97

C4000.5 18 15 63.55 16 64.62 14 54.09 16 60.62 16 61.88

C500.9 57 54 3.48 53 3.92 48 2.35 53 3.63 53 3.94

Table A.15: Backtracking Method Results - c-fat Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

c-fat200-1 12 12 0.04 12 0.05 12 0.03 12 0.06 12 0.05

c-fat200-2 24 24 0.07 24 0.09 24 0.05 24 0.12 24 0.09

c-fat200-5 58 58 0.2 58 0.25 58 0.26 58 0.38 58 0.28

c-fat500-1 14 14 0.24 14 0.3 14 0.16 14 0.34 14 0.32

c-fat500-10 126 126 4.87 126 3.04 126 0.16 126 3.61 126 3.05

c-fat500-2 26 26 1.03 26 0.47 26 0.17 26 0.51 26 0.48

c-fat500-5 64 64 2.09 64 1.15 64 1.2 64 1.22 64 1.16
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Table A.16: Backtracking Method Results - DSJC Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

DSJC1000 5 15 14 3.76 13 3.77 12 3.42 13 3.68 13 3.93

DSJC500 5 13 13 0.89 13 0.9 11 0.8 13 0.88 13 0.93

Table A.17: Backtracking Method Results - gen Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

gen200 p0.9 44 44 39 0.53 39 0.59 37 0.32 39 0.59 39 0.59

gen200 p0.9 55 55 41 0.55 44 0.57 55 0.3 44 0.6 44 0.61

gen400 p0.9 55 55 49 2.33 49 2.41 43 1.46 49 2.39 49 2.64

gen400 p0.9 65 65 49 2.15 49 2.44 53 1.36 49 2.36 49 2.75

gen400 p0.9 75 75 49 2.36 50 2.51 49 1.52 49 2.45 50 3.09

Table A.18: Backtracking Method Results - hamming Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

hamming10-2 512 512 190.79 512 192.41 503 30.53 512 194.55 512 199.14

hamming10-4 40 36 9.59 36 9.71 19 4.65 36 8.98 36 9.18

hamming6-2 32 32 0.05 32 0.05 32 0.02 32 0.06 32 0.05

hamming6-4 4 4 0.01 4 0.01 4 0.01 4 0.01 4 0.01

hamming8-2 128 128 3.14 128 2.82 128 0.66 128 2.92 128 2.87

hamming8-4 16 16 0.25 16 0.22 6 0.13 16 0.22 16 0.2367



Table A.19: Backtracking Method Results - jhonson Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

johnson16-2-4 8 8 0.05 8 0.05 8 0.05 8 0.05 8 0.05

johnson32-2-4 16 16 1.22 16 1.1 16 1.11 16 1.17 16 1.2

johnson8-2-4 4 4 0 4 0 4 0 4 0 4 0

johnson8-4-4 14 14 0.03 14 0.03 8 0.02 14 0.03 14 0.03

Table A.20: Backtracking Method Results - MANN Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

MANN a27 126 126 6.01 125 6.96 123 5.8 125 6.72 125 6.32

MANN a45 345 343 126.91 344 125.43 335 117.6 344 121.96 344 123.13

MANN a81 1100 1098 3575.39 1096 3531 1084 3331.46 1096 3481.55 1096 3605.78

MANN a9 16 16 0.01 16 0.01 16 0.01 16 0.01 16 0.03
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Table A.21: Backtracking Method Results - p hat Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

p hat1000-1 10 10 1.95 10 1.92 8 1.57 10 2 10 3.87

p hat1000-2 46 45 8.66 45 8.66 30 2.81 45 8.59 45 9.84

p hat1000-3 68 64 13.45 65 14.41 45 5.62 65 13.16 65 25.66

p hat1500-1 12 11 4.55 11 4.86 9 3.6 11 4.4 11 4.98

p hat1500-2 65 64 27.98 64 24.77 33 6.97 64 24.14 64 39.74

p hat1500-3 94 91 59.98 90 37.01 64 12.64 90 36.23 90 100.42

p hat300-1 8 8 0.6 8 0.16 7 0.14 8 0.16 8 0.47

p hat300-2 25 25 1.99 25 0.55 18 0.23 25 0.56 25 1.53

p hat300-3 36 34 2.06 34 0.9 27 0.39 34 0.81 34 2.17

p hat500-1 9 9 0.87 9 0.48 8 0.36 9 0.47 9 1.75

p hat500-2 36 36 2.61 36 1.89 25 0.63 36 1.82 36 6.68

p hat500-3 50 48 3.33 48 2.88 35 1.17 48 2.91 48 9.41

p hat700-1 11 9 0.9 9 0.95 8 0.68 9 0.95 9 2.15

p hat700-2 44 44 3.8 43 4.2 26 1.36 43 4.1 43 9.64

p hat700-3 62 60 15.1 62 13.71 43 2.44 62 6.55 62 22.4
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Table A.22: Backtracking Method Results - san - sanr Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

