
1 
 

Title: Using active shape modelling based on MRI to study morphological and pitch-1 

related functional changes affecting vocal structures and the airway 2 

Abstract  3 

Objective 4 

The shape of the vocal tract and associated structures (e.g. tongue and velum) is complicated and 5 

varies according to development and function. This variability challenges interpretation of voice 6 

experiments. Quantifying differences between shapes and understanding how vocal structures move 7 

in relation to each other is difficult using traditional linear and angle measurements. With statistical 8 

shape models, shape can be characterized in terms of independent modes of variation. Here, we 9 

build an active shape model (ASM) to assess morphological and pitch-related functional changes 10 

affecting vocal structures and the airway. 11 

Method 12 

Using a cross-sectional study design, we obtained 6 midsagittal MR images from 10 healthy adults (5 13 

males and five females) at rest, while breathing out, and while listening to and humming low and 14 

high notes. Eighty landmark points were chosen to define the shape of interest and an ASM was built 15 

using these (60) images. Principal component analysis was used to identify independent modes of 16 

variation and statistical analysis was performed using one-way repeated-measures ANOVA. 17 

Results 18 

Twenty modes of variation were identified with modes 1 and 2 accounting for half the total variance. 19 

Both modes 1 and 9 were significantly associated with humming low and high notes (P < 0.001) and 20 

showed coordinated changes affecting the cervical spine, vocal structures and airway. Mode 2 21 

highlighted wide structural variations between subjects. 22 
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Conclusion 23 

This study highlights the potential of active shape modelling to advance understanding of factors 24 

underlying morphological and pitch-related functional variations affecting vocal structures and the 25 

airway in health and disease. 26 

Keywords  27 

active shape model; active appearance model; MRI; vocal tract; pitch; humming; cervical spine; 28 

posture 29 

Introduction 30 

Speech and singing are complex activities requiring rapid and finely coordinated movements of 31 

muscles responsible for articulation, phonation and respiration. (1) Until the 1980s, available 32 

methods, such as ultrasound, electropalatography, and nasoendoscopy, meant that only part of the 33 

vocal apparatus could be examined at any one time. However, with the introduction of magnetic 34 

resonance imaging (MRI) in voice research it became possible to investigate the soft tissue outline of 35 

the entire vocal tract (glottis to lips) in three dimensions. (2) Since then, advances in technology and 36 

reduction in image acquisition time mean that MRI can now be used to observe vocal function in real 37 

time. (3) Nevertheless, despite these significant advances, we do not yet have a comprehensive 38 

understanding of factors underlying the wide range of structural variation between individuals and 39 

functional variations within and between individuals. (4,5) This is important because uncovering 40 

factors responsible for such variability could lead to new insights and, therefore, testable hypotheses 41 

concerning fundamental questions in voice science (6): for example, what mechanisms underlie the 42 

“singing formant” (7) and the rise and fall of the larynx with changes of voice pitch? (8,9)  43 

Traditionally, the focus of MRI in voice science is restricted to the investigation of changing 44 

dimensions of the vocal tract and vocal structures, and changing relationships between articulators 45 

such as the lips, jaws, tongue, and soft palate (velum). (1,10)  In previous studies, it was suggested 46 
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that this focus was too narrow because such an approach neglects to account for the fact that all 47 

vocal structures have direct and/or indirect attachments to the skeletal frame; the skull, cervical 48 

spine, sternum and scapula. (11,12) Instead, it was argued that by considering vocal structures 49 

within the context of their wider relationships it might be possible to reach a better understanding 50 

of mechanisms underlying coordinated adjustments responsible for goal-related activity within the 51 

vocal system. Using a method that combined MRI’s superior soft-tissue definition with bony 52 

reference points used in cephalometry (lateral x-ray), a protocol was designed to allow investigation 53 

of morphological and dynamic functional relationships between vocal structures within the context 54 

of their anatomical connections.  55 

In the first study, with subjects at rest, widespread and significant correlations were observed 56 

