23 research outputs found

    Using Active Shape Modeling Based on MRI to Study Morphologic and Pitch-Related Functional Changes Affecting Vocal Structures and the Airway

    Get PDF
    Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.Peer reviewedPostprin

    Sparse Modeling of Landmark and Texture Variability using the Orthomax Criterion

    Get PDF
    In the past decade, statistical shape modeling has been widely popularized in the medical image analysis community. Predominantly, principal component analysis (PCA) has been employed to model biological shape variability. Here, a reparameterization with orthogonal basis vectors is obtained such that the variance of the input data is maximized. This property drives models toward global shape deformations and has been highly successful in fitting shape models to new images. However, recent literature has indicated that this uncorrelated basis may be suboptimal for exploratory analyses and disease characterization. This paper explores the orthomax class of statistical methods for transforming variable loadings into a simple structure which is more easily interpreted by favoring sparsity. Further, we introduce these transformations into a particular framework traditionally based on PCA; the Active Appearance Models (AAMs). We note that the orthomax transformations are independent of domain dimensionality (2D/3D etc.) and spatial structure. Decompositions of both shape and texture models are carried out. Further, the issue of component ordering is treated by establishing a set of relevant criteria. Experimental results are given on chest radiographs, magnetic resonance images of the brain, and face images. Since pathologies are typically spatially localized, either with respect to shape or texture, we anticipate many medical applications where sparse parameterizations are preferable to the conventional global PCA approach

    Dynamic Facial Emotion Recognition Oriented to HCI Applications

    Get PDF
    Producción CientíficaAs part of a multimodal animated interface previously presented in [38], in this paper we describe a method for dynamic recognition of displayed facial emotions on low resolution streaming images. First, we address the detection of Action Units of the Facial Action Coding System upon Active Shape Models and Gabor filters. Normalized outputs of the Action Unit recognition step are then used as inputs for a neural network which is based on real cognitive systems architecture, and consists on a habituation network plus a competitive network. Both the competitive and the habituation layer use differential equations thus taking into account the dynamic information of facial expressions through time. Experimental results carried out on live video sequences and on the Cohn-Kanade face database show that the proposed method provides high recognition hit rates.Junta de Castilla y León (Programa de apoyo a proyectos de investigación-Ref. VA036U14)Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA013A12-2)Ministerio de Economía, Industria y Competitividad (Grant DPI2014-56500-R

    Digitális mozgóképek elemzésének algoritmikus megközelítése

    Get PDF

    Sparse shape registration for occluded facial feature localization

    Full text link

    Medical image segmentation and analysis using statistical shape modelling and inter-landmark relationships

    Get PDF
    The study of anatomical morphology is of great importance to medical imaging, with applications varying from clinical diagnosis to computer-aided surgery. To this end, automated tools are required for accurate extraction of the anatomical boundaries from the image data and detailed interpretation of morphological information. This thesis introduces a novel approach to shape-based analysis of medical images based on Inter- Landmark Descriptors (ILDs). Unlike point coordinates that describe absolute position, these shape variables represent relative configuration of landmarks in the shape. The proposed work is motivated by the inherent difficulties of methods based on landmark coordinates in challenging applications. Through explicit invariance to pose parameters and decomposition of the global shape constraints, this work permits anatomical shape analysis that is resistant to image inhomogeneities and geometrical inconsistencies. Several algorithms are presented to tackle specific image segmentation and analysis problems, including automatic initialisation, optimal feature point search, outlier handling and dynamic abnormality localisation. Detailed validation results are provided based on various cardiovascular magnetic resonance datasets, showing increased robustness and accuracy.Open acces
    corecore