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Abstract
The study o f anatomical morphology is o f great importance to medical imaging, with 
applications varying from clinical diagnosis to computer-aided surgery. To this end, 
automated tools are required for accurate extraction o f the anatomical boundaries from 
the image data and detailed interpretation of morphological information. This thesis 
introduces a novel approach to shape-based analysis o f medical images based on Inter- 
Landmark Descriptors (ILDs). Unlike point coordinates that describe absolute position, 
these shape variables represent relative configuration o f landmarks in the shape. The 
proposed work is motivated by the inherent difficulties of methods based on landmark 
coordinates in challenging applications. Through explicit invariance to pose parameters 
and decomposition o f the global shape constraints, this work permits anatomical shape 
analysis that is resistant to image inhomogeneities and geometrical inconsistencies. 
Several algorithms are presented to tackle specific image segmentation and analysis 
problems, including automatic initialisation, optimal feature point search, outlier handling 
and dynamic abnormality localisation. Detailed validation results are provided based on 
various cardiovascular magnetic resonance datasets, showing increased robustness and 
accuracy.

1



Acknowledgement
I would like to thank Professor Yang for the opportunity and continued support, David 
Yates for showing me the right place at the right time, my parents for giving me the best 
they could, my five siblings, twelve nephews/nieces and those to come, my late uncle, 
Theodoros, Anil and Gerardo for the laughters, Uri and Alexei for the stimulating 
discussions, Vari and Martin McGowan for their warmth, Laurent for his philosophy, 
Kanwal and Ose for their kindness, Aurélia, the United Kingdom for making me feel at 
home ever since the first minute, France for all it gave me, Algeria and Mexico for all 
they taught me, all the staff o f the Cafés around London where this thesis was partly 
written, the people in Charring Cross Hospital who put me back on my feet after two knee 
surgeries. Last but not least, I would like to thank Bob Lablaw, Antonin Dvorak, Herman 
Hesse, Charles Darwin, the original Linstead Hall, and Cucurrucucu Paloma.

2



Table of Contents
1 Introduction............................................................................................................................... lb

1.1 Background.................................................................................................................. ^

1.2 Technical Motivations...............................................................................................

1.3 Overview o f the Thesi s ............................................................................................... 21

2 Statistical Shape Modelling....................................................................................................26

2.1 Introduction...................................................................................................................26

2.2 Statistical Shape Models............................................................................................. 28

2.2.1 Training Set Preparation.............................................................................. 29

2.2.2 Shape Alignment........................................................................................... 30

2.2.3 Model Construction...................................................................................... 34

2.2.4 Point Correspondence................................................................................... 35

2.2.5 Alternative Constructions............................................................................ 37

2.3 Active Shape Models................................................................................................... 38

2.3.1 Feature Point Search..................................................................................... 40

2.3.2 Model Fitting..................................................................................................42

2.3.3 Alternative Active Shape M odels...............................................................43

2.4 Current Active Shape Mode Issues...........................................................................45

3



2.4.1 Shape Alignment and Global Constraints 45

2.4.2 Implications to Active Shape Models.........................................................46

2.5 Discussion and Conclusions...................................................................................... 47

3 Inter-Landmark Descriptors...................................................................................................50

3.1 Introduction...................................................................................................................50

3.2 Inter-Landmark Descriptors....................................................................................... 51

3.2.1 Linear Distances............................................................................................52

3.2.2 Angular Measurements.................................................................................53

3.2.3 Ratios o f Distances....................................................................................... 54

3.2.4 Barycentric Coordinates.............................................................................. 55

3.2.5 Properties o f Inter-Landmark Descriptors................................................57
3.3 Statistical Analysis o f Inter-Landmark Descriptors...............................................59

3.3.1 Univariate Tolerance Intervals................................................................... 59

3.3.2 Multivariate T olerance R egions.................................................................61

3.3.3 Prediction Regions.........................................................................................62

3.3.4 Selection o f Variables...................................................................................63

3.4 Example Inter-Landmark Descriptor-based Shape Analysis................................ 66

3.4.1 Univariate Inter-Landmark Descriptors.................................................... 66

3.4.2 Multivariate Inter-Landmark Descriptors...................................................70

3.5 Conclusions...................................................................................................................73

4 Inter-Landmark Constraints...................................................................................................76

4.1 Introduction...................................................................................................................76

4.2 Methods..........................................................................................................................80

4



4.2.1 Inter-Landmark Conditional Probability.................................................. 80

4.2.2 Optimal Feature Point Search..................................................................... 82

4.2.3 Automatic Initialisation................................................................................85
4.3 Validation......................................................................................................................89

4.3.1 Experiments....................................................................................................89

4.3.2 Results.............................................................................................................89

4.4 Discussion and Conclusions...................................................................................... 96

5 Inter-Landmark A nalysis..................................................................................................... 100

5.1 Introduction.................................................................................................................100

5.2 Methods....................................................................................................................... 103

5.2.1 Inconsistent Landmark Localisation........................................................ 103

5.2.2 Outlier Detection.........................................................................................104

5.2.3 Outlier Correction........................................................................................106

5.2.4 Geometrically Weighted Feature Search................................................ 108

5.3 Validation.................................................................................................................... 110

5.3.1 Experiments..................................................................................................110

5.3.2 Numerical V alidation................................................................................. 112

5.3.3 In vivo Validation........................................................................................114

5.4 Discussion and Conclusions.................................................................................... 125

6 Motion Abnormality Localisation.......................................................................................127

6.1 Introduction.................................................................................................................127

6.2 Methods........................................................................................................................131

6.2.1 Inter-Landmark Motion Vectors................................................................131

5



6.2.2 Modelling Normal Contractility...............................................................132

6.2.3 Abnormality Localisation...........................................................................137

6.3 Validation.................................................................................................................... 139

6.3.1 Experiments..................................................................................................139

6.3.2 Results...........................................................................................................139

6.4 Discussion and Conclusions.................................................................................... 147

7 Conclusions........................................................................................................................... 149

7.1 Summary of the Thesis.............................................................................................. 149

7.2 Technical Contributions............................................................................................ 131

7.3 Discussion and Further Research............................................................................ 153

7.4 Conclusions.................................................................................................................135

6



List of Figures
1.1 Schematic diagram summarising the key steps involved in the traditional ASM

methods and the proposed framework based on ILDs. The landmark constraints 
permit a non iterative search due to the automatic initialisation and optimal feature 
point search introduced. By using inter-landmark analysis, outlier handling and local 
abnormality detection can be consistently performed..................................................... 29

2.1 The main steps involved in PDM construction, including image training set collection
(a), automatic landmark generation with correspondence (b), shape alignment within 
a common coordinate system (c), and extraction o f main shape variations (d)..........29

2.2 Four images from a cardiac MR cine sequence showing the epi-cardial borders and
their associated landmark annotations. The black dots correspond to the valvular and 
apical landmarks, which are used as the reference for global correspondence...........31

2.3 Shape superimposition o f six epi-cardial contours by using the general Procrustes
analysis. The shape vectors o f  all instances are expressed within the same coordinate 
system, by minimising differences in size, orientation and position............................ 33

2.4 Global shape variations as captured by application o f PCA to a training set o f aligned
epi-cardial boundaries. It can be seen that the first mode describes a change in 
diameter while the second corresponds to axial variation...............................................35

2.5 Comparison o f the variation captured by PDMs constructed through conformal
harmonic embedding [32]. With optimal point correspondence, the first mode 
captures the contraction o f the ventricle corresponding closely to the physical 
behaviour o f the human heart............................................................................................... 37

2.6 Illustration o f the main stages o f the ASM search for a long-axis cardiac MR dataset. 
The mean shape is placed near the target structure for initialisation (a). Normal search

7



profiles are used for feature point search as shown in (b). The iterative procedure ((d)- 
(f)) enables continuous improvement o f the boundary until convergence...................41

3.1 Illustrations of ILDs (distances, ratios and angles) as extracted from carotid and
ventricular datasets................................................................................................................. 53

3.2 Example showing the properties o f barycentric coordinates. In (a) and (b), four points
are plotted with respect to two distinct triangles but with the same barycentric 
coordinates, showing a relative as opposed to an absolute description o f landmark 
positions. In (c), only the sign o f the coordinates with respect to the reference triangle 
is displayed................................................................................................................................ 56

3.3 Illustration o f the selection o f  a set o f ILDs for shape representation, (a) shows all
possible inter-landmark connections from a single point. In (b), a set o f inter
landmark connections are selected using the triangulation proposed by Strauss and 
Bookstein [93], In (c), three groups o f points are defined depending on their position 
on the LV (basal, mid-ventricular, apical regions) and all ILDs within are selected, 
(d) displays a set o f inter-landmark connections for each point in the shape selected 
based on a low covariance criterion.................................................................................... 65

3.4 Lilliefors normality tests for inter-landmark distances (a) and ratios (b), as extracted
from the epi-cardial datasets. It can be seen that nearly all tests are below the critical 
value, demonstrating normality (or near normality) distribution of the inter-landmark 
variables. The few cases where the normality hypothesis is rejected are due to a lack 
o f correlation between the landmarks involved...................................................................68

3.5 Illustration o f a univariate ILD. The log o f the ratio o f inter-landmark distances is
used to describe the invariant configuration o f three landmarks. These variables, for 
example, can be used to constrain the lateral movement o f the apical point during 
model instantiation................................................................................................................... 69

3.6 Illustration o f the statistical analysis o f  angular measurements based on landmark 
data. The three selected angles describe implicitly the position o f the valvular and 
apical points, as well as the length and width o f the ventricle and the mitral valve. 
The 50 angles calculated from the training set are plotted on a unit circle, along with 
the mean values and one circular standard deviation calculated from Equation (3-6),

8



by taking into account the periodicity o f angular ILDs. It can be seen that the values 
calculated from the normal training datasets are well clustered for each angle..........71

3.7 Illustration o f a two-dimensional ILD. The variable describes the change in ratio of
inter-landmark distances involving valvular and apical points at end-diastole and end- 
systole, therefore describing invariant movement o f the valve......................................72

3.8 Illustration o f barycentric coordinates o f the landmarks. In (a) and (b), they are 
calculated for two distinct triangles, showing the invariant distribution o f landmarks. 
In (c), three triangles are used, resulting in stronger constraints o f the landmarks.... 75

4.1 The effect o f different ASM shape initialisations on the final results for a 2D epi-
cardial dataset. Marked differences can be observed where in (a) it results in poor 
definition o f the valvular points and in (b) it fails to localise the apex........................ 77

4.2 Illustration o f  the limitations o f conventional ASM search using normal search
profiles. In (a), the true positions for the valvular points are not covered by the 
normal search profiles. In (b), due to a poor definition o f the apical point by the 
normal search profiles, a large localisation error is introduced at the apex.................78

4.3 2D segmentation results for the 20 epi-cardial datasets. The proposed technique is
compared to the original ASM in (a) and to the robust version [48] in (b). The 
initialisation results are shown in (c) in comparison with the ASM errors................. 91

4.4 3D segmentation results for the 20 epi-cardial datasets. The proposed technique is
compared to the original ASM in (a) and to the robust version [48] in (b). The 
initialisation results are shown in (c) in comparison with the ASM errors................. 92

4.5 Example o f the optimal feature point search (c) as applied to a difficult dataset with
poor boundary contrast. Significant improvement is achieved over the original ASM  
method (b). Two intermediate stages and the corresponding statistical prediction 
regions are shown in (a).........................................................................................................93

4.6 Illustration o f the proposed automatic initialisation. In (a) and (b), incorrect initial 
position and rotation are eliminated after a few intersection tests, (c) displays the

9



prediction regions corresponding to a suitable initial candidate, (d) shows the set of 
candidates selected for the initial point...............................................................................94

4.7 Illustration o f volumetric segmentation results obtained with the proposed method.
The surface localisation error shows satisfactory 3D initialisation (a), which is 
improved at the optimal feature search (b). The final result in (c) shows significant 
improvement when compared to the original ASM in (d).............................................. 95

4.8 Examples o f common errors in valve localisation by the original ASM, which are
rectified by the use o f the proposed automatic method and the statistical-based search 
regions........................................................................................................................................ 98

4.9 The effect o f image inhomogeneities on shape localisation. In this case, the ASM is
affected at the lateral region while the proposed technique due to the constrained 
feature point search allows for more accurate segmentation........................................... 99

5.1 Outlier detection using residual analysis showing ideal shape alignment and
Procrustes residuals caused by outliers. Through the use o f invariant comparison of 
ILDs, these outliers can be reliably identified, and therefore removed from the shape 
fitting process.......................................................................................................................... 102

5.2 Illustration o f  the proposed outlier detection algorithm for a simple shape. For
landmark 1, all the ILD ratios are invalid (123, 134 and 124) and therefore its 
consistency measure is equal to 0 (0/3). For all other landmarks, only ILD ratios 
associated with 234 are valid, their consistency measure is therefore equal to 1/3. At 
the second iteration and after rejection o f landmark 1, the consistency measures for 
points 2-4 are updated and their values equal 1 (1/1). At this point, the outlier 
detection process is completed........................................................................................... 106

5.3 Illustration o f  the main steps involved in outlier correction. A geometrical-based
replacement is first suggested from the initial search profile by using the tolerance 
model and the positions o f valid feature points 2, 3 and 4. A final local search based 
on grey-level appearance information is carried out for geometrical correction......107

5.4 An example o f a feature point search where an outlier is avoided by using the 
geometrically weighted fitness measure. Local search based on grey-level

10



information alone generates an outlier due to a local maximum located at an incorrect 
boundary position as shown in (a). By combining the geometric likelihood measure 
plotted in (b), the total weighted cost function in (c) permits the localisation o f the 
correct maximum position for the feature point............................................................. 109

5.5 Results of the simulation study to evaluate the reliability (a) and robustness (b) o f the
proposed outlier detector in response to different amplitudes and percentages of the 
outliers.................................................................................................................................... 114

5.6 The accuracy o f the proposed segmentation framework when applied to the different
datasets and compared to existing robust ASM methods. The proposed technique 
outperforms the existing ASM approaches, especially for the outer wall o f the carotid 
arteries and the epi-cardial border o f the LV.................................................................... 115

5.7 Relative performance of the original and the proposed ASM with a single outlier.. 118

5.8 Relative performance o f the original and the proposed ASM with distributed outliers. 
....................................................................................................................................................119

5.9 Relative performance o f the original and the proposed ASM when encountered with
clustered outliers..................................................................................................................... 120

5.10 Example results showing the distribution and extent o f  3D surface localisation errors
after the application o f the outlier detection and correction algorithms (b) and the 
subsequent ASM model fitting (c) for left-ventricular segmentation. Without the use 
o f the proposed outlier handling step, the ASM search (a) can introduce significant 
errors..........................................................................................................................................121

5.11 The effect o f segmentation in the presence o f significant outliers. In this case, the
standard ASM search is significantly affected (a). Through effective handling of  
outliers (b), the proposed technique accurately recovers the entire epi-cardial surface
(c)...............................................................................................................................................122

5.12 Example 3D carotid artery segmentation results showing erroneous ASM
segmentation in (a) due to the presence o f outliers (less than 20%). The model fitting

11



in (c), however, is not affected when the proposed outlier handling process is 
incorporated as shown in (b)...............................................................................................123

5.13 Example 3D carotid artery segmentation results in the presence o f a significant 
amount o f outliers, which results in poor ASM segmentation (a). The outliers are 
correctly handled by the proposed technique (b) leading to a more accurate and 
consistent segmentation result (c)......................................................................................124

6.1 Examples o f normal versus inconsistent inter-landmark motion. In (b), the timing of
end-systole is different to that of (a) for Landmark 2, indicating de-synchronisation of 
the two myocardial segments. The two myocardial segments also differ in the extent 
o f contractility, which may be associated with potential myocardial infarction......129

6.2 Graphical illustration o f the ILM vectors, representing coupled contractility at two
distinct locations o f the myocardium. The axis o f the LV is used as the reference to 
calculate the endo- and epi-cardial variables a and b . The endo-cardial displacement 
towards the lateral region can be identified by the difference in the variables between 
the landmarks pi and p} ..................................................................................................... 133

6.3 Illustration o f the minimisation o f the effect o f  extreme ILM vectors on the
multivariate tolerance region calculation. The Mahalanobis distances are plotted for 
the 28 subjects in the training set. It can be seen that the threshold calculated from 
Equation (6-8) separates well the extreme values that are due to local errors 
incorporated in the training set. The extreme values are subsequently assigned with 
small weights while the remaining subjects have a weight equal to 1....................... 135

6.4 Example showing a comparison between conventional and robust estimation of
multivariate tolerance regions. In this example, the extreme values induce a 
translation and rotation o f the tolerance region, which is corrected for by using the 
proposed robust estimation..................................................................................................136

6.5 A schematic diagram o f the iterative myocardial abnormality localisation algorithm.
The output is a subset o f abnormal myocardial landmarks. The threshold for 
termination is chosen to be close to 1 to permit some small perturbation o f landmark 
point positions........................................................................................................................138

12



6.6 Percentage o f abnormality as calculated by the proposed technique for the entire
dataset, plotted against the visual classification by the expert observer. Only two 
normal datasets (shown in crosses) are misclassified by the automatic method......141

6.7 Percentage agreement between automatic and manual analysis o f myocardial motion
for the normal and abnormal segments.............................................................................. 142

6.8 An example comparing the 17-segment based local assessment achieved by the
automatic and manual abnormality analysis methods..................................................... 143

6.9 Example illustrating the contractile dysfunction analysis achieved by the proposed
method. The results are mapped onto the LV surface for abnormality localisation and 
visualisation.............................................................................................................................144

6.10 In this example, a morphological abnormality due to the right ventricle pushing onto
the LV is identified by the proposed method..... ............................................................ 145

6.11 In this example, normal thickening can be seen at all regions o f  the myocardium, but 
it is less significant at the infero-lateral region than at other locations o f the 
myocardium. This suggests potential myocardial injury affecting the local extent of  
contractility. The abnormality is successfully identified by the proposed method.. 146

13



List of Tables
2.1 A summary o f the major developments in statistical shape modelling.........................49

4.1 Values o f the parameters used for the experiments.......................................................... 88

4.2 Detailed error analysis of the ASM methods (in mm)......................................................90

5.1 Parameters of the segmentation framework used in the experiments..........................111

5.2 Detailed error analysis o f the main steps involved in the proposed technique..........116

5.3 Detailed performance of the proposed geometrically weighted cost function.......... 116

5.4 Convergence properties and time complexity o f the proposed technique..................117

6.1 Parameters used for the experiments in this study........................................................140

14



List of Acronyms
ASM Active Shape Model

CT Computed Tomography

ILM Inter-Landmark Motion

ILD Inter-Landmark Descriptor

LV Left Ventricle

MRI Magnetic Resonance Imaging

PCA Principal Component Analysis

PDM Point Distribution Model

RV Right Ventricle

15



Introduction

1.1 Background
Anatomical shape analysis is an important topic of medical image computing, with 
applications to a range of clinical problems. For example, identification of changes in 
morphology is essential for assessing progression of diseases and efficacy of therapeutic 
measures. For dynamic objects such as the heart, changes in morphology may provide an 
insight into the contractile behaviour of the myocardium and its haemodynamic re
sponses. Computational anatomy is also playing an increasingly important role in image 
guided surgery in terms of both pre-operative planning and intra-operative guidance. 
With the increasing capability of imaging devices, particularly real-time imaging tech
niques, there is a significant demand on automatic techniques for accurate delineation and 
interpretation of 3D anatomical morphology. Despite extensive efforts from the medical 
image computing community in the last 20-30 years, the development of automatic 
methods is faced with a number of challenges.

The first issue is that most anatomical structures are complex not only in terms of 
geometry but also due to considerable variation across subjects and time. As a result, it is 
generally difficult to accurately localise and quantify the target anatomical structure 
without detailed domain-specific knowledge. An active field of research is to develop 
either model or statistical based frameworks for incorporating prior knowledge of the 
anatomical structure. In this thesis, statistical shape modelling is used as the basis for 
capturing the variability of a family of anatomical shapes.
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The second fundamental challenge is the adaptation o f  automatic methods to varying 
image features corresponding to the same anatomical structure. For imaging modalities 
such as Computed Tomography (CT), these features are relatively consistent due to the 
fact that pixel intensities are fully calibrated. This greatly facilitates the development of  
automatic image segmentation and analysis methods. For Magnetic Resonance Imaging 
(MRI), however, the versatility o f the modality for capturing tissue property and func
tional indices such as flow, perfusion and diffusion, means that there is no single measure 
for defining the anatomical boundaries. Despite significant advances in recent years in 
image quality, inhomogeneities such as noise, motion artefacts, and missing/confusing 
structures are inevitable in patient studies. The ability o f the algorithm in dealing with 
such inconsistencies is therefore important to the wider applicability of the method.

Finally, in practical situations, a degree o f user interaction is often required to assist the 
computational techniques and overcome some o f the problems described above. This is 
typically achieved by providing some expert knowledge about the subject-specific 
variability, by initialising the computational task with a rough starting estimate o f the 
final output, or to correct eventually for errors introduced by the automated methods. 
Difficulties o f automated techniques to localise abnormality call for additional visual and 
detailed examination o f the image data and the anatomical structures. Given the high 
amount o f image data, the frequency o f acquisition and demand for interactive tools, user 
input in practice is not only time consuming but also subject to significant operator bias 
which can affect the statistical significance o f the obtained results, particularly for 
longitudinal studies. Ideally, the method developed therefore needs to ensure the amount 
o f user input is kept to the minimum.

The three issues described above represent the core technical motivation o f this thesis, 
i.e., developing an automatic framework for shape-based image analysis which can 
effectively incorporate prior knowledge, is resistant to image artefacts and involves 
minimal user interaction. In order to illustrate the technical details associated with the 
proposed techniques and demonstrate their potential clinical value, we will use cardiovas
cular shape analysis with MRI as the exemplar throughout this thesis. Due to the 
prevalence o f cardiovascular diseases and the increasing clinical utility o f  MRI for

17



screening and early diagnosis, the use o f shape analysis for cardiovascular MRI is o f great 
importance and there is abundant literature addressing this topic. This generally requires 
serial examination o f dynamic 3D models, which currently is still limited to labour 
intensive manual delineation. This has become one o f  the major bottlenecks o f realising 
the full clinical potential o f MRI, despite recent advances in hardware design and imaging 
sequence development. In practice, inherent anatomical and imaging difficulties associ
ated with cardiovascular MRI still make the task a challenging one.

In terms o f appearance, the outer wall borders of cardiac and arterial structures are 
generally displayed with weak/faint edges that are surrounded by fat. The presence of 
confusing neighbouring features, respiratory and cardiac motion, as well as blood flow, 
introduces additional difficulties. The quest for identifying early image biomarkers means 
the shape variation involved is usually subtle and local, which requires the automatic 
methods to be accurate and to take into account the available wealth o f geometrical 
information. Furthermore, the evolving MRI sequence design means the quality o f image 
features and their associated artefact are often site-, subject-, and sequence-specific.

This thesis is aimed at challenging medical image applications similar to cardiovascular 
MR. The work presented is based on the well-established approach for studying anatomi
cal shapes based on landmark data. Several shape variables can be derived and while 
landmark coordinates are extensively used in the existing literature, this thesis represents 
a first extensive exploration o f Inter-Landmark Descriptors (ILDs) in shape-based 
analysis o f medical images. Unlike point coordinates which describe absolute position, 
these shape variables represent relative configuration o f  landmarks in the shape. Through 
explicit invariance to pose parameters and decomposition o f the global shape constraints, 
the aim o f this work is to propose.a new framework that addresses some o f the key 
limitations o f existing methods such that the three challenges mentioned above are 
tackled to allow for more robust and detailed analysis o f  cardiovascular morphology.
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1.2 Technical Motivations
A detailed study o f anatomical morphology requires effective methods for shape descrip
tion, modelling, extraction and analysis. Amongst existing techniques, the use of 
landmark data is a well established approach due to its ability to simplify the geometry of 
interest through a collection o f landmark points defined at biologically or geometrically 
meaningful locations [1]. Shape descriptors and statistical modelling techniques are then 
used to study relative landmark configurations and incorporate suitable prior knowledge 
into the computational framework.