between variables relating the larynx, hyoid, epiglottis, velum and airway to the cranial base, 57 

craniofacial skeleton, sternum, and cervical spine. (11) These included previously unreported 58 

correlations (e.g. between the width of the laryngeal tube opening and craniocervical posture). In 59 

the second study, images were acquired while subjects hummed low and high notes while 60 

maintaining a stable posture. (12) Significant differences were found between low- and high-note 61 

conditions in 6 of 22 measures in addition to widespread significant pitch-related correlations 62 

between variables.  Specifically, compared with humming a low note, humming a high note was 63 

associated with a rise of the larynx and hyoid in relation to the cranial base, increased angles 64 

between the cranial base and cervical spine, and increased C3-menton and sternum-hyoid distances. 65 

These results demonstrated the presence of coordinated pitch-dependent adjustments during voice 66 

production that may be missed or mistakenly attributed to articulatory or postural changes, 67 

particularly if vocal structures are investigated without taking their wider structural relationships 68 

into account.  69 

 70 

In both these studies, significant correlations between variables were reported in correlation tables. 71 

It is difficult to gain a full appreciation of underlying patterns of adjustments that accompany both 72 
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developmental and functional changes within the head and neck from complicated arrays of 73 

numbers displayed in a correlation table. However, by using data obtained in these studies to build a 74 

statistical shape model it is possible to present these findings in a more accessible and informative 75 

visual format. 76 

Background 77 

The vocal tract and its closely associated structures such as the larynx, hyoid, epiglottis, tongue, jaw 78 

and velum vary not only in shape and size between individuals, significant variation also occurs 79 

within individuals during voice production. The length of the vocal tract, for example, varies 80 

according to age, sex and size (4), and the shape of the airway can vary according to changing 81 

posture (13) and changing positions of articulators. (1) These variations in the overall shape of vocal 82 

structures and the airway can easily be seen in midsagittal MR images of the head and neck. 83 

However, statistical comparison of images requires a valid method of quantifying such variation. In 84 

comparison with a simple shape such as a rectangle, MR images and changing relationships between 85 

structures they represent are complex and difficult to represent mathematically. An active shape 86 

model (ASM) is a statistical model that can account for such natural variation. (14-17)   87 

Active shape modelling is a well-established image processing technique that can be used in 88 

situations where, as here, objects of interest can be clearly defined and a representative set of 89 

examples is available. Since description of the first flexible deformable model to allow for such 90 

natural variability (18), statistical models have earned their place as a “systematic and effective 91 

paradigm for the interpretation of complex images.” (16) They have wide application in a growing 92 

list of medical disciplines. This includes modelling of arthritic and osteoporotic hips (19), vertebrae 93 

(20), facial appearance (15), the heart (15), brain ventricles (15) and, more recently, speech 94 

production. (21-24) In an active shape model, shape is represented mathematically (by recording 95 

coordinates of points) and incorporated into a flexible template.  In addition to shape, an active 96 

appearance model also represents other shapes, surrounding structures and boundaries by 97 
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registering their grey-level or texture appearance (the pattern of pixel intensities which varies 98 

according to tissue type). As shape and texture are often correlated, combining information about 99 

both aspects means that a more informative model can be obtained. (24) 100 

In this study, the shape of interest includes vocal structures, the airway, and bony landmarks that 101 

allow these structures to be studied within the context of their wider relationships: Vocal structures 102 

are not isolated. They are anatomically and functionally linked to surrounding structures (e.g. 103 

superior constrictor connection with tongue muscles) (25), and to spatially more distant structures 104 

(e.g. connections between velum and larynx via palatopharyngeus). (26) Using statistical shape and 105 

appearance models, it is possible to observe and quantify correlations between positions and shapes 106 

of local and more distant structures within the image:  that is, it is possible to observe how different 107 

vocal structures move in relation to each other as the overall shape varies according to development 108 

or function. This approach has been termed a ‘top-down’ (global) rather than a ‘bottom-up’ strategy. 109 