san1000 15 10 3.52 10 7.88 9 2.94 10 2.9 10 8.06

san200 0.7 1 30 30 0.2 30 0.39 16 0.18 30 0.23 30 0.78

san200 0.7 2 18 17 0.19 15 0.36 14 0.18 15 0.22 15 0.77

san200 0.9 1 70 68 0.52 70 1.09 55 0.33 70 0.68 70 2.22

san200 0.9 2 60 54 0.43 55 0.87 54 0.29 55 0.48 55 1.73

san200 0.9 3 44 35 0.36 36 0.67 32 0.29 36 0.43 36 1.52

san400 0.5 1 13 13 0.37 13 0.62 8 0.41 13 0.43 13 1.52

san400 0.7 1 40 40 0.87 40 1.11 21 0.81 40 0.99 40 3.44

san400 0.7 2 30 30 0.78 19 0.88 17 0.76 19 0.87 19 3.03

san400 0.7 3 22 17 0.72 17 0.85 14 0.66 17 0.81 17 2.81

san400 0.9 1 100 100 1.85 100 2.35 76 1.25 100 2.29 100 7.84

sanr200 0.7 18 18 0.19 18 0.22 15 0.16 18 0.19 18 0.71

sanr200 0.9 42 41 0.39 41 0.55 37 0.3 41 0.52 41 1.74

sanr400 0.5 13 12 0.45 12 0.53 10 0.45 12 0.51 12 1.8

sanr400 0.7 21 19 0.72 20 0.83 18 0.64 20 0.8 20 2.82
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Table A.23: Branch and Bound Method Results - Brock Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

brock200 1 21 21 22.3(1.2) 21 42.1(3.2) 20 96.8(5.6) 21 42.5(7.2) 21 39.4(8.6)

brock200 2 12 12 10.1(0.0) 12 21.0(7.8) 12 46.8(44.3) 12 4.1(4.1) 12 5.6(5.5)

brock200 3 15 15 13.1(9.1) 14 25.0(0.2) 15 67.2(0.7) 14 14.7(0.8) 14 15.2(0.9)

brock200 4 17 17 16.7(0.8) 17 30.7(0.4) 17 78.9(17.1) 17 25.0(0.5) 17 15.5(0.5)

brock400 1 27 25 68.5(6.8) 25 121.1(12.8) 23 254.3(92.5) 24 21.2(2.2) 24 19.1(2.2)

brock400 2 29 24 67.6(1.1) 25 128.4(51.2) 22 267.5(0.7) 24 29.2(3.7) 24 33.8(3.6)

brock400 3 31 24 71.3(4.4) 25 124.0(2.8) 22 259.5(6.8) 25 38.2(16.9) 25 39.5(16.6)

brock400 4 33 25 68.2(27.2) 25 131.6(23.0) 33 259.5(84.3) 24 35.9(8.2) 24 27.3(8.1)

brock800 1 23 21 164.6(40.5) 21 255.8(100.5) 19 487.6(108.2) 20 57.0(48.2) 20 64.1(52.2)

brock800 2 24 21 159.0(131.3) 20 262.0(2.1) 19 493.0(274.3) 20 71.8(49.7) 19 69.1(1.8)

brock800 3 25 21 156.3(6.9) 21 246.4(4.1) 19 487.9(12.4) 20 72.6(3.9) 20 76.1(3.8)

brock800 4 26 21 171.4(49.4) 21 252.8(166.2) 19 503.0(3.4) 20 61.7(35.7) 20 57.3(29.9)
The time at which the clique is found is added between parenthesis in the tables of the branch and bound method to the time column.