For general purpose modelling, the use o f landmark coordinates as shape variables is a 
commonly adopted approach. Their use in biological shape analysis was originally 
complicated by lack of invariance to pose parameters. The emergence o f shape superim
position methods [2], which attempt to eliminate the effect o f similarity transformations, 
opened a range o f new alternatives. In medical image analysis, coordinates enable easy 
manipulation o f the shape vectors in the image space. They also facilitate statistical 
analysis for capturing intrinsic shape variabilities. However, the application of such 
methods to cardiac image analysis is faced with two difficulties.

First, the performance o f such techniques depends heavily on the quality o f  the initial 
shape superimposition which is known to vary depending on the configuration o f  the 
landmarks involved [3]. The estimation o f  pose parameters can be easily affected when a 
small number of landmarks carry a significant proportion o f the shape variation. These 
deviations can be caused by misplaced landmarks in the image (e.g., due to image artefact 
or adjacent image features that are not associated with target anatomy), as well as genuine 
localised shape variations (e.g., regional contractile abnormality o f  the ventricle).

The second issue is related to the nature o f the prior knowledge that can be captured by 
conventional methods. One o f the early motivations behind the direct use o f landmark 
coordinates is their ability to describe the complete spatial arrangement o f the landmarks 
within a unified model [4]. To this end, the application o f superimposition and multivari
ate statistics can produce a reduced set o f  variables that summarises the variability 
induced by the larger number o f landmarks. The global nature o f  the derived shape
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parameters is beneficial for imposing constraints on unseen shapes as well as for detect
ing shape abnormalities. This, however, does not bode well for tasks that require 
constraints on individual landmarks as opposed to the entire shape, e.g., for landmark 
search in new images or for local abnormality analysis.

Amongst existing techniques based on landmark coordinates and multivariate statistics, 
the Active Shape Model (ASM) [5] is widely used in medical image analysis and it 
represents the basic framework for the work presented in this thesis. The technique is well 
established for its ability to capture morphological variations across subjects and over 
time. The derived model can be used as a deformable template and fitted iteratively to 
new image data. The global nature o f the model, however, prohibits its reliable initialisa
tion and as a result, user interaction is often required. Furthermore, the geometrical 
constraints cannot be used to influence each individual landmark during edge point 
search. Instead, they are imposed at the end o f each ASM iteration to obtain a valid 
instance from the identified features.

The sensitivity of shape alignment is even more problematic in the case o f ASM. In the 
presence o f missing, confusing or noisy image structures, the feature point search often 
results in misplaced points (outliers). This can violate the Gaussian distribution o f the 
residuals (a common assumption used in ASM), thus affecting the subsequent pose and 
shape parameter estimation. The same problem arises when ASM parameters are used for 
regional abnormality analysis, as local variation can significantly affect the shape 
alignment process and subsequent statistical analysis.

In this thesis, we aim to use ILDs for addressing some o f the key limitations o f current 
techniques based on landmark coordinates and multivariate statistics. The use o f ILDs has 
many advantages. First o f all, unlike normal coordinates, they are invariant to a group o f  
similarity transformations, which is beneficial when pose parameters are either unknown 
or difficult to be estimated accurately. Secondly, they provide a practical means of  
decomposing global shape alignment from local shape analysis, thus enhancing the 
overall consistency and robustness o f shape analysis. Finally, by effective modelling o f 
suitable inter-landmark relationships, relevant correlations between different parts o f the 
shape can be captured and subsequently used for identifying shape inconsistencies.
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1.3 Overview of the Thesis
Following a brief introduction o f the key technical motivation of the thesis in this chapter, 
a detailed survey o f statistical shape modelling techniques based on landmark coordinates 
and multivariate statistics will be provided in Chapter 2. The main part o f the chapter is 
focussed on the ASM technique and issues concerning the training set, shape alignment, 
model construction, point correspondence and feature point search are discussed. The 
main purpose o f this chapter is to highlight the relative merit and potential pitfalls o f  
existing techniques, and therefore justifies the use o f ILDs as the basis for shape-based 
image analysis.

In Chapter 3, the most common ILDs including linear distances, ratios, angular measure
ments and barycentic coordinates are introduced. This is then followed by describing the 
key properties o f ILDs and the statistical tools used for modelling normal inter-landmark 
variables. This includes a description o f univariate tolerance intervals, as well as multi
variate tolerance regions. Examples results are provided to illustrate the practical use of  
ILDs, their statistical properties and their main attributes.

After the introductory chapters, Chapter 4 formulates the first methodology o f  the thesis, 
which is aimed at building relaxed yet robust geometrical constraints by using inter
landmark relationships. For this purpose, inter-landmark conditional probabilities are 
introduced and landmark prediction regions are derived. Furthermore, statistical-based 
search regions are proposed to replace the conventional normal search profiles in ASM 
during feature point search. An optimal feature point search based on inter-landmark 
constraints and the A* algorithm is developed for identifying the optimal set o f target 
boundary points. The prediction regions are also used for automatic initialisation of 
ASMs. The validation o f the proposed algorithm is carried out with both 2D and 3D MR 
segmentation o f left ventricular epi-cardial borders o f varying complexities.

The second part o f the methodological development o f the thesis is described in Chapter 
5. The aim o f this chapter is to localise inconsistent landmarks or outliers based on the 
analysis o f ILDs. To this end, a global alignment invariant outlier detection algorithm is 
proposed. Considering the fact that ILDs are associated with more than one point, an
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iterative procedure is used to identify inconsistent feature points. The proposed method 
involves the use o f inter-landmark distance ratio as an invariant shape metric. Statistical 
tolerance intervals are estimated from the training set for identifying extreme ILDs. The 
technique also involves the propagation o f geometrical knowledge gathered from the 
invariant descriptors during successive iterations for robust feature point detection. This 
limits the presence o f outliers and improves the convergence o f the segmentation process. 
The method is applied to carotid bifurcation and left ventricular datasets with detailed 
performance comparison to existing ASM approaches. A detailed simulation study for 
outlier identification is an important part o f the chapter.

In Chapter 6, the landmark localisation scheme is extended for regional contractile 
analysis based on cardiac MRI. Specifically, an analysis framework is described for 
globally invariant identification o f  myocardial wall motion abnormality. To this end, a 
multi-dimensional ILD is introduced for representing spatio-temporal changes o f the 
landmarks over the entire cardiac cycle. This is then followed by estimating normal 
contractility properties o f the myocardium, from which both geometrical and dynamic 
anomalies are used to highlight localised lesions. The method is validated with a rela
tively large population o f cardiac cine datasets that include both normal subjects and 
patients with varying levels o f regional contractile abnormalities.

Finally, Chapter 7 concludes the dissertation by providing a detailed discussion o f  the 
techniques presented, their technical merits and potential drawbacks. It also lists potential 
future directions based on ILDs. Figure 1.1 provides a schematic diagram summarising 
the main steps involved in the traditional ASM methods and the proposed framework 
based on ILDs, in which key improvements to the analysis workflow are highlighted.

In summary, the main contributions o f the thesis include:

• Theoretical investigation and algorithm development o f ILDs for shape-based 
medical image analysis; •

•  Formulation o f partial and invariant geometrical constraints for landmark search;
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(a) Original ASM 
(landmark coordinates)

(b) ASM + (c) ASM +
inter-landmark constraints inter-landmark analysis

Figure 1.1 Schematic diagram summarising the key steps involved in the traditional ASM 
methods and the proposed framework based on ILDs. The landmark constraints permit a non 
iterative search due to the automatic initialisation and optimal feature point search intro
duced. By using inter-landmark analysis, outlier handling and local abnormality detection 
can be consistently performed.
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•  Development o f an invariant landmark analysis algorithm for inconsistent landmark 
localisation;

• Incorporation o f the above methodologies for addressing current limitations of ASM 
including shape initialisation, optimal feature point search, outlier handling and lo
calisation o f shape and motion anomalies;

• Validation o f the proposed methods with concrete clinical data with applications to 
left ventricular segmentation, carotid artery segmentation, and myocardial motion 
analysis.

Most parts o f this thesis are published in peer-reviewed academic journals and conference
proceedings, which include:

•  K. Lekadir and G.-Z. Yang, "Optimal feature point selection and automatic initiali
sation in active shape model search," in Proc. Medical Image Computing and 
Computer Assisted Intervention (MICCAI), New York, 2008,434-441.

•  K. Lekadir, R. Merrifield, and G.-Z. Yang, "Outlier detection and handling for 
robust 3-D active shape models search," IEEE Transactions on Medical Imaging, 
vol. 26, pp. 212-222, 2007.

•  K. Lekadir, N. Keenan, D. Pennell, and G.-Z. Yang, "Shape-based myocardial 
contractility analysis using multivariate outlier detection," in Proc. Medical Image 
Computing and Computer Assisted Intervention (MICCAI), Brisbane, 2007, 834- 
841.

• K. Lekadir, R. Merrifield, and. G.-Z. Yang, "Robust MR segmentation o f the left 
ventricle using an outlier handling based active shape models," in Proc. Society for 
Cardiovascular Magnetic Resonance (SCMR), Roma, 2007. •

•  K. Lekadir and G.-Z. Yang, "Carotid artery segmentation using an outlier immune 
3D active shape models framework," in Proc. Medical Image Computing and Com
puter Assisted Intervention (MICCAI), Copenhagen, 2006, 620-627.
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•  K. Lekadir, R. Merrifield, N. Keenan, D. Pennell, and G.-Z. Yang, "Robust image 
segmentation through outlier handling: application to automatic plaque burden as
sessment," in International Society of Magnetic Resonance in Medicine (ISMRM), 
Seattle, 2006.

• K. Lekadir, D. Elson et al., "Tissue characterisation using dimensionality reduction 
and fluorescence imaging," in Proc. Medical Image Computing and Computer As
sisted Intervention (MICCAI), Copenhagen, 2006, 586-593.
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Statistical Shape Modelling

2.1 Introduction
For medical image computing, shape segmentation and modelling with incorporation of 
prior knowledge is a well developed research topic. Many techniques exist in the litera
ture, including intensity-based [6-10] and atlas-guided [11-14] techniques. For the study 
of anatomical shapes, deformable models have enjoyed considerable interest since their 
original introduction by Kass et al. [15]. The method requires a pre-defmed mechanism to 
model and control the shapes of interest, with the aim of recovering the anatomical 
structures of interest by iteratively defonning a shape instance under combined appear
ance and geometric criteria.

Generally, the geometry of the deformable models is formulated in a way such that it 
pennits broad shape coverage with many degrees of freedom. Therefore, the approach is 
particularly suitable for biological shapes with large variabilities. The main strength of 
the technique is that it incorporates intuitive physical constraints such as continuity and 
bending energy of the contour and presents the problem in a mathematically sound 
formulation. The optimisation process attempts to minimise an energy function that 
balances the internal and external forces. In this model, external forces are usually 
derived from the image to drive the curve or surface towards the desired boundaries of 
interest, whereas internal forces are computed from within the curve or surface to keep it 
properly regularised throughout the deformation.
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Early deformable models were defined using parametric curves such as splines. More 
elaborated formulations have been derived over the years. Deformable M-reps [16,17], 
for example, is a technique through which geometrical information is described by a 
collection o f elements defined in medial terms. Parametric models, on the other hand, use 
outline-based representation o f the shape [18] to constraint the image search. The idea is 
to subdivide the boundary into a set o f elements, each represented by a limited number of  
measurable coefficients calculated by fitting a curve model based on Fourier decomposi
tion [19], spherical harmonics [20] or spherical wavelets [21]. Another method that can 
be considered as implicit deformable models are level sets [22], which represent the 
shape o f interest as a level set o f scalar functions.

Shape-based segmentation based on deformable models offers a natural paradigm to 
impose high-level geometrical constraints. Early approaches used physically motivated 
constraints to ensure generality and robustness. However, its flexibility often leads to 
solutions that are unrestricted to specific applications. To address this problem, statisti
cally motivated constraints were introduced which incorporate statistical geometrical 
priors about the class o f shapes o f  interest. Among these techniques, the Active Shape 
Model (ASM), developed by Cootes et al. [5] is based on landmark representation o f the 
shapes. The derived statistical model o f shape is applied as prior knowledge to guide and 
reinforce the segmentation process. It can also be used for describing normal shape 
distribution and detecting outliers.

Shape representation through landmarks, such as adopted by the ASM framework, is now 
a well established approach for the study o f biological shapes. It aims to approximate 
essential elements o f the shape by using individual measurements. In this case, a finite set 
o f points are defined along the boundaries o f interest at biologically or geometrically 
meaningful locations. The landmark generation is usually subjective and domain specific, 
but some general rules and automatic methods can help optimising the procedure. First, 
the landmarks are chosen such that they correspond to the position o f particular local 
features based on biological or geometrical criteria. The landmarks need to be homolo
gous, i.e., they are comparable within all instances o f  the shapes. Also, they must be 
topologically consistent and therefore should not alter their positions relative to other
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landmarks. In this regard, establishing satisfactory point correspondence between datasets 
is critical to the application o f ASM.

Once the landmarks are suitably defined around the boundaries, a shape descriptor vector 
that numerically characterises the configuration o f  the landmarks is required to allow 
further manipulation o f the model. Several possible shape variables exist for landmark 
data, such as coordinates and Inter-Landmark Descriptors (ILDs), each with its own 
attributes and limitations. Ideally, the shape variables should be easy to manipulate and 
allow faithful reconstruction o f the original morphology, i.e., a reverse mapping exists 
between the descriptor vector and the shape.

Thus far, the use o f point coordinates as variables for statistical shape modelling is the 
most popular choice, since they enable natural characterisation o f the landmarks in the 
image space. The ASM is based on this approach and in this chapter, we will present a 
review o f techniques related to statistical shape modelling. First, the construction o f the 
statistical model o f shape is described, including shape alignment and point correspon
dence. Emphasis is then placed on the image search procedure and the main steps 
involved. Finally, the main theoretical and practical limitations o f the technique that have 
motivated this thesis are discussed at the end o f the chapter.

2.2 Statistical Shape Models
The Point Distribution Model (PDM) [23] developed by Cootes et al. is well recognised 
for its ability to capture variation o f landmarks across individuals and time, making it 
particularly suitable for the study o f anatomical structures. Based on landmark coordi
nates and multivariate statistics, the technique builds a parametric model which 
approximates the multidimensional shape space using a multivariate Gaussian distribu
tion. This is achieved through the extraction o f a mean shape, main patterns o f  variation 
and their corresponding allowable limits. PDMs are widely used as a deformable template 
to fit the model to unseen shapes in new images through the Active Shape Model (ASM)
[5]. Figure 2.1 provides a schematic diagram summarising the main steps involved in 
PDM construction, which are detailed in next sections.
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(a ) Im age training set 
(Section 2 .2 .1 )

(b) Point correspondence  
(Section 2 .2 .4 )

w

» • » » • »
1 • * -

•  • ♦ ,  1 1 * » 0 • •  *  ‘ s 
■........ •

m * • ' * * •
• *• :  *■ • » • •

:

w

V

(d) M odel construction 
(Sections 2 .2 .3  and 2 .2 .5 )

(c) S hape alignm ent 
(Section 2 .2 .2 )

>00000 
4 *  «• «-* «1»

•I *
» ** 
fe* £ 

* *  0

, % ; 1 . * » » t ‘

Figure 2.1 The main steps involved in PDM construction, including image training set 
collection (a), automatic landmark generation with correspondence (b), shape alignment 
within a common coordinate system (c), and extraction of main shape variations (d).

2.2.1 Training Set Preparation
In this thesis, the shapes are represented by n labelled landmarks and their coordinates 
by (x< = for l < i < n ) . 'T h e  corresponding descriptor vector x therefore
consists of a concatenation of the point coordinates represented as follows:

x = {xv yv zv ...,x i,y i,z i,...,x n,y n,z n)T . (2-1)

Preparation of the training sample is a critical stage for obtaining a statistical shape model 
with adequate quality. To this end, two fundamental issues need to be addressed, i.e., 
training sample selection and boundary annotation. Firstly, the choice of training datasets
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should allow for a suitable representation o f shape variability, which requires a relatively 
large number o f training samples. In practice, this requirement is limited by the data 
available and the time consuming process o f boundary annotation.

In medical imaging, the involvement o f expert observers in defining the training dataset is 
important for maintaining the quality o f the model. However, this procedure is tedious 
due to the large number of landmarks involved and for many shapes, there are no clear 
geometrical features to consistently rely upon. A common short-cut is to uniformly 
distribute the landmark points along the boundaries coupled with manual definition of 
several distinctive landmarks. Figure 2.2, for example, illustrates the landmark points 
defined on the epi-cardial boundaries o f the LV at four different phases o f the cardiac 
cycle, where valvular and apical landmarks are used to ensure global correspondence of 
the shape whereas other landmarks are evenly distributed. Although useful, this approach 
cannot guarantee landmark correspondence, and therefore can introduce errors to the 
model created. To overcome this problem, automatic techniques have also been devel
oped to achieve more systematic and optimal generation o f landmarks. At the end o f  this 
process, a set o f N  vectors representing the annotated shapes is obtained for model 
construction.

2.2.2 Shape Alignment
In medical imaging, since shapes are generally recorded in separate and arbitrary coordi
nate systems, it is necessary to align all these shapes to a common frame o f  reference 
before subsequent modelling can be performed. To this end, a process called shape 
superimposition needs to be applied [2]. It essentially moves the available shapes until the 
best possible alignment is obtained within a common coordinate system. To achieve this, 
several approaches exist, each minimising a particular measure o f shape similarity. The 
subsequent shape analysis results depend on the choice o f the method and its performance 
with the given landmark configurations. The most popular shape superimposition tech
nique is the Procrustes analysis [2].
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Figure 2.2 Four images from a cardiac MR cine sequence showing the epi-cardial 
borders and their associated landmark annotations. The black dots correspond to the 
valvular and apical landmarks, which are used as the reference for global correspondence.

Given two shape vectors x(1) and x(2), superimposition is carried out by fixing the first 
shape and applying translation, rotation and scaling to the second such that the two shapes 
are fully matched according to some predefined alignment criteria. The remaining 
landmark differences between the fitted and observed vectors of coordinates indicate the 
magnitude of shape dissimilarity. For Procrustes analysis, this is minimised in the least 
squares sense, i.e., for similarity transfonnation T  (incorporating translation, rotation 
and scaling parameters) applied to x(2), the sum of landmark differences between x(1) 
and x(2) is minimised by:

(x(1) -  T  [x (2) ])r  (x(1) -  T  [x (2)] ) . (2-2)
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Thus far, several analytical solutions have been derived to enable efficient shape align
ment based on the Procrustes method [24-27], This is the basis for several shape-based 
image analysis methods, since it is generic and conforms to normality assumptions used 
in statistical shape modelling. Other measures have been proposed as an alternative to 
Equation (2-2) by using nonparametric formulations ([28,29]) for improved robustness. It 
is also worth mentioning other superimposition methods, such as the two-point registra
tion approach by Bookstein [30], through which a representation o f shape is obtained by 
fixing the position o f the same baseline in each shape and adjusting the remaining 
coordinates accordingly.

Procrustes analysis presented above enables the alignment o f two shapes. Statistical shape 
modelling, however, typically involves a population o f N > 2 shapes. The analytical 
generalisation o f  Procrustes analysis to a population o f shapes is a difficult problem. This 
has led the development of an iterative approach referred to as Generalised Procrustes 
Analysis (GPA). With this algorithm, the estimation o f translation, rotation and scaling 
parameters is achieved through successive iterations until the sum o f  landmark differ
ences from all examples to the mean shape is minimised, indicating a good alignment.

To initialise the algorithm, it is required to choose one o f the available shapes as the 
starting mean shape. Each shape is then aligned to the current estimation o f  the mean 
shape based on a solution o f Equation (2-2). The mean shape is then updated and the 
procedure continues until convergence. To eliminate poorly defined solutions, constraints 
are imposed on the mean shape, for example by moving its centroid to the origin o f  the 
common coordinate system and by normalising its size to a unit scale. Figure 2.3 shows 
an example o f shape alignment achieved through least squares Procrustes analysis based 
on six epi-cardial contours. After superimposition, the landmark differences between 
different shape instances are minimised, as evident from the clusters forming around the 
landmarks.
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Figure 2.3 Shape superimposition o f six epi-cardial contours by using the general Procrustes 
analysis. The shape vectors o f all instances are expressed within the same coordinate system, 
by minimising differences in size, orientation and position.
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2.2.3 Model Construction
Once the N  training shapes are collected, annotated and aligned, statistical analysis on 
the landmark locations is performed in order to build a statistical model o f  the shapes. 
Specifically, the PDM method extracts an average shape, principal modes o f  variations 
and the limits o f allowable instances. Mathematically, the average shape is obtained by 
simply calculating a mean shape vector, i.e.,

*  = ^ Ì > 0) (2-3)

where x (,) denotes the j a shape vector in the training sample. The main axes o f varia
tion, denoted by the matrix P , are the basis vectors of a new coordinate system obtained 
through Principal Component Analysis (PCA), which identifies a linear orthogonal 
transformation highlighting the directions o f maximal variance. To achieve this, the 
covariance matrix is calculated as follows:

(2-4)

The extracted eigenvalues are sorted in a descending order and only the eigenvectors 
corresponding to the t most significant eigenvalues are selected (t < N ) . The value o f t 
is defined so that the chosen principal modes can explain a given proportion (e.g. 99%) of 
the variance exhibited in the training set. At this stage, a linear model which can generate 
new instances o f the shape can be obtained as follows:

x = x + Pb (2-5)

where b is the vector o f shape parameter, which weights the contribution o f each mode 
o f variation. It is important to ensure that each new shape generated by the PDM using 
Equation (2-5) is a valid instance, i.e., it belongs to the same class o f  shapes as the 
training set. This is achieved by constraining the shape parameters b to vary only within 
suitable limits (the allowable shape domain, denoted here as D ). Under the assumption o f  
multivariate Gaussian distribution, D can be obtained by imposing hard limits on each o f  
the weights within a number o f standard deviations (e.g. < 3jA~ for 1 < j  < t). More
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accurate limits can be imposed such that the Mahalanobis distance o f the new shape to the 
mean is less than a predefined threshold UD, i.e.,

Z) = j b e R ‘ | i ^ - < t f 0 j .  (2-6)

Figure 2.4 illustrates the principal modes o f variation obtained from the 2D epi-cardial 
datasets shown in Figure 2.2. It can be seen that the first mode describes the shortening of 
the LV whereas the second corresponds to axial rotation.

Figure 2.4 Global shape variations as captured by application o f PCA to a training set o f  
aligned epi-cardial boundaries. It can be seen that the first mode describes a change in 
diameter while the second corresponds to axial variation.

2.2.4 Point Correspondence
The quality o f the statistical shape model constmcted through PDMs can be evaluated 
through three main properties, i.e., model compactness (ability to represent shape vari
ability using as few parameters as possible), model generalisation (ability to represent
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new shapes o f the same class), and model specificity (ability to represent only valid 
instances o f the class). One o f the key issues for obtaining satisfactory PDM properties is 
the establishment o f point correspondences to ensure meaningful associations exist 
between equivalent points in all training shapes. Careful manual annotation o f each 
individual landmark is a difficult and time consuming task. In practice, even expert 
annotation often involves significant intra- and inter-observer variabilities, as not all 
landmark points correspond to clearly identifiable geometrical features, especially in 3D 
and 4D cases.

For these reasons, many techniques have been developed for establishing optimal point 
correspondence. The most popular approach is to find a parameterisation that optimises a 
predefined function, for example, the use o f total variance [31] or an objective function 
based on the determinant o f the covariance matrix [32]. The use o f Minimum Description 
Length (MDL) o f the training set was proposed by Davies et al. [33]. It has been shown 
that the method can derive statistical models with good compactness, generalisation and 
specificity. Curvature information was also incorporated into the MDL optimisation by 
Thodberg and Olafsdottir [34].

