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ABSTRACT 

Commercial vehicles fulfill the majority of inland freight transportation in the 

United States, and they are very large consumers of fuels. The increasingly stringent 

regulation on greenhouse-gas emission has driven manufacturers to adopt new fuel 

efficient technologies. Among others, advanced transmission control strategy can provide 

tangible improvement with low incremental cost. An adaptive shift strategy is proposed 

in this work to optimize the shift maps on-the-fly based on the road load and driver 

behavior while reducing the initial calibration efforts. In addition, the adaptive shift 

strategy provides the fleet owner a mean to select a tradeoff between fuel economy and 

drivability, since the drivers are often not the owner of the vehicle. 

In an attempt to develop the adaptive shift strategy, the vehicle parameters and 

driver behavior need to be evaluated first. Therefore, three research questions are 

addressed in this dissertation: (i) vehicle parameters estimation; (ii) driver behavior 

classification; (iii) online shift strategy adaption. 

In vehicle parameters estimation, a model-based vehicle rolling resistance and 

aerodynamic drag coefficient online estimator is proposed. A new Weighted Recursive 

Least Square algorithm was developed. It uses a supervisor to extracts data during the 

constant-speed event and saves the average road load at each speed segment. The 

algorithm was tested in the simulation with real-world driving data. The results have 

shown a more robust performance compared with the original Recursive Least Square 

algorithm, and high accuracy of aerodynamic drag estimation. 
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To classify the driver behavior, a driver score algorithm was proposed. A new 

method is developed to represent the time-series driving data into events represented by 

symbolic data. The algorithm is tested with real-world driving data and shows a high 

classification accuracy across different vehicles and driving cycles. 

Finally, a new adaptive shift scheme was developed, which synthesizes the 

information about vehicle parameters and driver score developed in the previous steps. 

The driver score is used as a proxy to match the driving characteristics in real time. 

Drivability objective is included in the optimization through a torque reserve and it is 

subsequently evaluated via a newly developed metric. The impact of the shift maps on 

the objective drivability and fuel economy metrics is evaluated quantitatively in the 

vehicle simulation.  

The algorithms proposed in this dissertation are developed with practical 

implementation in mind. The methods can reduce the initial calibration effort and provide 

the fleet owner a mean to select an appropriate tradeoff between fuel economy and 

drivability depending on the vocation. 
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CHAPTER ONE 

INTRODUCTION 

Commercial vehicles contribute to the 74 percent of the freight transportation in 

the United States [1]. They are also large fuel consumer. An average medium and heavy 

duty truck drives 13,100 miles per year and uses 1,800 gallons of fuel [2]. The 

increasingly stringent greenhouse gas emission regulations [3] stimulate the adoption of 

new fuel-saving technologies [4]. Among them, the advanced transmission shift strategy 

plays an important role in the powertrain system [5]. 

1.1 The Role of Transmission Shift Strategy in the Powertrain 

The transmission plays a major role in the vehicle powertrain system. Due to the 

limited range of speed and torque of the internal combustion engine, the transmission is 

needed to mediate the engine power and the road load [6]. 

The transmission shift strategy determines the gear ratio between the engine the 

output shaft [7]. The gear ratio can be discrete or continuous (known as the Continuously 

Variable Transmission). For the same output power, different gear ratio will result in 

engine operation at different speed/torque points. The engine’s fuel efficiency can vary 

largely depending on the operational region [8]. Therefore, the transmission shift 

scheduling is crucial to the engine’s fuel efficiency. 

The responsiveness of the driver feeling is referred as the drivability [9][10]. The 

drivability is closely related to the torque reserve, which is defined as the capability of the 

additional torque the engine can provide without downshifting, as described in the study 
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by Viet [11]. The trade-off between the driveability and fuel economy often presents a 

challenge in calibrating the shift strategy, because the most fuel-efficient engine 

operating region is usually near the maximum torque line, where the torque reserve is 

low. As a result, allocating too much torque reserve will lead to low fuel economy, 

because the engine will operate in its less fuel-efficient region. On the other hand, too 

little torque reserve will cause the vehicle to feel less responsive. A good shift strategy 

needs to balance the two contradictory attributes and often requires extensive calibration. 

1.2 Motivation for Adaptive Shift Strategy 

The conventional shift strategy is realized by a shift map based on vehicle speed 

and throttle position. The map often requires extensive calibration to different vehicle 

types and applications, as described in the study by Newman et al.[12]. Unlike passenger 

cars, in which the vehicle parameters have more certainty, commercial vehicles can have 

multiple vehicle configurations. For example, a fleet of commercial vehicles can have 

various engine-transmission-body combinations; each vehicle can also be equipped with 

different components (e.g. aerodynamically enhanced trailers and low rolling resistance 

tires). Further, the vehicle parameters are often subjected to change in situations such as 

loading on/off a trailer. The wide variety of vehicle parameters creates the needs for 

online vehicle parameters estimation. This in turn will enable development of the 

methodology for adapting the shift strategy to current vehicle configuration and driving 

conditions, allows the shift strategy to automatically adjust to the different vehicle 

parameters. 



 3 

Another challenge of the conventional shift strategy is that the commercial 

vehicles operate for a variety of vocations, which have different requirement for fuel 

economy and drivability. For example, delivery trucks might place more emphasis on 

drivability to improve productivity; on the contrary, owner of the semi-trailer trucks 

might be more interested in reducing fuel cost. Therefore, the shift map often requires 

extensive calibration to different applications.  

In addition, the drivers are often not the owners of the vehicles. Unnecessary 

aggressive driving behavior can result in a large increase in fuel consumption and greater 

cost to fleet owner. The study by Sivak and Schoettle has shown driver aggressiveness 

can contribute the 20 percent difference in fuel economy in real-world driving [13]. One 

way to reduce the initial transmission calibration effort and increase fuel economy is to 

adapt the shift strategy based on the drivability target and the actual driver behavior. 

With respect to challenges posed by the wide variety of vehicle configurations 

and the different driver behavior, the adaptive shift strategy has been introduced. It 

utilizes multiple shift maps, which are optimized for various vehicle road load and fuel 

economy target and can adjust the shift map to the different vehicle parameters and driver 

behavior on the fly, which can potentially reduce the initial calibration efforts and 

improve fuel economy. On the other hand, the scheme requires the online estimation of 

road load and driver behavior as an adaptation prerequisite. 
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1.3 Goals of this Work 

In order to improve vehicle fuel economy and reduce the initial calibration effort, 

it is important for the transmission controller to evaluate the road load and driver 

behavior and adjust the shift strategy on the fly. The road load estimation and driver 

behavior classification are treated as two tasks to be solved separately. Lastly, an 

adaptive shift strategy will be proposed which optimized the shift map based on the 

information of vehicle parameters and driver behavior on-the-fly to achieve the desired 

fuel economy and drivability. 

To summarize the above discussion, the goal of this dissertation is to develop 

algorithms that: 

1) Estimate vehicle parameters online to calculate vehicle road load. 

2) Classify driver behavior to adjust the torque reserve to the driver expectations. 

3) Synthesis vehicle parameters and driver behavior in the adaptive shift strategy and 

evaluate the benefit through objective metrics of drivability and fuel economy. 

1.4 Thesis Organization 

The remainder of this dissertation is organized as follows: 

1) Chapter Two reviews the related work conducted in previous studies. 

2) Chapter Three summarizes the contributions of this dissertation. 

3) Chapter Four extends the prior work on vehicle parameters estimation and proposes a 

new algorithm to estimate vehicle rolling resistance and aerodynamic drag coefficient 
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online based on the vehicle longitudinal dynamic model during the constant-speed 

event. 

4) Chapter Five covers driver behavior evaluation, and development of the driver 

scoring algorithm based on supervised learning. 

5) Chapter Six proposes an adaptive shift strategy, which utilizes the vehicle parameters 

and driver score to estimate the driver demand. 

6) Chapter Seven concludes the study and discusses the direction for the future work. 
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CHAPTER TWO 
 

RELATED WORK OF OTHERS 
 

2.1 Vehicle Road Load Estimation 

The transmission shift strategy can be optimized when the information of vehicle 

road load is known. The vehicle road load estimation requires information about several 

vehicle parameters, including vehicle mass, road grade, rolling resistance and 

aerodynamic drag coefficient. Over the past decades, there has been a profusion of 

research on model-based methods for vehicle parameters estimation, due to its broad 

application in powertrain controls, e.g. transmission shift strategy [14], adaptive cruise-

control [15] and look-ahead controls [16]. 

Numerous studies have been devoted to vehicle mass estimation, because of its 

preeminent influence on the road load of heavy vehicles, especially during accelerating 

and hill climbing. Among many approaches to estimate vehicle mass [17], the model-

based approach through the longitudinal dynamic is most commonly used. The advantage 

is that it requires minimal additional sensors [18] and most of the signals needed for 

estimation can be obtained from the Control Area Network (CAN) bus on the vehicle 

[19]. 

Road grade estimation has also been investigated. The previous approaches can be 

categorized into sensor-based and model-based. The sensor-based approach uses various 

sensors to measure the road grade, such as GPS [20], barometer [21] and inclinometer 
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[22]. The measurements from the sensors are usually noisy: GPS and barometer have a 

coarse resolution; inclinometer is very susceptible to motion. Therefore, the 

measurements from one or more sensors are often combined with a model-based filter to 

improve the accuracy. The simultaneous estimation of mass and road grade using the 

model-based approach is a more difficult task due to the time-varying nature of the road 

grade [23]. To address the problem, adaptive observers have been proposed in [24][25]. 

A frequently used algorithm in the literature includes Recursive Least Squares 

(RLS), RLS with forgetting factor and Kalman filter. RLS is suited for estimating 

constants, such as vehicle mass[18]. A variation of the RLS method is the RLS with 

forgetting factor, which is suited for estimating parameters that change slowly, such as 

the road grade[26]. Kalman filter is suitable for problems in which the dynamics of the 

parameters are known [27][28][29]. 

Several studies use the event-seeking approach, which monitoring vehicle motion 

and extract data only during certain events [17][30][31]. The events include sharp 

accelerating, decelerating and gear shifting. The advantage of the event-seeking approach 

is that the signal acquired during the selected events usually have higher signal-to-noise 

ratio. 

Rolling resistance and aerodynamic drag coefficient is commonly estimated 

offline using the coast-down test [32][33]. In the study by Mayer and Wiedemann [34], a 

measuring trailer was used to measure the rolling resistance. An online model-based 

estimation approach has been proposed in [18] using signals from the CAN bus. The 

method shows high accuracy of mass estimation, however, the accuracy of rolling 
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resistance and still need to be improved. This is because rolling resistance and 

aerodynamic drag are relatively lower than mass related inertia force and therefore more 

sensitive to noise in the input signals. Simultaneous estimation of rolling resistance and 

aerodynamic drag coefficient parameters requires a large variation of vehicle speed to 

achieve a high accuracy. The study by Andersson used an Extended Kalman filter to 

estimate rolling resistance or aerodynamic drag coefficient one parameter at a time [35]. 

The rolling resistance and aerodynamic drag coefficient are key parameters to 

predict the vehicle road load. The supervisory data extraction scheme is a promising 

approach to further improve the accuracy of the simultaneous estimation of the 

parameters. 

2.2 Eco-driving and Driver Behavior Classification  

Real-world fuel economy largely depends on driver behavior. Aggressive driving 

behaviors (e.g. abrupt acceleration and braking) have little effect on reducing trip 

duration. However, it will considerably increase fuel consumption. On the other hand, 

studies have shown fuel economy can be improved up to 20-30 percent by using eco-

driving techniques [13]. 

Ecological driving, or eco-driving, behavior has been investigated in the recent 

decades, due to the rising concern of the fuel economy [36]. The information about driver 

behavior has an extensive application in driver assistance systems, as reviewed in the 

study by Wada et al.[37] and Vagg et al.[38]. It can also improve the powertrain controls, 

such as the throttle control and shift strategy in the conventional vehicle [39], the energy 
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management system in hybrid vehicles [40][41] and range estimation for electric vehicle 

[42]. Several approaches focus on the use of optimal control to minimize the fuel 

consumption [43][44]. The optimized powertrain control policy takes account the traffic 

flow, road grade and the historical driving data to reduce the fuel consumption 

[45][46][47][48]. 

The methods of classifying driver behavior can be grouped into three categories: 

rule-based methods, supervised learning, and unsupervised learning. Rule-based methods 

classify the driver behavior based on criteria such as accelerating and pedal position. 

Previous studies have used the fuzzy logics method, based on the patterns from the 

vehicle load [49], and the acceleration-speed diagram [50]. The study by Manzoni et 

al.[51] uses an index defined based on the real and ideal fuel consumption. The major 

disadvantage of the rule-based method is that parameters in the classification rules need 

to be manually validated, which can be increasingly difficult as the complexity of the 

problems increases. 

Supervised learning can automatically determine the parameters from the data. 

The category of supervised-learning method includes many algorithms. For example, 

decision trees and logistic regression have been used in [52] to classify driving events; 

artificial neural network and Support Vector Machine (SVM) have been used in [53], to 

determine drivers’ handling skills. SVM have been used to investigate driver behavior at 

the intersection in the study by Aoude et al.[54]. Further, graphical models (e.g. the 

Hidden Markov Model) have also been demonstrated in the previous research to predict 
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driving behaviors [55][56][57]. However, the limitation of supervised-learning methods 

is that they require labeled data, which may be scarce and expensive to collect. 

Unsupervised learning is preferred where the unlabeled data is abundant. The 

most common application of unsupervised learning methods is clustering. In that case, 

unlabeled driving data is grouped into classes of different driving behavior base on their 

similarity in certain features. C-means and PCA (Principal Component Analysis) have 

been used in the study by Constantinescu et al.[54] and Kedar-Dongarkar and Das [55]. 

The drawback of unsupervised learning method is that the ground truth is not available. 

Therefore, it is better suited for data exploration. 

The driver behavior classification typically proceeds in two stages: feature 

extraction and classification. The feature extraction stage comprises determining the 

duration of a classification event and extracting features from the time-series driving data. 

The classification stage usually involves applying the standard classification algorithms to 

the dataset. The feature extraction stage is considered more challenging. 

The driving data is typically in the form of time-series [60]. Vehicle longitudinal 

motion can be obtained from the Controller Area Network (CAN) bus; lateral motion can 

be acquired from steering angle and yaw sensor; the vehicle following distance can be 

measured by the radar sensor [61]. Regarding the eco-driving behavior, the signals related 

to vehicle longitudinal motion is the most relevant [51][62][63] (e.g. vehicle speed, 

acceleration, throttle, and pedal position). In this section, we use only the signals from the 

CAN bus without any additional sensors. 

The most commonly used features in the literature are extracted from the statistical 
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analysis and frequency content of the driving data. Features from the statically analysis 

include the average, percentile and standard deviation, etc.[62][64][65]. The study by 

Ericsson [66] has summarized various factors that can affect the driving patterns using 

statistical inference analysis. One of the disadvantages of using the statistical features is 

that the features are usually route-dependent. The statistical values of the driving data are 

only comparable with the similar routes. Features from the frequency content are another 

type of commonly used features, which seek patterns in the signals’ spectral density 

obtained by the Fast Fourier Transformation (FFT) [67][68]. The method is usually more 

computationally demanding, and therefore, better suited for off-line analysis. In contrast to 

the prior art, we propose an algorithm which converts the time-series driving data into 

events represented by symbolic data to improve the computational and memory efficiency. 