Table A.24: Branch and Bound Method Results - keller Family

graph w
weight1 weight2 weight3 weight4 weight5

clique size time(s) clique size time(s) clique size time(s) clique size time(s) clique size time(s)

keller4 11 11 13.1(0.2) 11 20.7(1.0) 9 39.0(0.1) 11 14.9(1.7) 11 10.7(2.1)

keller5 27 27 284.3(1.7) 27 378.4(4.8) 19 791.8(2.3) 24 36.8(0.6) 24 31.3(0.6)

keller6 59 54 2000.0(705.5) 53 2000.0(7.9) 37 2000.0(33.5) 49 535.6(21.6) 51 548.2(47.9)
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Table A.25: Branch and Bound Method Results - C Family

graph w
weight1 weight2 weight3 weight4 weight5

size time(s) size time(s) size time(s) size time(s) size time(s)

C1000.9 68 64 707.0(289.8) 65 1220.4(201.3) 58 1989.7(218.6) 64 453.0(48.4) 64 429.9(38.2)

C125.9 34 34 25.4(1.2) 34 45.7(0.0) 34 72.6(7.6) 34 57.1(0.1) 34 56.4(0.1)

C2000.5 16 16 514.4(163.2) 16 813.3(24.2) 14 1145.6(22.8) 15 315.2(77.5) 15 321.6(84.2)

C2000.9 80 72 2000.0(462.5) 73 2000.0(244.0) 64 2000.0(1192.3) 72 398.9(9.7) 72 375.0(9.4)

C250.9 44 44 72.5(1.7) 44 150.3(6.7) 42 365.2(156.4) 44 135.0(0.9) 44 116.7(0.6)

C4000.5 18 17 1920.2(71.4) 17 2005.8(179.1) 15 2008.1(85.9) 16 1129.6(239.4) 16 1110.4(234.9)

C500.9 57 56 216.4(137.4) 56 350.8(42.4) 51 787.3(41.7) 55 379.3(14.5) 56 418.4(95.1)

Table A.26: Branch and Bound Method Results - c-fat Family

graph w
weight1 weight2 weight3 weight4 weight5

size time(s) size time(s) size time(s) size time(s) size time(s)

c-fat200-1 12 12 0.7(0.0) 12 0.7(0.0) 12 0.9(0.0) 12 0.4(0.0) 12 1.1(0.1)

c-fat200-2 24 24 2.8(2.4) 24 3.3(3.0) 24 4.3(4.0) 24 1.0(0.8) 24 1.8(1.5)

c-fat200-5 58 58 102.7(0.0) 58 128.0(0.0) 58 91.3(0.0) 58 9.9(0.0) 58 7.1(0.0)

c-fat500-1 14 14 3.6(0.1) 14 3.8(0.1) 14 6.1(1.5) 14 2.6(0.2) 14 2.0(0.1)

c-fat500-10 126 126 2000.1(0.1) 126 2000.0(0.1) 126 196.2(0.1) 126 77.9(0.2) 126 51.5(0.2)

c-fat500-2 26 26 40.0(0.1) 26 52.9(0.1) 26 25.9(2.7) 26 6.7(0.1) 26 9.6(0.1)

c-fat500-5 64 64 416.8(0.1) 64 641.7(0.1) 64 388.4(29.5) 64 19.4(0.1) 64 26.1(0.1)
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Table A.27: Branch and Bound Method Results - DSJC Family

graph w
weight1 weight2 weight3 weight4 weight5

size time(s) size time(s) size time(s) size time(s) size time(s)

DSJC1000 5 15 15 144.6(113.3) 15 266.5(221.9) 13 611.7(17.1) 14 95.6(32.4) 14 67.1(34.5)

DSJC500 5 13 13 43.8(0.6) 13 87.2(0.6) 12 240.4(0.4) 13 13.5(7.6) 13 29.4(17.4)

Table A.28: Branch and Bound Method Results - gen Family

graph w
weight1 weight2 weight3 weight4 weight5

size time(s) size time(s) size time(s) size time(s) size time(s)

gen200 p0.9 44 44 40 45.0(2.6) 40 86.3(3.8) 43 241.9(13.8) 40 113.0(3.6) 40 112.6(0.3)

gen200 p0.9 55 55 55 46.9(1.3) 55 101.8(4.1) 55 230.1(6.3) 55 123.4(15.3) 55 130.7(29.8)

gen400 p0.9 55 55 51 125.6(99.0) 51 249.3(35.1) 50 738.1(270.5) 51 256.5(0.6) 51 283.1(67.7)

gen400 p0.9 65 65 53 129.8(91.2) 54 253.9(9.6) 59 812.1(227.0) 55 314.5(77.6) 54 268.8(31.5)

gen400 p0.9 75 75 53 131.7(92.4) 54 254.1(123.0) 65 815.9(218.1) 54 288.9(167.6) 54 320.1(197.1)

