11 research outputs found

    Survey of the Application Fields and Modeling Methods of Automotive Vehicle Dynamics Models

    Get PDF
    In this paper, a review is presented on automotive vehicle dynamics modeling. Applied vehicle dynamics models from various application fields are analyzed and classified in the first section. Vehicle dynamics models may be simplified because of different reasons: several control/estimation/analysis methods are suitable only for simplified models (e.g. using control-oriented models), or because of the computational cost. Detailed/truth models of vehicle dynamics represent another field of vehicle dynamics modeling, these models play an important role in the virtual prototyping of vehicles. In the second section, the main modeling considerations of vehicle dynamics are presented in longitudinal, lateral and vertical directions. Various physical effects must be considered in the case of vehicle dynamics modeling, a lot of these effects are significant only in a specific direction of the vehicle body, which is the main potential of model simplification. The section presents vehicle modeling considerations in all of the three translational directions of the vehicle body

    Vehicle Mass Estimation Using a Total Least-Squares Approach

    Get PDF
    We introduce an incremental total least-squares vehicle mass estimation algorithm, based on a vehicle longitudinal dynamics model. Available control area network signals are used as model inputs and output. In contrast to common vehicle mass estimation schemes, where noise is only considered at the model output, our algorithm uses an errors-in-variables formulation and considers noise at the model inputs as well. A robust outlier treatment is realized as batch total least-squares routine and hence, the proposed algorithm works in a superior way on a broad range of vehicle acceleration. The results of six test runs on various vehicle masses show highly accurate mass estimation results on high and low dynamics of vehicular operation

    Nonlinear observers for burning zone temperatures and torque estimation of the rotary cement kiln.

    Get PDF
    Due to consistent expansion in the infrastructure and housing sectors worldwide have given a new way for the rapid growth of global cement market. Increased global demand for the cement production makes the attractive research topic which can lead to the quality and overall efficiency of the product. Measurement of the temperature in the burning zone is vital to maintain product quality and kiln efficiency in the cement industry. Often the BZT is un-measurable due to internal kiln conditions, dusty environment, extreme heat, harshness for example and this leads to kiln not being driven as efficient as possible. Multi-physics tools are core to modern engineering, and smart manufacturing, but have not been extensively utilized in this low-cost industry, hence proposed approach is to find a reduced ordered model (ROM) of the thermodynamics of the kiln using data centric approach along with Multiphysics tool

    Vehicle Parameters Estimation and Driver Behavior Classification for Adaptive Shift Strategy of Heavy Duty Vehicles

    Get PDF
    Commercial vehicles fulfill the majority of inland freight transportation in the United States, and they are very large consumers of fuels. The increasingly stringent regulation on greenhouse-gas emission has driven manufacturers to adopt new fuel efficient technologies. Among others, advanced transmission control strategy can provide tangible improvement with low incremental cost. An adaptive shift strategy is proposed in this work to optimize the shift maps on-the-fly based on the road load and driver behavior while reducing the initial calibration efforts. In addition, the adaptive shift strategy provides the fleet owner a mean to select a tradeoff between fuel economy and drivability, since the drivers are often not the owner of the vehicle. In an attempt to develop the adaptive shift strategy, the vehicle parameters and driver behavior need to be evaluated first. Therefore, three research questions are addressed in this dissertation: (i) vehicle parameters estimation; (ii) driver behavior classification; (iii) online shift strategy adaption. In vehicle parameters estimation, a model-based vehicle rolling resistance and aerodynamic drag coefficient online estimator is proposed. A new Weighted Recursive Least Square algorithm was developed. It uses a supervisor to extracts data during the constant-speed event and saves the average road load at each speed segment. The algorithm was tested in the simulation with real-world driving data. The results have shown a more robust performance compared with the original Recursive Least Square algorithm, and high accuracy of aerodynamic drag estimation. To classify the driver behavior, a driver score algorithm was proposed. A new method is developed to represent the time-series driving data into events represented by symbolic data. The algorithm is tested with real-world driving data and shows a high classification accuracy across different vehicles and driving cycles. Finally, a new adaptive shift scheme was developed, which synthesizes the information about vehicle parameters and driver score developed in the previous steps. The driver score is used as a proxy to match the driving characteristics in real time. Drivability objective is included in the optimization through a torque reserve and it is subsequently evaluated via a newly developed metric. The impact of the shift maps on the objective drivability and fuel economy metrics is evaluated quantitatively in the vehicle simulation. The algorithms proposed in this dissertation are developed with practical implementation in mind. The methods can reduce the initial calibration effort and provide the fleet owner a mean to select an appropriate tradeoff between fuel economy and drivability depending on the vocation