Determining the duration of classification is another challenge. The literature primarily 

relies the analysis on an entire driving cycle [69][58]. 

To summarize, supervised learning is a promising approach for driver behavior 

classification, because driving behaviors are implicit and ambiguous. Previous studies 

have used features based on the statistical and frequency analysis of the driving data. 

However, the robustness of the schemes across different vehicles and driving cycles still 

leaves room for improvement. 
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2.3 Transmission Shift Strategy 

The shift strategy controls the gear ratio between the engine the output shaft and 

determines the engine operating points. Therefore, it is crucial to the vehicle fuel 

consumption and drivability. 

In addition to the conventional shift map based on vehicle speed and throttle 

position [6], several alternative methods for developing shift strategy have been proposed 

to allow the flexibility under different situations including Fuzzy Logic, Neural Network, 

and Dynamic Programming. The Fuzzy Logic based shift strategy allows some flexibility 

for factors such as the vehicle load, hill climbing and driving behavior [70][71][72]. 

However, the drawbacks of the method are the difficulty in achieving high accuracy 

calibration. The Neural Network approach allows the shift strategy to adjust to several 

parameters as well [39]. For example, the steering angle, braking force, vehicle speed, 

road grade, and the dynamics of the engine operation [73][74]. However, the 

disadvantage is that the decisions about weights and biases determined during training 

lack system transparency. 

The Dynamic Programming based approach has been demonstrated by several 

recent studies[11][75]. The optimal shift strategy can be found based on the knowledge of 

the upcoming driving demand. Look ahead control has been studied by Hellström et al. 

[76], using the preview of the road load information such as the road grade. The model 

predictive control approach has been proposed by Ngo et al. [77], based on the prediction 

of future driving demand of a driving cycle. The method requires the information of the 

future road demand which is often unknown. As a result, it is often used as the 
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benchmark [11]. Though the stochastic dynamic programming, which based on the 

probabilistic prediction of the further driving demand, is real-time implementable, the 

prediction of the future load demand requires further investigation. The study by Ngo et 

al. [78] compared the optimal gearshift strategies generated by dynamic programming 

using three methods (weighted inverse of power reserve, constant power reserve, and 

variable power reserve) and stochastic dynamic programming. The Stochastic Dynamic 

Programming is real-time implementable, and the simulation results show on average it 

has nearly equal performance on the fuel consumption. 

The map-based shift strategy is still the preeminent method used in vehicles 

today, owing to its simplicity in implementation and calibration. Improvements have 

been made to the conventional shifting map. The shift map considering vehicle mass has 

been proposed in the study by Yong and Jian [79] and the power-based shift map has 

been demonstrated in the study by Bai et al. [6]. A neural network based adaptive shifting 

strategy has been proposed by Kondo and Goka [39], which uses various maps adjusted 

by factors regarding vehicle load and driver behavior. The optimization of the shift map 

is a complex process, in which several factors need to be considered including the fuel 

consumption, drivability, and emission [80]. The drivability is associated with the 

driver’s experience and the brand essence. Therefore it is in part subjective and hard to 

quantify. Several studies have attempted to use objective metrics to quantify drivability 

[81][82][83][84]. The most common metrics is related to the driving comfort and the 

operating smoothness and responsiveness [85]. 
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To summarize, the adaptive shift strategies, which can automatically adjust the 

shift points to the vehicle parameters and driver behavior, have not been sufficiently 

addressed in published literature and requires further study. 
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CHAPTER THREE 
 

CONTRIBUTIONS 
 

3.1 Contributions  

The adaptive shift strategy is a cost-effective method for potentially reduction of 

initial calibration effort and the real-world fuel consumption. However, it requires the 

information about vehicle parameters and driver behavior. In this dissertation, we 

develop new algorithms for estimating the vehicle parameters and evaluating the driver 

behavior in real-time. Subsequently, adaptive shift strategy is proposed to adjust the shift 

map on the fly and provide a way for the fleet owner to choose between fuel consumption 

and drivability. 

A model-based estimation algorithm is proposed to estimate vehicle rolling 

resistance and aerodynamic drag coefficient, which have not been much studied in the 

literature. The scheme estimates rolling resistance and aerodynamic drag during the 

constant-speed events. To address the issue of lack of persistence of excitation during 

constant-speed, the Weighted Recursive Least Square algorithm is developed. The 

algorithm is tested with real-world driving data. Results show more robust performance 

than the original Recursive Least Square Algorithm. 

A driver score algorithm was proposed to evaluate the driver behavior. A new 

method is developed to represent the time-series driving data into events by represented 

symbolic data. The classification is conducted based on microtrips, which to the best of 
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our knowledge have not be studied before. The algorithm is tested with real-world 

driving data from different vehicle configurations and shows a high classification 

accuracy. 

Lastly, the new adaptive shift scheme was proposed, which synthesizes the 

information about vehicle parameters and driver score. The shift map is optimized based 

on the characteristics of the driving cycle, which is approximated from the driver score. 

The effect of the shift maps on the objective drivability and fuel consumption metrics is 

evaluated using the vehicle simulation. The adaptive shift strategy provides the fleet 

owner a way to choose between the fuel consumption and drivability. 

The algorithms have low computational overhead, which increases linearly with 

the number of samples, and constant memory requirement. Thus, it is applicable to 

Transmission Control Unit (TCU). 

3.2 Publications 

The research involving this dissertation has been presented at a number of 

international conferences and published in refereed journals. The publications are listed 

below: 

1) D. Zhang, and A. Ivanco, “Adaptive Transmission Shift Strategy based on Online 

Characterization of Driver Aggressiveness,” SAE International Journal of 

Commercial Vehicles (Work in Progress) 

2) D. Zhang, and A. Ivanco, “Real-time Eco-driving Behavior Classification based on 

Microtrips,” IEEE Transactions on Intelligent Vehicles (Under Review) 
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3) D. Zhang, A. Ivanco, Z. Filipi, and A. Vahidi, “Event-based Aerodynamic Drag and 

Rolling Resistance Estimation Using Weighted Recursive Least Squares Algorithm,” 

Vehicle System Dynamics Taylor & Francis (Under Review) 

4) D. Zhang, B. Xu, and J. Wood, “Predict failures in production lines: A two-stage 

approach with clustering and supervised learning,” 2016 IEEE International 

Conference on Big Data, pp. 2070-2074, 2016. 

5) D. Zhang, A. Ivanco, and Z. Filipi, “Model-Based Estimation of Vehicle 

Aerodynamic Drag and Rolling Resistance,” SAE International Journal of 

Commercial Vehicles, 8(2), 433-439, 2015. (Student Paper Award)  

6) D. Zhang, A. Ivanco, and Z. Filipi, “An Averaging Approach to Estimate Urban 

Traffic Speed Using Large-scale Origin-destination Data,” International Journal of 

Powertrains, 4(2), 126-140, 2015. 



 18 

CHAPTER FOUR 
 

VEHICLE PARAMETERS ESTIMATION 
 

4.1 Introduction 

Vehicle road load estimation requires knowledge about key vehicle parameters, 

including vehicle mass, road grade, rolling resistance and aerodynamic drag coefficient. 

Unlike passenger cars, the parameters of a commercial vehicle are more uncertain. 

Commercial vehicles can have many engine-transmission-body combinations and use 

various components such as aerodynamically-enhanced trailers and low rolling resistance 

tires. To reduce the initial calibration effort, the vehicle parameters can be estimated 

online to allow the powertrain controllers to adapt to the different vehicle configurations. 

The online estimation of vehicle mass and road grade has been successfully 

demonstrated in the past, but the estimation of the vehicle rolling resistance and 

aerodynamic drag coefficient requires further attention. Simultaneously estimating the 

rolling resistance and aerodynamic drag coefficient requires large variation of vehicle 

speed, which is difficult to obtain in the real-world driving situation. In this section, a 

Weighted Recursive Least Square algorithm is proposed to overcome the limitation by 

storing and updating the road load in different speed segments. The algorithm had shown 

a more robust performance compared with the original Recursive Least Square algorithm. 
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4.2 Estimation Scheme  

The estimation scheme consists of three major steps as shown in Fig.4.1, i.e. 

identifying driving events, updating measurements in speed segments, and estimating the 

vehicle parameters. A supervisor continuously monitors the driving situations and 

extracts data only in the events with high signal to noise ratio. When the data extraction 

criteria are satisfied, the algorithm updates the average road load at the current speed 

interval. Finally, the algorithm obtains the estimation of rolling resistance and 

aerodynamic drag coefficient using the average road load at different speed segments. 

The details of the steps are explained in this section. 

 

Fig. 4.1 Schematic flow chart of the vehicle parameters estimation process 

4.2.1 Longitudinal Vehicle Dynamic 

The vehicle model is based on the longitudinal quasi-static vehicle dynamic 

model. The following assumptions have been made: i) the vehicle motion is 

predominantly longitudinal and therefore the lateral forces are neglected; ii) wheel slip is 

not present between the tire and the road surface; iii) the braking force is not applied; iv) 

the effects of wind gusts are neglected. The vehicle longitudinal forces [86] are shown in 

Fig.4.2. 
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Fig.4.2 Vehicle longitudinal forces 

The vehicle longitudinal dynamics during the quasi-static state is described in equation 

(4.1). 

 𝑚𝑚𝑚𝑚 = 𝐹𝐹𝑤𝑤 −  𝐹𝐹𝑟𝑟 − 𝐹𝐹𝑎𝑎𝑎𝑎 − 𝐹𝐹𝑔𝑔    (4.1) 

where the wheel traction force 𝐹𝐹𝑤𝑤  consists of four components: aerodynamic drag 𝐹𝐹𝑎𝑎𝑎𝑎 , 

rolling resistance 𝐹𝐹𝑟𝑟 , grade force 𝐹𝐹𝑔𝑔 , and acceleration resistance 𝑚𝑚𝑚𝑚. Each force can be 

calculated as follows: 

 𝐹𝐹𝑤𝑤 = 𝑇𝑇𝑒𝑒𝜔𝜔𝑒𝑒𝜂𝜂
𝑣𝑣

 (4.2) 

 𝐹𝐹𝑎𝑎𝑎𝑎 = 1
2
𝐴𝐴𝐴𝐴𝐶𝐶𝑎𝑎𝑣𝑣2 ≜ 𝐶𝐶𝑎𝑎𝑑𝑑𝑣𝑣2 (4.3) 

 𝐹𝐹𝑔𝑔 = 𝑚𝑚𝑚𝑚 sin(𝛼𝛼) ≈ 𝑚𝑚𝑚𝑚𝛼𝛼 (4.4) 

 𝐹𝐹𝑟𝑟 = 𝑚𝑚𝑚𝑚𝐶𝐶𝑟𝑟 cos(𝛼𝛼) ≈ 𝑚𝑚𝑚𝑚𝐶𝐶𝑟𝑟 (4.5) 



 21 

where the wheel traction force 𝐹𝐹𝑤𝑤  can be calculated from the engine torque 𝑇𝑇𝑒𝑒 , engine 

speed 𝜔𝜔𝑒𝑒, overall powertrain 𝜂𝜂 efficiency, and vehicle speed 𝑣𝑣. The relationship is based on 

the assumption that the vehicle is in the quasi-static state, and the wheel slip does not occur. 

In (4.3), the vehicle frontal area 𝐴𝐴, air density 𝐴𝐴 and aerodynamic drag coefficient 𝐶𝐶𝑎𝑎 can 

be lumped together in a single term 𝐶𝐶𝑎𝑎𝑑𝑑, which determines the aerodynamic drag. The grade 

force 𝐹𝐹𝑔𝑔 and rolling resistance 𝐹𝐹𝑟𝑟 can be written as in (4.4) and (4.5) respectively, when the 

road grade 𝛼𝛼 is small. The rolling resistance coefficient 𝐶𝐶𝑟𝑟 is modeled as a constant in (4.5). 

Although rolling resistance coefficient increases nonlinearly with vehicle speed, the value 

remains mostly constant below 100 km/h [87]. 

Equation (4.6) can be obtained by combining equation (4.1) to (4.5). 

 𝑇𝑇𝑒𝑒𝜔𝜔𝑒𝑒𝜂𝜂
𝑣𝑣

− 𝑚𝑚𝑚𝑚 −𝑚𝑚𝑚𝑚𝛼𝛼 = �̂�𝐶𝑎𝑎𝑑𝑑𝑣𝑣2 + 𝐹𝐹�𝑟𝑟𝑟𝑟 (4.6) 

The right-hand side of the equation consists of rolling resistance and aerodynamic drag. It 

can be seen as the basic road load, which indicates the force needed for the vehicle to 

maintain its current speed without accelerating and overcoming road grade. The equation 

(4.6) can be written in the linear form based on the definition of parameters in equation 

(4.7). 

 𝑦𝑦 =  𝜙𝜙𝜃𝜃� (4.7) 

 𝑦𝑦 = 𝑇𝑇𝑒𝑒𝜔𝜔𝑒𝑒𝜂𝜂
𝑣𝑣

− 𝑚𝑚𝑚𝑚 −𝑚𝑚𝑚𝑚𝛼𝛼 (4.8) 

 𝜙𝜙 = [𝑣𝑣2 1] (4.9) 



 22 

 𝜃𝜃�  =  [�̂�𝐶𝑎𝑎𝑑𝑑 𝐹𝐹�𝑟𝑟]𝑇𝑇 ∈ ℝ2 (4.10) 

Where 𝜃𝜃� is the parameters to be estimated including aerodynamic drag coefficient  �̂�𝐶𝑎𝑎𝑑𝑑and 

rolling resistance 𝐹𝐹�𝑟𝑟. The input signals include engine speed 𝜔𝜔𝑒𝑒, engine torque 𝑇𝑇𝑒𝑒, vehicle 

speed 𝑣𝑣, longitudinal acceleration 𝑚𝑚, vehicle mass 𝑚𝑚 and road grade 𝛼𝛼. 

4.2.2 Identification of Driving Events 

A supervisor is needed to continuously monitor the vehicle driving situation and 

extract data only during events which have high signal-to-noise ratio, as shown in 

Fig.4.3. The data extraction criteria include the following aspects:  

1) The vehicle is driving at a relatively constant speed, which is determined by a 

threshold in the longitudinal acceleration.  

2) The vehicle motion is predominantly longitudinal, which is defined by a 

threshold in the lateral acceleration.  

3) The vehicle is not braking, which is indicated by the brake on/off signal. iv) 

The vehicle speed needs to be higher than a lower limit. 