A more recent approach by Horkaew and Yang [35] based on harmonic embedding and 
the MDL criterion was developed to model shapes with more complex topologies. A 
conformal harmonic map and tensor product B-splines were used to create a multi
resolution representation o f the surfaces. Re-parameterisation was then achieved by using 
hierarchical piecewise bilinear maps in a coarse-to-fine manner. Criteria based on surface 
conformality were used to simultaneously identify the intrinsic global correspondence o f  
the training data. Figure 2.5 demonstrates the result achieved by the method in capturing 
intrinsic shape variability o f the LV.-With accurate point correspondence, the first mode 
o f variation captures the contraction o f  the ventricle, corresponding well to physiological 
behaviour o f  the normal heart.

Thus far, several alternative approaches to optimisation-based point correspondence have 
also been developed. Non-rigid shape matching has been proposed to identify homolo
gous landmarks between shapes [36,37]. Other techniques are based on an analysis o f  
local geometry [38,39] for localising a set o f  geometrical features that can be used for
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pair-wise point correspondence. Image-based techniques relying on non-rigid registration 
have also been proposed [40,41], Instead of finding optimal positions of the landmarks, 
the method uses the B-spline deformation control grid of the image volumes as a means 
of establishing point correspondence and extracting principle modes of variation.

Figure 2.5 Comparison of the variation captured by PDMs constructed through confor
mal harmonic embedding [35]. With optimal point correspondence, the first mode 
captures the contraction of the ventricle corresponding closely to the physical behaviour 
of the human heart.

2.2.5 A lternative Constructions
For statistical shape modelling, the quality of the model also depends on the availability 
of training samples, which in practice may be only limited to a small subset of shapes. 
Increasing the size of the training set is not always possible due to practical constraints on 
data collection and manual annotation. Since the maximum number of eigenvectors that 
can be used to represent any shape is at most equal to the number of training samples 
minus one, the PDM may not be able to describe all fine details of the shapes with limited 
training data. As a result, the statistical model may be restrictive in terms of capturing
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intrinsic shape variabilities. To address this problem, several methods have been proposed 
to introduce additional modes o f variation to the model.

The first approach is to use combined models, where the statistical model o f shape is 
coupled with a physical-based model to allow for smooth local variation. Wang and Staib 
[42], for example, proposed a method that added a smoothness matrix to the global 
covariance eigen-decomposition. With this approach, the relative weight assigned to each 
model needs to be determined empirically. In another work, Cootes et al. [43] combined 
the PDM with a finite element model. Alternative hierarchical representations o f shape 
variability have been proposed in order to decouple global and local modes o f variations. 
Davatzikos et al. [44] proposed a technique where the data was decomposed into different 
frequency and spatial location bands based on wavelet transform. In [45], de Bruijne et al. 
used decomposition of tubular shapes by modelling axel deformation independently of 
cross-sectional deformations, which increased shape flexibility and adaptation to cylin
drical geometries.

Additional shape variability can also be introduced by enlarging artificially the training 
set. In the work o f Loetjoenen et al. [46], each shape from the training set was deformed 
at several randomly selected point locations by applying non-rigid spherical scaling and 
movement. It is unclear, however, whether the resultant variations with this approach are 
realistic for practical applications. Shen and Davatzikos [47] proposed an alternative 
method for training set enlargement. It identifies shapes with low spatial variability or 
high confidence, which are then spatially scaled to increase the variance. Finally, several 
techniques have been developed to handle more complex types o f  variability. To account 
for non-linearity, Romdhani et al. [48] constructed a PDM based on kernel PCA, while 
Sozou et al. developed a technique based on polynomial regression [49]. In another work 
by Cootes et al. [50], shape variation was modelled using a Gaussian mixture model.

2.3 Active Shape Models (ASM)
In the above sections, we have presented PDM construction for statistical shape model
ling, which provides a linear representation o f the average shape, main variation and
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allowable domain. The aim o f the ASM is to use the model derived to guide and reinforce 
the image search process for shape segmentation.

Given a new image I , the aim o f ASM search is to find a shape x  that is valid according 
to the variability captured by PDM and its boundary points conform to some predefined 
appearance properties, e.g., strong edge gradients or high curvature points such as 
comers. More specifically, the technique attempts to estimate the pose transformation T 
(position o f  the mean shape in the image domain) and shape parameter b (specific 
geometry o f the target structure) that minimise cost function d, describing the degree of  
fit to the underlying image features, i.e.,

n
x = argm in]T dI (x .) (2-7)

X E l , =1

where x = T  [x + Pb] and b e D. (2-8)

Equation (2-7) describes an appearance-based cost function to minimise (sum o f grey- 
level matches d, (x ,) for each individual landmark point p , ), whereas Equation (2-8)
corresponds to the optimisation constraint from the statistical model. Given the size o f the 
image, as well as the number o f pose and shape parameters to estimate, concurrent 
optimisation of the objective function can be computationally prohibitive. The solution 
adopted by Cootes et al. in their ASM formulation is to decouple the intensity-based 
objective function in Equation (2-7) and the global geometric constraints in Equation (2- 
8) in an iterative procedure by alternating between feature point search and model fitting. 
The method starts with an estimated starting pose and shape (initialisation) and at each 
iteration, feature points located close to the contours are identified (feature point search), 
a valid shape is then instantiated (model fitting).

Figure 2.6 shows a detailed illustration o f the key stages involved in the ASM framework 
for shape extraction. In this example, a long MR image is used to localise the epi-cardial 
boundary. To this end, a manual initialisation is first carried out by placing the mean epi- 
cardial shape near the target boundary (a). Subsequently, the search for feature points is 
performed by using profiles perpendicular to the current contour, as shown in (b). In (c), 
the identified set o f  feature points is displayed, including a number o f outliers due to the 
presence o f image inhomogeneities in the vicinity o f the epi-cardial border. Finally, the
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model fitting stage is applied in (d) to ensure consistency o f the output with respect to the 
statistical model o f shape. It can be seen that the resulted instance at first iteration 
(displayed in (d)) is an improvement to the initial shape. Further improvements in 
boundary localisation can be achieved by application o f additional search iterations. 
Figures (e) and (f) show intermediate results for the iterations 10 and 20, respectively.

2.3.1 Feature Point Search
Feature point search is critical to the success o f ASM. At each iteration, the aim o f the 
procedure is to find for each model point a better position in a local neighbourhood. For 
this purpose, adequate modelling o f  intensity distribution near the boundary is required. A 
method suggested by Cootes et al. [51] is to model statistically during the training stage 
the intensity or gradient distribution along profiles that are perpendicular to the shape 
boundary. An average intensity profile g and a covariance matrix Sg describing the 
appearance variation can then calculated. At the segmentation stage, a localised search 
perpendicular to each landmark is carried out. Under the normality assumption, a suitable 
cost function to evaluate is the Mahalanobis distance to the mean profile described as 
follows:

<h (x ,) = (g (x ,) -  g f  S ,1 (g (x ,) -  g ). (2-9)

The best candidate within each normal search profile is chosen and the set o f detected 
feature points that optimise the objective function in Equation (2-7) are used at the 
current iteration. The geometric constraint in (2-8) is generally not satisfied at this stage, 
and this is the aim o f model fitting to be described in the next section.

In recent years, more robust local boundary modelling and evaluation techniques have 
been proposed in order to improve its resistance to noise and handle non-linearity. One 
possible approach developed by Van Ginneken consists o f calculating local image 
features combined with classification o f false and true positives using a k nearest 
neighbours procedure [52], Jiao et al. [53] suggested the use o f Gabor wavelet features 
based on the hypothesis that the magnitude and phase o f Gabor features contained rich 
information about local geometries. The well-known Haar wavelet features were used in 
the ASM search by Cristinacce and Cootes [54].
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(a) Initialization (b) Feature point search

(e) Iteration 10 (f) Iteration 20

Figure 2.6 Illustration of the main stages of the ASM search for a long-axis cardiac MR 
dataset. The mean shape is placed near the target structure for initialisation (a). Normal 
search profiles are used for feature point search as shown in (b). The iterative procedure 
((d)-(f)) enables continuous improvement of the boundary until convergence.
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An alternative strategy for feature point detection is the use o f  regression to learn the 
relationship between local neighbourhood appearance and the displacement to the true 
feature location. With this method, no search profile around the current point is required 
as only the profile at the current position is evaluated to infer a suitable point displace
ment. Such methods include the use o f  canonical correlation analysis [54] or GentleBoost 
[55] as the basis regression predictors.

2.3.2 Model Fitting
As a result o f the decoupling approach, the obtained vector x o f feature points may not 
necessarily be a valid shape o f the ASM mode. Some adjustments are necessary to obtain 
a shape x that satisfies the global constraint in (2-8). Specifically, the aim o f model 
fitting is to re-estimate the pose transformation T  and shape parameter b such that the 
obtained shape using the linear model in (2-5) is as close as possible to the feature points. 
To achieve this, the following sum o f squared distances can be minimised:

( T 1 [x] -  (x + P b ))T ( T 1 [x] -  (x  + P b )) . (2-10)

In general, a direct analytical solution to this equation is not feasible and an iterative 
approach is used instead. That is, when estimating the pose transform, the shape parame
ters are fixed, and when estimating the shape parameters, the pose transformation from 
the previous iteration is used. This process repeats iteratively until no change is noticed in 
the values o f  the pose and shape parameters. It can be shown that the amount o f  adjust
ment on shape parameters db(t) at iteration t can be determined by minimising the 
difference between the suggested adjustment and the constrained parameter update, i.e.,:

db = argmin[(dx -  Pdb) W  (dix -  Pdb)T]
da

where dx.(t + 1) = T ( i ) _1[ x ] - ( x  + P b ( i) )
(2-11)

and W  is a diagonal weighting matrix which defines the amount o f contribution from 
different control points. Using linear algebra, the minimisation is equivalent to:
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(2-12)
(P rW P)db = P rWcbt

or db = P Tdx if  W = I3n.

The resulting shape is then used as the initialisation for the next iteration. The ASM 
search procedure terminates when no significant change is produced between successive 
iterations, suggesting an optimal shape is found given the available image features and 
prior knowledge.

2.3.3 Alternative ASMs
Over the years, several modifications to the standard ASM formulation have been 
developed. One popular alternative is the multi-resolution approach introduced by Cootes 
et al. [56]. One o f the issues associated with ASM search is the choice o f the size o f  the 
normal search profiles. A small normal search profile may not have enough coverage to 
capture valid image features depending on the initialisation. A large search profile, on the 
other hand, may result in many undesirable features, thus causing the search to be trapped 
in suboptimal local minima. To overcome this difficulty, a coarse-to-fine multi-resolution 
representation o f the image data is obtained through convolution with Gaussian kernels o f  
different scales. The step size o f the search and intensity profiles is doubled from one 
resolution to the next. At coarse resolutions, the relatively long search profiles allow for a 
suitable range capture, while the large Gaussian kernels ensure the removal o f noise and 
small confusing structures in the image. This allows the model to identify a good ap
proximate location o f the target shape based on consistent image structures. At finer 
resolutions, the search resorts to small search profiles for more detailed boundary local
isation. Generally, this approach increases the accuracy, as well as the speed o f search.

Other methods developed use geometric constraints to limit the presence o f outliers. 
Behiels et al. [57], for example, added a smoothness constraint during feature point 
search to ensure the consistency o f neighbouring points. In their spatio-temporal ASM 
extension, Hamameh and Gustavsson [58] used dynamic programming to minimise a cost 
function such that large temporal changes in landmark position are prohibited. In [59], 
Cootes and Taylor considered more than one feature point for each landmark and selected
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the combination that was most consistent with the shape model based on a set of interme
diate PDMs.

Another popular modification to the ASM search is the introduction o f  an intermediate 
stage between feature point search and model fitting, during which outliers are identified 
and removed. For example, Duta and Sonka used variance induced by each landmark for 
outlier detection but acknowledged difficulties when handling multiple outliers [60]. Li 
and Chutatape used thresholding o f the landmark residuals by relying on satisfactory 
superimposition [61], which could in practice be affected by increasing number o f  
outliers. The method by Rogers and Graham, on the other hand, is based on robust 
estimators to assign varying weights to the feature points using a weighted least squares 
approach [62] and improvement is reported for up-to 20% misplaced features. For all 
these techniques, the handling o f clustered outliers (i.e., localised within the same region 
o f the boundary) can be problematic. Alternatively, interactive user input can be used 
during the process to correct for potential errors [63],

For practical applications, it may be desirable to adapt ASMs to specific applications and 
to take into account domain-specific geometrical and appearance information. De Bruijne 
et al. [45], for example, developed an ASM formulation for tubular-like structures and 
applied the method to aortic aneurysm segmentation. Heinmann et al. [64] combined the 
ASM and a deformable mesh approach for liver segmentation. Zhao et al. [65] used a 3D 
partitioned active shape model for brain segmentation by subdividing the meshes into a 
group o f  titles each modelled independently. The global shape consistency is controlled 
by curves connecting the title hyperspaces. Seise et al. [66] proposed a method that 
catered for inconsistent bifurcations and loops appeared in bone and knee segmentation. 
Van Assen et al. developed a 3D ASM technique for cardiac segmentation using sparse 
long-axis MRI [67] and an improved ASM search based on fuzzy inference [68]. More 
recently, Casero and Noble [69] proposed to adapt ASMs for structures with cyclic 
dynamics, such as the heart.
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2.4 Current ASM Issues
Despite its several merits, the capabilities o f  the ASM in challenging applications to reach 
the requirements described in Chapter 1 o f this thesis, i.e., minimisation o f user interac
tion, incorporation of effective prior knowledge, and resistance to imaging artefacts, are 
complicated by inherent limitations o f methods based on coordinates and multivariate 
statistics. In the follow sections, we will detail some o f these problems and explain how 
they affect the overall performance o f the algorithm.

2.4.1 Shape Alignment and Global Constraints
Procrustes analysis opened a wide range o f opportunities for biological shape analysis, It 
is widely used since the cost function is generic, suitable for the study o f  variation within 
a family o f shapes and can be efficiently solved analytically. In image analysis, shape 
alignment enables easy manipulation o f coordinates in the image space and provides 
well-recognised statistical properties [70]. Despite considerable results, the application of 
landmark coordinates to medical image analysis is faced with two limitations in challeng
ing applications.

First, the performance o f existing techniques based on coordinates depends heavily on the 
quality o f  the shape alignment, which is known to vary depending on the configuration o f  
the landmarks involved [3]. The estimation o f  pose parameters can be particularly 
affected when a small number o f  landmarks carry a significant proportion o f the shape 
difference, causing landmark residuals to deviate from normality. Such a situation, 
however, is common in medical imaging due to the inevitable presence o f image inho
mogeneities (noisy, confusing or .missing structures), as well as to local shape 
inconsistencies (regional abnormality). The use o f invariant ILDs would be more desir
able when the pose parameters are unknown or otherwise difficult to estimate accurately.

The second issue is related to the nature o f  the prior knowledge captured by conventional 
methods. One o f the early motivations behind the use o f coordinates is their ability to 
describe the complete spatial arrangement o f landmarks within a unified model [4]. To 
this end, the application o f superimposition and multivariate statistics (e.g., PCA) can
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produce a reduced set o f variables that summarise the variability induced by the larger 
number o f landmarks. The global nature o f the shape parameters derived is beneficial in 
image analysis to constrain unseen shapes as well as to detect diseased patients. However, 
their use is complicated in computational tasks that require constraints on the individual 
landmarks, such as for feature point search and local abnormality detection. In this thesis, 
the proposed solution is to use a set o f individual ILDs to model partial geometrical 
constraints and achieve an implicit decomposition o f the global shape model.

2.4.2 Implications to ASMs
The application o f the global constraints in ASMs is essentially concerned with the 
position o f the instance in the shape space, rather than the position o f each individual 
landmark in the image. As a result, feature point search in its current formulation is 
entirely unconstrained, based on simple normal profiles which do not incorporate any 
prior knowledge about the landmark positions. As a consequence, outliers may be 
generated under challenging imaging conditions, affecting the subsequent shape align
ment due to the non-Gaussian residual distribution introduced [3]. Furthermore, the 
model fitting in such a situation may generate a shape that is geometrically plausible but 
is not supported by the underlying image evidence.

The application o f the global shape constraints is also problematic for ASM initialisation 
due to the high-dimensionality o f the task and the size o f the search space. In practice, 
however, an ASM requires suitable starting estimates to ensure that the search process 
does not get trapped in an undesirable local minimum. Generally, this is achieved based 
on manual interaction, through which the user places the mean shape close to the target 
structures. Although this is often satisfactory, the setting can be limited for shapes with 
complex variability or geometry and becomes impractical for volumetric or spatio- 
temporal initialisation. Some exhaustive search methods can be adapted for ASM 
initialisation, such as based on genetic algorithms [71], modified Hough transform [72], 
and particle filtering [73]. These approaches, however, are inherently time consuming, 
with typical computational times in minutes in the 3D case (e.g. [64]). Consequently,
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manual initialisation remains the standard approach despite its subjective and tedious 
nature.

In addition to their segmentation purpose, PDMs are widely used for abnormality analysis 
based on the shape instantiation. In the presence o f  regional abnormality, however, the 
shape alignment is by definition affected and therefore the obtained shape parameters 
may not be accurate. Furthermore, each shape coefficient relates a large number o f  
landmarks, which makes the method only applicable for the identification o f diseased 
subjects, rather than the localisation o f abnormality in the shape. Recently, this limitation 
o f PCA-based methods for identifying localised abnormality has received considerable 
research interest. For example, sparse-PCA methods have been developed to enable the 
extraction o f  more localised shape parameters [74], Independent component analysis has 
also been investigated for more localised cardiac motion analysis [75]. Furthermore, PCA 
coupled with orthomax rotations has been proposed for classification o f wall motion 
abnormalities [76], All these methods use coordinates as shape variables and remain 
affected by the varying performance o f  shape alignment. In this thesis, the use o f inter
landmark descriptors is proposed for invariant and localised abnormality analysis.

2.5 Discussion and Conclusions
In this chapter, statistical shape modelling based on landmark coordinates and multivari
ate statistics is presented. A summary o f some o f the main technical approaches involved 
in each step o f the modelling process is provided in Table 2.1. The essence o f the statisti
cal shape modelling scheme is to build statistically-motivated constraints to ensure more 
accurate and biologically meaningful results. In general, the framework is based on 
landmark coordinates since they allow simple characterisation and manipulation o f  the 
shapes in Euclidean space. For this method to work effectively, adequate shape alignment 
o f the shape vectors is required due to a lack o f  invariance o f the shape to the pose o f the 
model. This is traditionally carried out using Procrustes analysis, which is well suited to 
normally distributed shapes. The PDM construction, on the other hand, is typically 
carried out through the application o f PCA, which defines the principal modes o f varia
tion o f  all the shapes considered. PDMs are widely used as deformable models for shape
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instantiation and segmentation. In this chapter, we have reviewed different ASM ap
proaches developed over the years for improving the quality o f the original ASM in terms 
o f model construction and feature localisation.

Despite its wide range o f applications, current ASM methods are not without limitations. 
This is mainly due to their reliance on landmark coordinates and multivariate statistics. 
Firstly, the sensitivity o f the shape alignment is problematic in the presence o f image 
artefacts and confusing anatomical features. The same problem arises for regional 
abnormality analysis. Secondly, the global nature o f the PDM shape parameters prohibits 
the use o f landmark constraints to help with initialisation and improve feature point 
identification.

To address the limitations highlighted above, we will introduce in the next chapters a new 
approach based on ILDs for the study o f anatomic shapes. The major motivation behind 
this approach is to achieve invariance to pose parameter estimation and to make sure the 
proposed method is suitable for both global and regional shape analysis. Both theoretical 
analysis and detailed algorithm development are provided, which address specific issues 
related to it integration with the current ASM framework. Key issues considered include 
automatic initialisation, optimal feature point search, outlier handling and local abnormal
ity analysis.
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Table 2.1 A summary o f  the major developments in statistical shape modelling.

PDMs Developments
First model based on inter
landmark distances and PCA

Cootes et al. [77]

PDMs based on coordinates Cootes et al. [23]
Combined models FEM/PDM [43], elastic model/PDM [42]
Hierarchical PDMs Wavelets coefficients [44], axial/radial [45]
Artificial enlargement o f training 
set

Adaptive focus PDM [47], local deformation [46]

Non-linear PDMs Kernel PCA [48], mixture models [50]
Specific PDM extensions Tubular structures [45], cyclic dynamics [69]

ASMs Developments
Standard ASM formulation Cootes et al. [5]
Multi-resolution ASMs Cootes et al. [56]
Use o f neighbouring constraints Smoothness constraint [57], dynamic program

ming [78]
Outlier detection Variance analysis [60], Robust estimators [62]
Automatic initialisation Genetic algorithm [71], Hough transform [72]
Specific ASM extensions Partitioned-ASM [65], sparse-ASM [67]
PCA-based grey-level profiles Mahalanobis distance [51], cross correlation [57]
Non-linear optimal local features Moments o f  histograms [52]
Wavelet-based feature point 
search

[53], Haar wavelet [54]

Regression-based feature point 
search

Canonical correlation [55], GentleBoost [54]
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3
Inter-Landmark Descriptors

3.1 Introduction
In the previous chapter, statistical shape modelling based on landmark coordinates and 
multivariate statistics is introduced. The statistical models derived can capture intrinsic 
shape variabilities from a family of similar anatomical structures. From the review in the 
last chapter, it is evident that although major research effort for statistical shape model
ling has been directed to its practical applications, limited work has been conducted for 
the construction of invariant landmark descriptors.

The choice of landmark descriptors for biological shape analysis has seen many important 
developments and debates over the years. In particular, three main approaches for the 
study of landmark data have received significant attention. They include coordinate-based 
landmark definition, deformation grids and Inter-Landmark Descriptors (ILDs). In the 
last chapter, we have provided a detailed overview of the coordinate-based approach. 
Although simple to manipulate, the use of landmark coordinates for biological shape 
analysis is made possible by the introduction of superimposition techniques that minimise 
the effect of pose estimation. An earlier approach developed by Thompson [79] describes 
shapes implicitly in terms of deformation fields required to transform one to the other. In 
practice, there are many ways in which the warping operation can be achieved between 
shapes. The well-known Thin Plate Spline (TPS) introduced by Bookstein [80], for 
example, attempts to minimise the bending energy required to match the floating shape to
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the template shape. With this approach, unless the material properties are specifically 
incorporated, the output is dependent on the choice o f  the deformation model used.

Unlike coordinates and deformation grids, ILDs can achieve invariance o f the model to 
non-shape based parameters such as the initial pose o f the model. As a result, the shape 
analysis is independent o f pre-processing procedures. This unique feature makes the 
technique particularly useful for a range o f applications including shape analysis in 
zoology and archaeology [81,82], particularly for shape classification. Due to the large 
number o f shape variables involved, however, the method is difficult to manipulate and it 
is also lack o f an explicit one-to-one mapping between the shape and descriptors. For 
these reasons, ILDs have so far not been used in image analysis applications.

In this chapter, we will present some o f the key features o f ILD and propose several 
algorithms and statistical implementations that enable the effective use of the ILDs. In 
particular, issues related to invariance to non-shape parameters, implicit encoding o f  
correlations between different parts o f the shape, and shape parameter decomposition will 
be addressed. Before presenting the proposed methodologies and algorithms, we will first 
introduce in this chapter the basic features o f ILDs for shape analysis. These include 
linear distances, ratios, angular measurements and barycentric coordinates. The statistical 
tools used in this work to model normal inter-landmark variables and decompose the 
global shape constraints are then presented. In particular, statistical intervals that permit 
the differentiation between valid and extreme ILDs are discussed in detail. At the end o f  
the chapter, example results by applying the ILD-based shape analysis are illustrated to 
help demonstrate the main features o f ILDs and their ability for morphological modelling 
and dynamic analysis.

3.2 Inter-Landmark Descriptors
Unlike landmark coordinates which encode absolute positions, ILDs are numerical 
variables that represent relative landmark configuration o f the shape. Historically, this 
approach pre-dates the use o f landmark coordinates as shape variables mainly due to their 
invariance properties, and therefore are often referred to as traditional methods [1]. They
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have been used extensively in shape comparison and classification [1], as well as for 
measuring physical properties o f shapes (e.g., length, width, relative size o f structures) 
[82]. To this end, the basic assumption made is that corresponding measures between two 
similar shapes have close values. Similarly, for a population of shapes that are normally 
distributed, it is assumed that each ILD follows approximately a univariate Gaussian 
distribution.