    Fuel-efficient driving strategies

    Get PDF
    This thesis is concerned with fuel-efficient driving strategies for vehicles driving on roads with varying topography, as well as estimation of road grade\ua0and vehicle mass for vehicles utilizing such strategies. A framework referred\ua0to as speed profile optimization (SPO), is introduced for reducing the fuel\ua0or energy consumption of single vehicles (equipped with either combustion\ua0or electric engines) and platoons of several vehicles. Using the SPO-based\ua0methods, average reductions of 11.5% in fuel consumption for single trucks,\ua07.5 to 12.6% energy savings in electric vehicles, and 15.8 to 17.4% average\ua0fuel consumption reductions for platoons of trucks were obtained. Moreover,\ua0SPO-based methods were shown to achieve higher savings compared to\ua0the commonly used methods for fuel-efficient driving. Furthermore, it was\ua0demonstrated that the simulations are sufficiently accurate to be transferred\ua0to real trucks. In the SPO-based methods, the optimized speed profiles were\ua0generated using a genetic algorithm for which it was demonstrated, in a\ua0discretized case, that it is able to produce speed profiles whose fuel consumption\ua0is within 2% of the theoretical optimum.A feedforward neural network (FFNN) approach, with a simple feedback\ua0mechanism, is introduced and evaluated in simulations, for simultaneous estimation of the road grade and vehicle mass. The FFNN provided road grade\ua0estimates with root mean square (RMS) error of around 0.10 to 0.14 degrees,\ua0as well as vehicle mass estimates with an average RMS error of 1%, relative\ua0to the actual value. The estimates obtained with the FFNN outperform road\ua0grade and mass estimates obtained with other approaches

    A New Regenerative Anti-Idling System for Service Vehicles: Load Identification, Optimal Power Management

    Get PDF
    Service vehicles, such as refrigerator trucks and tour buses, are equipped with auxiliary devices, including refrigeration systems and cabin air conditioning systems, which consume significant amount of energy. The engine of these vehicles should idle to supply power for auxiliary devices when they stop for a long time, e.g. for loading and unloading goods. This study proposes a new anti-idling system for service vehicles that powers auxiliary devices by a battery pack and an engine-driven generator (or alternator). In addition to idle elimination which is the main objective of all current anti-idling systems, the proposed system called Regenerative Auxiliary Power System (RAPS) attempts to reduce fuel consumption by enabling regenerative braking and utilizing an optimal power management system. The objectives of this study are to identify drive and service loads of a service vehicle for component sizing of the RAPS and to develop an optimal power management system for more fuel saving. In order to determine the size of required components (a battery pack and a generator) for the RAPS, drive and service loads of a given service vehicle should be identified. The drive load is the amount of power that is required for moving the vehicle, and the service load is the power consumption of the auxiliary devices. To identify drive and service loads, all the parameters in power balance equation of the engine should be either measured or estimated. As two inputs with unknown variations in this equation, vehicle mass and torque of auxiliary devices are required to be estimated. This study proposes a model-based algorithm that utilizes available signals in the CAN bus of the vehicle as well as a signal from a GPS receiver (road grade information) for simultaneous estimation of the vehicle mass and torque of auxiliary devices. The power management system of the RAPS should determine the split ratio of auxiliary power demand between the generator and battery in order to minimize fuel consumption. It should also guarantee that the battery has enough energy for powering auxiliary devices at all the engine-OFF stops. To meet these objectives, a two-level control system is proposed in this study. In the high-level control system, a fast dynamic programming (DP) technique which utilizes extracted features of the predicted drive and service loads obtains an SOC trajectory. In the low-level control system, a refined Adaptive Equivalent Fuel Consumption Minimization (A-ECMS) technique is employed to track the SOC trajectory obtained by the high-level control scheme. Many numerical simulations are carried out to test the functionality of the proposed identification algorithm and power management system. Moreover, the numerical simulations are validated by Hardware-In-The-Loop (HIL) simulations. The results show the idling is completely eliminated and a significant amount of fuel is saved by implementing the RAPS on a service vehicle. Therefore, the cost of energy can be noticeably reduced and consequently the cost of RAPS is recouped in a short period of time