 

Fig. 4.3. Illustrating the supervisory data extraction scheme 
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Firstly, during constant-speed driving, the rolling resistance and aerodynamic 

drag accounts for the majority of the road load and the error brought by the acceleration 

is minimal. In contrast, during sharp acceleration, the majority of the road load consists 

of the acceleration resistance. Obviously, only the constant-speed driving is suitable for 

estimating the rolling resistance and aerodynamic drag coefficient. Secondly, the 

supervisor extracts data only when the vehicle motion is predominantly longitudinal 

because the model-based estimator only considers the longitudinal motion. Thirdly, while 

the brake force would ideally be estimated from the clamping force of the brake pads, 

only the brake on/off signal was available in experiments. Therefore, the algorithm only 

considers the data when the brake is not activated. Finally, the algorithm exclude the data 

obtained at low speed, because it can have more uncertainty due to the torque converter. 

4.2.3 Measurement Update 

The vehicle speed trace is discretized into segments. The road load measurement 

in each segment is represented as a 2-tuple (𝑦𝑦�𝑖𝑖, 𝑛𝑛𝑖𝑖), where 𝑦𝑦�𝑖𝑖 is the average road load, and 

𝑛𝑛𝑖𝑖 is the number of measurements in the segment 𝑖𝑖. The collection 𝑦𝑦�𝑖𝑖  and 𝑛𝑛𝑖𝑖 of all the 

segments are represented as 𝑌𝑌and 𝑁𝑁. The steps of the algorithm is shown in the 

Appendix, Alg.4.1. 

In step 1, the algorithm checks if the current driving event satisfies the data 

extraction criteria which is described in section 4.3.2. In step 2, the algorithm computes 

the road load 𝑦𝑦 from the input signals using equation (4.8). In step 3, the algorithm 

determines the speed segment 𝑖𝑖 for this measurement, based on which speed interval the 

current speed falls into. In step 4, the algorithm adjusts the road load based on the 
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difference between the vehicle speed and the segment speed as shown in equation (4.11) 

and (4.12). 

 ∆𝑦𝑦 = �̃�𝐶𝑎𝑎𝑑𝑑(𝑣𝑣𝑖𝑖2 − 𝑣𝑣2) ≈ 2�̃�𝐶𝑎𝑎𝑑𝑑𝑣𝑣𝑖𝑖∆𝑣𝑣 (4.11) 

 𝑦𝑦𝑖𝑖 = 𝑦𝑦 + ∆𝑦𝑦 (4.12) 

Where �̃�𝐶𝑎𝑎𝑑𝑑  is the approximated aerodynamic coefficient, 𝑣𝑣𝑖𝑖  is the middle speed of the 

segment 𝑖𝑖, 𝑣𝑣 is the vehicle speed, and ∆𝑣𝑣 the difference of between the vehicle speed and 

segment speed. The adjustment reduces the approximation error introduced by discretizing 

the speed intervals. A similar amount of data will normally fall above and below a segment 

speed, which will even out the error when averaging them together. The process is illustrated 

as shown in Fig.4.4. 

 

Fig.4.4 Schematic illustration of the measurement update process 
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In step 5, the average road load 𝑦𝑦�𝑖𝑖   in the speed segment 𝑖𝑖 is updated with the new 

road load 𝑦𝑦𝑖𝑖, using the recursive average method in equation (4.13) and (4.14). The 

advantage of using recursive averaging is that it does not require the storage of previous 

measurements. 

 𝑦𝑦�𝑖𝑖,𝑘𝑘 = 𝑛𝑛𝑖𝑖,𝑘𝑘−1
𝑛𝑛𝑖𝑖,𝑘𝑘

𝑦𝑦�𝑖𝑖,𝑘𝑘−1 + 1
𝑛𝑛𝑖𝑖,𝑘𝑘

𝑦𝑦𝑖𝑖,𝑘𝑘 (4.13) 

 𝑛𝑛𝑖𝑖,𝑘𝑘 = 𝑛𝑛𝑖𝑖,𝑘𝑘−1 + 1 (4.14) 

4.2.4 Parameters Estimation 

The Weighted Recursive Least Squares (WRLS) algorithm is proposed in this 

section. The algorithm is based on the RLS algorithm. However, the algorithm is 

performed on the average road load of the speed segments 𝑌𝑌 instead of the input data. 

The steps of the WRLS algorithm is shown in Alg.4.2. 

In step 1, the algorithm determines whether to conduct the parameters estimation. 

The estimation is conducted at the end of a data extraction event (described in section 

2.2), which is indicated by the previous data extraction criteria being satisfied, and the 

current data extract criteria being unsatisfied. 

In step 2 to 7, the RLS algorithm is performed on the average road load of the 

speed segments 𝑌𝑌. In step 3, the algorithm checks if a segment is populated by comparing 

the number of the measurements 𝑛𝑛𝑖𝑖. In step 4, the algorithm calculated the weighting 

factor for the speed segment using equation (4.15). 
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 𝑅𝑅𝑖𝑖 = 𝑅𝑅
𝑛𝑛𝑖𝑖

 (4.15) 

The measurement variance of a speed segment 𝑅𝑅𝑖𝑖 is proportional to the variance 

of an individual sample 𝑅𝑅 and the inverse of the number of samples 𝑛𝑛𝑖𝑖. This is because 

the measurement in a speed segment is an average road load. The variance of a sample 

average is proportional to the inverse of the number of samples, based on the Central 

Limit Theorem [88]. The number of samples 𝑛𝑛𝑖𝑖 serves as a weighting factor. Segments 

with more measurements will have smaller variance 𝑅𝑅𝑖𝑖, and therefore, greater impact on 

the result. 

In step 5, the average road load in the speed segments are passed to the RLS 

algorithm to estimate the vehicle parameters. The least square method is suitable for a 

system that is linear in parameters as in equation (4.6). It finds the parameters which 

minimizes the sum of squared error. Directly solving the problem is computationally 

intensive. And thus, the RLS method is used to update the parameters by iteration [89]. 

The steps of the RLS algorithm is shown as follows: 

 𝐾𝐾𝑖𝑖 = 𝑃𝑃𝑖𝑖−1𝜙𝜙𝑖𝑖𝑇𝑇(𝜙𝜙𝑖𝑖𝑃𝑃𝑖𝑖−1𝜙𝜙𝑖𝑖𝑇𝑇 + 𝑅𝑅𝑖𝑖)−1 (4.16) 

 𝜃𝜃�𝑖𝑖 =  𝜃𝜃�𝑖𝑖−1 + 𝐾𝐾𝑖𝑖�𝑦𝑦𝑖𝑖 − 𝜙𝜙𝑖𝑖  𝜃𝜃�𝑖𝑖−1� (4.17) 

 𝑃𝑃𝑖𝑖 = (𝐼𝐼 − 𝐾𝐾𝑖𝑖𝜙𝜙𝑖𝑖)𝑃𝑃𝑖𝑖−1 (4.18) 

Where 𝜃𝜃�  are the vehicle parameters including rolling resistance and aerodynamic drag 

coefficient as shown equation (4.10).   The measurement variance 𝑅𝑅𝑖𝑖  is calculated in 
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equation (4.15). 𝜙𝜙 is the input variables as in equation (4.9). The input speed corresponds 

to the middle speed of the segment speed. The estimator gain 𝐾𝐾 , error covariance P, and 

vehicle parameters 𝜃𝜃� are solved iteratively using the average road load stored in each speed 

segments. 

4.3 Experimental Method 

4.3.1 Data Acquisition 

Real-world driving data was collected and to be used in a simulation environment 

to evaluate the proposed algorithm. The signals from the CAN bus were recorded with a 

50 Hz sampling rate, including vehicle speed, engine torque, engine speed, longitudinal 

and lateral acceleration, brake on/off signal, and road grade measurement. The vehicle 

speed, engine speed, and engine torque can be found in the CAN bus J1939 standard [90]. 

The engine speed signal has high accuracy. However, the engine torque signal is less 

reliable, particularly at low engine load [91]. Auxiliary loads, such as the load of the fan, 

alternator, and compressor, are also considered when calculating the net engine output 

torque. The road grade is measured with an onboard inclinometer and has been processed 

with internal filtering. The vehicle mass can be estimated using the methods in[17][18]. 

In this section, the actual vehicle mass is used as a known variable to exclude the error 

brought in by the mass estimation. 

The vehicle used for data acquisition was a medium size truck as shown in 

Fig.4.5. The model and configuration of the vehicle are detailed in Table 4.1. A typical 

value of rolling resistance coefficient 𝐶𝐶𝑟𝑟 is between 0.006 and 0.013, depending on the 
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property of tire and the road pavement [92]. The typical value of aerodynamic drag 

coefficient 𝐶𝐶𝑎𝑎 for the test vehicle is between 0.6 to 1.0 [93]. Accounting the vehicle 

frontal area and air density, the lumped coefficient 𝐶𝐶𝑎𝑎𝑑𝑑 is between 2.4 to 4. A coast-down 

test was conducted, according to the SAE 2263 standard [94], to measure the actual 

values of 𝐶𝐶𝑎𝑎𝑑𝑑 and 𝐶𝐶𝑟𝑟. The result suggests the value of 𝐶𝐶𝑎𝑎𝑑𝑑 and 𝐶𝐶𝑟𝑟 of the vehicle is 2.62 

and 0.0069, respectively. 

 

Fig.4.5 Picture of the vehicle used for data acquisition 

Table.4.1 Model and configuration of the testing vehicle 

Vehicle make/ Model/ Year Freightliner / M2-106/ 2011 

Height × Width 2.90 m × 2.44 m 

Front tires make/ Model Goodyear/ G662 RSA 

Front tires size 295/75 R22.5 G 
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Rear tires make/ Model Goodyear/ G305 LH2 

Rear tires size 295/75 R22.5 G 

Vehicle weight (low/medium/high) ~8 ton/ ~12 ton/ ~14 ton 

Estimated CdL 2.62 

Estimated Cr 0.0069 

The driving cycle serves to imitate typical daily driving. Each test was about 30 

minutes long. The vehicle was operated for half an hour before each test to warm up the 

engine and tires. The test was repeated using low, medium, and high cargo weight. It is 

aimed to evaluate the robustness of the algorithm under different vehicle weight. 

4.3.2 Comparison between WRLS and RLS 

The real-world driving data was used to test the algorithm in a simulation 

environment. The estimation result of WRLS and RLS are compared in two situations: 

the city driving cycle with a small variation in speed, and a city and highway combined 

driving cycle with a large variation in speed. The same input signal and initial condition 

are used in the process. 

The estimation results of the two algorithms using the 14-ton vehicle under the 

city cycle are shown in Fig.4.6. The cycle is repeated four times for the estimation results 

to converge. In the city driving cycle, only a few segments at low speeds have been 

populated, as shown in Fig.4.7. The estimation result of the RLS algorithm has a high 

error and fails to converge. In contract, the result of the WRLS algorithm is more robust. 
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This is because RLS algorithm is highly sensitive to the measurement error when vehicle 

speed has small variation. On the other hand, the WRLS algorithm can still produce 

robust results based on the prior information, when only a small number of the segments 

are available. 

 

Fig .4.6 Parameters estimation results of the city driving cycle. Top: speed profile; 

Middle: lumped aerodynamic drag coefficient , Bottom rolling resistance coefficient. 



 31 

 

Fig.4.7 The speed segment results of the city driving cycle 

The estimation results of the 14-ton vehicle under the combined city and highway 

cycle are shown in Fig.4.8. The cycle is repeated two times for the estimation results to 

converge.  In the combined city and highway cycle, a wide variety of speed segments 

have been populated, as shown in Fig.4.9. The final estimation results of the two 

algorithms are similar. However, in the initial stage, the estimation of RLS is less 

reliable. This is because the data are from a narrow range of vehicle speed in the initial 

stage, which make the estimator more sensitive to the input error. After the data from 

higher speed being obtained, the RLS and WRLS algorithm both converge close to the 

actual value. The results of WRLS algorithm is 2.56 (-2.3% error) in estimating 
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aerodynamic drag coefficient and 0.0074 (7.2%) in estimating rolling resistance 

coefficient. 

 

Fig.4.8 Results of a city driving cycle parameters estimation. Top: speed profile; 

Middle: lumped aerodynamic drag coefficient , Bottom rolling resistance coefficient. 
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Fig.4.9 The speed segment result of the combined city and highway driving cycle 

4.3.3 Impact of Vehicle Weight 

In this section, the WRLS algorithm was tested to evaluate the impact of vehicle 

weight. The same vehicle was used with weight adjusted by the payload. The combined 

city and highway cycle was used. The final estimation results are shown in Table 4.2. 

Table 4.2 Result of WRLS at different vehicle weight 

 High (~14 ton) Medium (~12 ton) Low (~8 ton) 

CdL (2.62) 2.56 2.63 2.55 

CdL % error -2.3% 0.4% 2.7% 
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Cr (0.0069) 0.0074 0.0080 0.0085 

Cr % error 7.2% 15.9% 23.2% 

 

The estimation results from the three different vehicle weights were similar, which shown 

the WRLS algorithm is robust under different vehicle weight. The algorithm achieves a 

high accuracy in estimating lumped aerodynamic drag coefficient (less than 5 percent 

error). However, the result of rolling resistance coefficient is less accurate (less than 25 

percent error). One explanation for the rolling resistance being less accurate is that it 

accounts for less of the basic road load than the aerodynamic drag at high speed, and 

therefore, it is more sensitive to the measurement error. Another reason is that the actual 

rolling resistance in the real-world driving test may be higher than the reference value. 

This is because the rolling resistance increases with the vehicle speed. As most of the 

data in the test were obtained during the highway driving, the average rolling resistance 

in the real-world driving test tends to be higher than the reference value obtained in the 

coast down test. 

4.4 Discussion 

The memory and computational cost of the algorithm will be discussed in this 

section. The memory cost of the algorithm is 𝑂𝑂(𝑚𝑚), where m is the number of segments 

to discretize the speed. The memory cost does not depend on the number of samples 
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because the algorithm only stores the average basic road load for each speed segments. 

More generally, the memory cost for discretizing the input space is 𝑂𝑂(𝑚𝑚𝑖𝑖), where i is the 

number of dimension of the input space, m is the number of segments in each dimension. 

The memory cost grows exponentially as the input dimension increases. However, in the 

problem of estimating rolling resistance and aerodynamic drag coefficient the dimension 

of the input space is one, because only the vehicle speed is needed to be discretized. 

The computational cost of the algorithm is 𝑂𝑂(𝑛𝑛), where 𝑛𝑛 is the number of the 

samples. The computational cost grows linearly with the number of samples when 

calculating the basic road load and updating the speed segments. However, the 

parameters estimation steps are conducted on the average road load of the speed 

segments. And therefore it does not depend on the number of samples. The algorithm is 

efficient in memory and computation and thus is suitable for implementation in the 

powertrain control units. 

4.5 Conclusion 

Estimating the rolling resistance and aerodynamic drag allows the powertrain 

controllers to predict the road load and adjust to the wide variety of configurations in a 

fleet of commercial vehicles. Simultaneous estimating the two parameters often requires 

a wide variation of vehicle speed, which can be difficult to occur in real-world driving. 

To overcome this limitation, the Weighted Recursive Least Squares (WRLS) algorithm 

was proposed in this section, which stores the average road load at different speed 

segments and weights the measurements by the number of samples. The WRLS 
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algorithm was tested using the Real-world driving data and shown a more robust result 

than the RLS algorithm under different driving cycles, and a high accuracy in estimating 

aerodynamic drag coefficient under different vehicle weight. 