(14) In the latter instance the focus is on local structures and their relationships; between the 110 

diameters of the laryngeal tube opening and the hypopharynx, for example. (27) However, the 111 

complexity of MR images and the almost limitless way that structures may vary in relation to each 112 

other means that a ‘bottom-up’ approach is necessarily restrictive in what it can reveal. Recently, 113 

statistical models of shape and appearance were successfully used to model tongue shape and 114 

motion  (21) and vocal tract shape (24)  during articulation of speech sounds. As far as we are aware, 115 

this is the first statistical shape model to represent vocal structures from a global perspective; one 116 

that takes into account their wider anatomical relationships within the skeletal frame.  117 

The aims of this study are threefold: 1) to model differences in gross morphological features of the 118 

vocal tract and associated structures within the head and neck between subjects at rest 2) to model 119 

changes in shape that occur when subjects hum low and high notes and 3) to show how active shape 120 

modelling can complement and extend information obtained by using more traditional geometric 121 

measurements.  122 
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Method 123 

The selection of subjects and a description of the method used to acquire midsagittal MR images 124 

were reported earlier. (11,12) In brief, MR images were acquired from a mixed group of singers 125 

(including one professional singer) and non-singers (5 males, 5 females aged between 20-47 years 126 

with a median of 25 years). Before image acquisition, the low and high notes that could be 127 

comfortably hummed while breathing out over 20 seconds were established. For the whole group, 128 

these ranged from 98 (G2) to 1047 Hz (C6), where C4 is middle C. Subjects adopted a supine position 129 

in the scanner and were instructed to maintain a stable posture at all times (looking straight ahead 130 

with lips and teeth together and tongue resting comfortably against the hard palate). Individuals 131 

were imaged with the head placed in a Sense-Neurovascular array-16 element coil. Deformable 132 

foam wedges were used to make the subject comfortable and restrain the head position. 133 

Parasagittal images were obtained with a 3.0 T Achieva MR system (Philips, Best, Holland) using a 134 

turbo spin echo pulse sequence with the following parameters: field of view (FOV) 340 mm x 340 135 

mm; a 768 by 768 matrix; repetition time 4106 ms; echo time 100 ms; 6 slices 4.0 mm thick with a 136 

gap of 1.0 mm centred on the midsagittal plane. As part of a larger study, six images were acquired 137 

from each of the 10 subjects while at rest, while humming low and high notes, while listening to the 138 

same low and high notes, and while breathing out over 20 seconds. Only data referring to images 139 

acquired while at rest and while humming low and high notes are analyzed in this paper. 140 

Building the Active Shape Model 141 

The model was built using a freely available active appearance modelling tool kit from the University 142 

of Manchester (http://www.isbe.man.ac.uk/~bim/software/am_tools_doc/index.html). Examples of 143 

MR images used to build the model are shown in Figure 1.  Point selection and annotation of MR 144 

images was carried out by one of the authors, a clinician with detailed knowledge of vocal anatomy 145 

and relevant imaging experience. Steps taken to build the model are illustrated in Figure 2 and 146 

summarized below: 147 
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Eighty points were chosen to describe the shape of interest (Figure 3). These included a) well-148 

defined ‘landmark’ points, easy to locate on every image and corresponding to particular features 149 

such as the tips of the velum, epiglottis and odontoid process, and b) boundary points (equidistant 150 

between landmark points) which help define the shape of interest and assist in the visual 151 

interpretation of results. The points chosen for this study included all those defined and selected for 152 

conventional geometric analysis in earlier studies. (11,12) 153 

  154 

A template representing the shape was obtained by manual annotation of the first image. Each point 155 

was carefully and precisely placed on the same feature (on this and each subsequent image) and the 156 

way in which points were connected was recorded so that the method could model variability 157 

effectively. (This process provides a crude template modelled on only one set of points; a model of 158 

the shape and ‘texture’ of the image. If used to locate the same shape in a new image, this model 159 