Table A.29: Branch and Bound Method Results - hamming Family

graph w
weight1 weight2 weight3 weight4 weight5

size time(s) size time(s) size time(s) size time(s) size time(s)

hamming10-2 512 512 2000.0(2.5) 512 2000.0(3.3) 503 2000.0(1706.6) 512 2000.0(2.6) 512 2000.0(9.4)

hamming10-4 40 36 2000.0(0.6) 36 2000.0(0.7) 19 2000.0(353.6) 36 159.9(0.9) 36 174.3(1.3)

hamming6-2 32 32 3.5(0.0) 32 4.5(0.0) 32 4.4(3.2) 32 5.1(0.0) 32 3.9(0.0)

hamming6-4 4 4 0.2(0.0) 4 0.2(0.0) 4 0.3(0.0) 4 0.2(0.0) 4 0.1(0.0)

hamming8-2 128 128 183.9(0.2) 128 326.3(0.1) 128 646.1(129.0) 128 499.2(0.2) 128 502.9(0.1)

hamming8-4 16 16 112.7(0.0) 16 192.4(0.1) 6 187.0(0.1) 16 32.1(0.1) 16 30.2(0.1)73



Table A.30: Branch and Bound Method Results - jhonson Family

graph w
weight1 weight2 weight3 weight4 weight5

size time(s) size time(s) size time(s) size time(s) size time(s)

johnson16-2-4 8 8 31.8(0.0) 8 57.6(0.0) 8 83.1(0.0) 8 42.5(0.0) 8 38.1(0.0)

johnson32-2-4 16 16 293.1(0.1) 16 492.5(0.2) 16 850.4(0.2) 16 165.5(0.2) 16 170.8(0.2)

johnson8-2-4 4 4 0.0(0.0) 4 0.0(0.0) 4 0.0(0.0) 4 0.0(0.0) 4 0.0(0.0)

johnson8-4-4 14 14 2.1(0.0) 14 2.6(0.0) 14 4.1(0.0) 14 1.8(0.0) 14 2.5(0.0)

Table A.31: Branch and Bound Method Results - MANN Family

graph w
weight1 weight2 weight3 weight4 weight5

size time(s) size time(s) size time(s) size time(s) size time(s)

MANN a27 126 126 414.8(0.8) 125 421.8(0.2) 124 2000.0(309.7) 125 573.9(0.2) 125 586.3(0.2)

MANN a45 345 344 2000.0(1733.0) 344 2000.0(93.0) 126 2000.0(105.8) 344 2000.0(105.8) 344 2000.0(112.9)

MANN a81 1100 1098 2000.1(1061.0) 1096 2000.0(71.8) 1013 2000.1(63.2) 1096 2000.2(59.4) 1096 2000.1(63.2)

MANN a9 16 16 0.7(0.0) 16 1.0(0.0) 16 0.6(0.0) 16 1.3(0.0) 16 0.6(0.0)
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Table A.32: Branch and Bound Method Results - p hat Family

graph w
weight1 weight2 weight3 weight4 weight5

size time(s) size time(s) size time(s) size time(s) size time(s)

p hat1000-1 10 10 68.0(0.8) 10 110.6(1.1) 10 242.1(163.9) 10 40.6(3.2) 10 42.2(1.7)

p hat1000-2 46 46 417.8(48.0) 46 600.3(24.6) 36 626.2(248.4) 46 97.9(8.3) 46 108.7(17.2)

p hat1000-3 68 65 712.4(46.6) 67 1064.8(940.0) 51 1390.6(675.4) 65 124.0(60.0) 65 113.6(65.1)

p hat1500-1 12 11 149.0(1.5) 11 226.5(1.8) 10 380.4(3.4) 11 80.9(18.5) 11 66.7(15.0)

p hat1500-2 65 65 1175.4(341.1) 65 1672.0(60.8) 43 1327.0(214.3) 64 204.9(116.7) 64 229.1(107.3)