In the future work, the parameters in the estimator can be better calibrated by 

studying the statistics of the measurement error. The estimator can be implemented in 

powertrain control units to adapt the control scheme with different vehicle configurations 

and improve the vehicle fuel efficiency. 
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CHAPTER FIVE 
 

DRIVER BEHAVIOR CLASSIFICATION 
 

5.1 Introduction 

A vehicle’s real-world fuel consumption largely depends on the driver behavior. 

Aggressive driving behavior (e.g. abruptly accelerating and braking) can significantly 

increase fuel consumption by up to 20-30 percent [13]. Characterizing the ecological 

driving (eco-driving) behavior has been investigated in the recent decades, both for 

enhancing the awareness of human driver [37][38] and in the quest to automatically 

adjusting the powertrain control schemes[95][96]. 

The driver behavior classification typically proceeds in two stages: feature 

extraction and classification. The feature extraction stage is considered more challenging. 

Previous studies have used features based on the statistical and frequency analysis of the 

driving data. However, the robustness of the schemes across different vehicles and driving 

cycles still leaves room for improvement. 

In this chapter, a microtrip-based driver scoring algorithm is proposed which uses 

the signals from the CAN bus. To further improve the computational and memory 

efficiency, the algorithm converts the time-series driving data into events represented by 

symbolic data. The algorithm was tested with real-world driving data from medium and 

heavy-duty trucks. A high classification accuracy across different vehicles and driving 

cycles was achieved. 
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5.2 Driver Scoring Algorithm 

The driver score algorithm receives the driving data from the vehicle CAN bus as 

the input and produces a driver score. The algorithm comprises of five steps, as shown in 

Fig 5.1. 

Step 1: the algorithm converts the time-series driving data into events represented by the 

symbolic data. 

Step 2: the algorithm determines the duration of a classification by identifying microtrips, 

which are small segments of the speed profile bounded by large acceleration and 

deceleration. 

Step 3: the algorithm extracts features from the microtrip. 

Step 4: the algorithm selected a classifier for the feature vector, based on the average 

speed of the microtrip and produces a score as the classification result. 

Step 5: the algorithm aggregates the microtrips scores and computes the average value as 

the driver score. 

 

Fig.5.1 The flow diagram of the driver behavior classification process 
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In this chapter, we shall assume the data is obtained in the naturalistic driving 

environments, in which the stops, turns, and traffic lights will create the increases and 

decreases in the vehicle speed. 

Our approach falls into the realm of supervised learning. Hence, it requires the 

data to be labeled. While a large amount of real-world driving data has been collected 

[97], the data labeled by driver aggressiveness is not readily available. The experimental 

setup will be detailed in section 5.4. Finally, the driver score provided by the algorithm 

will be validated by real-world fuel consumption. 

5.2.1 Representing the Driving Data as Events 

A promising approach to extracting features from the time-series data is to 

convert them into symbolic data, and then find features using symbolic pattern 

recognition [98], [99]. The study by Verwer et al. [100] has investigated the problem by 

converting the data into driving events (e.g. accelerating, decelerating and cornering). 

We propose a new scheme to convert the time-series data into driving events, 

which are represented as discrete symbolic data. The algorithm is detailed in Alg.5.1 in 

the Appendix. The time-series driving data at any time step are represented as a 3-tuple: 

 ( 𝑣𝑣,𝑚𝑚𝑐𝑐, 𝑡𝑡𝑝𝑝) (5.1) 

Where 𝑣𝑣 is the vehicle speed, 𝑚𝑚𝑐𝑐 is the acceleration and 𝑡𝑡𝑝𝑝 is the throttle position. The 

acceleration signal has been passed through a low-pass filter to reduce the noise. 

A. Primitive Assigning 
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The next step is to assign the 3-tuple ( 𝑣𝑣, 𝑚𝑚𝑐𝑐, 𝑡𝑡𝑝𝑝) a nominal value, which is 

referred as the primitive or 𝒑𝒑. In particular, five primitives are defined: accelerating (a), 

decelerating (d), sustain (s), coasting (c), idling (i). 

𝒑𝒑 ∈ {𝐚𝐚,𝐝𝐝, 𝐜𝐜, 𝐬𝐬, 𝐢𝐢} (5.2) 

The classification rules are defined as follows: 

𝒑𝒑 =  

⎩
⎪
⎨

⎪
⎧
𝐚𝐚 if ( 𝑣𝑣 > 0 ) ∧ (𝑚𝑚𝑐𝑐 ≥ acU )                                   
𝐝𝐝 if  (  𝑣𝑣 > 0) ∧ (𝑚𝑚𝑐𝑐 ≤ acL)                                   
𝐜𝐜 if (𝑣𝑣 > 0)  ∧ (acL < 𝑚𝑚𝑐𝑐 < acU)  ∧ (𝑡𝑡𝑝𝑝 <  t𝑝𝑝L)
𝐬𝐬 if (𝑣𝑣 > 0)  ∧ (acL < 𝑚𝑚𝑐𝑐 < acU) ∧ (𝑡𝑡𝑝𝑝 ≥  t𝑝𝑝𝑑𝑑)
𝐢𝐢 if (𝑣𝑣 = 0) ∧ (𝑡𝑡𝑝𝑝 =  0)                                         

                                                            

 (5.3) 

If 𝑚𝑚𝑐𝑐–acceleration exceeds an upper bound acU, the event would be considered as 

accelerating (a). Similarly, if 𝑚𝑚𝑐𝑐 falls below a lower bound acL, the event would be 

considered as decelerating (d); if 𝑚𝑚𝑐𝑐 is in between acU and acL, the event will be 

considered as either sustain (s) or coasting (c), which will be further distinguished by 𝑡𝑡𝑝𝑝– 

throttle position. And finally, if 𝑣𝑣–vehicle speed and 𝑡𝑡𝑝𝑝–throttle position are 0, the event 

would be classified as idling. An illustration of the rule-based primitive classification is 

shown in Fig.5.2. 
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Fig.5.2 Illustration of the primitive classification 

 

B. Event Parsing  

Once a primitive 𝒑𝒑 has been assigned at each time step, the next step is to group 

the adjacent primitives with the same value into one event. An event is defined as a 4-

tuple including, p–primitive, 𝑣𝑣0–starting speed, 𝑣𝑣1–end speed, and t–duration, as shown 

in: 

(𝒑𝒑, 𝑣𝑣0, 𝑣𝑣1, 𝑡𝑡) (5.4) 
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where, 𝒑𝒑 takes nominal values; 𝑣𝑣0, 𝑣𝑣1,and 𝑡𝑡 take numerical values. If the current 

primitive is different from the previous one, the algorithm ends the previous event and 

start a new event. In the case when a primitive sequence is too short, the event will be 

discarded. Fig.5.3 shows an illustration of the event parsing process. 

 

Fig.5.3 The illustration of the event parsing process 

After the event parsing process, the time-series data have been converted to a 

sequence of events, which consists of both nominal value and numerical value. A 

piecewise linear approximation of the driving cycle can be reconstructed from the 

sequence as shown in Fig.5.4. 

 

Fig.5.4 Piecewise linear approximation of a driving cycle 
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5.2.2 Microtrip Identification 

The previous literature has primarily based the classification on an entire driving 

cycle. In contrast, the proposed algorithm bases the classification on the microtrips, and 

each microtrip will be characterized by a feature vector. The real-world driving often 

naturally consist of rises and falls in vehicle speed due to the turns, stops, and traffic 

lights. The concept of microtrips was originally defined as the speed profile bounded by 

the idling events [101] in vehicle test environment. However, in real-world driving the 

vehicle speed does not necessarily decrease to zero. And therefore, a modification has 

been made as illustrated in Fig.5.5. The definition of microtrips is as follows: 

(1) Microtrips start when a large accelerating event occurs at low speeds. 

(2) Microtrips end when an idling event exceeds a time limit or when a new 

microtrip starts. 

 

Fig.5.5 illustration of the microtrip identification 
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The identification of microtrips is realized through a finite state machine as shown 

in Fig.5.6. The algorithm is detailed in Alg.5.2 in the Appendix. An illustration the 

microtrip identification process is shown in Fig.5.6. 

 

Fig.5.6 Finite state machine of the microtrip identification 

5.2.3 Feature Selection 

Feature selection is an important aspect of the driver behavior classification 

problem. Previous studies have used features based on statistic and the frequency content 

of the driving data. However, the features are often restricted to a certain vehicle and 

driving cycle. Our goal is to find features which are robust across the different vehicle 

and driving cycle. 

The characteristics of the eco-driving behavior are subjective and ambiguous. 

According to the “golden rules” of eco-driving [102], it includes maintaining a steady 

speed, applying moderate acceleration and braking, and anticipating the further driving 

condition. Based on these general guidelines, five features are defined as follows. 

Feature 1: deceleration level. 
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𝑥𝑥1 = 1
𝑚𝑚
∑ � 𝑣𝑣0𝑖𝑖−𝑣𝑣1𝑖𝑖

𝑡𝑡𝑖𝑖
�𝑚𝑚

𝑖𝑖=1 ∀𝑖𝑖 ∈ {𝑖𝑖| 𝑝𝑝𝑖𝑖 = 𝐝𝐝 } (5.5) 

𝑥𝑥1 is defined as the mean acceleration in decelerating events d. The acceleration is 

approximated from start speed 𝑣𝑣0, stop speed 𝑣𝑣1 and the duration 𝑡𝑡𝑖𝑖 of an event. 

Feature 2: coasting time. 

𝑥𝑥2 = 1
𝑚𝑚
∑ ( 𝑡𝑡𝑖𝑖)𝑚𝑚
𝑖𝑖=1    ∀𝑖𝑖 ∈ {𝒑𝒑𝒊𝒊 = 𝐜𝐜 ∧ 𝒑𝒑𝒊𝒊+𝟏𝟏 = 𝐝𝐝} (5.6) 

𝑥𝑥2 is defined as the mean duration of coasting events c before deceleration events d . 𝒑𝒑𝒊𝒊 

and 𝒑𝒑𝒊𝒊+𝟏𝟏 denote the current and the next event. The feature only considers the coasting 

events c before the decelerating events d. The coasting time before braking reflects the 

driver anticipation of the future traffic. 

Feature 3: specific kinetic energy index. 

𝑥𝑥3 = ∑ ( 𝑣𝑣1𝑖𝑖
2 −𝑣𝑣0𝑖𝑖

2 )𝑖𝑖=𝑚𝑚
𝑖𝑖=1
1
2
∑(𝑣𝑣0+𝑣𝑣1)𝑡𝑡

   ∀𝑖𝑖 ∈ {𝒑𝒑𝒊𝒊 = 𝒂𝒂 ∨ 𝐬𝐬  , 𝑣𝑣1𝑖𝑖 > 𝑣𝑣0𝑖𝑖}(5.7) 

𝑥𝑥3 is defined as the kinetic energy consumed per distance traveled and per unit mass. The 

denominator approximates the total travel distance. The numerator approximates the 

kinetic energy from the vehicle speed gain during the accelerating a and sustain s events. 

Aggressive drivers tend to accelerate the vehicles to higher speeds than necessary, and 

thus, result in higher kinetic energy. The mean value of the feature tends to decrease as 

the average speed increases, as has been shown in the study by Duran and Walkowicz 

[97], in which a similar kinetic energy metric has been defined. 

Feature 4: acceleration level. 
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𝑥𝑥4 = 1
𝑚𝑚
∑ � 𝑣𝑣0𝑖𝑖−𝑣𝑣1𝑖𝑖

𝑡𝑡𝑖𝑖
�𝑖𝑖=𝑚𝑚

𝑖𝑖=1 ∀𝑖𝑖 ∈ {𝒑𝒑𝒊𝒊 = 𝐚𝐚 } (5.8) 

𝑥𝑥4 is defined as the mean acceleration during acceleration events a. Similar as in 𝑥𝑥1, the 

acceleration is approximated from start speed 𝑣𝑣0, stop speed 𝑣𝑣1and the duration 𝑡𝑡 of an 

event. 

Feature 5: the portion of coasting. 

𝑥𝑥5 = ∑ 𝑡𝑡𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑡𝑡

∀𝑖𝑖 ∈ {𝒑𝒑𝒊𝒊 = 𝐜𝐜}(5.9) 

𝑥𝑥5 is defined as the portion of coasting event c in the entire duration of the microtrip. It 

reflects the driver’s anticipation of the future traffic. 

5.2.4 Classification Algorithm  

Various algorithms can be found in the category of the supervised learning. The 

Logistic Regression algorithm [103] is chosen for the following reasons. First, the 

decision rules are explicit, and thus, the output can be easily traced back from the value 

of each feature. Secondly, the algorithm is computationally efficient for prediction, and 

therefore, is suitable to be implemented in real time. 

The output of the classification is a continuous number, which presents the 

probability of whether the data belongs to a class or the other. The hypothesis function of 

the logistic regression is: 

ℎ𝜃𝜃(𝑥𝑥  ) = 𝑚𝑚(𝜃𝜃𝑇𝑇𝑥𝑥  ) = 1
1+𝑒𝑒−𝜃𝜃𝑇𝑇𝑥𝑥

 (5.10) 
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Where, 𝑥𝑥 is the feature vector, θ is the set of parameters, 𝜃𝜃𝑇𝑇𝑥𝑥  is a linear combination of 

the features and parameters. 𝑚𝑚 is the nonlinear sigmoid function, which maps 𝜃𝜃𝑇𝑇𝑥𝑥   from 

ℝ to [0, 1]. The cost of function of (10) is shown in (11). Following the common practice 

in logistic regression, a regulation term is added to prevent overfitting. 

𝐽𝐽(𝜃𝜃) = − 1
𝑚𝑚
∑ �𝑦𝑦(𝑖𝑖) log �ℎ𝜃𝜃�𝑥𝑥(𝑖𝑖)�� + �1 − 𝑦𝑦(𝑖𝑖)�𝑦𝑦(𝑖𝑖) log �1 − ℎ𝜃𝜃�𝑥𝑥(𝑖𝑖)��� + 𝜆𝜆

2𝑚𝑚
∑ 𝜃𝜃𝑗𝑗2𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1

 (5.11) 

The last term 𝜆𝜆
2𝑚𝑚

∑ 𝜃𝜃𝑗𝑗2𝑛𝑛
𝑗𝑗=1  is the regularization terms. It penalizes parameters with the 

large magnitude in order to prevent overfitting. λ is the regularization parameter. The 

equation (5.11) can be solved by several iteration methods. The Newton’s method is 

used, which has the advantage of faster convergence comparing with the gradient descent 

method. The method uses the information of the second derivative or Hessian to change 

the step size at each iteration. The update rules for newton’s method is: 

𝜃𝜃(𝑡𝑡+1) = 𝜃𝜃(𝑡𝑡) − 𝐻𝐻−1∇𝜃𝜃𝐽𝐽(5.12) 

A detailed description of the algorithm can be found in [103]. 