The calculation o f ILDs typically involves a small number o f  landmarks. Popular exam
ples include distances between two landmarks, ratios o f inter-landmark distances, and 
angular measurements. Figure 3.1 illustrates how these measures are represented for an 
example MR dataset o f the carotid artery and ventricles.

3.2.1 Linear Distances
Inter-landmark distances are the most popular choice amongst ILDs. They are invariant to 
translation and rotation, and therefore are particularly suited for studying biological 
development processes where scale is an important factor. When applied to cardiac 
assessment, this can be used to quantify ventricular dilatation associated with chronic 
hear failure for example. When absolute scale is not important, appropriate methods for 
correction for size differences are required.

Amongst notable works based on linear distances, a well known statistician called C.R. 
Rao formalised the use o f linear distances for shape comparison. In [83], Lele et al. 
developed a method named Euclidean Distance Matrix Analysis through which average 
shape and covariance are estimated. Additionally, the first version o f the PDM by Cootes 
et al. was developed using inter-landmark distances [77], but it required an expensive 
iterative scheme to map the set o f distances to the image space. This technique, unlike the 
work presented in this thesis, was not applied for a segmentation or diagnosis purpose and 
was later replaced by the current ASM formulation based on landmark coordinates 
incorporating shape alignment. In all these methods, standard multivariate statistical 
methods are used, resulting in a global based approach.
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Figure 3.1 Illustrations of ILDs (distances, ratios and angles) as extracted from carotid 
and ventricular datasets.

3.2.2 A ngular M easurem ents
Angles are shape variables that provide complete invariance to scaling, rotation and 
translation. As shape descriptors, they have been used extensively for shape similarity 
and in planar geometrical analysis, particularly for anatomical shape classification. For 
example, Rao and Suryawanshi [84] compared skulls from hominid fossils using angles
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from a triangulation o f  landmarks. Since the three interior angles o f  a triangle sum to 7t, 
only two selected angles are used as shape variables.

The consequence o f using angles as shape descriptors is that the use of conventional 
statistics is deficient since angular measurements are periodic variables. In this case, 
directional statistics [85] can be used as the basis for subsequent statistical analysis. 
Given N  angular variables 0^..., 0N, a measure o f the average value is given by:

arctan (5 /  C)
71 + arctan /  C j

if  C  > 0 
if  C < 0 (3-1)

where C = ^  cos (6U) ) and S  = ^  sin [0(,) ). (3-2)
>=1

A measure of dispersion expressed as the circular standard deviation, is given by a 
logarithmic transformation to map the standard deviation onto a finite 2n  range, i.e.,

= ^ - 2 In^L- y jc2 + S 2 /  Tv) (3-3)

However, the extension o f  the statistical analysis o f  angles to the multivariate case and 
volumetric shapes is not straightforward.

3.2.3 Ratios of Distances
Ratios o f  inter-landmark distances are also fully invariant descriptors and have the 
advantage over angles in that they can be used in all dimensions and are easier to calcu
late and manipulate. The calculation involves Euclidean distances related to three 
landmarks, i.e., for a triplet o f  points p„Pj,pk:

(3-4)
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Working with ratios is therefore equivalent to manipulating a set o f triangles. Because the 
similarity or dissimilarity between two triangles can be assessed by testing equality 
between all corresponding ratios, such ILD is appropriate for shape comparison and 
dissimilarity analysis. From a theoretical point o f view, it is shown that it would be more 
preferable to consider the logarithm o f the ratios as shape variables [86] because this 
simplifies to a linear combination o f the distance measures whilst maintaining the 
normality assumption ( lo g (a ; /y) = log(:r) -  lo g ( y ) ) . For this reason, ratios o f inter
landmark distances are used in Chapter 5 to develop a fully invariant method for outlier 
detection and correction in ASMs.

3.2.4 Barycentric Coordinates
Barycentric coordinates can be considered as a type o f ILD, since they are related to a 
small number of points and provide information about the relative rather than absolute 
position o f the points [87]. More specifically, they describe the position o f a point within 
a local coordinate system formed by a set o f three landmarks by using an affine combina
tion o f their coordinates. Given three points p{,P j,pk with their coordinates x ,,x ; , x*, 
and an arbitrary point p with coordinates x ,  the scalars aj ,aj ,ak are the barycentric 
coordinates o f p  with respect to p,,pj} pk if:

x = aixj + ajXj + akxk (3-5)

and ax+ a} + ak = 1. (3-6)

The constraint in Equation (3-6) is imposed on the coefficients to allow for suitable 
invariance to a group o f similarity transformations. Figure 3.2 provides a simple illustra
tion o f the barycentric coordinates. In (a) and (b), four points are plotted with respect to 
two distinct triangles using the same barycentric coordinates, showing relative as opposed 
to absolute description o f the landmark positions. In (c), the sign o f the coordinates with 
respect to the reference triangle is shown.
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Figure 3.2 Example showing the properties o f barycentric coordinates. In (a) and (b), 
four points are plotted with respect to two distinct triangles but with the same barycentric 
coordinates, showing a relative as opposed to an absolute description o f landmark 
positions. In (c), only the sign o f the coordinates with respect to the reference triangle is 
displayed.
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Barycentric coordinates have attracted a range o f applications in computational geometry 
and graphics. They include surface parameterisation [88] and interpolation [89], as well 
as dimensionality reduction [90], Several methods also exist to generalise the barycentric 
coordinates to more than three landmarks and irregular polygons, such as in [91,92]. In 
Chapter 4, generalisation of the Barycentric coordinates based on a statistical formulation 
will be introduced for constructing partial geometrical constraints to enable prediction of  
landmark positions in the image space.

3.2.5 Properties of ILDs
According to the definition by Kendall [93], shape is all the geometrical information that 
remains when the effect o f location, scale and rotational is removed. In medical imaging, 
for example, the position o f the patient in the scanner should not affect the morphological 
and functional analysis o f the images. With landmark coordinates and superimposition, 
the effects o f  translation, rotation and scaling are minimised but not completely removed. 
In statistics, the pose parameters can be referred to as nuisance variables, since they do 
not enter in the analysis and yet its effect must be accounted for.

In contrast, ILDs ensure explicit invariance to a group o f similarity transformations. This 
is independent o f any pre-processing procedure o f the landmark data. In practice, several 
types o f invariance can be obtained by adequate choice o f the inter-landmark variables. 
For example, ratios are appropriate for fully invariant analysis, whereas inter-landmark 
distances incorporate scaling information, allowing both size- and shape-related analysis. 
The generalisation o f barycentric coordinates to model partial geometrical constraints is 
invariant to translation, and therefore to the location o f the anatomical structure within the 
image. As a result, ILDs can be applied when the pose parameters are unknown or 
difficult to be estimated. These properties o f invariance o f ILDs are essential in the work 
presented in this thesis.

In addition to shape invariance, two important benefits o f shape-based image analysis can 
be derived by using ILDs. Firstly, unlike coordinates which characterise the position o f a 
single point, relationships between different parts o f  the shape can be encoded by the 
inter-landmark variables. As a result, a single ILD can implicitly model correlations and
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patterns o f variation within a shape. This can be beneficial, for example, for identification 
o f potential inconsistencies from individual variables, which is one o f the goals o f this 
thesis. This property is used in Chapter 6 for the assessment o f myocardial motion 
abnormality. The correlation in contractility between different segments o f the ventricle is 
modelled using spatio-temporal ILDs, enabling morphological and dynamic inconsisten
cies to be localised.

Furthermore, ILDs only involve a small number o f landmarks and therefore can be used 
to decompose global shape constraints by appropriate modelling o f individual variables. 
The aim is to gain some flexibility in the use o f prior knowledge for shape analysis. 
While PDMs cannot support missing points since all landmarks need to be included in the 
shape parameters, the use o f multiple ILDs independently can overcome such difficulties. 
More importantly, in the presence o f geometrical inconsistencies associated with a few 
landmarks, not all global shape parameters are affected, which is not the case for coordi
nate based schemes. As a result, ILDs can have a good performance for the search and 
identification o f individual landmarks. The cost o f this flexibility due to decomposition is 
that high-level correlations between ILDs are not considered, which can cause some 
relaxation o f the constraints on the landmarks. In practice, however, suitable analysis o f  
multiple intersections between the ILD constraints can result in a reasonably good 
approximation o f  landmark constraints.

It should be noted, however, ILDs are not without their limitations. First, the lack o f a 
direct one-to-one mapping between the descriptor vector and the original shape can 
complicate the manipulation o f such variables in the image space. As a result, specific 
statistical and algorithmic implementation is required to select ILDs that are relevant to 
the analysis task. Another limitation is a significant increase in the number o f  variables 
involved in the computations (from 3n in the case o f  coordinates to n ( n - l ) / 2  for 
two-point ILDs such as linear distances in 3D). This, however, is not an issue for this 
thesis since only ILDs o f some statistical significance and geometrical interest are used. 
The selection o f suitable sets o f ILDs is reviewed in Section 3.3.4. There have been much 
debate regarding the statistical power for the estimation o f  mean shape and global 
covariance [70,83], which is considered as lower for ILDs compared to that o f coordi
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nates. However, ILDs are used in this thesis for decomposing the global shape constraints 
and the statistical analysis is carried out on individual variables as shown in subsequent 
chapters o f this thesis.

In summary, ILDs have interesting properties including global invariance and the ability 
to model inter-landmark correlations and decompose global shape constraints. The 
traditional limitations are overcome in this thesis by appropriate selection o f inter
landmark variables, as well as by using novel algorithm design and statistical implemen
tations developed in this thesis.

3.3 Statistical Analysis of ILDs
Traditionally, the point distribution model is based on a parametric model that relates all 
landmarks in the shape. In this thesis, the use o f invariant ILDs calls for an alternative 
statistical implementation in order to enable the decomposition o f  global constraints. To 
this end, statistical intervals are presented in this section for describing individual 
descriptors and normal inter-landmark patterns at the training stage. Incorporated as prior 
knowledge, they enable effective statistical inference on new landmarks in input images, 
such as testing for consistency or performing prediction.

3.3.1 Univariate Tolerance Intervals
A tolerance interval for a measured quantity is a statistical interval within which, with 
some confidence, a specified proportion o f  a population falls [94] based on a representa
tive sample S . In other words, the tolerance interval corresponds to the limits o f  
acceptability within which a certain percentage o f each individual measurement in the 
population is contained. Any value outside the tolerance intervals can be considered as 
extreme or invalid, suggesting some associated anomaly regarding the statistical process 
under investigation. Tolerance intervals have been widely used in statistical process 
control and manufacturing [95].
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Because tolerance intervals are based on only a sample o f  the entire population, we 
cannot be 100% confident that the interval will contain the specified proportion. Thus 
there are two different proportions associated with the tolerance interval: a degree o f  
confidence, and a percent coverage or content. Let F be the cumulative distribution 
function o f a variable r , the corresponding statistical tolerance interval T (S ) -  [rL,rv ] 
is a two-sided tolerance interval with /9-content and /-confidence if:

P[F{rv ) - F { r L)> P }  = r  (3-7)

This equation indicates that at least a proportion o f the population ft will lie within 
interval [rL,rj,] with confidence coefficient y .

For this thesis, each variable is assumed to follow a Gaussian distribution, in which case 
it can be shown [96] that the statistical tolerance interval, i.e. the solution o f  Equation (3- 
7), can be calculated from the mean r and standard deviation s in the following form:

T {S) = [ r -  fcjS.r + k̂ s] (3-8)

where is the two-sided tolerance factor, which can be approximated by [97]:

f c j  =
7V - 1  
X y ,N -1

(3-9)

where N  is the sample size, is the upper ( 1 - / 9 ) / 2  quantile o f the standard
normal distribution and z I,n-i *s the lower y  quantile of the chi-squared distribution 
with TV — 1 degrees o f freedom.

Alternatively, nonparametric tolerance intervals can be estimated, based on the smallest 
and largest observations [98], i.e.,

T (S )  = [m in (S ) , max (5 ) ]  (3-10)

In this case, combinations o f  confidence and coverage coefficients that match the distri
bution-free tolerance interval can be calculated by using the following formula [99]:
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(3-11)

3.3.2 Multivariate Tolerance Regions
A tolerance region is a generalisation o f the tolerance interval for multivariate statistical 
processes. It is a region o f  the multidimensional space under investigation where there is 
a specified high probability (the confidence) that at least a specified proportion o f the 
distribution (the coverage) is included. Mathematically, a tolerance region R (S )  for a 
given sample S o f  N observations S = (v p ..., ) in the p dimensional space can be
defined for given /7-content and /-confidence as follows [100]:

The requirement in Equation (3-12) is to guarantee with a confidence level /  that the 
proportion o f population which R (S) includes is greater than or equal to a predefined 
coverage coefficient /?.

While the estimation for univariate tolerance intervals can be reduced to finding the lower 
and upper limits o f acceptability, the multivariate case requires an alternative definition. 
Amongst existing approaches, the limits o f the tolerance region can be defined in terms o f  
a specified distance that depends on the multi-dimensional distribution from each obser
vation to a reference value. Mathematically, given v a multivariate observation in a p 
dimensional space, a tolerance region R  can be defined as follows:

where ¡1 and X are the reference location and scale o f the distribution, respectively, while 
d denotes the distance measure to the centre o f the distribution and L a threshold that 
limits the size o f the tolerance region, which depends on the confidence and coverage 
coefficients.

(3-12)

R (S )  = { v e  R ’’ | d (v ,//,X ) < L} (3-13)
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For a multivariate normal distribution, it was shown [101] that an appropriate distance 
measure for multivariate normal tolerance regions is the Mahalanobis distance, which 
measures a scaled distance to the centre of the distribution as follows:

d (v) = (v -  //)TI  *(v - f i ) (3-14)

where the centre and scale can be approximated using the mean observation and the 
covariance matrix, respectively:

With this definition, the tolerance region R (S ) is a hyper-ellipsoid (since the equi- 
probability hyper-surface o f the multivariate normal distribution is a hyper-ellipsoid) 
which has the smallest volume amongst regions which include a proportion /? o f the 
population [100]. For the corresponding tolerance region limit L in Equation (3-13), it is 
shown that it can be estimated from the critical values o f the chi-square distribution as 
[ 102]:

Generally, in order to consider only the directions o f meaningful variations, an eigen- 
decomposition o f the covariance matrix can be applied as in PCA. By rejecting the p - 1 
noisy directions, the distance measure can be simplified to:

Methods have also been developed for nonparametric multivariate tolerance regions, such 
as by Di Bucchianico based on the notion o f equivalents blocks [103].

The goal o f prediction is to determine future values o f  the response variable that are 
associated with a specific combination o f predictor variable values. Generally, a predic

(3-15)

(3-16)

(3-17)

3.3.3 Prediction Regions
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tion model can be associated with the process by using regression analysis. The accuracy 
o f the prediction, however, is subject to fluctuations due to uncertainties or statistical 
variability present in the sample. The prediction interval (or prediction region in the 
multivariate case) consists o f the limits within which a predicted value is expected to lie 
with a prescribed probability. Generally, the data used to fit the model to a process can 
also be used to compute the prediction uncertainty range within which any predicted 
value is considered plausible.

While a tolerance interval provides acceptability ranges for a specified percentage o f all 
future measurements, prediction intervals define limits for the value o f a single measure
ment for a given set o f predictor variable values. As a result, the estimation differs in that 
prediction intervals are based on central and variance parameters that are conditioned on 
the values o f the predictors. Prediction regions are used in Chapter 4 to help the localisa
tion o f new landmarks based on known positions of other points in the shape.

3.3.4 Selection of Variables
In this thesis, each defined ILD is associated with a single statistical interval (i.e., 
tolerance or prediction). The aim is to approximate the shape constraints, in particular 
regarding each individual landmark, by implicit analysis o f the sum o f the multiple 
statistical intervals associated with the ILDs. A sufficient number o f  intersections 
between the statistical intervals need to be considered to enable adequate approximation 
o f the shape constraints. To this end, the exhaustive use o f all the ILDs can be time 
consuming if  the number o f landmarks n is large (e.g., a total o f n ( n - i y 2  and 
n(n  - l ) ( n  -2 ) j6  variables for two-point and three-point ILDs, respectively). More
over, due to a potential lack o f correlation between landmarks, some o f the ILDs can have 
large statistical intervals, and thus are not useful for, or even detrimental to, the shape 
analysis. It is therefore more efficient to select a subset o f the ELDs in practical situations, 
depending on the nature o f the shape analysis task.

To achieve this, mainly geometry-based solutions have been suggested thus far. Trauss 
and Bookstein [104], for example, proposed a method to uniquely characterise biological 
shapes using a non-redundant number o f inter-landmark distances based on triangulation.
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Rohlf and Archie [105] developed a method to select inter-landmark distances based on 
their topological position on the shape boundary. In this thesis, since we are mainly 
interested in statistical-based image interpretation, two possible approaches based on 
statistical criteria are proposed instead. One is to group the landmarks into segments o f  
smaller number of points with naturally high correlation. This approach was used in [106] 
to decompose a statistical model o f shape into a set o f smaller but statistically meaningful 
models. In this case, the ILDs used for shape modelling and analysis are all within the 
selected groups. An alternative approach is to select for each landmark a minimal number 
o f ILDs with low variance, since they provide greater constraints on the landmark. 
Examples o f varying ILD selection strategies are illustrated in Figure 3.3 on a left 
ventricular boundary, where (a) shows all possible inter-landmark connections from one 
single point and (b) displays the triangulation achieved with the method by Trauss and 
Bookstein. In (c), three groups o f points are defined depending on their position on the 
LV (basal, mid-ventricular, apical regions) and all ILDs within are selected. Figure 3.3(d) 
displays a set o f inter-landmark connections for each point in the shape selected based on 
low covariance criterion. It is worth noting that for highly dense meshes, the consistency 
o f ILDs involving neighbouring landmarks can be affected. The proposed variable 
selection procedure , however, eliminates such penalizing ILDs since they generally 
induce a large tolerance interval.
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Figure 3.3 Illustration o f  the selection o f a set o f  ELDs for shape representation, (a) shows 
all possible inter-landmark connections from a single point. In (b), a set o f inter-landmark 
connections are selected using the triangulation proposed by Strauss and Bookstein [104]. 
In (c), three groups o f points are defined depending on their position on the LV (basal, 
mid-ventricular, apical regions) and all ILDs within are selected, (d) displays a set of 
inter-landmark connections for each point in the shape selected based on a low covariance 
criterion.
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3.4 Example ILD-based Shape Analysis
To illustrate the geometrical and statistical properties o f the ILDs described in this 
chapter, a number o f examples are given in this section to help understand the key 
concepts presented in this thesis. To this end, 50 long-axis cine MR images o f the LV are 
extracted from a set o f subjects aged between 18 and 76. The datasets were acquired 
using a 1.5T MR scanner (Sonata, Siemens, Erlangen Germany) and a TrueFISP se
quence (TE = 1.5 ms, TR = 3 ms, slice thickness = 10mm and pixel size from 1.5 to 
2mm) within a single breath-hold. Retrospective cardiac gating was used to ensure an 
even coverage of the entire cardiac cycle and for each subject 25 cine frames were 
acquired. The epi-cardial boundaries for all datasets are delineated by using a set o f 23 
landmarks, where point correspondence is established throughout the datasets by using 
the apex and mitral valve as the reference landmarks (similarly to Figure 2.1). For all the 
examples given in this chapter, no shape alignment or pre-processing o f the shapes is 
carried out prior to the calculations o f the ILDs. A set o f univariate and multivariate ILDs 
are then calculated, including inter-landmark distances, ratios o f  distances, angles and 
barycentric coordinates.

3.4.1 Univariate ILDs
As mentioned earlier, inter-landmark distances and ratios o f  distances are amongst the 
most important ILDs. They are calculated for the training sample described above by 
considering all possible landmark combinations. For all these variables, normality tests 
are performed to show the ability o f such ILDs to model normally distributed datasets. 
For this purpose, the nonparametric Lilliefors test for normality is used [107]. The 
method estimates the maximum discrepancy between the cumulative distribution function 
o f the normal distribution and the empirical distribution function from the population. 
The test is known to perform well in the case o f unknown mean and variance as well as 
for small sample sizes. The Lilliefors test uses a table o f critical values computed from 
Monte Carlo simulation for sample sizes less than 1000. In this section, a critical value o f  
0.1457 is derived for the 50 datasets with a significance level o f  1%.
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Figure 3.4 illustrates the normality tests with respect to the critical value for inter
landmark distances (a) and ratios o f distances (b). It is evident from the results that nearly 
all tests are below the critical value, with a percentage o f accepted hypotheses o f 96% for 
ILD distances and 98% for ILD ratios. This shows that the normality assumption is valid 
for these variables. The rejections during the normality test are mainly due to low 
correlation between some landmarks in the shape. For example, the level o f  correlation 
between the two valve points is evidently greater than the one between a valve point and 
the apex. Additionally, higher value associated with ILD ratio is due to scale invariant 
properties o f the descriptor, which effectively eliminates potential size-related bias.

Figure 3.5 illustrates the ability o f single univariate ILDs for describing key anatomical 
properties as well as geometrical correlations within the shape. In this example, the aim is 
to statistically characterise the relative positions of the valvular and apical points with the 
LV. To this end, the log ratio o f distances is used as the basis for inter-landmark variable. 
Example results are shown in Figure 3.5(a) and the values obtained from the 50 datasets 
are plotted in Figure 3.5(b), along with the corresponding tolerance interval estimated by 
using Equations (3-8) and (3-9) (the tolerance factor is found equal to 2.37). Further
more, the histogram derived from the population is plotted in Figure 3.5(c), where it can 
be seen that the univariate statistical distribution is well approximated by a Gaussian 
distribution.

This example illustrates the use o f single ILD to implicitly encode geometrical properties 
(e.g., length of the LV and size o f  the valves by using the triangle in Figure 3.5(a)). 
Furthermore, such variables have the potential to carry out statistical inference on 
landmark positions in an invariant fashion (e.g., predict valve positions, identify abnormal 
apical regions). These properties will be shown in more detail in subsequent chapters.

67



(a) In ter-landm ark d istances

CD

CD>

48

40

32

■= 24

CDJo
E3Z 16

Critical value 
(1% significance)

0.14581

Lilliefors test statistic

(b) Ratios of inter-landmark distances

Figure 3.4 Lilliefors normality tests for inter-landmark distances (a) and ratios (b), as 
extracted from the epi-cardial datasets. It can be seen that nearly all tests are below the 
critical value, demonstrating normality (or near normality) distribution of the inter
landmark variables. The few cases where the normality hypothesis is rejected are due to a 
lack of correlation between the landmarks involved.
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Figure 3.5 Illustration of a univariate ILD. The log of the ratio of inter-landmark dis
tances is used to describe the invariant configuration of three landmarks. These variables, 
for example, can be used to constrain the lateral movement of the apical point during 
model instantiation.
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Although it is not the main subject o f this thesis, an example o f the use o f angular 
measurements and directional statistics in shape description is included in this section. 
The three selected angles in Figure 3.6(a) implicitly describe the position o f the valvular 
and apical points, as well as length and width o f the ventricle. The 50 angles calculated 
from the training set are plotted on a unit circle in Figure 3.6(b), showing clusters formed 
for each o f the angular measures. The mean values and one circular standard deviation are 
also displayed for each case by taking into account the periodicity o f angular ILDs based 
on Equations (3-1) and (3-3). Because angular descriptors have similar capabilities for 
studying triangles compared to ILD ratios but are more difficult to handle numerically 
particularly in 3D cases, they are not considered in the subsequent chapters for invariant 
shape description.