would only be able to map on to shapes that are almost identical to itself; i.e. it is a rigid, rather than 160 

a flexible, template.) A flexible template, containing all the shape variations present in the data set, 161 

was obtained by uploading each of the remaining 59 images in turn. For each image, the software 162 

attempts to match the model to the new set of points.  Precise matching of the model to the new 163 

shape was achieved following careful manual editing of the position of each point. Once matched, 164 

the model was updated. (The updated model incorporates the shape represented in the newly 165 

uploaded image and, therefore, the ways this shape differs from the original image.) As each set of 166 

points was uploaded to the model they were aligned into a common coordinate frame by scaling, 167 

rotation and translation (Procrustes analysis) to minimize the variance, in distance, between 168 

equivalent points. With the scaling factor removed all the data is stored proportionately rather than 169 

absolutely. This means that the effect of subject size on measurements such as vocal tract length is 170 

eliminated, allowing the shapes themselves to be compared.  Once all the data is incorporated into 171 

the model, the software calculates the average position of the points to obtain the mean shape of 172 
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the chosen structures and its allowable variations (Point Distribution Model): individual modes of 173 

variation are calculated using principal component analysis (PCA). 174 

 175 

PCA is a powerful tool that is widely used to uncover hidden patterns in data. Using deviations from 176 

the mean, it identifies ways in which groups of landmark points tend to move in relation to each 177 

other as the shape varies. Each identified pattern of movement (or overall change of shape) 178 

represents a statistically independent mode of variation (i.e., a change in shape that occurs 179 

independently of other shape changes). When combined, the modes of variation account for 100% 180 

of variance in the data set. Mode numbers are ordered according to the amount of variation 181 

explained with mode 1 accounting for the largest proportion of variance in shape, and higher mode 182 

numbers accounting for progressively smaller proportions of variance. For each mode in the model, 183 

the mean and standard deviation (SD) value for the whole MRI data set (60 images) was calculated 184 

and scaled to zero mean and unit SD. The score for each mode was then calculated for each image 185 

and expressed in terms of how many SDs it lay from the mean referent value (zero) of that mode 186 

(i.e. how its shape compares to others in the group). The scores from these modes of variation were 187 

used as inputs to the statistical analysis.  188 

Statistical analysis 189 

Statistical analysis was performed using Sigmastat (Version 11; Systat Software, Inc., San Jose, CA). 190 

One-way repeated-measures analysis of variance (ANOVA) was used to investigate differences 191 

between groups, and post hoc ANOVA group comparisons were performed using the Holm-Sidak 192 

test with significance set at P ≤ 0.05. For all tests, P < 0.05 was taken to indicate statistical 193 

significance. The images were also analyzed using conventional geometric measurements, the 194 

results of which were reported earlier. (11,12) 195 
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Results 196 

Findings of the Active Shape Model 197 

The first 20 modes accounted for 98% of the total variance (Table 1) but after mode 10 none 198 

contained more than 1% of the variance. The first 2 modes accounted for half the total variance. 199 

Here we report findings associated with modes 1, 2 and 9. To assist understanding, key anatomical 200 

features are illustrated in Figure 4. Mode scores for modes 1 and 9 were significantly different 201 

between humming low and high notes (P < 0.001). Mode 1 scores changed from 0.18 to -0.44 and 202 

mode 9 from -0.29 to 1.06 on changing pitch from low to high. Figure 5 shows the shapes described 203 

by varying modes 1 and 9 by +2 to -2 SDs about the mean shape of all 60 images. The same 204 

information is available as more informative and visually compelling video demonstrations by 205 

clicking on Figure 5 in the on-line version of the Journal.  Mode 1 is associated with coordinated 206 

changes affecting the cervical spine, vocal structures, and airway (nasopharynx to hypopharynx). 207 