5.3.6 Speed Segmentation 

The value of features tends to vary on average vehicle speed, which could poses a 

challenge for linear classifier. For example, the distribution of Feature 3 specific kinetic 

energy index at different average speed is shown in Fig. 5.7. The value tends to be higher 

at the lower speed, because at the lower speed a higher portion of energy is consumed to 
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accelerating the vehicle. To further enhance the classification accuracy, the microtrips are 

grouped into segments based on the average speed. Thus, the microtrips in the same 

segment are more comparable. Each segment has a unique classifier, which is trained 

with data only from that segment. During the predicting step, a classifier is selected based 

on which segment the current microtrip belongs to. 

 

Fig. 5.7 Distribution of feature 3 specific kinetic energy index at different speed 

A trade-off presents itself in choosing the range of the speed segments. If the 

range is too close, less training data will be left in each segment; one the other hand, if 

the range is too broad, the data in each segment will have a wide dispersion. As a general 

guidance, the speed range should be smaller when the values of the features change 

rapidly with the average microtrip speed. Four segments are chosen with the average 

speed ranges from 5 to 10 [m/s], 10 to 15 [m/s], 15 to 20 [m/s] and above 20 [m/s]. The 
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minimal average speed is 5 [m/s] to exclude the data at low speeds. The speed range of 

each segment is shown in Table 5.1. 

Table 5.1 the range of discrete speed segments 

Segment#  1 2 3 4 

Speed range(mps) 5-10 10-15 15-20 20 up 

5.3.7 Driver Score 

In the previous steps, the Logistic Regression based classifiers classify each 

microtrips, and produce a microtrip score 𝑠𝑠, which indicates the probability of whether it 

belongs to the relaxed or aggressive driving. 

In the next step, the algorithm aggregates the microtrip scores and computes the 

driver score S by averaging the scores of all micro-trips as show in (3) and Fig.5.8. 

𝑆𝑆 = �̅�𝑠 (5.13) 

 

Fig.5.8 Schematic illustration of micro-trips 
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The driver scoring algorithm is shown in the Appendix as Alg.5.2. By using 

finite-state-machine and recursive average, the algorithm does not require logging the 

driving data which considerably reduces the memory overhead. 

5.3 Experimental Results 

5.3.1 Data Acquisition 

The data acquisition process is described in this section. The experiment was 

conducted by the industry partner. The labeled data was obtained by the drivers imitating 

aggressive and relaxed driving behavior. Some details of the study are described as 

follows: 

1) Sixteen drivers participated in the study to reduce the difference of the individual 

driving behavior. 

2) Three vehicles were used to represent a variety of vehicle types including 2 medium-

duty trucks and 1 heavy-duty truck with different weights. The weight of each 

vehicle is shown in Table 5.2. 

3) Over twenty-six hours of driving data were recorded. The driving data was obtained 

from the vehicle CAN bus. The signal included vehicle speed, longitudinal 

acceleration, throttle position, fuel rate, and the GPS data. The sampling frequency 

was 10 Hz. The vehicle speed, longitudinal acceleration, throttle position are used as 

inputs to the algorithm. The fuel rate data is used to validate the driver score in 

reflecting the real-world fuel consumption. The GPS data is used to inspect the 

routes visually and is not used as inputs to the algorithm. 
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Table 5.2 Test vehicle type and weight 

Vehicle# A B D 

Vehicle type medium-duty truck medium-duty truck heavy-duty truck 

Vehicle mass (kg) 8700 13000  20500 

 

Table 5.3 Summary of data acquisition settings 

# Vehicle 3 

# Driver 16 

Total driving minute 1554 

Signals 

Vehicle speed, 
Longitudinal accelerating, 
Throttle position, 
Fuel rate, 
GPS 

General guidelines were given to the driver to mimic a particular driving 

behavior. The guidelines for the relaxed behavior includes: 

1) Anticipate traffic flow and road grade; use vehicle momentum to reduce braking. 

2) Follow the traffic flow up to the speed limit; the driver should not deliberately 

attempt to lower the vehicle speed to achieve better fuel economy. 

The guidelines for the aggressive driving behavior includes: 

1) Exercise unnecessary, perpetual and sharp acceleration. 
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2) Display bad anticipation of future traffic and increase the use of brakes. 

The majority of the driving data was collected in a city driving condition with the 

presence of moderate traffic. To represent different driving cycles, the data of two 

additional traffic conditions were collected. One is from the heavy-city-driving condition, 

which consists of a high portion of start-stop traffic. The other is the suburban-driving 

condition, which consists of a more smooth traffic flow, and a high portion of driving at 

higher speeds. 

The number of trips from the aggressive and relaxed driver is roughly equal. The 

summary of the amount of data collected grouped by vehicle and speed segment is shown 

in Table. 5.4. The table shows both the number of microtrips and the driving time in 

minutes. The higher speed segments have fewer microtrips because the duration of the 

individual microtrips is longer. Most of the data are collected using vehicle A. The 

additional vehicles were used with more emphasis on testing the algorithm’s robustness 

across different vehicle types. 

Table 5.4 The amount of data collected grouped by vehicle types and speed segments 

Speed [mps] Aa/12b B/4 C/4 

5-10 370c (270)d 184 (99) 26 (30) 

10-15 283 (587) 44 (48) 48 (89) 

15-20 50 (145) 11 (20) 12 (39) 

20 up 28 (101) 8 (28) 9 (98) 
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a: vehicle type, b: the number of driver, c: the number of microtrip, d: driving time in 

minute. 

5.3.2 The Value of Features 

The proposed algorithm was tested in a simulation environment using the real-

world driving data. The features are normalized through the min-max normalization, and 

thus the values range from 0 to 1. The min-max normalization is described as: 

𝑥𝑥𝑖𝑖∗ = 𝑥𝑥𝑖𝑖−𝑥𝑥min
𝑥𝑥max−𝑥𝑥min

 (5.14) 

Where, 𝑥𝑥𝑖𝑖∗ is the normalized feature value, 𝑥𝑥𝑖𝑖 is the original feature value, 𝑥𝑥max and 𝑥𝑥min 

are the maximum and minimum value of the feature. 

The mean value of the features grouped by speed segments and vehicle types are 

shown in Fig.5.9. The filled the marker, and unfilled marker indicates the aggressive and 

relaxed driver respectively. The mean value of the total dataset is shown as the dashed 

line. Aggressive drivers tend to have higher values in 𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥4 (brake level, kinetic 

energy index, and acceleration level) and lower values in 𝑥𝑥2, 𝑥𝑥5 (coasting time, and 

coasting portion). The values of 𝑥𝑥1 and 𝑥𝑥5 (deceleration level, and the portion of 

coasting) are mostly constant across different speed segments. However,𝑥𝑥3, 𝑥𝑥4 (specific 

kinetic energy, and acceleration level) tend to decrease as the segment speed increase. 𝑥𝑥2 

(coasting time) tends to increase as the segment speed increases. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Fig.5.9 The mean value of features at various speed segment (a) 𝑥𝑥1 deceleration level (b) 

𝑥𝑥2 coasting time (c) 𝑥𝑥3 specific kinetic energy index (d) 𝑥𝑥4 acceleration level (e) 𝑥𝑥5 
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portion of coasting event. The filled marker indicates aggressive driver; the unfilled 

marker indicate relaxed driver; dashed line indicates the mean value of all the data at 

certain speed segment. 

5.3.3 Principal Component Analysis 

The Principal Component Analysis (PCA) is conducted to evaluate the feature 

with the largest variance. PCA converts the features into linearly uncorrelated variables 

(principal components). The principal components of the data are shown in 5.18. 

𝑀𝑀 =

⎣
⎢
⎢
⎢
⎡
−0.46 0.45     0.64      0.40 −0.080
   0.63 0.61     0.27   −0.40 −0.045
−0.42 0.36 −0.24   −0.36     0.71
−0.34 0.40 −0.49   −0.19 −0.67
   0.31 0.38 −0.46       0.71    0.20 ⎦

⎥
⎥
⎥
⎤
 (5.15) 

Each column response to each principal components, which are in the order of decreasing 

variance from left to right. Each row contains the coefficient of each feature for each 

principal component. 

From the 1st principal component (1st column), 𝑥𝑥2- coasting time has the large 

coefficient, it has a positive correlation with 𝑥𝑥5-coast portion and negative correlation 

with 𝑥𝑥1-deceleration level, 𝑥𝑥3-kinetic energy,𝑥𝑥4-brake level. 

The variance explanation ratio with the number of principal components is shown 

in Fig. 5.10. The first two principal component explains 86 percent of the variance. By 

reducing the data dimension to two, we can visualize the data as shown in 5.10. 
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Fig.5.10 Variance explanation ratio of the principal component. 

 

Fig.5.11 Visualization of the data on the first two principal components. 

In Fig. 5.11, we can observe the 1st principal component (x-axis) is the most 

predictive. The data from relaxed drivers tend to locate toward the right, and the 

aggressive driver tend to locate toward the left. 
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5.3.4 Classification Results 

The classification error was used as the performance metric, which is defined as 

the ratio of the number of misclassified data and the total number of data: 

𝑒𝑒 = 1
𝑛𝑛
∑ 1(𝑦𝑦�𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=0  (5.21) 

The practice of 5-fold cross-validation was followed. The data from each vehicle 

type was divided into 5 folds. 1 fold was used as the test set, and the rest were used as 

training set, the process was repeated for each fold, and the average error rate was 

reported. The regularization parameter λ was determined through the grid search, which 

exhaustively examined the parameter from 0.01 to 0.2 with the increment of 0.01 and 

chose the parameter with the lowest classification error. 

The final classification error using the 5 features is 17.3 percent. The confusion 

matrix in Table III shows the percentage of the true positive, false negative, false 

positive, and true negative categories. There are similar amounts of misclassifications in 

the category of false positive and false negative. 

Table 5.5 Confusion matrix of the classification  

 
Predicted Class 

True False 

Actual Class 
True 37.4% 10.2% 

False 7.1% 45.3% 
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To evaluate the impact of the number of features on the classifier performance, 

every combination of 1 or more of the 5 features were tested. The same cross-validation 

procedure was taken. The regularization parameter λ was determined through grid search. 

The best results with 1 to 5 features are shown in Fig. 5.12. 

𝑥𝑥2-coasting time is the most predictive parameter because it has the lowest error 

rate when using only one feature. The error rate plateaus after using 3 features. To 

simplify the computation, it is possible to just use 3 features (𝑥𝑥2-coasting time, 𝑥𝑥4- 

acceleration level, and 𝑥𝑥3- specific kinetic energy index) and obtain a similar level 

classification accuracy. 

 

Fig.5.12. Classification error with the different number of features 

5.3.5 Algorithms Comparison 

The proposed algorithm uses speed segmentation to reduce the influence of 

vehicle speed on the features. To demonstrate the effectiveness of the speed 

segmentation, the proposed algorithm was compared with three additional algorithms, 

which do not employ the speed segmentation: 
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1) LR 1: Logistic Regression with speed segmentation (the proposed algorithm). 

2) LR 2: Logistic Regression without speed segmentation, but use average microtrip 

speed as an additional feature. 

3) LR 3: Logistic Regression with neither speed segmentation, nor using speed as a 

feature. 

4) SVM: Support Vector Machine (RBF kernel)[103] without speed segmentation, but 

use average microtrip speed as an additional feature. 

The same 5-fold cross-validation procedure was followed, and all the 5 features 

are used. The tuning parameter λ in logistic regression and c in SVM is determined using 

the grid search. The result is shown in Table. 5.6. 

Table 5.6 Comparison between logistic regression and SVM 

 Classification Error 

Algorithm 1 (LR1) 17.3% 

Algorithm 2 (LR2) 18.0% 

Algorithm 3 (LR3) 21.2% 

Algorithm 4 (SVM) 14.9% 

The proposed algorithm using speed segmentation (LR 1) outperforms the algorithm 

using the average speed as an additional feature (LR 2). The algorithm, which uses 

neither the speed segmentation nor speed as a feature (LR 3), has the highest error rate. 



 60 

The SVM algorithm has the lowest error rate. However, the model contains 344 support 

vectors, and it requires much greater memory and computation. 

It can be observed that even with a more sophisticated algorithm like the SVM, 

the error rate is still around 15 percent. One explanation is that even though the data is 

labeled, it is not necessary that all the microtrips from the “aggressive” driver display the 

aggressiveness and vice versa. In some cases, the characteristic of the driver behavior can 

still be ambiguous. However, the uncertainty of the individual data can be reduced when 

considering many microtrips. 

The classification error grouped by speed segment and vehicle types are shown in 

Fig.5.13. The error rate is similar across different vehicles. Vehicle A has slightly lower 

error rate because most of the training data are collected from this vehicle. The data is the 

most predictive in the speed segment 10-15 [m/s] because the algorithm has the lowest 

error rate in this region. 

In summary, speed segmentation is effective for the simple classifier (e.g. logistic 

regression) to improve the classification accuracy. The algorithm is robust across 

different driving cycle and vehicle weights. 
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(b) 

Fig.5.13 Classification accuracy (a) classification accuracy by speed segment (b) the 

classification accuracy by vehicle weight. 

5.3.6 Validation with Fuel Consumption 

To validate the driver score in reflecting the vehicle real-world fuel consumption, 

the correlation between the two variables was studied. Due to the fuel consumption is 
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only comparable to the same vehicle and driving cycle, 20 trips with the same vehicle 

(vehicle A) and route were chosen (10 each for the aggressive and relaxed driver). The 

parameters in the driver scoring algorithm were trained from the dataset in which the 20 

trips were excluded. The vehicle’s real-world fuel consumption was calculated from the 

fuel rate data, and normalized by its maximum and minimal value. The scatter plot of the 

two parameters is shown in Fig.5.14. 

 

Fig.5.14 The correlation between driver score and vehicle fuel consumption 

A high correlation between the driver score and vehicle fuel consumption can be 

observed. The dispersion of the real-world fuel consumption is affected by the driving 

behavior and the traffic conditions. Even though the same route was taken, the traffic 

flow and the occurrences of the traffic light can be different. Despite the effects of the 

traffic, a clear trend of the fuel consumption decreasing with the driver score can be 

observed. 
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The Pearson’s correlation coefficient ρ is used to quantify the correlation 

relationship between the two parameters. The value of ρ ranges from -1 to 1. The closer 

the absolute value to 1, the stronger the correlation. The driver score and real-world fuel 

consumption have ρ= -0.84, which indicates a high correlation between the two 

parameters. And thus, the driver score is validated in reflecting the real-world fuel 

consumption. 

5.4 Discussion 

The memory and computational cost of the algorithm is discussed in this section. 

Regarding the computational cost, during the steps of converting the time-series data into 

feature vectors, the computation grows linearly with the number of sample or 𝑂𝑂(𝑛𝑛). In 

the predicting step, the algorithm uses the logistic regression, which is one of the fastest 

classification algorithms. Regarding the memory cost, the algorithm does not require 

logging on the driving data. By using the finite-state machine and recursive average 

algorithm the event parsing, feature extraction, and the microtrip identification process 

can be accomplished on-the-fly. 