3.4.2 Multivariate ILDs
Multivariate ILDs can be obtained by concatenation o f several univariate inter-landmark 
variables into a unique vector. They are particularly useful for studying spatio-temporal 
shape properties, such as those required for cardiac modelling. A simple example o f such 
multivariate construction is given in Figure 3.7, where two ratios involving valvular and 
apical points from end-diastolic (a) and end-systolic (b) phases are concatenated into a 
single vector. The derived ILD implicitly represents the movement o f  the valve and 
ventricular shortening over time. The calculated 50 vectors from all datasets are plotted in 
Figure 3.7(c), suggesting multivariate normal distribution o f the population. Furthermore, 
the multivariate tolerance region is also estimated by using Equations (3-14) and dis
played to illustrate the threshold of valid values. Any new measurement found outside the 
tolerance region is an indication o f  potential abnormality in morphology or contractile 
behaviour. Such a property is used in Chapter 6 for the study o f normal myocardial wall 
motion and regional contractile abnormality.
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Figure 3.6 Illustration of the statistical analysis of angular measurements based on 
landmark data. The three selected angles describe implicitly the position of the valvular 
and apical points, as well as the length and width of the ventricle and the mitral valve. 
The 50 angles calculated from the training set are plotted on a unit circle, along with the 
mean values and one circular standard deviation calculated from Equation (3-6), by 
taking into account the periodicity of angular ILDs. It can be seen that the values calcu
lated from the normal training datasets are well clustered for each angle.
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Figure 3.7 Illustration of a two-dimensional ILD. The variable describes the change in 
ratio of inter-landmark distances involving valvular and apical points at end-diastole and 
end-systole, therefore describing invariant movement of the valve.
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Barycentric coordinates as introduced in Section 3.2.4 and their existing generalisations 
[91,92] can be considered as multivariate ILDs since they consist o f a number o f coeffi
cients equal to the number o f reference landmarks. Their standard formulation using a 
single triangle as the reference coordinate system is used in this section to model invari
ant landmark constraints. To this end, two different reference triangles (shown in Figures 
3.8(a) and 3.8(b)) are first chosen to calculate the barycentric coordinates for all land
marks on the epi-cardial border o f the training set. The obtained triplets o f coefficients are 
then projected back onto the mean shape and displayed on the figures to illustrate the 
spatial distribution o f these landmarks. It can be seen that a cluster is formed for each 
landmark, which can be modelled by using multivariate statistical regions. Furthermore, it 
can be observed that the landmark distributions, particularly in terms o f variance, differ 
when changing the reference triangle. This is due to the varying inter-landmark correla
tions involved. The landmarks can be further constrained by using multiple reference 
triangles (and thus multivariate ILDs), as illustrated in Figure 3.8(c). The analysis of  
intersections between multiple tolerance regions is a central element o f this thesis in order 
to approximate the global shape patterns in terms o f individual landmark constraints.

3.5 Conclusions
In this chapter, we have introduced the basic concept involved in ILDs for shape analysis. 
The main motivation behind use o f ILDs in this thesis is the inherent limitations o f  
existing techniques to account for potential errors in shape alignment. As a result, 
essential tasks such as automatic initialisation, constrained feature point search, outlier 
handling and localisation o f abnormality are difficult to achieve with these traditional 
approaches. In this thesis, ILDs are used to address these issues and enable more effec
tive, robust yet sensitive shape-based image analysis.

Despite their early applications in some areas o f biological shape analysis, ILDs have not 
been widely considered in medical image computing, mainly due to its difficulty in 
statistical manipulation. In this chapter, three main attributes o f  ILDs that can be used for 
shape analysis are considered. First, ILDs explicitly incorporate shape invariance and 
therefore can be applied when the pose parameters are unknown or difficult to be esti
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mated accurately. Furthermore, ILDs involve a small number of landmarks, thus enabling 
decomposition o f global geometric constraints for more flexible shape analysis. Finally, 
by effective modelling o f suitable inter-landmark relationships, the relevant correlations 
between different parts o f the shape can captured, which is beneficial for both landmark 
prediction and analysis.

In this chapter, a number o f ILD examples are provided to illustrate the basic feature of  
these descriptors. Multivariate ILDs have also been discussed, which include barycentric 
coordinates and spatio-temporal ILD vectors. Their properties for modelling normal 
anatomy, particularly through the use o f statistical intervals, are illustrated. The intersec
tion o f multiple tolerance intervals is used in this thesis as the basis for imposing 
constraints on individual landmarks. It is important to note that the inter-landmark 
variables detailed in this chapter are only some examples o f  ILDs. Other variables 
describing inter-landmark patterns can also be constructed depending on the type of 
invariance, variability and applications o f interest.

Since each ILD is associated with more than one point, it is not straightforward to make 
statistical inference on individual landmarks by simple analysis o f the ELD values. The 
same problem arises in terms o f landmark prediction, which also depends on the position 
o f  other landmarks o f the shape. New algorithms and statistical modelling are required in 
order to effectively manipulate these ILDs for shape-based image analysis. This is the 
subject o f subsequent chapters which will present a number o f new methods based on 
ILDs. They include the use o f ILD for shape invariant ASM initialisation and landmark 
constraints (Chapter 4), outlier handling (Chapter 5) and localised contractile abnormality 
detection (Chapter 6).
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Figure 3.8 Illustration o f barycentric coordinates o f the landmarks. In (a) and (b), they 
are calculated for two distinct triangles, showing the invariant distribution o f  landmarks. 
In (c), three triangles are used, resulting in stronger constraints o f the landmarks.
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Inter-Landmark Constraints

4.1 Introduction
In the previous chapter, we have introduced Inter-Landmark Descriptors (ILDs) along 
with their key attributes for shape-based image analysis. The use of ILDs in this work is 
aimed at addressing the difficulties of conventional techniques based on landmark 
coordinates, i.e., sensitivity to initial shape alignment and a global nature of the shape 
constraints. As a result, it is difficult to introduce suitable constraints to Active Shape 
Models (ASMs) for automatic shape initialisation and robust feature point search. To 
address these problems and enhance the accuracy of ASMs for complex segmentation 
tasks, this chapter will introduce a statistical formulation for incorporating effective 
landmark constraints based on ILDs*.

In ASMs, the application of global shape constraints during automatic initialisation is 
difficult due to the high-dimensionality of the problem and the size of the search space. In 
practice, however, an ASM requires suitable starting estimates to ensure that the search 
process does not get trapped in an undesirable local minimum. To illustrate its sensitivity 
to initialisation, Figure 4.1 shows a long-axis cardiac MR dataset with two different 
manual initialisation positions of the epi-cardial border of the Left Ventricle (LV). 
Significantly different results are obtained by using the same shape model and the

’  Results first presented at 1 l lh MICCAI Conference, New-York, 2008.
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subsequent ASM fitting process. To rectify this problem, some exhaustive search meth
ods can be adapted for automatic ASM initialisation including genetic algorithms [71], 
modified Hough Transform [72], and particle filtering [73]. These approaches, however, 
are inherently time consuming particularly for 3D cases. In this chapter, we will demon
strate how reliable and effective initialisation can be achieved by adequate decomposition 
of the global shape into a set of inter-landmark constraints.

(a) Initialization 1 (b) Initialization 2

Figure 4.1 The effect of different ASM shape initialisations on the final results for a 2D 
epi-cardial dataset. Marked differences can be observed where in (a) it results in poor 
definition of the valvular points and in (b) it fails to localise the apex.

Furthermore, the global shape constraints of ASM prohibit imposing suitable search 
regions for each landmark. The common use of normal shape profiles can only cover a 
limited image space for each landmark but not in the tangential direction where poten
tially better candidates may be located. In practice, salient features such as high curvature
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(a) Example 1 (b) Example 2

Figure 4.2 Illustration of the limitations of conventional ASM search using normal search 
profiles. In (a), the true positions for the valvular points are not covered by the normal 
search profiles. In (b), due to a poor definition of the apical point by the normal search 
profiles, a large localisation error is introduced at the apex.

points, corners, or end points may not be covered by the normal search profiles. Figure 
4.2 illustrates this difficulty with another example of left-ventricular segmentation, where 
it can be seen that key landmarks corresponding to the valvular and apical regions are 
missed by using normal shape profiles. The limitation of using normal search profiles was 
in fact acknowledged by Cootes et al. many years ago [59] but the problem has so far not 
been specifically addressed. The trivial solution of using multidimensional search regions 
instead of the conventional radial search is not effective as this can lead to overlapping 
search regions, thus introducing large geometrical errors.

Another difficulty related to feature point search is the selection of suitable size of the 
search region. To address this problem, Cootes et al. [56] proposed a multi-resolution 
ASM strategy. At coarse resolutions, longer search profiles allow for better capture of 
salient features, whereas at finer resolutions, improved localisation is ensured. The 
technique, however, still depends on normal search profiles and in situations such as 
those encountered in Figure 4.2. Correct feature localisation is not guaranteed although 
the overall robustness of the algorithm does improve as a result. In this thesis, we will 
introduce a new concept of inter-landmark conditional probability which allows deriva
tion of statistically sound search regions in terms of size, location and shape.
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Another important consideration for increasing the robustness o f feature point search is 
the use o f partial geometrical constraints. To this end, Cootes et al. [59] simply used a set 
o f PDMs using an increasing number o f landmarks and proposed an algorithm to choose 
the feature points that are most consistent with the intermediate models. The method 
required the manipulation o f a large number o f PDMs and was biased towards the mean 
values. Other techniques involved the use o f constraints between neighbouring points. For 
example, Behiels et al. [57] incorporated a smoothness term into the total cost function 
for feature point search. Hamameh and Gustavsson [58] used dynamic programming for 
feature point selection to prevent temporal discontinuity. Although these methods do 
improve the quality o f boundary localisation, the constraints are not statistically defined. 
Furthermore, many o f these methods are still dependent on manual initialisation.

The main contribution of this chapter is to present a method for building inter-landmark 
constraints that can be used for decomposing the shape model into two independent 
processes. Specifically, a statistical formulation is introduced to enable prediction o f the 
position o f a single landmark based on the known positions o f a set o f points in the shape. 
The ILDs used for this purpose are translational invariant which is beneficial since the 
locations o f the landmark points are unknown at initialisation and during feature point 
search. The immediate implication o f the proposed approach is in its ability to derive 
statistically-based search regions with location and size automatically defined for each 
landmark, thus resulting in extended coverage o f the target features and improved 
adaptation to complex structures. Subsequently, an optimal feature point selection 
algorithm is developed based on the A* graph search algorithm. Instead o f  selecting the 
feature candidates with the best grey-level properties within each search region independ
ently, the proposed algorithm identifies in one single step the most salient and 
geometrically consistent feature candidates from all search regions. Finally, the inter
landmark constraints are used to permit reliable and efficient automatic initialisation o f  
the ASM search without user interaction. The validation o f the proposed algorithm is 
carried out with both 2D and 3D MR segmentation o f left ventricular epi-cardial borders 
o f varying complexities.
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4.2 Methods
4.2.1 Inter-Landmark Conditional Probability
The modelling o f the inter-landmark relationship between a single point and a set o f  m 
landmarks (m < n) within a family o f shapes is to be explored in this section based on a 
statistical formulation that is translational invariant. Specifically, an inter-landmark 
conditional probability is introduced which describes the statistical distribution o f a 
landmark pj(l) given the known positions of m points pJ(1) to p„m) within the same 
shape ( i > m), i.e.,

where s is an indexing function. Under the normality assumption o f the ASM for training 
shapes o f the same family of anatomical structures, the relationship between pj(l) and 
points p,(1) to p,(m) follows a pattern that can be modelled by using a multivariate 
Gaussian distribution according to the following p.d.f.:

where x* and S* are, respectively, the corresponding mean location and covariance o f  
pj(0 conditioned on the location o f the points pJ(1) to pJ(m). The mean vector can be 
regarded as the predicted location o f landmark pJ(0 when feature points pJ(1), ..., pj<m) are 
known, whereas the covariance describes the associated multivariate prediction interval.

In order to estimate these parameters, a landmark-based parametric model is required to 
establish the relationship between p,(i) and p,{1) to p,(m). To this end, the proposed 
formulation is based on a generalisation o f barycentric coordinates [87] introduced in 
Chapter 3. In the proposed method, an arbitrary polygon can be used as a basis coordinate 
system to uniquely describe any point in the underlying space. The vector o f coordinates 
x ,(l) within each training sample is an affine combination o f  the vectors x ,(1), ..., x J(m),

(4-1)

(4-2)
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(4-3)mm

for 1 < j  < N,  where ^  aa(k) = 1 .

The coefficients as(k) are the weights associated with each landmark vector xj(t) and they 
sum to 1 to ensure translational invariance. The vectors t and e (j) are translation and 
residual descriptors, respectively. The formulation in Equation (4-3) has some connec
tions to multivariate regression analysis, except that the proposed landmark-based 
parametric model assigns one single coefficient for each vector o f coordinates (the same 
coefficient for all coordinates o f the same point) and more importantly it is invariant to 
translation of all landmarks in the image space. The coefficients aa(t) and vector t are 
calculated by minimising the sum o f squared distances between the coordinates from the 
training samples and the predicted values, Le.,

N

V ) ’ t ~  argm in£ eJe, (4-4)

which can be solved under the constraints by using Lagrange multipliers.

Given the known locations o f  xj(1), ..., x f(ra) o f a set o f landmarks in an image, the 
conditional mean location and covariance o f landmark x,(i) can be calculated as follows:

It can be seen that the conditional covariance matrix is constant while the conditional 
mean location depends on the specific values o f  x s(1), ..., xI(m). This result is consistent 
with basic conditional probability theory for normal distributions.

The inter-landmark relationship described in this chapter enables the prediction o f  the 
location o f a new point within a certain region. The conditional prediction region A is a 
3D ellipsoid centred at the conditional mean with axes defined by the conditional covari
ance matrix:

m

(4-5)
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(4-6)
J4 ( X s(.) I X s ( l ) l - - - ) X » ( m ) )

{X e M3 | (x j(i) -  x* f  S*"1 (xs(l) -  x*) < t / , } .

where UA controls the size o f the prediction region A , which in practice can be specified 
based on the chi-squared distribution [102].

By using the inter-landmark prediction regions, it becomes possible to run a constrained 
search algorithm for all landmarks in the image. In the following sections, two algorithms 
based on partial geometrical constraints are presented. The first algorithm allows the 
extraction o f optimal feature points in the ASM and the second algorithm provides an 
automatic method for ASM initialisation.

4.2.2 Optimal Feature Point Search
As mentioned in the introduction, the feature point search which is central to the ASM is 
traditionally carried out using normal search profiles with limited coverage o f the image 
without use of geometrical information. To alleviate some o f the problems introduced, an 
optimal feature point search algorithm is developed in this chapter based on inter
landmark conditional probabilities. The goal o f the method is to derive suitable search 
regions that are statistically defined by introducing geometric constraints during the 
search, as well as to find the optimal set o f feature points according to the pre-defined 
grey-level cost function d, (Section 2.3.1).

Instead o f searching for feature points independently for all landmarks, the proposed 
algorithm uses a sequential approach through which feature points are successively 
investigated from pj(1) to pJ(n), where s is an indexing function that describes the order 
in which points are visited during the search. For each landmark pJ(m) (1 < m < n ) , the 
locations o f previously selected feature points (pj(1), ..., P,(m_i)) are taken into account. 
This is achieved through the introduction o f prediction regions A (x l(i) | x ^ , . . . ^ ^ )  
calculated from (14) in the previous section. This ensures the ASM to consider a region 
o f  suitable location and size based on statistical criteria instead o f the conventional 
normal search profiles. A number o f candidates are evaluated within each prediction
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region A and several paths can be constructed in this manner from ps(1) to ps(n). The 
optimal path is extracted efficiently by using a combinatorial approach based on the A* 
algorithm [108],

The A* algorithm is a graph search algorithm, based on a best-first and heuristic ap
proach, that can find efficiently solutions to least-cost path problems. It incrementally 
explores the routes leading from the starting point by considering first the routes that 
appear to be most likely to lead towards the goal. This is achieved by considering for each 
path the actual cost of the pat (referred to as the cost function g ) and an estimation o f the 
remaining cost to the goal (the heuristic function h ). This allows efficient elimination o f  
implausible paths and prioritisation o f the remaining solutions. At each stage o f the 
search, the path with the minimal sum o f the cost and heuristic functions (i.e., with the 
cheapest estimated cost to the final point) is further developed by exploring the candi
dates for the next node.

In the proposed algorithm, each path L is characterised by the parameters x, m, g and h , 
where x defines the coordinates o f the feature points in the path and m is the number o f  
feature points identified by the sequential search, g and h are the A* functions defined 
above to localise the optimal path and subsequently best set o f  landmark locations for the 
ASM. It is evident that the quality o f the search for the next point pj(m+]) depends on 
whether the prediction region A (x j(m+1) | x j(1), . . . ,x s(m)) intersects with the target feature 
on the boundary, which is more likely i f  points x j(1))... ,x ,(m) in the current path are 
correctly identified. Therefore, two properties o f  the path are simultaneously measured: 
the quality o f the selected points in the path (xj(1), . . . ,x j(m)) (the cost function g)  and the 
likelihood o f intersection of the remaining prediction regions A (p,(m+1) | pj(1), ...,p >(m)) to 
A (pJ(n) | p<(1), ..., p3(m)) with the target boundary (the heuristic function h ).

The cost function g is calculated by summing all the individual grey-level costs in the 
actual path:

(4-7)
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while the heuristic function h calculates the minimal grey-level cost required to reach the 
final point by summing the minimum grey-level costs within the prediction regions for 
each remaining landmark (pJ(m+1) to ps(n>) , i.e.,

n  i-

h {L )=  £  mm d, (x ,(t) e A (ps(i) | p,(l),...,p ,(m>)) (4-8)

In other words, the cost function g favours paths with the most consistent and salient 
grey-level properties, whilst the heuristic function h penalises paths with unsuitable 
boundary intersection o f the remaining prediction regions, which are therefore likely to 
lead to poor intensity characteristics.

All the generated paths are stored in a priority queue Q and at each iteration o f the A* 
algorithm, the path L with the minimal sum o f the cost and heuristic functions is selected 
from Q for further expansion, i.e.,

L = nrgjnm[g(L) + h(L)\ .  (4_9)

The search is continued until the first path in the queue reaches the final landmark p,(n), 
indicating that no better path (set o f feature points) can be found. This is because the 
heuristic function in Eq. (4-8) is admissible, i.e., it never overestimates the actual minimal 
cost of reaching the goal. This is a fundamental property o f the A* algorithm which is 
complete and always returns the optimal solution [108],

To increase the efficiency o f the method, a suitable definition o f  the indexing function s 
is required, which describes the order in which the feature points are visited during the 
A* algorithm. Ideally, the prediction region at each path expansion should be as small as 
possible to minimise the size o f image region to be explored and the number o f paths to 
be expand. Starting from an initial point p„(1) chosen as a potential landmark in the shape 
(e.g. comer, high curvature, particular image feature), a good strategy is to choose at the 
Ith position in s the landmark that correlates most with previous points in
the sequence. This is equivalent to choosing the point with the minimal determinant o f  the 
conditional covariance matrix, i.e.,
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(4-10)
s(?) = arg mink = cov(p* IP .d j.- .P ^ i- i,))

where fee {l , . . . ,n}  - { s ( l ) , . . . , s ( i  - 1 ) } .

Finally, it is worth noting that the conditional probability P  (p>(m) | pi(I), ..., pt(m_^) can be 
approximated by using only a subset o f the points pj(1), p j(m_1} that best correlates with 
the point p((m) to speed up the calculations.

Listing 4.1. The optimal feature point search algorithm

1 initialise priority queue with paths starting from each initial candidate 
<5 = {L : x e  Ha{i), with m{L) = l ,g(L) = dI (pj(1) = x ),h (L ) ~ (4-1)}

2 select first path in the queue: L0 = arg m in[9 (L) + h(L)  1
l* Q

3 if  m(L0) = n then
4 return L0 as the optimal path.

x (L0) is the set o f feature points
5
6

7
8

9
10 
11 
12

Else
increment m
For each x in 4 ( p ,(m) |T 0)

create new path x (L, m) = x  
update the cost and heuristic functions

end for
go to step 2

end if

4.2.3 Automatic Initialisation
Automatic initialisation o f ASM is a difficult task since it involves the estimations o f all 
landmark positions simultaneously. Exhaustive search requires excessive computation 
time and therefore is not practically feasible. The advantage o f using inter-landmark 
relationships and the feature point search described in this chapter is that initialisation
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only needs to be performed for the first point pj(1). A trivial solution is to select the entire 
image or a region o f interest for the initial point, followed by optimal feature point search. 
Such a solution, while guaranteed to produce an optimal ASM solution, could be time 
consuming. The aim o f this section is to propose a reliable and efficient method for the 
selection of the initial point.

The proposed method is based on the following two main features o f the proposed 
conditional search regions. Firstly, unsuitable initial candidates are unlikely to generate 
inter-landmark prediction regions for other points that intersect the boundary o f interest. 
The second is that the prediction region A (pj{m+1) | ps(l)) is unlikely to intersect the target 
boundary if the prediction regions for points pJ(m) to ps(2) do not. Based on these obser
vations, the initialisation process associates parameters x, m, v with each candidate in 
the image. By defining x = (x, y ,z)T as the coordinate vector describing its location in 
the image, m the number of prediction regions tested for intersection, and v a value that 
describes the quality o f intersections o f the m first remaining prediction regions with the 
target boundary, all candidate points are entered into a queue and initialised as follows:

m = 1,
« = 4 ( x . (1) = *)• (4-11)

The candidates are subsequently sorted according to the lowest value o f v , which at the 
start is the degree o f match o f the initial point with its modelled local grey-level proper
ties. At each stage, the first candidate in the queue is updated as follows:

m = m + 1, 
m - 1

■ v ~ — v +  (4-12)
¿ m m [ d ,  (x,(m) € A(pt(m) | x,(1) = x ))].

The value v describes the average o f the minimal grey-level costs within the first m 
prediction regions. For unsuitable candidates for p,(1), a high value o f v is expected and 
therefore these will be pushed to the back o f the queue. On the other hand, candidates 
located at, or close to, the true initial point are likely to intersect with the prediction
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regions, and therefore are brought forward in the priority queue for further evaluation. At 
each iteration, the first candidate in the queue has the best boundary intersection and is 
further evaluated by updating m and v based on Equation (4-12). The algorithm 
terminates when the first few candidates reach a value o f m that equals to n . With this 
approach, unlikely locations for the initial point are typically eliminated by a limited 
number o f intersection tests, thus enabling efficient computation in practice.

Listing 4.2. The automatic initialisation algorithm

1 initialise priority queue by scanning the input im age I 
Q = jx  e  I with m (x ) l,u (x )  = d, (ps(1) = x)J

2 initialise output set Hs[l) = 0
3 select first candidate in the queue: x0 = arg min [v (x)]
4 if m (x 0) = n then
6 add x0 to initial candidates:

H,(\) = Hs(i) ^ { x o } » Q = Q~  { x o }  

if size o f  Ha{1) -  K  then
return

end if
5 else
7 increment m
8 update v value according to equation (4-13)
9 go to step 3
10 end if

In most medical imaging applications, initial values for rotation and scaling can be 
derived from the DICOM header. In cardiac MR, for example, the orientation o f the short 
axis images is relatively well-defined for normal subject and most patients when scanned 
in supine or prone positions. Similarly, the initial rotation and scaling parameters can also 
be defined from the scan parameters. Nevertheless, the rotation and scaling parameters
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can be efficiently estimated using the proposed initialisation, by copying all candidates in 
the image for varying values and application of the same procedure as above. Candidates 
with unsuitable rotation and scaling are pushed back in the priority queue due to a lack o f  
intersection o f the corresponding prediction regions with the target boundary.

Table 4.1 Values of the parameters used for the experiments.

Variable 2D 3D

n Number o f landmarks 23 133

N Number o f datasets 20 20

Part o f shape variation explained by the 
statistical models 0.99 0.99

Bounds on eigenvalues 3 3
Grey-level profile length on either side of the 7 7landmark point

Local search size on either side o f  the current 
point 10 10

Profiles step size (mm) 2.0 2.0

Maximum number o f iterations for the ASM 
search 100 100

Variation around initial scaling (1.0) 0.2 0.2

Variation in angle around initial value 
(degrees) 30 30

K Number o f initial candidates 8 8

uA Threshold for prediction regions 13.95 13.95
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4.3 Validation
4.3.1 Experiments
The proposed method is validated with 2D and 3D segmentation o f the epi-cardial border 
o f the LV from both long and short-axis MR images. In cardiac MRI, reliable segmenta
tion o f the epi-cardial boundary with minimal user interaction is a difficult task because it 
is often surrounded by fat and confusing anatomical structures. Furthermore, the auto
matic definition o f the valve and apex is difficult.