Specifically, increasing kyphosis of the cervical spine is associated with shortening of the airway; a 208 

rise of the larynx (upper C6 to upper C4), hyoid (lower C3 to top of C5), epiglottis tip (bottom of C3 209 

to lower C2), and velar tip (bottom of C2 to upper C2); increasing distance between the sternum and 210 

larynx; and, decreasing distance between the larynx and hyoid. Conversely, increasing lordosis of the 211 

cervical spine is associated with lengthening of the airway; lowering of the larynx, hyoid, and 212 

epiglottis and velar tips; decreasing distance between the sternum and larynx; and, increasing 213 

distance between the larynx and hyoid. Changes of airway length are also associated with changes 214 

affecting the midsagittal shape of the nasopharyngeal and hypopharyngeal cavities: increasing 215 

airway length appears to be associated with a larger nasopharyngeal cavity and a longer and 216 

narrower hypopharyngeal cavity, whereas reductions in length appear to be associated with smaller 217 

nasopharyngeal dimensions and a shorter, wider hypopharyngeal cavity. The size of the 218 

oropharyngeal cavity did not appear to change. 219 
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Mode 9, although accounting for only 1.82% of the total variance within the data set, is also 220 

associated with coordinated changes affecting craniofacial and cervical structures. In contrast with 221 

mode 1, cervical changes, although present (lordosis to kyphosis), are slight. Additionally, in relation 222 

to the cervical spine, the heights of the larynx, hyoid, epiglottis and velum remain unchanged. 223 

However, whereas mode 1 is associated with changing airway length, mode 9 is associated with 224 

changing airway width: That is, as the cervical spine moves towards kyphosis, the velopharyngeal 225 

opening (VPO) and oropharyngeal airway become narrower and the hypopharyngeal opening 226 

becomes wider. Of particular interest in this mode is the finding that there appears to be a reciprocal 227 

relationship between midsagittal dimensions of the VPO and the shape of the geniohyoid muscle. 228 

The second mode accounts for 20.4% of the variance. Although no statistically significant differences 229 

were found between the six conditions, this mode is important because it highlights natural 230 

variations in the overall head-neck shapes within this group of 10 subjects. Mode 2 is associated with 231 

variations in the shape of craniofacial structures in relation to the cervical spine. The effect of 232 

altering this mode of variation by +2 to -2 SDs about the mean shape of all 60 images is seen in 233 

Figure 6 and also in a more informative video demonstration by clicking on Figure 6 in the on-line 234 

version of the Journal. As the cervical spine moves from kyphosis to lordosis, the distance between 235 

the larynx and sternum increases and the distance between the larynx and menton decreases. 236 

Narrowing of the VPO is accompanied by a rise of the velum and a reduction of the angle between 237 

the hard and soft palate. Rotation of the hyoid is accompanied by lowering of the epiglottis and 238 

posterior displacement of the tongue. The height of the larynx remains unchanged and there 239 

appears to be little change in the relationship between the upper cervical spine and the alignment of 240 

the base of the skull. 241 

Discussion 242 

Speech and singing require finely coordinated movements of muscles responsible for articulation, 243 

phonation and respiration. (1) We lack a full understanding of the mechanisms responsible for such 244 

Final draft ASM paper Nicola Miller 31 July 2013 
 



11 
 

coordinated activity. (28,29) In this study, midsagittal MR images of the head and neck were used to 245 

build an active shape model to investigate morphological differences of vocal and associated 246 

structures within the head and neck, and to investigate changes in the shape of these structures 247 

when subjects hummed low and high notes. Our results highlight the potential of ASM to 248 

significantly improve our understanding of coordinated mechanisms that underlie vocal behavior. 249 

Not only can ASM be used to identify and distinguish between structural and functional changes in 250 

the shape of vocal structures and the airway, it can also show how vocal structures move together as 251 

overall shape varies according to development or function, thus highlighting a key advantage of 252 

statistical shape modelling over conventional geometric analysis: 253 

The results of geometric analysis were reported earlier. (11,12) Although geometric analysis and 254 

active shape modelling both showed the switch from low- to high-note humming to be accompanied 255 

by significant changes in vertical and horizontal dimensions, use of active shape modelling also 256 

permitted the discovery of distinct modes of variation that appear to underlie these changes: there 257 

is not a 1:1 relationship between functional movements and modes of variation because goal-258 

related movements may require the simultaneous recruitment of two or more modes of variation.  259 