Based on the discussion above, the driver scoring algorithm has low memory and 

computational overhead. Therefore, it is suitable for real time implementation. 
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5.5 Conclusion 

In summary, this section has proposed a driver scoring algorithm for classifying 

the eco-driving behavior. In contrast to the prior art, the algorithm bases the classification 

on the microtrips and converts the time-series data into symbolic data to facilitate feature 

extraction. Real-world driving data from a variety of driving cycles and vehicle types has 

been used to demonstrate the usefulness of the algorithm. The driver score produced by 

the algorithm has achieved a high classification accuracy in predicting the eco-driving 

behavior and has also shown a high correlation with the vehicle real-world fuel 

consumption. 

In the future work, the performance of the algorithm can be further improved by 

collecting more data and through feature engineering. 
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CHAPTER SIX 
 

ADAPTIVE SHIFT STRATEGY 
 

6.1 Introduction 

Commercial vehicles operating in a variety of vocations have different 

consciousness for fuel consumption and drivability. For example, delivery trucks might 

emphasize more on drivability to improve productivity. On the contrary, semi-trailer 

trucks can be more fuel conscious of reducing the fuel cost. As a result, the shift map 

often requires extensive calibration to different vocations. Using an adaptive shift 

strategy based on the driver behavior can reduce the initial transmission calibration effort 

and improve the real-world fuel consumption. 

In this chapter, a new adaptive transmission shift strategy is proposed, which 

include an offline and an online stage, as shown in Fig.6.1. During the offline stage, the 

driving characteristics of different driver aggressiveness are studied, which will be used 

for generating the shift maps. Since obtaining the driving characteristics requires the 

vehicle to drive for an extended period, the previously developed driver score metrics is 

used as a proxy to match the driving characteristics in real time. During the online stage, 

after the driver score is obtained, the driving characteristics are reconstructed and used to 

generate the shift maps. Lastly, the objective metric of drivability is defined and the 

impact of different shift maps on drivability and fuel consumption is evaluated using the 

vehicle simulation. 
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Fig.6.1 The adaptive shift strategy flow diagram 

6.2 Generating the Shift Map 

The process of the shift map generation is discussed in this section. The shift map 

is based on the percentage of the maximum torque demand and current vehicle speed. A 

typical shift line can be divided into three regions: the high torque region, the middle 

torque region, and the low torque region, as shown in Fig.6.2. The maximum and 

minimum vehicle speed of the shift line is denoted as 𝑣𝑣max, and 𝑣𝑣min respectively. 
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Fig.6.2 Regions of a typical shift line 

6.2.1 Low Torque Region 

The low torque region is defined as the interval between 0 and 20 percent of the 

torque demand. The minimal speed 𝑣𝑣min is determined based on the lower limit of engine 

stall speed. The transmission must downshift if the engine speed falls below the minimal 

engine speed limit (1200 rpm). 

6.2.2 High Torque Region 

The high torque region is defined as the region above 80 percent of the torque 

demand. The maximum speed 𝑣𝑣max determines the speed above which the transmission 

must upshift. 𝑣𝑣max greatly affects the vehicle wide-open throttle performance. The 

maximum acceleration performance is obtained when a shift occurs at the intersection of 

the two maximum torque curves of the consecutive gears. 
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6.2.3 Middle Torque Region 

The middle torque region is defined as the interval between 20 percent and 80 

percent of the torque demand. The upshift speeds in this region are determined by 

minimizing the fuel consumption with the constraint to satisfy the torque reserve. 

The torque reserve is commonly used to ensure drivability [104][105]. The torque 

reserve specifies the amount of additional torque that must be available at the current 

load. The torque reserve ensures the instantaneously available torque so that if the 

driver’s torque demand increases, the transmission does not need to downshift to satisfy 

the driver demand, which ensures a smooth driving experience. If the instantaneously 

available torque is smaller than the required torque reserve, the upshifting is prohibited. 

As illustrated in the Fig.6.3, both operating point 1 and 2 can satisfy the current power 

demand. However, at point 1, the instantons available torque is smaller than the torque 

reserve, and therefore the upshifting from point 2 to point 1 is prohibited. 

 

Fig.6.3 Illustration of the torque reserve 
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To obtain the upshift speeds in the middle torque region, the vehicle speed and 

torque demand are discretized into grids. For every vehicle speed and torque demand, the 

algorithm compares the fuel rate of the current gear and that of the next gear, assuming 

the same power demand can be met. The algorithm finds the gear selection that has the 

lower fuel consumption, while satisfies the torque reserve as described in (6.1) and (6.2): 

argmin. 𝑛𝑛 ṁ[𝑤𝑤(𝑛𝑛), 𝜏𝜏(𝑛𝑛)] (6.1) 

               s. t.∆𝜏𝜏(𝑛𝑛) > 𝜏𝜏rsv (6.2) 

Where, �̇�𝑚 is the fuel rate function. The fuel rate function is located on the engine fuel 

map based on engine speed 𝑤𝑤, and engine torque 𝜏𝜏, which both depend the gear 

selection 𝑛𝑛. The constraint states the instantaneously available torque ∆𝜏𝜏, which is a 

function of gear selection, needs to be greater than the torque reserve 𝜏𝜏rsv. Lastly, the 

shift speeds in the shift line need to be monotonically increasing, which ensures the 

greater torque demand always response to a higher shift speed. 

Generating the shift map requires the maximum traction torque to optimize the 

maximum shift speed 𝑣𝑣max, and the torque reserve to optimize the shift line in the middle 

region of the shift map. These driving characteristics are obtained offline from the real-

world driving data, which will be described in the next section. 

6.3 Characterizing the Driving Cycle 

The shift maps can be generated based on the maximum traction torque and the 

torque reserve, which can be obtained from the driving cycle. The process of obtaining 

these metrics from the driving data, as shown in Fig. 6.4, is detailed in this section. 
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Fig.6.4 Schematic of the driving cycle characterization pipeline 

Real-world driving data was collected by the industry partner to analyze the 

difference between the relaxed and aggressive driver. The driving data was acquired in a 

city driving environment with moderate traffic on a flat terrain. The different driving 

behavior was produced by the driver mimicking the aggressive and relaxed driving 

behavior. Each driver completed the cycle twice. The first time mimicking aggressive 

driving behavior and the second time mimicking relaxed driving behavior. The data was 

then processed offline to obtain the driving characteristics. 

6.3.1 Maximum Traction Torque 

To obtain the maximum traction torque, the vehicle speed is discretized into small 

intervals or bins. At each time step, the vehicle acceleration is grouped into the 

corresponding speed bin. The maximum traction torque at the wheels is then calculated 

from the vehicle speed, the maximum acceleration, and the rolling resistance and 
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aerodynamic drag coefficients. Since the maximum acceleration can be noisy, a threshold 

(98 percentile) is used to replace the maximum acceleration. Fig.6.5 shows the average 

maximum traction torque of the aggressive, relaxed and average drivers at different 

vehicle speeds. The aggressive drivers have higher maximum traction torque than the 

relaxed drivers, and the value is closer to the limit of the maximum traction torque the 

vehicle can provide at each gear. 

 

Fig.6.5 Average maximum traction torque from aggressive, average, and relaxed drivers 

at the various vehicle speed 

6.3.2 Torque Reserve 

The torque reserve is defined as a 2-d matrix based on vehicle speed and current 

torque demand. It specifies the additional amount of torque required at certain vehicle 

speed and current torque demand in order to satisfy the torque demand in the next time 

step. The torque reserve specifies the amount of addition torque must be available at the 
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current load so that the engine can satisfy the driver demand immediately without 

downshifting. 

The Markov chain model was used to represent the probability of driver action 

[106]. The assumption is that the future torque demand only depends on the current 

vehicle speed and the current torque demand. The steps to obtain the torque reserve is as 

follows. Firstly, the vehicle speed and current torque demand are discretized into bins. 

Secondly, the algorithm finds the additional torque demand at the next time step (2 

seconds) and places the value into the corresponding bins. Thirdly, the torque reserve is 

calculated by setting a threshold on the additional torque demand. The threshold of 90 

percentile and the time step of 2 seconds indicate the amount of additional torque needs 

to satisfy 90 percent of the situation in the next 2 seconds without the need to downshift. 

The values of are determined by trial and error to provide robust results. 

The result of torque reserve at a different vehicle speed and torque demand is a 2-

d matrix, as shown in Fig.6.6. The torque reserve is higher at lower vehicle speed because 

the traction torque at wheels has higher value at low vehicle speed. Additionally, the 

torque reserve at lower current torque demand is higher because the vehicle at a lower 

speed is likely to accelerate in the next time step. 
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Fig.6.6 The torque reserve is 2d-matrix based on vehicle speed and current torque 

demand 

6.4 Online Shift Map Adaptation 

6.4.1 Driver Score 

Although it is possible to obtain the maximum traction torque and the torque 

reserve online, the process would require driving the vehicle for an extended time and a 

large amount of memory to store the driving data. Therefore, the driver score is used to as 

a proxy to reconstruct the driving characteristics for the online adaption.  

The driver score is based on the logistic regression classifier developed in the 

previous chapter. The algorithm uses features, such as the vehicle deceleration, coasting 

time, the kinetic energy index to evaluate the eco-driving behavior in real time. 

The classifier was trained on real-world driving data of aggressive and relaxed 

driver. The logistic regression algorithm produces a driver score, which ranges from 0 to 
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1. The driver score closer to 0 represents a more aggressive driving behavior, and closer 

to1 representing a more relaxed driving behavior. The driver score can also be interpreted 

as the probability that the driver is an aggressive or relaxed driver. 

6.4.2 Dimension Reduction 

The maximum traction torque is a vector based on vehicle speed, and the torque 

reserve is a 2-d matrix based on vehicle speed and current torque demand. In order to 

approximate the driving characteristics using the driver score, the dimension of the 

characteristics needs to be reduced to a scalar. Then, a relationship between the driver 

score and torque reserve can be established. 

The values of maximum traction torque at different vehicle speed in the real-

world driving situations are highly correlated. For example, aggressive drivers have high 

traction torque at low speeds, they are likely to have high traction torque at high speeds 

as well. Based on the correlation of the values at different speeds, Principal Component 

Analysis (PCA) can be used to reduce the dimension of the driving characteristics. PCA 

reduces the dimension by preserving the large correlations [107].  

The steps of the PCA are as follows. Firstly, the mean value of the maximum 

traction torque at different vehicle speed was calculated and subtracted from the feature 

vector obtained from each trip, as shown in (6.3): 

𝑋𝑋� = 𝑋𝑋 − 𝑋𝑋� (6.3) 

Where 𝑋𝑋 is the original maximum traction torque. 𝑋𝑋� is the mean traction torque. 𝑋𝑋� is the 

traction torque after subtracting the mean.  



 75 

Secondly, the dimension of the maximum traction torque was reduced to a scalar 

using the PCA, as shown in (6.4). 

𝑍𝑍 = 𝑉𝑉𝑋𝑋� (6,4) 

Where 𝑋𝑋� is the traction torque subtracted the mean. 𝑍𝑍 is the principal components 

of 𝑋𝑋�, and 𝑉𝑉 is the eigenvectors of the covariance matrix of 𝑋𝑋�. Since we want to convert 𝑋𝑋�  

into a scaler, only the first principal component was used. 

The similar steps were conducted the torque reserve. However, the torque reserve 

is a 2-d matrix, which needs to be firstly vectorized by concatenating the rows together. 

Then the same process was conducted to reduce the dimension of the torque reserve to a 

scalar. After the maximum traction torque and the torque reserve are reduced to one 

dimension. The linear relation between these parameters and the driver score can be 

established. 

Fig. 6.7 shows the linear functions fitted to from the driver's scores and the 

normalized maximum traction torque and the torque reserve. The Pearson’s correlation 

coefficient ρ is used to quantify the correlation between the two parameters. The value of 

ρ ranges from -1 to 1. The closer the absolute value to 1, the stronger the correlation. The 

maximum traction torque and the driver score have ρ equal to -0.80. And the torque 

reserve and the driver score have ρ equal to -0.74. It indicates a strong correlation 

between these parameters and the driver score. 
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(a) 

 

(b) 

Fig.6.7 The correlation between the driver score and driving characteristics (a) The 

correlation between the driver score and the normalized maximum traction torque (b) The 

correlation between the driver score and the normalized torque reserve. A strong 

correlation between these parameters and the driver score can be observed 
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6.4.3 Approximate Cycle Characteristics 

After the linear relationship between the driver score and driving 

characteristic are established, the driver score can be used to approximate the 

driving characteristic by reversing the PCA process, as shown in (6.5). 

𝑋𝑋� = 𝑉𝑉𝑇𝑇𝑍𝑍 +𝑋𝑋� (6.5) 

Where, 𝑋𝑋� is the approximated maximum traction torque. 𝑉𝑉 is eigenvectors of the 

covariance obtained from the PCA process. 𝑍𝑍 is the first principal component 

approximated from the driver score. And 𝑋𝑋� is the mean value of the vectorized driving 

characteristic obtained in the previous steps. 

By reversing the PCA process, the driving characteristics can be reconstructed 

from the driver score. Fig. 6.8 shows the maximum traction torque and the torque reserve 

reconstructed using from the driver score from 0 to 1 with 0.2 increments. In Fig. 6.8 (a), 

it can be observed that the more aggressive driving behavior demands have higher 

maximum traction torque. In Fig. 6.8 (b), the 2-d matrix of vehicle speed and current 

torque demand is reshaped into a vector by concatenating the rows of the matrix. It can 

be observed that the more aggressive driving behavior demands higher torque reserve. 
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(a) 

 

(b) 

Fig.6.8 Driving characteristics reconstructed from different driver scores (a) The 

maximum traction torque reconstructed from different driver scores, (b) The torque 

reserve reconstructed from different driver scores. 
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In the situation that the vehicle parameters can change. The method can be revised 

to base on vehicle acceleration to account for different vehicle parameters. For example, 

if the vehicle weight changes, the new maximum traction torque can be calculated from 

the vehicle acceleration and the estimated vehicle mass. 

6.4.4 Generate Shift Maps from Driver Scores 

After the maximum traction torque and torque reserve are reconstructed from the 

driver score, the shift maps can be generated from these driving characteristics. 

Fig. 6.9 shows the upshift and downshift maps generated for the driver score 0 to 

1 with 0.2 increments. The more aggressive shift maps upshift at a higher vehicle speed 

at wide-open-throttle position due to the higher maximum traction torque. The aggressive 

shift maps also upshift at the higher throttle position than the relaxed maps at the same 

vehicle speed, due to the higher torque reserve. 

The downshifting maps are generated that if the throttle demand is higher than 80 

percent, the transmission downshifts to a lower gear to provide more traction torque. The 

hysteresis (4 km/h) is added to the maximum and minimum shift speed between the 

upshift and downshift lines. The hysteresis helps to ensure a more robust shifting due to 

speed fluctuation, which often occurs during shifting due to the torque interruption. 
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(a) 

 

(b) 
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Fig.6.9 The upshifting and downshift maps (a) The upshifting map correspond to 

different driver scores, (b) The downshifting map correspond to different driver scores 

6.5 Vehicle Model 

The impact of different shift maps on the fuel consumption and drivability will be 

evaluated in the simulation using the real-world driving data. The vehicle simulation can 

be categorized into the backward-facing model and the forward-facing model [108]. The 

backward-facing model uses the quasi-static states of the powertrain model and does not 

require a driver model. However, it gives very limited information about drivability. On 

the other hand, the forward-facing model uses a driver model to provide propulsion 

torque and brake torque to satisfy the speed profile. The forward-facing model is chosen 

because it provides more information on drivability. The schematic of the vehicle model 

is shown in Fig.6.10. 