p hat1500-3 94 93 1755.6(89.5) 93 2000.0(136.1) 69 2000.0(759.4) 92 279.9(103.0) 91 249.1(6.1)

p hat300-1 8 8 16.7(0.1) 8 19.9(0.7) 8 33.2(19.3) 8 3.4(0.2) 8 2.3(0.1)

p hat300-2 25 25 45.9(8.3) 25 62.0(2.0) 24 115.5(13.4) 25 7.2(1.1) 25 14.1(1.0)

p hat300-3 36 36 67.7(25.9) 36 95.2(1.4) 33 228.6(22.4) 36 48.8(5.5) 36 52.1(3.6)

p hat500-1 9 9 22.9(0.5) 9 36.9(0.2) 9 102.2(31.5) 9 6.8(0.8) 9 13.2(1.9)

p hat500-2 36 36 116.9(5.0) 36 177.8(0.5) 30 289.8(78.3) 36 17.8(3.7) 36 18.6(3.7)

p hat500-3 50 50 194.5(90.0) 50 296.3(15.6) 43 502.2(93.1) 50 91.6(25.1) 50 70.1(18.9)

p hat700-1 11 11 46.6(8.3) 11 65.8(9.2) 9 161.7(1.4) 10 14.3(1.4) 10 19.6(2.7)

p hat700-2 44 44 266.1(5.0) 44 358.6(4.7) 34 438.1(151.5) 44 42.8(1.3) 44 41.9(4.0)

p hat700-3 62 62 434.9(4.5) 62 555.4(32.1) 49 792.5(52.4) 62 74.2(6.8) 62 76.0(7.0)
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Table A.33: Branch and Bound Method Results - san - sanr Family

graph w
weight1 weight2 weight3 weight4 weight5

size time(s) size time(s) size time(s) size time(s) size time(s)

san1000 15 10 235.0(1.3) 11 343.5(163.1) 10 481.2(1.4) 10 55.1(1.8) 10 53.9(1.6)

san200 0.7 1 30 30 22.6(5.1) 30 30.4(2.9) 30 127.5(0.4) 30 27.1(0.1) 30 18.6(0.1)

san200 0.7 2 18 18 21.3(1.9) 18 32.0(1.0) 15 92.0(0.5) 18 23.0(3.4) 18 24.0(3.1)

san200 0.9 1 70 70 90.2(0.1) 70 106.5(1.1) 70 388.4(16.6) 70 124.7(0.1) 70 134.3(0.0)

san200 0.9 2 60 60 63.8(5.1) 60 83.3(9.6) 60 324.1(12.2) 60 123.9(0.1) 60 107.3(0.1)

san200 0.9 3 44 44 58.5(55.4) 44 68.1(5.5) 41 205.2(6.4) 44 87.8(4.1) 44 89.8(3.7)

san400 0.5 1 13 13 50.8(30.5) 13 61.0(1.2) 9 135.2(0.7) 13 14.6(1.2) 13 10.8(0.8)

san400 0.7 1 40 40 120.1(19.1) 40 136.0(3.6) 22 415.8(1.7) 40 15.0(0.3) 40 12.1(0.2)

san400 0.7 2 30 30 82.8(5.7) 30 91.4(8.9) 18 274.3(33.5) 30 14.0(5.9) 30 11.7(4.7)

san400 0.7 3 22 22 66.3(2.9) 22 78.6(2.0) 15 170.9(1.0) 17 13.2(0.9) 17 11.9(0.7)

san400 0.9 1 100 100 273.3(6.5) 100 356.9(4.8) 87 1470.7(200.5) 100 344.2(10.4) 100 359.9(10.3)

sanr200 0.7 18 18 26.3(0.4) 18 32.2(2.2) 17 105.3(0.3) 18 18.7(0.3) 18 20.5(0.6)

sanr200 0.9 42 42 67.3(1.6) 42 82.8(3.8) 41 221.7(137.6) 42 103.4(0.7) 42 128.5(0.7)

sanr400 0.5 13 13 37.1(2.2) 13 57.1(5.8) 13 139.1(66.9) 12 10.2(0.3) 12 14.5(0.6)

sanr400 0.7 21 21 60.4(9.2) 21 98.3(0.2) 20 266.9(146.6) 21 18.1(0.4) 21 11.7(0.5)
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