By uncovering previously hidden patterns of movement underlying goal-related vocal activity, active 260 

shape modelling complements and extends results obtained from conventional geometric analysis.  261 

The model created 20 modes of variation with the first 2 modes accounting for half the total 262 

variance within the data set. The modes are in order of decreasing variance, reflecting a reducing 263 

measure of global changes in morphology. Two modes of variation (modes 1 and 9) were 264 

significantly associated with humming low and high notes. Each shows a different pattern of 265 

coordinated activity affecting the cervical spine, vocal structures and the airway. It can be seen from 266 

Table 1 that mode 9 accounts for only 1.82% of total variance. However, it is important to appreciate 267 

that mode number does not necessarily equate with clinical importance.  This is particularly true in 268 

voice production studies because local changes of shape can lead to significant effects even if overall 269 
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shape changes are small: the effect of the size of the VPO on acoustic output, for example. (30) The 270 

findings associated with modes 1, 9 and 2 are discussed in turn below.  271 

Mode 1 272 
In mode 1, as the humming pitch changes from low to high, the cervical spine moves from lordosis 273 

towards kyphosis, the airway becomes shorter, vocal structures (larynx, hyoid, epiglottis and velum) 274 

rise together in relation to the cervical spine, the distance between the sternum and larynx increases 275 

and the distance between the larynx and hyoid decreases. Although pitch-related changes affecting 276 

the larynx were not altogether surprising, those affecting the alignment of the cervical spine were 277 

not anticipated. Below, we consider a number of factors that may have contributed to these 278 

changes, beginning with pitch-related changes affecting larynx height. 279 

Pitch change and larynx height 280 
Although the rise and fall of the larynx with pitch is long recognized (e.g. Bérard 1755) (31), the 281 

mechanisms underlying this close association are still unclear. (9,10,32) Numerous (direct and 282 

indirect) muscular, membranous, and ligamentous attachments to vocal structures and the skeletal 283 

frame, functional changes, postural adjustments, and gravitational influences mean that the height 284 

of the larynx at any one time depends upon the net force acting on it at that particular moment.  285 

These changes are supported by an immensely rich reflex network which serves to integrate the 286 

primary demands of the respiratory system with other concurrent task-related activities involving 287 

the same structures (e.g. vocalization). (33) In this study, subjects adopted a supine position in the 288 

scanner. Compared with upright subjects, the larynx tends to be higher in the supine position, 289 

thought to be due to the lack of gravitational pull of the respiratory apparatus (Hixon 1987). (10) 290 

Lung volume can also influence laryngeal height with higher lung volumes associated with lower 291 

laryngeal positions (Iwarsson 1998). (10) This is important because the act of humming is inevitably 292 

accompanied by reducing lung volumes and, therefore, a tendency towards higher laryngeal 293 

positions. 294 

Final draft ASM paper Nicola Miller 31 July 2013 
 



13 
 

In this study, a stable posture, supine position, and sustained phonation were common to both low-295 

and high-note humming conditions, suggesting that pitch-related changes may also contribute to the 296 

changes of larynx height observed here. Support for this view is found in the results of an almost 297 

identical study which investigated changes when subjects hummed notes at each end of their range 298 

whilst adopting an upright position (lateral x-ray), where humming high notes was “undoubtedly” 299 

accompanied by upward movement of the “larynx as a whole”. (34) More recently, Yanagisawa et al. 300 

(1991) observed the rise of the larynx with pitch to be associated with contraction of the pharyngeal 301 

walls and commented that pharyngeal constrictor contraction could result in a “dorsocranial pull” 302 

(8); observations supported by knowledge of pharyngeal constrictor attachments to the base of the 303 

skull and thyroid cartilage (26), reports of pitch-related activity involving pharyngeal muscles 304 