 

Fig.6.10 Schematic of the forward-facing vehicle simulation 

The driver model consists of three components: the speed feedforward controller, the 

speed feedback controller, and the distance feedback controller, as shown in Fig.6.11. 

The speed feedforward controller previews the speed profile in the next two seconds. The 
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speed feedback controller uses the Proportional-Integral control to allow the vehicle to 

follow the desired speed trace. The distance feedback controller will compensate the 

difference in trip distance and ensure that the vehicle travels the same distance as the 

desired speed profile. The speed profile is not imposed onto the vehicle model, but a 

relatively small margin of error between the actual and desired vehicle speed is 

mandatory. The low-pass filter is used to limit high-frequency driver compensation [109]. 

Fig.6.11 Schematic of the driver model 

The vehicle used in the simulation is an 8700 kg medium duty truck, with a 6-

speed automatic transmission. The vehicle has a conventional powertrain, which consists 

of the engine, torque converter, transmission, and the final drive. The engine model 

includes a transient model. The fuel delay is modeled as a lag filter [110]. The torque 

converter is modeled based on the k-factor. Table 1 and Fig.6.12 shows the parameters 

and the picture of the vehicle used for the data collection. 

Table 6.1. The parameters of vehicle used for the data collection 
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Vehicle weight 8700 kg 

Maximum engine torque 595 Nm at 1800 rpm 

Transmission gear ratio 3.094, 1.809, 1.406, 1,0.711, 0.614 

Torque converter maximum torque ratio 1.79 

Fig 6.12 Picture of the vehicle used for the data collection 

6.6 Drivability Metric 

Drivability is a very subjective metric, which often refers to driver’s impression 

of the overall driving quality,  such as pedal responsiveness, operating smoothness and 

driving comfort [85]. 

Metrics to objectively evaluate the drivability have been discussed in the previous 

literature. The study by Wei and Rizzoni [85] has quantified the pedal hesitation, delay, 

and sluggishness using metrics such as the root mean square (RMS) value of the vehicle 

Table 6.1. The parameters of vehicle used for the data collection 
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acceleration and jerk. A neural network's system has been developed using a variety of 

relevant conscious or subconscious criteria to provide the assessment of the overall 

drivability [9]. The study by List and Schoegg [10] has detected the driving behavior and 

adapted the vehicle character online to increase the vehicle sportiness and spontaneity. 

Among all the drivability metrics, vehicle’s accelerating response is the most 

relevant to the transmission shift strategy. The accelerating response is closely related to 

the torque reserve [11], which is defined as the amount of the torque the engine can 

provide instantaneously without downshifting. 

A new drivability metric is defined as the Speed Root Mean Square (SRMS) error 

between the desired and actual vehicle speed, as in equation (6.6): 

SRMS = �1
𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1 [max (𝑣𝑣𝑎𝑎𝑖𝑖 − 𝑣𝑣𝑎𝑎𝑖𝑖 , 0)]2 , (when 𝑚𝑚𝑖𝑖 >𝑚𝑚𝑡𝑡 ) (6.6) 

Where 𝑣𝑣𝑎𝑎𝑖𝑖  and 𝑣𝑣𝑎𝑎𝑖𝑖  are the desired and actual vehicle speed at the time step 𝑖𝑖. The 

maximum function ensures 𝑣𝑣𝑎𝑎𝑖𝑖  is greater than 𝑣𝑣𝑎𝑎𝑖𝑖 , otherwise it the value 0 will be used. 

The metric measures the vehicle’s capability to follow the speed profile during the 

acceleration events, which is indicated by 𝑚𝑚𝑖𝑖 , the acceleration at time step 𝑖𝑖 is greater than 

a threshold 𝑚𝑚𝑡𝑡 . 

The new drivability metric describes the vehicle’s ability to follow the desired 

speed trace during the acceleration events in the simulation. For example, if a relaxed 

shift map is applied to an aggressive driving cycle, the vehicle will have difficulties 

following the desire speed trace. 
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As illustrated in the Fig.6.13, two simulations were conducted, with the 

aggressive shift map and the relaxed shift map. The one using the aggressive map can 

follow the desired speed profile closely. However, the one using the relaxed map has a 

large difference to the desired speed during the accelerating events. 

 

Fig. 6.13 Illustration of the impact of shift map on drivability. The speed trace of relaxed 

shift map has difficulties to follow the desire speed profile. 

6.7 Simulation Results 

In this section, the shift maps are tested in a vehicle simulation to evaluate the 

impact on drivability and the fuel consumption. 

Firstly, the acceleration test was conducted to evaluate the wide-open-throttle 

performance. Secondly, a shift map adaptation strategy was evaluated using the real-

world driving. Thirdly, the trade-offs between the fuel consumption and the drivability 
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were assessed based on the driving cycles of different driver aggressiveness. And lastly, 

an energy audit was conducted to analyze the contribution of different aspects to the fuel 

consumption reduction. 

6.7.1 Acceleration Test  

The acceleration test is conducted to evaluate the vehicle’s performance at the 

wide-open-throttle position. The 0-100 km/h acceleration time is used as the performance 

metrics. Six shift maps were generated based on the driver score ranges from 0 (most 

aggressive) to 1 (most relaxed) in 0.2 increments. The speed profile and the 0-100 km/h 

acceleration time results of each shift map are shown in Fig.6.14. 

 

(a) 



 87 

 

(b) 

Fig. 6.14. Acceleration test results (a) The vehicle speed trace using different shift maps, 

(b) The 0-100 km/h time result of different shift maps, 

There is a 21.5 percent difference in the acceleration time between the most 

aggressive shift map (40.2 second) and the most relaxed shift map (51.2 seconds). The 

relaxed maps have longer acceleration time than the aggressive maps because they 

upshift at lower engine speed which reduces the maximum traction torque. On the other 

hand, the more aggressive shift maps upshift at the engine speed closer to the intersection 

of the maximum torque curve of each gear, which will result in higher acceleration 

performance. 

6.7.2 Adaptation Strategy 

The 0-100km/h time measures the maximum acceleration performance of the shift 

maps. However, the driver aggressiveness also affects the perceived drivability. For 

example, If the driver has a relaxed driving behavior, it is possible to satisfy the driving 
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demand using a relaxed shift map. In this section, the adaptation strategy is demonstrated 

using the real-world driving data of different aggressiveness. 

The adaptation strategy is described as follows. The fleet owner can select the 

most aggressive driver score that is allowed. If the driver exceeds the threshold, the shift 

strategy will cease to attempt to accommodate the drivability and impose a less 

aggressive shift map in order to reduce the fuel consumption. 

Three trips from the data set were selected with the driver score of low (0.19), 

middle (0.51), high (0.89) to represent relaxed, normal, and aggressive driving behaviors. 

The speed profile of the trips is shown in Fig.6.15. The three trips use the same route, 

however, with the different real-world driving condition such as the different traffic light 

patterns. The aggressive driving cycle has higher acceleration and deceleration rate. The 

simulation was conducted on all the three driving cycles to represent different driving 

cycles behaviors. 

 

Fig. 6.15. Speed profile of the aggressive, normal and relaxed real-world driving cycle 
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The effect of shift strategy was evaluated in the simulation. Liter/100 km was 

used as the fuel consumption metric. SRMS was used as the drivability metric. 

Four scenarios were tested in the simulation to demonstrate the effect of the 

adaptive strategy. In the first scenario, the static shift map was used during the entire 

driving cycle. The shift map was generated based on the average driver behavior (driver 

score of 0.5). 

The second scenario uses the adaptive shift strategy towards drivability. The 

threshold of the most aggressive driver score is 0.2. The shift strategy will accommodate 

towards drivability until the driver score drops below 0.2. 

The third scenario uses the adaptive shift strategy biased towards fuel 

consumption 

. The threshold of the most aggressive driver score is 0.8. If the driver score falls 

below 0.8, the shift strategy will impose a relaxed shift map (based on driver score 0.8) to 

reduce the fuel consumption. 

In the last scenario, Dynamic Programming (DP) was used to obtain the optimal 

shift schedule, which serves as the benchmark. The Dynamic Programming was 

implemented base on the assumption that the future speed profile of the driving cycle is 

known. 

The steps of the Dynamic Programming is described as follows. Firstly, the states 

are defined as the gear selection at each location. The cost function is based on fuel rate 

and the transition cost for gear shifting to prevent the gear hunting. Secondly, the traction 

torque at the wheels is calculated from the vehicle speed profile. Then, the engine speed 
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and engine torque to satisfy the traction torque at wheels at each gear are calculated. 

Thirdly, the fuel rate at each gear is looked up from the fuel map based on the engine 

speed and engine torque. And lastly, the cost function was solved from the destination to 

the origin to find the gear selection that satisfies the torque demand with the lowest fuel 

rate. 

A section of the speed profile response to the different shift strategies is shown in 

Fig.6.16. It can be observed that during the sharp acceleration event, the relaxed shift 

schedule has difficulty in following the target speed trace. This is because the relaxed 

map tends to shift at low engine speed, which reduces the vehicle maximum acceleration 

capacity. The relaxed speed profile also reduces the deceleration during braking to 

compensate for the loss of distance travel during the acceleration. 

 

Fig.6.16 The speed profiles response different shift schedule. 
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The fuel consumption and drivability results in each driving cycle are shown in 

Table 6.2 and 6.3. 

Table 6.2. Fuel consumption L/100 km results 

 Aggressive cycle Normal cycle Relaxed cycle 

Static map 20.94 15.95 14.79 

Adaptive map biased 
towards fuel consumption 20.61 (-1.6%) 15.82 (-0.8%) 14.77 (-0.1%) 

Adaptive map biased 
towards drivability 21.12 (+0.9%) 15.97 (+0.1%) 14.80 (+0.1%) 

DP Solution 21.03 (+0.4%) 15.96 (+0.1%) 14.79 (+0.0%) 

 

Table 6.3. The drivability SRMS results 

 Aggressive cycle Normal cycle Relaxed cycle 

Static Map 0.198 0.147 0.127 

Adaptive map biased 
towards fuel consumption 0.439 (+121.7%) 0.147 (+0.0%) 0.127 (+0.0%) 

Adaptive map biased 
towards drivability 0.185 (-6.6%) 0.140 (-4.8%) 0.126 (-0.8%) 

DP Solution 0.175 (-11.6%) 0.134 (-8.8%) 0.086 (-32.3%) 

The adaptive shift strategy biased toward fuel consumption has shown a 1.6 

percent reduction in fuel consumption in the aggressive cycle compared with the static 
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map. The adaptive shift strategy biased toward drivability achieved better drivability but 

more fuel consumption. The Dynamic Programming result is close to the adaptive map 

toward drivability, because it tries to satisfy the driver demand. 

6.7.3 Trade-off between Fuel Consumption and Drivability 

Fuel consumption and drivability are often competing metrics. In this section, the 

trade-off between the two metrics is evaluated in the simulation using the real-world 

driving cycles of different driver aggressiveness. 

Six shift maps, generated from the driver score from 0 to 1 with 0.2 increments, 

were tested on the aggressive, normal, and relaxed driving cycles. The result of 

drivability and fuel consumption in each cycle is shown in Fig.6.17. 

 

(a) 
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(b) 

Fig 6.17. Drivability and fuel consumption results (a) The drivability results from 

different shift maps on the aggressive, normal and relaxed cycle. (b) The fuel 

consumption results from different shift maps on the aggressive, normal and relaxed 

cycle. 

In Fig.6.17. (a), the SRMS between the desired and actual speed trace increases as 

the shift map became more relaxed, which indicates the loss of drivability. In the 

situation of using the relaxed maps (generated from driver score 0.8 and 1) for the 

aggressive driving cycle, the SRMS increases largely. This is because the relaxed shift 

maps have the lower acceleration capacity and therefore resulting in the large error 

between the desired and actual speed profile. On the other hand, the vehicle fuel 

consumption decreases as the shift map become more relaxed for all the three driving 

cycles, as shown in Fig.6.17 (b). Moreover, the higher percentage gain can be achieved 
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for the aggressive cycle (2.46 percent) compared to that of the relaxed cycle (0.21 

percent). 

The trade-offs between the fuel consumption and drivability are shown in 

Fig.6.18. The values are normalized as percentage increase based on the results of the 

most aggressive shift maps. 

 

Fig.6.18. The trade-off between fuel consumption and drivability. 

The effect of the shift maps is the most prominent in the aggressive driving 

behavior. A 2.46 percent reduction in fuel consumption can be achieved by changing 

from the most aggressive to the most relaxed shift maps. However, the drivability 

deteriorates significantly as indicated by the SRMS increased by 232 percent. The effect 

of shift maps in the normal and the relaxed driving cycle is smaller. The fuel 

consumption difference between the most aggressive and the most relaxed shift maps is 

1.42 percent in the normal driving cycle and 0.21 percent in the relaxed driving cycle. 

The drivability difference on the normal and relaxed cycle is also close, about 32 percent 

in the normal driving cycle and 7 percent in the relaxed cycle. This is because in the less 



 95 

aggressive driving cycle even the relaxed shift map can satisfy most of the driver 

demand. 

6.7.4 Energy Audit 

The energy audit was conducted in this section to analyze the contribution of the 

different aspects of the fuel consumption reduction between the most relaxed and the 

most aggressive shift maps. 

The total energy consumption consists of the kinetic energy loss due to braking, 

energy consumed by rolling resistance and aerodynamic drag, the engine energy loss, and 

energy loss during idling, as shown in (6.7): 

𝐸𝐸𝑓𝑓 = (𝐸𝐸𝑘𝑘+𝐸𝐸𝑟𝑟)/𝜂𝜂+𝐸𝐸𝑖𝑖    (6.7) 

Where 𝐸𝐸𝑓𝑓 is the energy in the fuel, 𝐸𝐸𝑘𝑘 is kinetic energy loss during braking, 𝐸𝐸𝑟𝑟 is the 

energy consumed by rolling resistance and aerodynamic drag, 𝜂𝜂 is the average engine 

efficiency, and 𝐸𝐸𝑖𝑖 is the energy loss during idling. 

The energy consumed by rolling resistance and aerodynamic drag is calculated as 

the sum of the rolling resistance and aerodynamic drag multiplied by the distance of the 

road section as shown in (6.8): 

𝐸𝐸𝑟𝑟 = 𝐸𝐸𝑎𝑎𝑎𝑎 + 𝐸𝐸𝑟𝑟𝑟𝑟 = ∑(𝑚𝑚𝑚𝑚𝐶𝐶𝑟𝑟 + 𝐶𝐶𝑎𝑎𝑑𝑑𝑣𝑣𝑖𝑖2)∆𝑑𝑑𝑖𝑖    (6.8) 

Where 𝐶𝐶𝑟𝑟 is the rolling resistance coefficient, 𝐶𝐶𝑎𝑎𝑑𝑑 is the lumped aerodynamic drag 

coefficient and ∆𝑑𝑑 is the small distance traveled in time step 𝑖𝑖. 