For the purpose o f evaluating the proposed method, the LV datasets were collected from 
20 subjects, including 13 normal, 5 locally abnormal (myocardial injury) and 2 severely 
abnormal (ventricular dilatation). To this end, a 1.5T MR scanner (Sonata, Siemens, 
Erlangen Germany) and a TrueFISP sequence (TE = 1.5 ms, TR = 3 ms, slice thickness = 
10 mm, pixel size o f  1.5 to 2 mm) within a single breath-hold were utilised. For providing 
the ground-truth data for evaluating the accuracy o f  the proposed algorithm, the long and 
short axis images were annotated by an expert observer. The estimation o f the inter
landmark conditional probabilities was carried out on a leave-one-out basis. For auto
matic initialisation, the initial point pj(1) was chosen as the apex or the lower RV/LV 
junction o f the mid-ventricular slice for 2D long axis or 3D multi-slice segmentation, 
respectively. For comparison, these datasets were also segmented using the original ASM 
[5] and its robust extension based on robust estimators [62]. These methods were initial
ised by placing the mean shapes for each long and short axis image at the centre o f  the 
corresponding manual segmentations. The same local intensity models and grey-level 
cost function were used for all methods based on the standard ASM search formulation
[51]-

4.3.2 Results
Table 4.2 provides a detailed error analysis for the segmentation results (mean, standard 
deviation, min and max) for both 2D and 3D datasets. To facilitate visualisation, the 
segmentation errors for the 20 datasets and comparisons to existing methods are also 
provided in Figures 4.3 (2D case) and 4.4 (3D case). In Figures 4.3(a) and 4.4(a), the
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results o f the proposed technique are compared with the original ASM, while they are 
compared with the robust ASM in Figures 4.3(b) and 4.4(b). The performance o f the 
proposed automatic initialisation is detailed in Figures 4.3(c) and 4.4(c).

Table 4.2 Detailed error analysis o f the ASM methods (in mm).

Method

2D 3D

Mean
error

Std. Min
error

Max
error

Mean
error

Std. Min
error

Max
error

Original ASM 2.01 1 .12 0.87 4.98 2.13 1.01 0.98 4.94

Robust ASM 1.71 0.92 0.86 4.38 1.65 1.00 0.92 4.66

Auto, initialisation 1.23 0.32 0.82 1.88 1.60 0.41 0.96 2.67

Proposed method 1.13 0.32 0.64 1.82 1 . 1 1 0.25 0.79 1.84

It is evident from the obtained results that the robustness o f the original ASM is relatively 
poor for epi-cardical segmentation. This is because the target structure, unlike the endo
cardial borders, is often poorly defined and coupled with considerable artefacts. The 
robust ASM has improved the original ASM results (14 % average improvement in 2D 
and 22 % in 3D), but its performance is inconsistent for all the datasets studied, as shown 
in Figures 4.3(b) and 4.4(b). It is also evident from the results that the proposed method 
outperforms the existing techniques used for comparison. In particular, it can be seen that 
on average the automatic initialisation alone performs better in shape localisation, which 
demonstrates the reliability o f the algorithm. The entire framework using automatic 
initialisation and the optimal feature selection performs consistently well for all datasets 
as it can be seen in Figures 4.3 and 4.4. The maximal segmentation error is less than 2 
mm and the average improvement as compared to ASM and robust ASM is 46 % and 33 
%, respectively. The achieved performance gain is largely due to the geometrically 
constrained selection o f feature points and the robustness o f the initialisation process.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 4.3 2D segmentation results for the 20 epi-cardial datasets. The proposed tech
nique is compared to the original ASM in (a) and to the robust version [62] in (b). The 
initialisation results are shown in (c) in comparison with the ASM errors.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 4.4 3D segmentation results for the 20 epi-cardial datasets. The proposed tech
nique is compared to the original ASM in (a) and to the robust version [62] in (b). The 
initialisation results are shown in (c) in comparison with the ASM errors.
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Figure 4.5 illustrates a 2D example demonstrating the strength of the proposed algorithm. 
The 2D long axis view shows a dilated LV with relatively poor delineation of the epi- 
cardial boundaries, especially at the apical and lateral apical regions. As a result, the 
original ASM fails to recover the boundary of interest (see (b)) with an average segmen
tation error of 4.58 mm. The optimal feature point selection in subsequent iterations is 
further illustrated in (a), where two intermediate stages of the procedure are shown. It can 
be seen that the statistical based search regions (white ellipses) as calculated from the 
inter-landmark conditional probabilities become smaller as the boundary approaches the 
underlying landmark features. This restricts the selection algorithm to true candidate 
positions on the boundary. The final segmentation result shown in (c) demonstrates the 
accuracy achieved for boundary localisation as well as for definition of salient landmarks 
(valve and apex points).

(a) Two stages of the optimal feature point search

Figure 4.5 Example of the optimal feature point search (c) as applied to a difficult dataset 
with poor boundary contrast. Significant improvement is achieved over the original ASM 
method (b). Two intermediate stages and the corresponding statistical prediction regions 
are shown in (a).
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(a) Incorrect initial position (b) Incorrect initial rotation

Figure 4.6 Illustration of the proposed automatic initialisation. In (a) and (b), incorrect 
initial position and rotation are eliminated after a few intersection tests, (c) displays the 
prediction regions corresponding to a suitable initial candidate, (d) shows the set of 
candidates selected for the initial point.

The automatic initialisation is illustrated in Figure 4.6 for the same data set in Figure 4.5. 
In (a), the apex of the right ventricle is investigated as a possible initial point due to its 
resemblance to that of the LV. This, however, is rejected only after a few conditional 
search regions considered in heuristic calculation. These landmark allowable domains do 
not intersect with the target image features, and therefore have large grey-level discrepan
cies. Similarly in (b), incorrect initial rotation is eliminated due to poor boundary 
intersection of the prediction regions. In contrast, although the LV apex is poorly dis
played in the image, the initial candidate point shown in (c) defines landmark prediction 
regions located on the boundary of interest. The candidate point under investigation is 
therefore successfully selected as an initial point. The set of initial candidates selected for 
subsequent feature point search is shown in (d), which demonstrates that the method can
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eliminate incorrect positions of the initial point despite the relatively poor appearance of 
the image. Similar performance can be seen in the 3D example in Figure 4.7. Unlike the 
original ASM, which is significantly affected at the basal region, the proposed method 
allows for accurate boundary localisation due to the use of inter-landmark constraints 
during initialisation and feature point search.

(a) Automatic initialization (b) Feature point search

(c) Proposed ASM framework (d) Original ASM

Figure 4.7 Illustration of volumetric segmentation results obtained with the proposed 
method. The surface localisation error shows satisfactory 3D initialisation (a), which is 
improved at the optimal feature search (b). The final result in (c) shows significant 
improvement when compared to the original ASM in (d).

Additional examples are shown in Figures 4.8 and 4.9, demonstrating the strength of the 
proposed approach for epi-cardial segmentation. In Figure 4.8, the original ASM is 
affected by difficulties in defining key anatomical features, thus introducing considerable 
errors. In Figure 4.9, it can be seen that the edge profiles are well defined at the septal 
region, resulting in a good performance of the original ASM in this region. At the lateral

v
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region, however, the presence o f large epi-cardial fat in Figure 4.9(a)) and the lack of 
strong edges (e.g., Figure 4.9(c)) introduce many misplaced feature points for the original 
ASM. These problems are naturally avoided in the proposed algorithm, resulting in 
consistent epi-cardial borders irrespective o f the quality o f the datasets.

4.4 Discussion and Conclusions
In this chapter, a method is described for constructing a geometrical prior that can be used 
to constraint individual landmarks during image search. This is achieved through inter
landmark conditional probability, a translational invariant statistical representation of 
inter-landmark patterns, which assists the prediction o f an unknown landmark by taking 
into account positions o f other points in the shape. To improve the ASM output, a feature 
point search algorithm is introduced based on a combinatorial approach. With this 
method, instead of searching for feature points independently using conventional normal 
profiles, a sequential approach is used where the inter-landmark constraints are applied 
successively to limit the search space. The A* algorithm is then adapted to the problem to 
ensure the detection o f the optimal set o f feature points given the local models o f appear
ance.

Automatic initialisation based on the inter-landmark constraints is also derived in this 
chapter. This is based on heuristics for estimating the degree o f intersection o f the 
landmark prediction regions with the boundary o f interest. With the proposed method, 
unsuitable solutions are eliminated efficiently, allowing relatively fast and reliable 
initialisation o f the ASM segmentation process. Initial values for scaling and rotations can 
also be efficiently extracted. Validation results for epi-cardial segmentation have shown 
considerable improvement o f  the proposed method compared to existing methods. The 
proposed method also eliminates the need for manual interaction, which for practical 
clinical applications improves the consistency and statistical significance o f the segmen
tation results.

It should be noted, however, there are some limitations associated with the proposed 
approach. Firstly, despite the efficiency o f the combinational approach used, the proposed
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technique in its current implementation requires additional computation particularly 
during initialisation, which prohibits real-time and interactive shape localisation. On the 
other hand, the gain in robustness results in minimised user intervention, which reduces 
the overall analysis time in practical situations. Secondly, the inter-landmark conditional 
probabilities are translational invariant which permit landmark localisation without prior 
knowledge o f their approximate locations within the image. The method, however, is not 
invariant to rotation and scaling. While initial values o f  these parameters can be esti
mated, it is important to note that any potential error can be propagated to the 
initialisation and feature point search, thus affecting the accuracy o f the segmentation 
result.

In summary, this chapter illustrates the potential o f ILDs for predicting landmark posi
tions and imposing effective constraints for shape extraction. In the next chapter, a post
segmentation process will be introduced for analysing individual landmarks to evaluate 
their consistency with respect to the model. This enables the identification o f segmenta
tion errors and regional shape abnormality.
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(a)

(b)

(c)

(d )

O r ig in a l A S M P ro p o s e d  te c h n iq u e

Figure 4.8 Examples of common errors in valve localisation by the original ASM, which 
are rectified by the use of the proposed automatic method and the statistical-based search 
regions.
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Figure 4.9 The effect of image inhomogeneities on shape localisation. In this case, the 
ASM is affected at the lateral region while the proposed technique due to the constrained 
feature point search allows for more accurate segmentation.

P ro p o s e d  te c h n iq u eO r ig in a l A S M

99



5
Inter-Landmark Analysis

5.1 Introduction
In the previous chapter, we have discussed the use of Inter-Landmark Descriptors (ILDs) 
for defining landmark constraints. Algorithms for shape initialisation and optimal feature 
point search in ASMs are derived, demonstrating increased robustness and reduced user 
interaction. In this chapter, a methodology based on ILDs is introduced for analysing the 
consistency of the landmarks and applied for outlier handling in ASMs*. In ASMs, for 
example, the presence of erroneous landmarks is inevitable. In cardiovascular imaging, 
image inhomogeneities can arise from a number of sources, including motion and flow 
induced structural noises. Generally, these artefacts are subject-specific and difficult to 
model. In normal ASM applications, these outliers can significantly influence the model 
fitting process if they are not handled adequately.

One of the solutions to outlier handling is to introduce an intermediate step between 
feature point search and model fitting. For example, Cootes el al. [109] have proposed to 
replace the traditional least squares approach by weighted least squares fitting where 
varying weights are assigned to each landmark to penalise points that are further away 
from the current model instantiation around the average. In the work of Rogers and 
Graham [62], the weights are calculated using robust estimators applied to the shape

'  Results first published in IEEE Transactions on Medical Imaging, vol. 26(2), 2007.
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residuals or by considering the inherent image information at the landmark points. Duta 
and Sonka [60] treat outliers as points that represent a large total shape variation and 
replace these points by the corresponding mean values o f the shape model. In the work of  
Li and Chutatape [61], feature points located away from the current model beyond a 
predefined threshold are considered as outliers and subsequently rejected from the model 
fitting procedure.

The fundamental limitation shared by these methods are illustrated in Figure 5.1, in that 
they all rely on initial model fitting and shape superimposition before outlier detection. If 
the initial shape alignment is correct, the residuals can be analysed using a suitable 
method for outlier detection. It is evident from Figure 5.1 that the outliers also introduce a 
bias in the overall alignment o f the model where large errors are minimised at a cost of 
increased residuals. In practice, it is more common to have clustered outliers, i.e., errors 
that are localised within a group o f neighbouring landmarks. In such situation, the 
superimposition results and overall performance o f exiting techniques are further af
fected. The authors in [60] acknowledge difficulties with multiple outliers and 
improvement is reported in the method in [62] for only up-to 20% o f outliers.

The examples shown in Figure 5.1 highlight the importance o f effective decoupling of  
initial model alignment and outlier detection. To this end, a global alignment invariant 
outlier detection algorithm based on inter-landmark analysis is proposed in this chapter. 
The proposed method involves the use o f inter-landmark distance ratio as an invariant 
shape metric. Statistical tolerance intervals are estimated from the training set for identi
fying extreme ILDs. Instead o f rejecting or replacing the identified outliers by their 
corresponding mean values, the relative configuration o f valid landmarks (inliers) is used 
with the tolerance model for suggesting replacement values. The proposed method also 
involves the propagation o f geometrical prior gathered from the invariant descriptors 
during successive iterations for robust feature point detection. This limits the presence of 
outliers and improves the convergence o f the segmentation process. The proposed 
technique is validated with 3D MR segmentation tasks involving contrastingly different 
image appearances, including the inner vessel lumen and outer vessel wall o f the carotid 
artery, as well as the endo- and epi-cardial borders o f the Left Ventricle (LV).
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(a) Mean shape <b) Fea tu re  po in ts

(c) Ideal alignment (d) Procrustes residuals

(e) Invariant comparison of inter-landmark descriptors

Figure 5.1 Outlier detection using residual analysis showing ideal shape alignment and 
Procrustes residuals caused by outliers. Through the use of invariant comparison of ILDs, 
these outliers can be reliably identified, and therefore removed from the shape fitting 
process.
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5.2  M eth od s

5.2.1 Inconsistent Landmark Localisation
In this section, the generic formulation o f the inconsistent landmark localisation algo
rithm is presented. Given an extracted set o f n landmark points, two important 
ingredients need to be defined. First, an appropriate ILD needs to be selected depending 
on the application. Subsequently, a set o f K t ILDs can be associated with each point pi 
and their values are analysed in order to detect potential inconsistencies. For each ILD r , 
an inter-landmark consistency measure fd is defined as a Boolean function that describes 
consistency or inconsistency depending on the value o f r , i.e.,

The ultimate aim o f the algorithm is to identify inconsistent landmarks, but this is not 
straightforward to infer from the inconsistency o f a particular inter-landmark value. This 
is because by definition the ILD is associated with multiple landmarks, each potentially 
the source o f the inter-landmark inconsistency. To address this difficulty, we therefore 
use the observation that inconsistent landmarks are typically associated with more 
inconsistent ILDs than any other points in the shape. Therefore, a point consistency 
measure fp can be derived for each landmark by integrating all individual inter-landmark 
consistency costs as follows:

The calculated fp measures for all landmarks are stored in a priority queue and an 
iterative algorithm is used to identify inconsistent points. At each step, the first point in 
the queue, i.e., the point pk with the lowest point consistency measure is identified as 
being inconsistent and removed:

1 r is consistent
fd (r) =

0 otherwise. (5-1)

(5-2)

(5-3)
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The /  measures for the remaining points in the queue are updated by subtracting the 
contribution o f the rejected point. The points are then reordered in the priority queue for 
identifying the next inconsistent point and the procedure is repeated until the first point in 
the queue has a point consistency measure that is equal or close to 1. This indicates the 
associated ILDs are valid, including those o f the remaining points in the queue.

5.2.2 Outlier Detection
The proposed outlier handling method is based on the use o f an invariant shape metric, 
and therefore does not depend on initial shape alignment which is difficult to achieve in 
the presence o f  outliers. The ratio o f inter-landmark distances as introduced in Chapter 3 
is used for this purpose. In addition to being fully invariant to scale, translation and 
rotation, the ratio o f distances has other properties that make it ideal for outlier analysis. 
Firstly, it represents the relative geometrical configuration o f  landmark points, thus each 
point can be analysed with regard to the position o f other points in the shape. Secondly, it 
allows a subdivision o f the shape into subsets o f  points, with the aim o f distinguishing the 
subset o f erroneous points from the inliers. In each triplet o f points, six different ratios 
can be derived, but by the use o f  symmetry only three are considered here. With K  
triplets, the object can be represented by using the following vector:

(5-5)

The main advantage o f this descriptor is its ability to perform as a geometrical measure 
for shape comparison, and thus can be used as a local shape dissimilarity metric for 
detecting subsets o f the shape that are inconsistent with the model. We show in the next 
section how to construct such a model and calculate the associated dissimilarity likeli
hood measures.

With the invariant shape metric presented above, each landmark is associated with a set 
o f ratios. The idea behind the proposed method is that the outliers are inconsistent with 
the corresponding landmark points in the training samples, and thus some o f  the associ
ated ratios are invalid. The first step o f the process is to find a suitable definition for 
extreme or invalid ratios. This can be achieved by using the tolerance intervals introduced
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in Chapter 3. Statistical tolerance intervals Tl)k are calculated from the training samples 
for each variable rjk and any new ratio found outside o f the interval is considered as an 
extreme value, which indicates the presence o f an outlier.

The exhaustive use o f all n (n  — l)(n  — 2)j6 possible ratios to build the shape vector in 
(5-5) can be time consuming. Moreover, some o f the ratios can be calculated from 
uncorrelated landmarks, resulting in large tolerance intervals that are not useful, or even 
detrimental to outlier detection. As suggested in Section 3.3.4, it is beneficial for statisti
cal-based shape analysis to select ILDs o f statistical significance. In Chapter 4, for 
example, the inter-landmark conditional probabilities with the smallest covariance are 
selected for imposing landmark constraints. For outlier handling, the proposed approach 
is to select for each landmark Pt at least K 0 ratios that have the smallest average 
intersection o f the tolerance intervals with the local search window Lt based on the 
training samples. These selected ratios are ideal for outlier detection as they can capture 
movements o f the point from its correct location.

By using the tolerance interval, a likelihood measure fT is calculated for each ratio rX]k to 
detect extreme values due to potential outliers. Typically, this measure is equal to 1 if  the 
ratio is within the tolerance interval and 0 otherwise:

1 ^  %  €  Tl]k 
0 elsewhere. (5-6)

With the definition o f the consistent ratio function in Equation (5-11), it is now possible 
to calculate the point consistency measure in Equation (5-3) by using the iterative 
algorithm described in the previous section. The terminating threshold for the iterative 
outlier detection procedure corresponds to the minimal proportion o f valid ratios for each 
inlier. It was found that by choosing any limit that is close to the confidence coefficient 
7 , similar results can be achieved. This is because the main outliers are detected well 
before reaching this limit, whilst the same level o f uncertainty is given to both tolerance 
interval calculation and outlier detection. The outlier detection algorithm is illustration 
with a simple shape as an example in Figure 5.2.
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(a) Four landmarks

Figure 5.2 Illustration o f the proposed outlier detection algorithm for a simple shape. For 
landmark 1, all the ILD ratios are invalid (123, 134 and 124) and therefore its consistency 
measure is equal to 0 (0/3). For all other landmarks, only ILD ratios associated with 234 
are valid, their consistency measure is therefore equal to 1/3. At the second iteration and 
after rejection o f landmark 1, the consistency measures for points 2-4 are updated and 
their values equal 1 (1/1). At this point, the outlier detection process is completed.

5.2.3 Outlier Correction
Once the outliers are detected, their positions must be adjusted so as to eliminate their 
influence on ASM model fitting. A replacement point must be selected from the initial 
candidate points in the local search window L{ within the image space such that its 
associated ratios with respect to the inliers are close to or within the corresponding 
tolerance intervals. This is equivalent to maximising the product o f the p.d.f. o f the ILD 
ratios. The function to be maximised is therefore proportional to:
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(5-7)

The problem can now be reduced to selecting the point that minimises the following 
least-squares function:

The value suggested by the above step by using the geometrical information represents a 
good approximation of the true boundary position but may not fit optimally to the 
underlying image evidence. Therefore, a final local search in the vicinity of the candidate 
position is required by using the grey-level information. Computationally, only a few 
candidate positions around the current point are considered at this stage (hc positions 
from either side of the point, hc =  2 in the experiments). After this adjustment, more 
reliable ASM model fitting can be achieved. Figure 5.3 shows a simple illustration of the

(5-8)

Geometrical
correction

Final local 
search

2 3

Figure 5.3 Illustration of the main steps involved in outlier correction. A geometrical- 
based replacement is first suggested from the initial search profile by using the tolerance 
model and the positions of valid feature points 2, 3 and 4. A final local search based on 
grey-level appearance information is carried out for geometrical correction.
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outlier correction step.

5.2.4 Geometrically Weighted Feature Search
To prevent outliers from reappearing during subsequent feature point search, the grey- 
level based fitness measure is weighted by a function w that is calculated by using the 
geometric information gathered during outlier detection. The total fitness measure 
becomes:

where dg is the grey-level based distance measure to maximise. By using set I  o f inliers, 
a geometric likelihood measure is drawn for each search position in the local search 
window Lt as follows:

where K t is the number o f triplets associated with Px. This function describes the degree 
o f intersection o f the different tolerance intervals and takes a value between 0 and 1. By 
setting w =  fa, the region around the true boundary is heavily weighted and the weight 
decreases for regions that are further away. Figure 5.4 illustrates an example o f a feature 
point search, where the normalised cross correlation is used as the grey-level fitness 
measure. In this example, local search based on grey-level information alone generates an 
outlier due to a local maximum located at an incorrect boundary position as shown in 
Figure 5.4(a). By combining the geometric likelihood measure as shown in Figure 5.4(b), 
the total weighted cost function o f Figure 5.4(c) permits the localisation o f the correct 
maximum position for the feature point.

fu*a(Z) =  d,(lVu,{Pl) (5-9)

(5-10)
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Figure 5.4 An example o f a feature point search where an outlier is avoided by using the 
geometrically weighted fitness measure. Local search based on grey-level information 
alone generates an outlier due to a local maximum located at an incorrect boundary 
position as shown in (a). By combining the geometric likelihood measure plotted in (b), 
the total weighted cost function in (c) permits the localisation o f  the correct maximum 
position for the feature point.
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It is also possible to limit the extent of the local search by considering only positions in 
the search window with a high geometric likelihood value beyond a predefined threshold 
l . In this case, the weights are calculated as follows:

w ( P t ) i  ¡« 7 , ( * ) > ' ,
0 otherwise. (5-11)

Setting lg — 0 is equivalent to using the entire local search window. In general, the true 
boundary position lies in a region o f geometric likelihood value that is close to the 
maximum value o f fg within the local search window. Therefore, choosing 
lg =  m ax(/9) — 6g (with 6g a small number, equal to 0.02 in the experiments) allows the 
window to be increasingly restricted after each iteration. This significantly limits the 
presence of outliers, thus permitting the final convergence o f the algorithm within a few 
iterations. This combined fitness measure is mainly required for difficult image search 
tasks with a high level o f outliers (more than 20%), but can be omitted otherwise to 
decrease the time complexity o f  the segmentation procedure.

5.3 Validation

5.3.1 Experiments
The validation o f  the proposed technique is carried out for the segmentation o f the endo- 
and epi-cardial borders o f the LV, as well as the luminal and outer walls o f the carotid 
artery. These two datasets have distinctively different intensity appearance, topological 
and geometrical structures. The liimen o f the carotid artery tends to have strong edges but 
is frequently affected by residual blood flow artefacts. The outer vessel wall, on the other 
hand, usually has a poor contrast to the surrounding structure and therefore is particularly 
difficult to localise.
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Table 5.1 Parameters of the segmentation framework used in the experiments.