    Automotive Tyre Fault Detection

    Get PDF

    Robust and Regularized Algorithms for Vehicle Tractive Force Prediction and Mass Estimation

    Get PDF
    This work provides novel robust and regularized algorithms for parameter estimation with applications in vehicle tractive force prediction and mass estimation. Given a large record of real world data from test runs on public roads, recursive algorithms adjusted the unknown vehicle parameters under a broad variation of statistical assumptions for two linear gray-box models

    Model-based control for automotive applications

    Get PDF
    The number of distributed control systems in modern vehicles has increased exponentially over the past decades. Today’s performance improvements and innovations in the automotive industry are often resolved using embedded control systems. As a result, a modern vehicle can be regarded as a complex mechatronic system. However, control design for such systems, in practice, often comes down to time-consuming online tuning and calibration techniques, rather than a more systematic, model-based control design approach. The main goal of this thesis is to contribute to a corresponding paradigm shift, targeting the use of systematic, model-based control design approaches in practice. This implies the use of control-oriented modeling and the specification of corresponding performance requirements as a basis for the actual controller synthesis. Adopting a systematic, model-based control design approach, as opposed to pragmatic, online tuning and calibration techniques, is a prerequisite for the application of state-of-the-art controller synthesis methods. These methods enable to achieve guarantees regarding robustness, performance, stability, and optimality of the synthesized controller. Furthermore, from a practical point-of-view, it forms a basis for the reduction of tuning and calibration effort via automated controller synthesis, and fulfilling increasingly stringent performance demands. To demonstrate these opportunities, case studies are defined and executed. In all cases, actual implementation is pursued using test vehicles and a hardware-in-the-loop setup. • Case I: Judder-induced oscillations in the driveline are resolved using a robustly stable drive-off controller. The controller prevents the need for re-tuning if the dynamics of the system change due to wear. A hardware-in-the-loop setup, including actual sensor and actuator dynamics, is used for experimental validation. • Case II: A solution for variations in the closed-loop behavior of cruise control functionality is proposed, explicitly taking into account large variations in both the gear ratio and the vehicle loading of heavy duty vehicles. Experimental validation is done on a heavy duty vehicle, a DAF XF105 with and without a fully loaded trailer. • Case III: A systematic approach for the design of an adaptive cruise control is proposed. The resulting parameterized design enables intuitive tuning directly related to comfort and safety of the driving behavior and significantly reduces tuning effort. The design is validated on an Audi S8, performing on-the-road experiments. • Case IV: The design of a cooperative adaptive cruise control is presented, focusing on the feasibility of implementation. Correspondingly, a necessary and sufficient condition for string stability is derived. The design is experimentally tested using two Citroën C4’s, improving traffic throughput with respect to standard adaptive cruise control functionality, while guaranteeing string stability of the traffic flow. The case studies consider representative automotive control problems, in the sense that typical challenges are addressed, being variable operating conditions and global performance qualifiers. Based on the case studies, a generic classification of automotive control problems is derived, distinguishing problems at i) a full-vehicle level, ii) an in-vehicle level, and iii) a component level. The classification facilitates a characterization of automotive control problems on the basis of the required modeling and the specification of corresponding performance requirements. Full-vehicle level functionality focuses on the specification of desired vehicle behavior for the vehicle as a whole. Typically, the required modeling is limited, whereas the translation of global performance qualifiers into control-oriented performance requirements can be difficult. In-vehicle level functionality focuses on actual control of the (complex) vehicle dynamics. The modeling and the specification of performance requirements are typically influenced by a wide variety of operating conditions. Furthermore, the case studies represent practical application examples that are specifically suitable to apply a specific set of state-of-the-art controller synthesis methods, being robust control, model predictive control, and gain scheduling or linear parameter varying control. The case studies show the applicability of these methods in practice. Nevertheless, the theoretical complexity of the methods typically translates into a high computational burden, while insight in the resulting controller decreases, complicating, for example, (online) fine-tuning of the controller. Accordingly, more efficient algorithms and dedicated tools are required to improve practical implementation of controller synthesis methods
    corecore