The kinetic energy consumed during braking is calculated from the speed profile 

when vehicle speed at the next time step is smaller than the current vehicle speed. The 
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energy consumed by rolling resistance and aerodynamic drag is subtracted as shown in 

(6.9). 

𝐸𝐸𝑘𝑘 = ∑ �1
2
𝑚𝑚(𝑣𝑣𝑖𝑖+12 − 𝑣𝑣𝑖𝑖2) − (𝑚𝑚𝑚𝑚𝐶𝐶𝑟𝑟 + 𝐶𝐶𝑎𝑎𝑑𝑑𝑣𝑣𝑖𝑖2)∆𝑑𝑑𝑖𝑖�  when 𝑣𝑣𝑖𝑖+1 < 𝑣𝑣𝑖𝑖  (6.9) 

Since the same driving cycle is used, the energy consumed during idling is the 

same. The difference mainly comes from, kinetic energy 𝐸𝐸𝑘𝑘, resistance energy 𝐸𝐸𝑟𝑟, and 

average engine efficiency 𝜂𝜂. The kinetic energy and resistance energy from the most 

aggressive and the most relaxed shift strategy were placed into equation (6.7) one 

parameter at a time, to calculate the contribution of each individual parameter to the 

change of total fuel consumption. 

The result of the contribution of kinetic energy, resistance energy, and engine 

efficiency are shown in Fig.6.19. 

 

Fig.6.19. The contribution of different aspects to the fuel consumption reduction 

In the aggressive cycle, the majority of fuel consumption reduction is obtained 

from reducing the kinetic energy (1.6 percent). In the normal driving cycle, the reduction 

of the kinetic energy and increasing engine efficiency contribute to 0.82 percent and 0.52 



 97 

percent of the fuel consumption reduction, respectively. In the relaxed cycle, the majority 

of the gain is come from engine efficiency (0.17), because both the aggressive and 

relaxed map can satisfy the desired speed profile. 

6.8 Conclusion 

In conclusion, a new adaptive shift strategy have been demonstrated, which can 

adjust the shift points to different vehicle parameters and driver behavior. The process is 

illustrated in Fig.6.20. The driving data is passed to the WRLS algorithm to estimate the 

vehicle rolling resistance and aerodynamic drag coefficient. Subsequently, the vehicle 

parameters are used to predict the vehicle road load. The driver scoring algorithm 

evaluates the driving behavior in real time. Based on the limits imposed by the fleet 

owner, driver score is used as a proxy to match the torque reserve. Finally, the 

transmission shift controller uses the information of and road load and torque reserve to 

optimize the shift map. 

 

Fig.6.20. The flow diagram of the adaptive shift strategy using the information 

from the vehicle parameters estimator and the driver scoring algorithm 
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An objective drivability metric is defined to describe the vehicle’s ability to 

follow the desired speed trace during the acceleration. The adaptive shift strategy was 

tested with real-world driving data in a vehicle simulation and can achieve 0.21 to 2.46 

percent fuel consumption reduction depended on the driver aggressiveness. The adaptive 

shift strategy can reduce the initial calibration effort and allow the fleet owners to decide 

the trade-offs between fuel consumption and drivability for different vocations. 
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CHAPTER SEVEN 
 

CONCLUSIONS AND FUTURE WORK 
 

7.1 Conclusion 

Proper transmission shift strategy is crucial for the vehicle fuel consumption and 

drivability. The wide variety of vehicle configuration and the different fuel consciousness 

pose a challenge for the shift strategy of the commercial vehicle. Adaptive shift strategy 

can potentially reduce the initial calibration efforts by adjusting the shift map based on 

the road load and driver behavior on-the-fly. However, it requires the information about 

vehicle road load and the driving behavior as a prerequisite. 

 

Fig.7.1 The tasks comprising this dissertation. 

This dissertation has considered three questions raised by the overarching goal to 

develop an adaptive shift strategy algorithm, as shown in Fig.7.1. The first question is to 

estimate the vehicle road load. To calculate the road load, the vehicle rolling resistance 

and aerodynamic drag coefficient need to be estimated, which have not been sufficiently 

addressed in published literature. A new algorithm is proposed for using the vehicle 
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longitudinal dynamic during the constant-speed event and save the measurement at each 

speed segments to overcome the problem of lack of persistence excitation during the 

constant-speed event. The algorithm was demonstrated in the simulation environment 

using the real-world driving data and achieved 5 percent accuracy in the aerodynamic 

drag coefficient. However, the estimation of rolling resistance coefficient is less accurate 

due to the higher sensitivity to the input noise. 

The second question is the need to evaluate the driving behavior. We aim towards 

finding a robust method across different driving cycles and vehicle types. A driver 

behavior scoring algorithm was proposed based on the supervised learning approach. 

Twenty-six hours of real-world driving data were collected by driver mimicking 

aggressive and relaxed driving behavior. The time-series driving data are converted to 

symbolic data to facilitate feature extraction. The features are extracted based on 

microtrips, which are segmented by their average speed to reduce the influence of 

different driving cycles. The logistic regression algorithm is chosen because the 

classification rule is explicit, and computation and memory efficient. The classification 

accuracy was used as the performance metric, and the algorithm achieved on average 

82.7 percent classification accuracy. The robustness of the algorithm has been 

demonstrated on a wide variety of vehicle and driving cycles. Lastly, a strong correlation 

between driver score and the real-world fuel consumption have been found, which shows 

the driver score as a good indicator for driver aggressiveness. 

The third question is to synthesize the information of vehicle parameters and 

driver score into the adaptive shift strategy. A new adaptive shift strategy was proposed, 
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which is optimized based on the maximum traction torque and torque reserve. Torque 

reserve effectively represents the drivability objective. Obtaining these parameters online 

requires the vehicle to be driven for an extended time, and therefore driver score was 

used to approximate these parameters. The adaptive shift strategy provides the fleet 

owner a way to choose between fuel consumption and drivability. If the driver 

aggressiveness exceeds the limit, a relaxed shift map will be imposed to reduce fuel 

consumption. The adaptive shift strategy was compared with the static shift map in the 

vehicle simulation using the real-world driving data and have shown potentially 0.21 to 

2.46 percent fuel consumption reduction depended on the driving cycle. 

The algorithms proposed in this dissertation are computationally and memory 

efficient. Therefore, they are suitable to be implemented in the transmission control unit 

to reduce the initial calibration effort for different vehicle configurations and allows the 

fleet owner to decide the trade-offs between fuel consumption and drivability based on 

their fuel consciousness. 

7.2 Future Work 

In this dissertation, the shift map was optimized by the characteristics of the 

driving cycle, which were approximated by driver score. However, the exact further 

driving information is considered as unknown. The recent trend in advanced powertrain 

control strategies is to connect the vehicle to the cellular network or the Internet to obtain 

the future driving information [111]. 
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Base on the uncertainty of the future driving information, the situations can be 

classified into three categories. Firstly, both knowledge of upcoming terrain and traffic 

conditions are available. The study by Hellström et al. [76] proposed a look-ahead control 

algorithm based on Dynamic Programming for a conventional heavy diesel truck to 

achieve optimal velocity profile and gear selection. The study by Chen et al.[112] and 

Zhang and Vahidi [113] has shown the benefit of using the preview of terrain information 

in the Energy-management strategy (ECMS) of the plug-in hybrid electric vehicle. 

Secondly, the terrain is known, but the speed profile needs to be estimated. It is a more 

realistic assumption because in the real-world driving when the route is chosen the grade 

can be known exactly through vehicle navigation system, but the speed profile cannot be 

known in advance. The velocity can be estimated using real-time traffic data streams or 

by using historical traffic data[114][115][116]. Lastly, only the statistic of the route is 

known. The geographic region that the vehicle is driven is known, and the vehicle route 

is assumed to be unknown in advance. The study by Kolmanovsky and Filev [117], 

McDonough et al.[118] [119] proposed a method to customized vehicle speed control by 

applying off-line stochastic dynamic programming to construct an optimal control policy 

or best on-average performance. The terrain and traffic patterns are modeled 

stochastically as two Markov Chains. Furthermore, the Markov transition model can be 

learned onboard as proposed in the study by Hoekstra et al. [106]. 

Another aspect is on how to how to induce the eco-driving behavior to reduce the 

real-world fuel consumption. In this dissertation, we tried to change the shift schedule to 

reduce the fuel consumption of aggressive driver, which has shown can achieve 
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potentially 2.46 percent of improvement. Further improvement can be achieved if throttle 

control can be use to modify the speed profile. In the study by Mensing et al.[44], the 

speed profile is formulated as minimizing the fuel use and is solved by Dynamic 

Programming. In the real driving situations, the future driving situation has more 

uncertainty, so it is often model as Markov chain model. Model Predictive Control 

(MPC) has been proposed to achieve more fuel efficient driving using the stochastic 

property of the future driving. The study by Kamal et al.[120][47] and Chen et al.[121] 

derive the control inputs based on the driving conditions and the fuel consumption index 

which represent eco-driving. In the case of car following, the study by Zhang and Vahidi 

[45] and Mcdonough et al.[122] estimated the probability distribution of the front vehicle 

position as the constraint to the MPC problem. In summary, with the future driving 

information and the throttle control to induce the eco-driving, the vehicle fuel 

consumption can be further reduced. 
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Appendix A 

Algorithms 

Alg.4.1 Measurement Update 

Input: extract_data – whether the data extraction criteria are satisfied, 𝑣𝑣 –vehicle speed, 𝑡𝑡𝑒𝑒– 
engine torque, 𝜔𝜔𝑒𝑒 – engine speed, 𝛼𝛼 – road grade, 𝑚𝑚 – longitudinal acceleration, 𝑌𝑌– average road 
load, 𝑁𝑁– number of measurements 

  1.   if extract_data ==Ture 

  2.         𝑦𝑦 ← Compute_Road_Load (𝑣𝑣, 𝑡𝑡𝑒𝑒, 𝜔𝜔𝑒𝑒, 𝛼𝛼, 𝑚𝑚) 

  3.         𝑖𝑖 ← Find_Speed_Segment (𝑣𝑣) 

  4.         𝑦𝑦𝑖𝑖 ← Adjust_Load (𝑣𝑣, 𝑖𝑖,𝑦𝑦) 

  5.         𝑌𝑌, 𝑁𝑁 ←Calculate_Recursive_Average (𝑌𝑌, 𝑁𝑁, 𝑦𝑦𝑖𝑖, 𝑛𝑛𝑖𝑖) 

  6.   end if 

Output: 𝑌𝑌– average road load, 𝑁𝑁– number of measurements 

 

Alg. 4.2 Weighted Recursive Least Square (WRLS) 

Input: conduct_estimation – whether to conduct the state estimation, 𝑌𝑌– average road load, 𝑁𝑁– 
number of measurements 

  1. if conduct_estimation == Ture 

  2.      for 𝑖𝑖 =1:length(𝑌𝑌) 

  3.             if 𝑛𝑛𝑖𝑖 > 0  

  4.                   𝑅𝑅𝑖𝑖← Compute_Weight (𝑛𝑛𝑖𝑖) 

  5.                   𝜃𝜃�← RLS (𝑦𝑦�𝑖𝑖,𝑅𝑅𝑖𝑖) 
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  6.             end if 

  7.     end for 

  8. end if 

Output: 𝜃𝜃� –state estimation 

 

Alg.5.1 Convert time-series data in events 

Input: (𝑣𝑣,𝑚𝑚𝑐𝑐, 𝑡𝑡𝑝𝑝) current driving data ( 𝑣𝑣 –vehicle speed, 𝑚𝑚𝑐𝑐–acceleration, 𝑡𝑡𝑝𝑝–throttle position) 

  1. 𝑝𝑝1 ← assign a primitive to the current driving data 

                (𝑣𝑣,𝑚𝑚𝑐𝑐, 𝑡𝑡𝑝𝑝) 

  2.if 𝑝𝑝1 the current primitive ≠ 𝑝𝑝 the previous primitive 

  3.      update the end speed: 𝑣𝑣1← 𝑣𝑣 

  4.      save (𝑝𝑝0, 𝑣𝑣0, 𝑣𝑣1, 𝑡𝑡) as a driving event  

  5.      initialize a new driving event: 𝑝𝑝 ← 𝑝𝑝1, 𝑣𝑣0 ← 𝑣𝑣, 

            𝑣𝑣0 ← 𝑣𝑣, 𝑡𝑡← 0 

  5. else 

  6.       increment the event duration 𝑡𝑡 ← 𝑡𝑡 +∆ 𝑡𝑡  

  7.end if 

Output: (𝑝𝑝, 𝑣𝑣0, 𝑣𝑣1, 𝑡𝑡) - driving event ( 𝑝𝑝-primitive, 𝑣𝑣0–start speed, 𝑣𝑣1–end speed, 𝑡𝑡–duration) 

 

Alg. 5.2. Driver scoring algorithm 
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Input: (𝑝𝑝, 𝑣𝑣0, 𝑣𝑣1, 𝑡𝑡)–driving event, 𝑥𝑥–feature vector, microtrip_start–whether a micortirp have 
started 

   1. if a microtrip has started: microtrip_start == True 

   2.       if the previous microtrip ends (an idling event occur  

                 and the duration exceed a limit): 𝑝𝑝= i and 𝑡𝑡> 𝑡𝑡𝑚𝑚 

   3.              end the microtrip: microtrip_start ← False 

   4.               𝑥𝑥 ← update feature vector from the driving 

                             event (𝑝𝑝, 𝑣𝑣0, 𝑣𝑣1, 𝑡𝑡) 

   5.               𝑠𝑠 ← calculate the microtrip score (𝑥𝑥) 

   6.               𝑆𝑆 ← calculate the driver score using moving  

                             average (𝑠𝑠) 

   7.       else if a new microtrip starts (a accelerating event  

                       occurs at low speed):  𝑝𝑝 =a and 𝑣𝑣0 < 𝑣𝑣𝑚𝑚  

   8.               𝑠𝑠 ← calculate the microtrip score (𝑥𝑥) 

   9.               𝑆𝑆 ← calculate the driver score using moving  

                             average (𝑠𝑠) 

   10.              𝑥𝑥 ← initialize the feacture vector 

   11.              𝑥𝑥 ← update feature vector from the driving 

                              event (𝑝𝑝, 𝑣𝑣0, 𝑣𝑣1, 𝑡𝑡) 

   12.             end if 

   13.      end if 

   14. else 

   15.       if a new microtrip starts: 𝑝𝑝 = a and 𝑣𝑣0 < 𝑣𝑣𝑚𝑚 
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   16                microtrip_start ← True 

   17        end if 

   18. end if 

Output:  𝑆𝑆–driver score, 𝑥𝑥–feature vector, microtrip_start– whether a micortirp have started 
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