Parameter Carotid LV

n Number o f landmarks 272 136
N Number o f datasets 40 36

Part o f shape variation explained by the 
statistical models 0.99 0.99

Bounds on eigenvalues 3 3

K
Grey-level profile length on either side 
o f the landmark point 7 7

K Local search size on either side o f the 
current point 10 10

K Final search size for outlier correction
on either side of the point Z Z

Profiles step size (mm) 0.2 1.5
Maximum number o f iterations for the 
ASM search 100 100

Convergence threshold (mm) 0.05 0.2

¡3 Statistical tolerance intervals coverage 
coefficient 0.99 0.99

7 Statistical tolerance intervals confidence 
coefficient 0.95 0.95

Ko Minimum number o f ratios per point in 
the tolerance model 200 200

K Two-sided tolerance intervals factor 3.22 3.27

h Threshold for terminating the iterative 
outlier detection 0.95 0.95

Threshold for the geometrically 
weighted fitness measure 0.02 0.02
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The carotid artery datasets were collected from 40 subjects using a 1.5T MR scanner 
(Sonata, Siemens, Erlangen Germany) with a purpose-built two element phased-array 
surface carotid coil and a specially designed head and neck cushion for immobilisation. A 
3D volume-selective TSE sequence [110] was used with a pixel size o f 0.47 mm and slice 
thickness o f 2 mm. For each dataset, 20 slices around the bifurcation were selected as a 
region for measurement. For the LV datasets, 36 subjects were scanned using the same 
scanner and a TrueFISP sequence (TE = 1.5 ms, TR = 3 ms, slice thickness = 10 mm, 
pixel size o f 1.5 to 2 mm) within a single breath-hold.

For all the datasets used for this study, manual delineation was carried out by an expert 
observer as the ground truth reference. The statistical shape model was built for each case 
with simple point correspondences by using the parameters listed in Table 5.1. In all 
experiments, the iterative ASM procedures are terminated when the change between two 
successive iterations is below a convergence threshold which is specified in Table 5.1. 
The datasets used for grey-level appearance and tolerance model construction and 
evaluation were selected on a leave-one-out basis. For comparison, the proposed method 
was compared to existing ASM techniques (Original ASM by Cootes et al. [5] and those 
by Rogers and Graham [62], Duta and Sonka [60], and Li and Chutatape [61]) by using 
the same parameters as shown in Table 5.1. All techniques were initialized by placing the 
mean shape at the centre o f the target structures based on the manual delineations. The 
segmentation error was measured by calculating the absolute point-to-surface distance 
from each final point to the corresponding manual delineation.

5.3.2 Numerical Validation
The performance o f the technique with respect to different levels o f  outliers, both in terms 
o f amplitude and percentage, was first assessed with synthetic outliers introduced to the 
manual delineation o f the carotid datasets. This was achieved by perturbation o f randomly 
selected points using non-Gaussian noise. In the first experiment, the percentage o f  
outliers was fixed to 25% o f the total number o f landmarks while the amplitude varied 
from 0 to half o f the average vessel diameter.
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In the second experiment, the percentage o f the outliers generated from the manual 
delineations varied from 0 to 50% and the standard deviation o f the perturbation was 
fixed to 25% o f the average vessel diameter. The generated points were used as feature 
points for a single iteration o f the ASM search with the proposed outlier handling 
technique. The experiment was repeated 10 times, each with different random perturba
tion.

The reliability o f the proposed outlier detection algorithm was measured by considering 
the number o f false outlier/inlier identification by using the following measure:

1 - 0 .5 missed outliers , false outliers
n0 r n — nnO J (5-12)

where n0 is the number o f outliers introduced. The outlier detection step was applied to 
the synthetic feature points for each sample and the average reliability together with one 
standard deviation error bars are plotted against the amplitude and the percentage o f  the 
outliers in Figure 5.5(a). The results show that the proposed outlier detection algorithm 
can distinguish the outliers from valid points with a consistently high reliability, despite 
the extent and the number o f outliers involved. This is important as the performance of 
the subsequent ASM model fitting relies heavily on the correct identification o f  the 
outliers.

In Figure 5.5(b), the segmentation errors after one iteration o f the ASM search by using 
the proposed outlier detection and correction algorithms are plotted against the amplitude 
and the percentage o f  the outliers. The relatively flat curves o f the figure indicate that the 
accuracy o f  the method is independent o f  the amplitude o f  the outliers and the accuracy is 
maintained for up-to 50% o f erroneous feature points, thus demonstrating the robustness 
o f the method proposed.
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Figure 5.5 Results of the simulation study to evaluate the reliability (a) and robustness 
(b) o f  the proposed outlier detector in response to different amplitudes and percentages of 
the outliers.
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5.3.3 In  vivo  Validation
For in vivo validation, the average and standard deviation o f the segmentation errors are 
plotted in Figure 5.6 for the carotids and LV datasets. The corresponding results by using 
the existing ASM approaches are also provided for comparison. It can be seen from the 
graphs that the proposed technique outperforms all o f  the existing ASM methods, 
particularly for the segmentation o f the outer vessel walls and epi-cardial borders, as they 
are more prone to outliers due to poorer contrast against the surrounding structures and a 
low intrinsic signal-to-noise ratio.
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Figure 5.6 The accuracy o f the proposed segmentation framework when applied to the 
different datasets and compared to existing robust ASM methods. The proposed tech
nique outperforms the existing ASM approaches, especially for the outer wall o f the 
carotid arteries and the epi-cardial border o f the LV.

Table 5.2 provides a detailed assessment o f each step involved in the proposed segmenta
tion framework. In particular, it can be seen that the outlier correction stage improves the 
position o f the feature points before the application o f the ASM model fitting procedure. 
It is also clear from the results presented in Table 5.3 that the use o f the geometrically 
weighted feature detection significantly reduces the percentage o f erroneous feature 
points, and therefore enhances the stability o f the algorithm by minimising the reoccur
rence o f the outliers during the iterative segmentation process.
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Table 5.2 Detailed error analysis of the main steps involved in the proposed technique.

Error (mm) 
feature point 

search

Error (mm) 
outlier 

correction

Final segmentation error (mm)
Using proposed 

method
Best results from 
existing methods

Vessel lumen 0.29 ± 0.09 0.16 ± 0.02 0.12  ± 0.01 0.16 ± 0 .06

Outer wall 0.32 ± 0.06 0.19 ±0.03 0.14 ±0.03 0.25 ± 0 .10

Endocardium 2.09 ± 0.62 1.25 ± 0 .55 0.78 ±0.21 1.05 ± 0 .50

Epicardium 2.42 ± 0.82 1.52 ± 0 .46 1.11 ± 0 .46 1.59 ± 0 .86

Table 5.3 Detailed performance o f the proposed geometrically weighted cost function.

% outliers (grey-level 
fitness measure)

% outliers (com bined  
cost function)

Vessel lumen 14.8 ± 5 .8 4.1 ± 3 .3

Outer wall 16.0 ± 5 .7 3.2 ± 3 .5

Endocardium 22.3 ± 10.6 6.4 ± 7.9

Epicardium 31.0 ± 9 .7 9.5 ± 6.6

Figures 5.7 to 5.9 illustrate the boundary localisation results for varying amount of 
outliers, demonstrating the improvement achieved by using the proposed outlier handling 
algorithm and its ability in dealing with both the number and distribution o f the erroneous 
points. In particular, the proposed method performs well in the presence o f clustered 
outliers (Figure 5.8) as the invariant metric used represents the global relative positions of 
the points, i.e., each point can be analysed with respect to the position o f other landmarks 
in the entire shape (not only in a localised region). For detailed visual assessment in 3D, 
Figure 5.10 to 5.13 show volumetric illustrations o f the performance o f the proposed 
outlier handling framework for varying levels o f outliers. It can be seen that in all cases,
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the ASM search alone introduces significant errors, especially in regions with localised 
outliers, e.g., around the bifurcation point o f the carotid artery. In contrast, the proposed 
technique returns accurate and consistent segmentations, even in the presence o f signifi
cant amount o f outliers (e.g., Figures 5.11 and 5.13).

Finally, Table 5.4 shows the convergence behaviour and time complexity o f the proposed 
method as compared to existing ASM methods. It can be seen that with the proposed 
technique, convergence was generally reached within 25 iterations o f the segmentation 
process for over 90% o f the datasets, demonstrating the stability o f the method. With the 
proposed method, although the time spent on each individual iteration is longer than that 
o f the original ASM, the results show that the overall time complexity o f the method is in 
fact better than the existing ASM methods used for comparison.

Table 5.4 Convergence properties and time complexity o f the proposed technique.

Carotid outer wall datasets LV epicardium datasets
ASM
method within 25 max. Average within 25 max. Average

iterations iterations time iterations iterations time
(%) (%) (seconds) (%) (%) (seconds)

Original
ASM 7.5 67.5 2.2 ± 0.6 8.3 88.8 1.1 ±0 .3

Duta and 
Sonka 20.0 55.0 2.4 ± 1.0 1 1 . 1 36.8 1.1 ± 0 .4

Rogers
Graham 47.5 15.0 1.5 ±  1.1 41.6 1 1 . 1 0.9 ± 0.7

Li and 
Chutatape 42.5 7.5 1.4 ± 0 .7 36.1 30.5 0.7 ± 0.5

Proposed
technique 97.5 0 0.8 ± 0.3 91.6 0 0.5 ± 0.2
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Figure 5.7 Relative performance of the original and the proposed ASM with a single
outlier.

118



E
pi

ca
rd

iu
m

 
E

nd
oc

ar
di

um
 

O
ut

er
 w

al
l 

V
es

se
l 

lu
m

en

(a ) O r ig in a l A S M (b ) P ro p o s e d  te c h n iq u e

Figure 5.8 Relative performance of the original and the proposed ASM with distributed
outliers.
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Figure 5.9 Relative performance of the original and the proposed ASM when encoun
tered with clustered outliers.
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(a) ASM only

(b) Outlier handling (c) Model fitting

Figure 5.10 Example results showing the distribution and extent of 3D surface localisa
tion errors after the application of the outlier detection and correction algorithms (b) and 
the subsequent ASM model fitting (c) for left-ventricular segmentation. Without the use 
of the proposed outlier handling step, the ASM search (a) can introduce significant errors.
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(b) Outlier handling (c) Model fitting

Figure 5.11 The effect of segmentation in the presence of significant outliers. In this 
case, the standard ASM search is significantly affected (a). Through effective handling of 
outliers (b), the proposed technique accurately recovers the entire epi-cardial surface (c).
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(a) ASM only

(b) Outlier handling (c) Model fitting

Figure 5.12 Example 3D carotid artery segmentation results showing erroneous ASM 
segmentation in (a) due to the presence of outliers (less than 20%). The model fitting in 
(c), however, is not affected when the proposed outlier handling process is incorporated 
as shown in (b).
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(a) ASM only

(b) Outlier handling (c) Model fitting

x

Figure 5.13 Example 3D carotid artery segmentation results in the presence of a signifi
cant amount of outliers, which results in poor ASM segmentation (a). The outliers are 
correctly handled by the proposed technique (b) leading to a more accurate and consistent 
segmentation result (c).
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5.4 Discussion and Conclusions
In this chapter, a technique is presented for localising geometrical inconsistencies o f the 
landmarks based on invariant analysis o f ILDs. The method is based on the idea that 
inconsistent landmarks typically have a particularly high number o f inconsistent ILDs. In 
ASM, the use o f an invariant shape metric allows outlier analysis to rely on shape 
information alone without the interference o f the shape alignment procedure. With the 
proposed method, the identified outliers are not simply rejected or replaced by the 
corresponding mean values, as often adopted by conventional ASM techniques. Instead, a 
correction mechanism based on both appearance and geometrical criteria is used to rectify 
each detected outlier before the model fitting procedure.

The results derived from this study suggest that when the contrast of the local image 
features is strong and the amount o f outliers is relatively small, the performance o f the 
proposed algorithm is similar to that o f the existing ASM methods, particularly to those 
presented in [61,62]. As the number o f outliers increases, the advantage o f the proposed 
method becomes more evident. This is shown in Figure 5.4 where the existing techniques 
show large residual errors for both the outer vessel wall o f  the carotids and epi-cardial 
border o f the LV. Furthermore, the technique uses a geometrically weighted fitness 
measure for feature point search which exploits outlier analysis results from successive 
iterations to prevent outliers from re-appearing in subsequent iterations. This improves 
the overall stability o f  the algorithm and ensures the final convergence o f the algorithm is 
achieved only with a few iterations.

The outlier handling algorithm presented in this work relies on three main parame
ters (1̂ 2,ld and 6g) . The two-sided tolerance factor L, is calculated from the coverage and 
confidence coefficients, being equal to 0.99 and 0.95, respectively in all experiments. 
These are typical settings in tolerance analysis, which allow for a suitable coverage of  
most o f the variations. In general, the terminating threshold ld for outlier detection should 
be chosen to be similar to that o f the confidence coefficient so that the same level of 
uncertainty in both tolerance interval calculation and outlier detection is used. Finally, the 
choice o f the third parameter <5g is not critical as it is mainly used to restrict the local 
search window and our experience has shown that any value around 0.05 can provide
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similarly good results. It can be seen from the experimental results in Table 5.1 that 
identical parameters are used for the carotids and LV datasets despite their morphological 
and image intensity differences. The proposed method therefore does not require case- or 
subject-specific tuning o f these parameters. For practical applications, this is an important 
advantage which underpins the potential clinical value o f the technique.

In this work, the construction o f the statistical shape model and the model fitting proce
dure are achieved by using the standard ASM including the use of normal search profiles. 
No changes are made to the ASM itself in order to demonstrate the general applicability 
o f the ILDs. The proposed outlier detection technique is applicable to other extensions o f  
the ASM framework. In this chapter, the method is presented in its simplest form and 
some adaptations can be introduced. For example, a final outlier detection step could be 
added after outlier correction so as to further identify and subsequently reject the remain
ing outliers. Alternatively, the outlier detection and correction stages can be iteratively 
applied until no further outliers are detected. It is also worth noting that the geometrically 
weighted fitness measure is mainly used to limit the reoccurrence of the outliers in 
complex segmentation tasks, particularly when the amount o f erroneous feature points is 
high (more than 20%).

It must be noted that the proposed technique detects the largest subset o f points that are 
consistent with the statistical tolerance model. It is thus theoretically possible that in the 
presence o f more than 50% o f outliers, these points would be detected as inliers. In this 
case, the technique can fail as it relies on a good identification o f the outliers. However, it 
can be argued that this situation is unlikely to happen in practical situations. In next 
chapter, the method will be further extended for analysing localised dynamic behaviour of 
anatomical shapes with application to the assessment o f myocardial contractility.
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6

Motion Abnormality Localisation

6.1 In trod u ction
In the previous chapter, we have introduced a method for analysing individual landmarks 
in an extracted anatomical shape. The algorithm enables the localisation of geometrical 
inconsistencies based on predefined inter-landmark descriptions. This has been used for 
improving the ASM fitting through effective decoupling of initial shape alignment and 
subsequent model fitting combined with outlier handling. In this chapter, the proposed 
framework is to be extended further for a post segmentation task involving the localisa
tion of motion abnormalities. The method is applied for the challenging analysis of 
regional myocardial contractility*.

The ultimate goal of shape-based analysis in medical imaging is to understand the 
extracted geometrical infonnation for the detection of morphology or dynamic related 
abnormalities. Many methods based on geometrical information have been proposed in 
the past but they have also raised a number of important issues that need to be addressed. 
One of the key problems is related to the type of motion analysis carried out by conven
tional methods. The use of global markers is insufficient for interpreting subtle details 
present in regional abnormalities. Methods based on computational anatomy, such as the 
ASM, the output shape coefficients can be analysed with respect to the limits of the

‘  Results first presented at 10'h MICCA1 Conference, Brisbane, 2007.
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corresponding shape space. This is widely used for anomaly detection but the shape 
parameters are associated with all landmarks, and therefore are not ideal for localised 
analysis.

Alternative techniques have been proposed in the past to allow for more local analysis of  
anatomical shapes [74,76], But their performance is influenced by shape alignment and 
poor generalisation o f the models in the presence o f morphological variations. As a result, 
regional abnormalities are undermined by bias during the model fitting process. To 
address this problem, the purpose o f this chapter is to extend the proposed Inter- 
Landmark Descriptors (ILDs) for identifying regional abnormalities based on the invari
ant properties o f the landmark configurations. To demonstrate the reliability and 
flexibility o f the proposed method, regional contractile analysis based on spatial-temporal 
information o f the left-ventricle (LV) is to be performed.

The first step towards LV assessment involves the delineation of endo- and epi-cardial 
borders over the entire cardiac cycle. This is traditionally performed by a combination of  
manual contouring and interactive editing tools. In addition to the results obtained in this 
thesis, it is worth mentioning some o f the existing techniques that are specific to LV 
segmentation. Active contours were extended to the temporal domain for LV boundary 
tracking [111]. Active models have been also adapted for cardiac segmentation [68,112] 
and a hybrid active shape and appearance approach was proposed in [113]. Jacob et al. in 
[114] used a dynamic tracking approach based on shape and motion models, as well as 
smoothness and endo-/epi-cardial distance constraints. Lorenzo-Valdes et al. [12] used a 
probabilistic atlas and non-rigid registration to propagate cardiac shapes throughout the 
cardiac cycle.

A number o f  automatic techniques have also been suggested for LV motion analysis. 
Traditionally, global indices are extensively used in clinical practice, such as LV volumes 
and ejection fraction, despite their intrinsic limitations for detecting localised lesions. A  
popular alternative for regional assessment is based on the analysis o f regional wall 
thickening but the method is problematic as it does not consider the global dynamics o f  
the heart as a whole. Furthermore, specific disorders such as cardiac de-synchronisation 
as difficult to detect using conventional assessment methods. The condition is illustrated
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in Figure 6.1 where changes in the endo- and epi-cardial radius are plotted over time for a 
normal subject (a) and a patient suffering from myocardial de-synchronisation (b) at two 
different myocardial locations. It can be seen that the extent of the contractility appears to 
be normal for these two myocardial regions in both datasets. A detailed examination, 
however, reveals that in Figure 6.1(b), the timing and extent of maximal contraction are 
different. A detailed comparison of the contractility of different myocardial segments is 
important for identifying these inconsistencies.

(a) Normal inter-landmark motion (b) Inconsistent inter-landmark motion

Figure 6.1 Examples of normal versus inconsistent inter-landmark motion. In (b), the 
timing of end-systole is different to that of (a) for Landmark 2, indicating de- 
synchronisation of the two myocardial segments. The two myocardial segments also 
differ in the extent of contractility, which may be associated with potential myocardial 
infarction.

Another limitation associated with the use of global indices is that subject-specific 
morphology is discarded. The emergence of statistical shape modelling has allowed the
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construction o f  models for normal anatomy that can be used to detect size, dynamic and 
shape related abnormalities. Bosch et al. [115], for example, generated a global shape 
parameterisation scheme based on PDM coefficients. Comparison to visual scoring of 
myocardial wall motion demonstrated a good linear correlation, but the specific identifi
cation o f local abnormalities is not feasible due to the global nature o f the method. More 
recently, several methods for building more localised shape models have been proposed. 
Suinesiaputra et al. [75], for example, have proposed the use o f independent component 
analysis as an alternative. Sparse PCA methods can also be used to extract more localised 
shape parameters [74], PCA coupled with orthomax rotations have been also suggested 
[76] to classify wall motion abnormalities. Jacob et al. [114] defined a clinical interpreta
tion space based on the AHA/ACC (American Heart Association/American College of 
Cardiology) 17-segment model for assessing regional thickening and excursion o f the 
myocardium.

In this chapter, a new method is presented for both local and global invariant analyses of 
myocardial motion. To this end, a multi-dimensional ILD is introduced, which incorpo
rates both endo- and epi-cardial changes occurring between coupled regions o f the LV 
over the entire cardiac cycle. By combining coupled myocardial regions into the analysis 
framework, both geometrical and dynamic inconsistencies can be identified. Additionally, 
the proposed inter-landmark motion description implicitly incorporates shape, size, 
thickness, and endo-cardial displacement for regional dysfunction analysis.

To describe normal contractile properties o f the LV, multivariate tolerance regions are 
derived from selected training samples. To improve the quality o f  the multidimensional 
tolerance model and ensure it is immune to the choice o f  the training set, robust estima
tors are used to calculate the tolerance region parameters. For a given LV dataset, 
inconsistent ILDs are identified based on the tolerance model and the landmark localisa
tion algorithm from the previous chapter. The method is validated with data from 50 
subjects containing both normal subjects and patients with different levels o f left ven
tricular contractile abnormalities.
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6.2 Methods
6.2.1 Inter-Landmark Motion Vectors
In this section, the landmark localisation algorithm presented in the last chapter is adapted 
for wall motion analysis. To this end, the definition o f  a multivariate ILD that represents 
the spatio-temporal behaviour of the myocardium is required. The proposed formulation 
is aimed at detecting local motion abnormality as well as temporal inconsistencies 
between different segments o f the myocardium. Furthermore, the method needs to permit 
invariant analysis without the need for pre-alignment of the shapes.

Let’s suppose that a landmark-based representation o f the myocardium is first obtained 
through segmentation. Given two landmarks p, and p} on the boundary, an Inter- 
Landmark Motion (ILM) vector is introduced as follows:

where F  is the number o f frames in the cardiac cycle. Based on a generalised cylindrical 
representation, a and b describe the radial distances of the endo- and epi-cardial borders 
to the axis o f the epi-cardial volume. It is interesting to note that v is a high dimensional 
ILD (dimension p = 4F ). In addition to the size and thickness measures encapsulated by 
these variables, the ILM vectors provide an implicit description o f the shape o f the 
myocardial borders. Although the coupled locations can be chosen for the entire LV, it is 
computationally more efficient to restrict this to be within the same cross-section, where 
there is a high covariance between the landmarks. For each landmark location, a set o f K  
ILM vectors are derived.

It can be shown that the ILM vector v is invariant to translation and rotation, but not to 
scaling. This allows the detection o f size-related abnormalities (e.g. ventricular dilata
tion). Representation o f the coupled motion and geometry over the entire cardiac cycle 
allows both morphological and dynamic inconsistencies to be identified efficiently. For 
ventricular motion analysis, the configuration o f the ILM vectors is schematically 
illustrated in Figure 6.2, where it can be seen that the invariant cylindrical variables are
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extracted with respect to the axis o f the LV. The contractility associated with landmarks 
pt and p} is implicitly compared by encapsulating the related variables into a single 
descriptor. In this figure, the difference between endo- and epi-cardial distances o f the 
two landmarks reveals inconsistent endo-cardial displacement.

In this work, normal myocardial contractility properties are described by using multivari
ate tolerance regions for each ILM vector as described in Chapter 3. Given N  training 
samples, a tolerance region f?v for the introduced ILM vectors in the p dimensional 
space can be described as:

where v and S’v correspond to the mean vector and the covariance matrix, respectively. 
For the tolerance region limit L in Equation (6-2), it can be estimated from the critical 
values of the chi-square distribution as [102]:

A training sample o f  normal subjects is used to capture the normal variability o f myocar
dial contractility. In practice, the choice o f training samples may be limited by the 
available data and extreme values o f the ILM vectors may arise. Even if  all samples are 
normal on a global scale, some undesirable local abnormalities may be present. Aberrant 
values can also be associated with errors during delineation which can further contami
nate the training set. This can affect the calculation o f  the tolerance regions as the 
covariance matrix is known to be sensitive to extreme values. Therefore, the construction 
o f the tolerance regions must be independent o f the choice o f training samples. A robust 
estimation o f the tolerance region parameters is thus required.

A natural robust estimator for the central observation o f  the distribution can be achieved 
by replacing the mean by the median vector, denoted as v*:

6.2.2 Modelling Normal Contractility

Äv = { v e l f I (v -  v)T5y' 1 (v -  v) < L} (6-2)

(6-3)
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frame 1/20 (end-diastole)

frame 4/20

frame 8/20 (end-systole)

Figure 6.2 Graphical illustration o f  the ILM vectors, representing coupled contractility at 
two distinct locations o f the myocardium. The axis o f  the LV is used as the reference to 
calculate the endo- and epi-cardial variables a and b . The endo-cardial displacement 
towards the lateral region can be identified by the difference in the variables between the 
landmarks pt and p} .
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v* = median ( v(;)
l< j< N  '

(6-4)

A robust estimation of the covariance can then be achieved by iterative weighting o f the 
residuals for all observations. The robust covariance matrix 5* at iteration t + 1 is 
calculated as:

^ w 2 (v(j),v*,5* (0 )(y(;) -  v*)(vi -v*)r
S l ( t  +  1) = ^ -----------37------- ;-------------------------- (6-5)

jr ti/(v (j),v* ,sT*(i))

where ra is a weighting factor calculated from the observation, the median and the 
covariance matrix o f previous iteration. The idea behind this formulation is to assign a 
large weighting factor for observations that are close to the median and a smaller one for 
observations that are further away. This procedure is iteratively applied until the values of 
w do not change significantly. Mathematically, w is defined as follows:

if d (v (j),v*,S*) < dç
w exp 2 cr2 elsewhere (6-6)

where d0 is a threshold used to identify potential extreme ILM values and <r0 specifies 
the decay rate o f the penalty function. Both parameters are calculated automatically by 
analysing d (v, v*, S *) at each iteration for v(i>. In essence, the equation rejects observa
tions that deviate from normality, and therefore requires a robust estimation o f the 
distribution o f function d such that it is resistant to the presence o f extreme values. This 
can be achieved through the following formulae based on robust statistics [116]:

d* = median (d(v(j),v*, S* 
a  = 1.4826 median Id (vü), v*, S* ) -  d*

I S  j S N  I '  >

(6-7)
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For normal distribution, all valid values are expected to lie within a number of standard 
deviations (er*) from the estimated mean (d ) . It is reasonable to define the threshold d0 
as follows:

du = d* + Cjcr’ (2 < c, < 3). (6-8)

The decay rate can be set to be equal to c2cr* (0<c2< l). In this study, we found that 
c2 = 0 .2  could achieve reasonably good results in excluding errors from the training set. 
Figure 6.3 illustrates an example of a set of distances calculated from an ILM vector. It 
can be seen that dv separates well the extreme values due to the errors incorporated in the 
training set. Figure 6.4 further compares between conventional and the proposed robust 
estimation of multivariate tolerance regions. In this 2D illustration, the extreme values 
induce a translation and rotation of the tolerance region, which is corrected for by using 
the proposed robust estimation.

Datasets

Figure 6.3 Illustration of the minimisation of the effect of extreme ILM vectors on the 
multivariate tolerance region calculation. The Mahalanobis distances are plotted for the 
28 subjects in the training set. It can be seen that the threshold calculated from Equation 
(6-8) separates well the extreme values that are due to local errors incorporated in the 
training set. The extreme values are subsequently assigned with small weights while the 
remaining subjects have a weight equal to 1.
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o --------------------------------------------------------------------
(5 9 2 0 4 0 6 0 8 1

(b) Robust estimation

Figure 6.4 Example showing a comparison between conventional and robust estimation 
of multivariate tolerance regions. In this example, the extreme values induce a translation 
and rotation of the tolerance region, which is corrected for by using the proposed robust 
estimation.
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6.2.3 Abnormality Localisation
In this section, the iterative algorithm for inconsistent landmark localisation is developed 
for cardiac motion analysis. For a given left ventricular dataset with delineated bounda
ries, the ILM vectors are calculated by using Equation (6-1). By using the multivariate 
tolerance regions introduced in the previous section, it is now possible to identify abnor
mal inter-landmark relationships. To this end, a Boolean consistency measure is derived 
as follows:

U  (v) = : if v G Ry 
if  v g f i , . (6-9)

Because each inter-landmark vector incorporates a pair o f myocardial segments, it is not 
straightforward to identify which o f the two landmarks is responsible for the potential 
motion abnormality when the vector in question is outside o f the tolerance region.

However, similarly to the algorithm presented in the previous chapter, abnormal myocar
dial boundary points are expected to have more invalid inter-landmark vectors. A 
likelihood measure o f abnormality can therefore be calculated for each landmark by 
summing all measures o f Equation (6-9) for the associated ILM vectors as detailed in 
Chapter 5. The iterative localisation procedure introduced in Chapter 5 is adapted for 
myocardial motion analysis, and a flow-chart o f the algorithm derived is provided in 
Figure 6.5. At each iteration, the location with the lowest consistency measure is detected 
as abnormal. The likelihood measures o f the remaining landmarks are subsequently 
updated by subtracting the contribution from the rejected myocardial segment. The 
procedure is repeated until the lowest consistency value is beyond a predefined threshold 
close to 1, suggesting all the remaining myocardial locations have consistent ILM 
vectors. In this study, the threshold value used for termination is chosen to be close to 1 to 
allow for small perturbations around the landmark points.

137



Figure 6.5 A schematic diagram o f the iterative myocardial abnormality localisation 
algorithm. The output is a subset o f abnormal myocardial landmarks. The threshold for 
termination is chosen to be close to 1 to permit some small perturbation o f landmark point 
positions.
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6.3 Validation
6.3.1 Experiments
The validation o f the technique is carried out on a relatively large dataset consisting o f 50 
subjects. As in the previous chapters, the subjects were scanned using a 1.5T MR scanner 
(Sonata, Siemens, Erlangen Germany) and a TrueFISP sequence (TE = 1.5 ms, TR = 3 
ms, slice thickness = 10mm and pixel size from 1.5 to 2mm) within a single breath-hold. 
Retrospective cardiac gating was used to ensure an even coverage o f the entire cardiac 
cycle and for each subject 25 cine frames were acquired.

For all datasets, delineation o f the myocardial boundaries was carried out by an expert 
observer by using a semi-automatic ventricular analysis tool (CMRtools [117]). From the 
contours obtained, 182 landmarks were uniformly distributed by arc length for each o f the 
boundaries and at all temporal frames o f the cardiac cycle, where point correspondences 
were determined based on the location o f the LV/RV junction points. Contractile indices 
such as ejection fraction, stroke volumes and thickening were calculated and a detailed 
visual assessment was carried out by the expert observer for regional abnormality 
localisation. In this study, a total o f 28 subjects were identified as normal by the expert 
observer. These are used for the tolerance model construction. Of the remaining 22 
datasets, the observer identified 1 1  datasets as intermediately abnormal and 1 1  as severely 
diseased. All datasets were then evaluated using the proposed method, where the normal 
subjects were assessed on a leave-one-out basis. The parameters used in the experiments 
are summarised in Table 6.1.

6.3.2 Results
The percentage o f abnormal landmarks was calculated for each dataset and plotted in 
Figure 6.6 against the ground truth derived from visual examination ((a) normal, (b) 
intermediately abnormal and (c) severely abnormal). It can be seen from the figure that 
the calculated percentage o f abnormality correlates well with visual classification and a 
good separation is achieved for almost all datasets. For numerical assessment o f  class 
separation, non-parametric tests were used and a significant difference between the 3
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groups was found using the Kruskal-Wallis test (p<0.001) and post-hoc multiple com
parisons using Mann-Whitney test. The average abnormality percentage found for the 
normal, mildly abnormal and severely abnormal subjects were 1.0 ± 2.0, 14.2 ± 6.0 and 
63.8 ± 25.1, respectively. Two normal datasets (shown in crosses) were misclassified by 
the proposed technique. The first one, characterised by excessive thickening o f the 
myocardium probably due to stress suffered by the patient during scanning, was misclas
sified since the training sample did not include the corresponding variability. The second 
misclassification was due to right ventricular dysfunction which will be discussed in 
detail in Figure 6.8(b).

Table 6.1 Parameters used for the experiments in this study.

Variable Description Value

n Number o f landmarks used to represent the 
myocardial locations along the LV 182

Total number o f datasets for validation 55

N Number o f normal subjects for calculating the 
multivariate tolerance regions 28

K Number o f  ILM vectors for each myocardial 
location 20

F Number o f  interpolated frames for each dataset 25
Part o f shape variation explained by the statistical 
models 0.99

Maximum number o f  iterations for tolerance 
region estimation 100

For regional assessment, five datasets were selected from each o f the three classes and 
further analysed using the AHA/ACC recommended 17-segment model. The segments 
were classified by the expert as normal or abnormal and for the proposed method and the 
abnormality measures were averaged for each segment. By counting the number o f  
misclassifications, percentage accuracy between the proposed method and visual exami
nation was calculated for the fifteen datasets and they are summarised in Figure 6.7. It is 
evident from the figure that a good agreement has been achieved for all the datasets, with
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Normal Mild/ Severelysubjects Intermediate abnormal

Figure 6.6 Percentage o f abnormality as calculated by the proposed technique for the 
entire dataset, plotted against the visual classification by the expert observer. Only two 
normal datasets (shown in crosses) are misclassified by the automatic method.

an average accuracy o f 91.3 ± 6.9 %. Figure 6.8 shows an example o f the segmental 
assessment by both automatic and manual methods. The identified abnormal segments 
correspond to the suspected myocardial infarct region, as evident from the short axis 
images.

To facilitate detailed visualisation of localised contractile abnormalities, 3D LV surface 
maps were constructed by using the results derived. Three examples are shown in Figures 
6.9 to 6.11, where lighter shading corresponds to normal myocardial contractility whereas 
darker shading indicates a local abnormality. The example in Figures 6.9 shows a LV 
with partial dilatation and an abnormal ejection fraction o f  36 % due to the formation o f  
the scar tissue at the antero-lateral region. The example in Figure 6.10 corresponds to the 
second misclassification from Figure 6.5, but with normal ejection fraction and thicken
ing measures. The subject has an abnormal right ventricle which is affected by pulmonary 
hypertension, thus causing abnormal deformation o f the LV. More specifically, this 
causes a severe deformation at the septal region o f the LV, which is correctly identified 
by the proposed method. This illustrates the capability o f the proposed technique to
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identify both dynamic and shape related abnormalities, unlike conventional techniques. In 
Figure 6.11, the wall thickening analysis shows normal contractility in all myocardial 
segments but it is less significant at the infero-lateral region than other locations of the 
LV. This indicates potential localised myocardial injury due to coronary disease, which 
affects the extent of contractility at the infero-lateral region.

C0)
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o
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Normal Mild/ Severely
subjects Intermediate abnormal

Figure 6.7 Percentage agreement between automatic and manual analysis of myocardial 
motion for the normal and abnormal segments.
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Figure 6.8 An example comparing the 17-segment based local assessment achieved by 
the automatic and manual abnormality analysis methods.
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A b n o rm a l m a p

Figure 6.9 Example illustrating the contractile dysfunction analysis achieved by the 
proposed method. The results are mapped onto the LV surface for abnormality localisa
tion and visualisation.
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A b n o rm a l m a p
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Figure 6.10 In this example, a morphological abnormality due to the right ventricle 
pushing onto the LV is identified by the proposed method.
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A b n o rm a l m a p

Figure 6.11 In this example, normal thickening can be seen at all regions of the myocar
dium, but it is less significant at the infero-lateral region than at other locations of the 
myocardium. This suggests potential myocardial injury affecting the local extent of 
contractility. The abnormality is successfully identified by the proposed method.
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6.4 Discussion and Conclusions
In this chapter, a framework for localised myocardial motion analysis based on ILDs is 
presented. ILM vectors are constructed to describe the coupled motion o f inter-regional 
myocardial segments throughout the cardiac cycle. This combined spatio-temporal 
representation allows both morphological and dynamic inconsistencies to be identified. 
With the proposed framework, the normal contractility properties are captured by 
estimating the multivariate tolerance region for the introduced ILM vectors. Robust 
estimators are used to overcome the influence o f extreme values, allowing more flexible 
training set selection and accurate model definition. From a theoretical stand point, the 
proposed method is adapted from the inconsistent landmark localisation algorithm 
presented in Chapter 5. For a given LV, a consistency measure is estimated for each 
myocardial location, which enables iterative detection o f local abnormality. A segmental 
motion distribution can be derived to enable visualisation o f regional abnormality.

The technique shows clear advantages o f the proposed technique over existing regional 
assessment approaches based on myocardial thickness and thickening. First, it performs 
motion analysis independently o f shape alignment, and therefore is immune to the effect 
o f localised abnormality. Furthermore, both global and local aspects o f myocardial 
motion are taken into account by the use o f multiple ELM vectors. The technique also 
encodes implicitly other parameters such as thickness, shape and size. Unlike traditional 
methods based on the analysis o f  end-diastolic and end-systolic differences, the proposed 
approach incorporates complete temporal information, thus allowing the identification o f  
abnormalities that are related to different phases o f the cardiac cycle.

In summary, this chapter demonstrates the flexibility o f  ILDs for studying anatomical 
structures in terms o f  both shape extraction and motion analysis. It is important to note 
that although the technique permits localisation of abnormalities but in its current form it 
does not quantify the extent o f dysfunction involved. A possible solution would be to use 
the individual ILM vectors and their deviations from the normal distribution. Although 
this is not the main subject o f this thesis, the degree o f regional abnormality is important 
in clinical assessment particularly for serial examinations to assess the efficacy o f  
therapeutic measures. Another limitation is that in the current implementation, the
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proposed method does not take into account twisting motion o f the ventricle, which is 
important factor to consider for myocardial contractility analysis. Due to the unique fibre- 
architecture of the myocardium, the contraction and relaxation o f the heart consists o f  the 
base twisting in one direction while the apex twisting in the opposite direction. In order to 
capture these motions, it is necessary to use different MR sequences, either MR tagging 
or MR phase contrast velocity imaging [118]. Nevertheless, the basic theoretical frame
work will hold. For MR tagging, for example, ILM vectors can be defined at tag 
intersection points, which permit detailed modelling o f intra-mural motion o f the myo
cardium.
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Conclusions

7.1 Summary of the Thesis
Anatomical shape analysis is an important topic in medical image computing as it is the 
pre-requisite for deriving functional indices and tracking morphological changes in 
responses to therapeutic measures. With increasing capabilities of image modalities, 
particularly the emergence of real-time imaging techniques, automatic techniques are 
required for robust boundary shape extraction as well as for detailed investigation of 
geometrical information. Due to the morphological complexity and variability involved, 
as well as to difficulties that are inherent to medical image data, the study of anatomical 
structures requires effective approaches for shape description, modelling, extraction and 
analysis. While landmark coordinates have been used extensively, the materials intro
duced in this thesis represent a first attempt at using Inter-Landmark Descriptors (ILDs) 
for shape-based image analysis. This work is motivated clinically by the following 
requirements:

• the demand for interactive and consistent frameworks that require minimal user 
interaction.

• the need for effective incorporation of suitable prior geometrical knowledge that can 
allow detailed shape extraction and interpretation; •

• the need for generic frameworks that are resistant to challenging imaging conditions 
and applicable to different applications;
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In order to incorporate prior knowledge about the anatomical shapes under investigation, 
statistical shape modelling based on landmark data represents the basic framework for the 
work presented in this thesis. The aim o f the proposed approach using ILDs is to address 
specific drawbacks o f existing methods based on coordinates and multivariate statistics, 
particularly the Active Shape Model (ASM). The lack o f  invariance to the pose parame
ters is problematic in the presence of inconsistencies, while the global nature o f the shape 
parameters prohibits detailed localised shape analysis. As a result, despite recognised 
merits, the ASM framework suffers from a range of technical difficulties in challenging 
applications, i.e.,

• the use o f global shape model for reliable and effective initialisation o f image search 
is difficult, particularly for volumetric and dynamic datasets;

• the current feature search strategy results in limited coverage o f the image space and 
unconstrained localisation of feature points;

•  the presence o f image inhomogeneities can easily introduce outliers which can affect 
considerably the shape alignment and model fitting processes;

• the model does not bode well for regional abnormality analysis.

In this work, we have presented a shape modelling framework based on ILDs. Through
out the thesis, we have demonstrated many advantages o f  these variables for shape-based 
image analysis. First o f all, unlike landmark coordinates, ILDs are invariant to similarity 
transformations, which is beneficial when pose parameters are either unknown or difficult 
to be estimated accurately. Secondly, they provide a practical means o f decomposing 
global shape alignment from local shape analysis, thus enhancing the overall consistency 
and robustness of shape analysis. Finally, by effective modelling o f suitable inter
landmark relationships, relevant correlations between different parts o f  the shape can be 
captured and subsequently used for identifying shape inconsistencies.
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7.2 Technical Contributions
One o f the key contributions o f the thesis is the proposal of ILDs for statistical shape 
analysis. We have presented some o f the key features o f ILD and proposed a number of  
new algorithms and statistical implementations that enable the effective use o f the ILDs. 
In particular, issues related to invariance to non-shape parameters, implicit encoding of 
correlations between different parts of the shape, and shape parameter decomposition are 
addressed. Multivariate ILDs have also been discussed, which include barycentric 
coordinates and spatio-temporal ILD vectors. Their properties for modelling normal 
anatomy, particularly through the use o f statistical intervals, are illustrated. The intersec
tion o f multiple tolerance intervals is used in this thesis as the basis for imposing 
constraints on individual landmarks.

Since each ILD is associated with more than one point, it is not straightforward to make 
statistical inference on individual landmarks by simple analysis o f  the ILD values. The 
same problem arises in terms o f landmark prediction, which also depends on the position 
of other landmarks o f the shape. New algorithms and statistical modelling are therefore 
introduced in order to effectively manipulate these ILDs for shape-based image analysis. 
In this thesis, we have developed a method for the construction o f geometrical priors that 
can be used to constrain individual landmarks during image search. This is achieved 
through the inter-landmark conditional probability, a statistical representation o f inter
landmark patterns invariant to the location o f the shape, which assists the prediction o f an 
unknown landmark by taking into account positions o f other points in the shape. To 
improve the ASM output, a feature point search algorithm is introduced based on a 
combinatorial approach. With this method, instead o f  searching for feature points inde
pendently using conventional normal profiles, a sequential approach is used where the 
inter-landmark constraints are applied successively to limit the search space. The A* 
algorithm is then adapted to the problem to ensure the detection o f the optimal set of 
feature points given the local models o f appearance. Automatic initialisation based on the 
inter-landmark constraints is also derived based on heuristics for estimating the degree o f  
intersection o f  the landmark prediction regions with the boundary o f  interest.
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Another important contribution o f the thesis is the effective handling o f outliers. The 
method is based on the idea that inconsistent landmarks typically have a particularly high 
number o f inconsistent ILDs. In ASM, the use o f an invariant shape metric allows outlier 
analysis to rely on shape information alone without the interference o f the shape align
ment procedure. With the proposed method, the identified outliers are not simply rejected 
or replaced by the corresponding mean values, as often adopted by conventional ASM 
techniques. Instead, a correction mechanism based on both appearance and geometrical 
criteria is used to rectify each detected outlier before the model fitting procedure. The 
technique uses a geometrically weighted fitness measure for the feature point search 
which exploits outlier analysis results from successive iterations to prevent outliers from 
re-appearing in subsequent iterations. This improves the overall stability o f the algorithm 
and ensures the final convergence o f the algorithm is achieved only within a few itera
tions.

The ultimate goal o f shape-based analysis in medical imaging is to understand the 
extracted geometrical information for the detection o f abnormalities, either geometrically 
or dynamically. A framework for localised myocardial motion analysis based on ILDs is 
presented in this thesis. ILM vectors are constructed which describe the coupled motion 
o f inter-regional myocardial segments throughout the cardiac cycle. This combined 
spatio-temporal representation allows both morphological and dynamic inconsistencies to 
be identified. With the proposed framework, the normal contractility properties are 
captured by estimating the multivariate tolerance region for the introduced ILM vectors. 
Robust estimators are used to overcome the influence o f extreme values, allowing for a 
more flexible training set selection and accurate model definition. The experimental 
results derived demonstrate the flexibility o f ILDs for studying anatomical structures in 
terms o f  both shape extraction and motion analysis.

In summary, the main contributions o f this thesis are:

• Theoretical investigation and algorithm development o f ILDs for shape-based 
medical image analysis; •

•  Formulation o f partial and invariant geometrical constraints for landmark search;
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• Development o f an invariant landmark analysis algorithm for inconsistent landmark 
identification;

• Incorporation o f the above methodologies for addressing the current limitations of 
ASM including shape initialisation, optimal feature point search, outlier handling 
and localisation of shape and motion anomalies;

• Validation o f the proposed methods with concrete clinical data with applications to 
left ventricular segmentation, carotid artery segmentation, and myocardial motion 
analysis.

7.3 Discussion and Further Research
Despite the unique strength demonstrated in this thesis, the proposed framework does 
have some limitations that deserve future work. For example, the proposed technique in 
its current implementation requires additional computation particularly during initialisa
tion, which makes real-time, interactive shape localisation difficult. Although this can be 
resolved to some extent by improved software coding and hardware, it is necessary to 
further optimise the algorithm design, for example by using a multi-resolution approach. 
In terms o f outlier detection, the method presented in this thesis is relatively simple and 
there is additional scope for improvement. For example, a final outlier detection step 
could be added after outlier correction so as to further identify and subsequently reject the 
remaining outliers. Alternatively, the outlier detection and correction stages can be 
iteratively applied until no further outliers are detected.

For motion analysis, it is important to note that although the technique permits localisa
tion of abnormalities, it does not quantify the extent o f  dysfunction involved in its current 
form. A possible solution would be to use the individual ILM vectors and their deviations 
from the normal distribution. Although this is not the main subject o f this thesis, the 
degree o f regional abnormality is important in clinical assessment particularly for serial 
examinations to assess the efficacy o f therapeutic measures. In addition to the applica
tions demonstrated in this thesis, the proposed method can potentially be generalised to 
other areas o f research.
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One o f the interesting areas for further exploration is in predictive modelling. Predictive 
modelling o f anatomical structures in medical imaging is mainly concerned with predict
ing invisible (immeasurable) parts o f an anatomical shape from observable data. The 
procedure has a wide range o f applications such as surgical planning, motion adaptive 
radiation therapy, and motion adaptive imaging. Most of the existing techniques for 
predictive motion modelling have so far been based on simple linear regression. More 
recently, a technique called Partial Least Squares Regression (PLSR) has been used for 
predictive motion modelling [119]. The goal o f PLSR is to resolve some o f the difficul
ties involved in linear regression methods (e.g. multi-linear regression) due to multi- 
collinearity o f the predictors.

The advantage of these statistical based predictive models is that they forgo the traditional 
approach o f using biomechanical modelling such as finite element modelling. It is well 
known that biomechanical models work well if all the mechanical properties o f the tissue 
and tissue-tissue interaction are known. For in vivo applications, however, these proper
ties are patient specific and difficult to obtain. This suggests the potential strength o f  
using model-free techniques for predictive motion modelling, by learning and utilizing 
the associated geometrical patterns. To this end, the use o f ILDs can have significant 
advantages, particularly in its independence to shape alignment which is difficult to 
achieve in the presence o f local tissue deformation. More importantly, the ILDs provide a 
flexible means to build explicit local deformation constraints by considering varying 
combination o f  landmarks and by modelling different intra-shape relationships. Combin
ing ILDs and PLSR for predictive modelling will require specific algorithmic 
implementation to provide a mapping onto the image space.

Another important application o f  the proposed ILDs is for assessing post-operative 
recovery o f the heart through a systematic follow-up. For example, a long-term project is 
currently underway to examine the impact o f septal myectomy on patients with hypertro
phic cardiomyopathy, a pathology which is a leading cause for sudden cardiac death in 
young adults [120]. In this regard, ILDs are well suited for long-term follow-up o f these 
patients in a consistent and detailed fashion. The major technical challenges involved are 
concerned with elucidating subtle sequential remodelling o f the myocardium, and to
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correlate this with coupled biomechanical and haemodynamic factors that lead to im
proved cardiac function. We believe that the invariant properties of modelling techniques 
developed in this thesis can play an important part in this challenging area o f clinical 
research.

7.4 Conclusions
In conclusion, we have presented in this thesis a novel approach for shape-based analysis 
based on ILDs. The proposed methods are in response to the increasing demand for 
computational tools that can incorporate suitable prior geometrical knowledge, minimise 
user interaction, and can be consistently applied to varying imaging conditions. They 
cater for both morphological and motion analysis o f complex anatomical structures. The 
experimental results demonstrate the potential clinical value o f  the techniques. It is 
expected that the proposed analysis framework is particularly suited for serial examina
tion o f dynamic 3D models, which currently is still limited to labour intensive 
examination. The methods proposed therefore address one o f the major bottlenecks o f  
current imaging techniques, particularly ultra-fast high-resolution imaging modalities 
such as MRI. The sensitivity o f the method can contribute towards the identification o f  
early image biomarkers for assessing the onset o f pathological changes and the efficacy 
o f therapeutic measures.
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