(superior and inferior constrictor muscles and palatopharyngeus) (32), and findings of phonation-305 

induced contractile reflexes involving the inferior pharyngeal constrictor and upper esophagus. (35) 306 

We suggest that, together, the results of this and earlier studies point to the presence of active 307 

pitch-related adjustments that can augment or override biomechanical restraints such as those 308 

imposed by respiratory demands and changes of posture or position. This possibility is particularly 309 

interesting given suggestions that alternative pitch mechanisms may account for the ability of 310 

alaryngeal speakers to convey prosody successfully. (36) 311 

Pitch change and cervical alignment 312 
The extent of cervical involvement in the first mode was unexpected, striking and counterintuitive. 313 

Beyond suggestions that regional changes of cervical spine shape might contribute to fine 314 

adjustment of fundamental pitch (37), cervical input has no place in traditional theories of pitch 315 

production. (38) Cervical changes have been reported in professional singers but they have been 316 

attributed to jaw opening (39) or the adoption of a more forward head posture. (40) Compared with 317 

the lumbar spine, which tends to maintain its intrinsic shape in upright and supine positions (20), 318 

factors affecting the shape of the cervical spine have received little attention. Kitamura et al. (2005) 319 

noted that the cervical spine and posterior pharyngeal wall appeared to be retracted backwards in 320 
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the supine posture and suggested that fixed head position could change the orientation of the head 321 

relative to the axis of the body. (41) However, like larynx height, as the same position was adopted 322 

in both humming conditions, it is possible that the switch from low-to high-note humming may also 323 

have contributed to the cervical changes observed in this study. The “tripartite muscle arrangement” 324 

of longus colli (deep cervical flexor) supports this suggestion because, with its origins and 325 

attachments confined to the cervical vertebrae, it is well-placed to support functional changes in the 326 

shape of the cervical spine. (42) 327 

The changes of cervical shape with pitch led us to ask 1) whether cervical muscles have a greater 328 

role in pitch production than previously thought and 2) given the extent of the rise of vocal 329 

structures in relation to the cervical spine, whether there is a neural connection that could link, or 330 

synchronize, cervical with pharyngeal activity. A greater role for cervical muscles is supported by 331 

reports of: increasing distance between the larynx and cervical spine at the higher pitches (32); 332 

forward movement of the posterior pharyngeal wall during voice production and pitch-related 333 

activity in neck flexors (e.g. longus capitis) (43); and, “markedly elevated” activity in neck muscles 334 

when singing the highest pitches. (44) Involvement of pharyngeal muscles in pitch-related activity 335 

finds support in experiments showing a rise in pitch to be associated with increased activity in 336 

pharyngeal constrictor muscles and palatopharyngeus. (32) Examination of underlying neural 337 

connections shows that: nerves supplying the upper occipital, cervical and geniohyoid muscles have 338 

a common origin, the first cervical spinal nerve (C1); there is an overlap of the origin of nerves 339 

supplying both the deep cervical flexor muscles (e.g. longus colli) and the supra- and infra-hyoid 340 

(strap) muscles (C1-C5 and C1-C3 respectively); and, a neural connection “of undetermined function” 341 

links the vagus nerve (supplying pharyngeal muscles) to the cervical plexus at the level of C1. (45) 342 

The common origin of the nerve supply to cervical and strap muscles led us to ask whether 343 

functional synergies might exist not only between cervical and pharyngeal muscles but also between 344 

muscles that lie in front of and behind the airway. Such synergy, if confirmed, would have important 345 

implications for voice science. We know, for example, that strap muscles have a role in pitch 346 

Final draft ASM paper Nicola Miller 31 July 2013 
 



15 
 

production, particularly during the production of low and high notes, but the nature of this role is 347 

unclear. (46) Our results, together with knowledge of underlying neuroanatomical connections lead 348 

us to suggest that recruitment of strap and cervical muscles occurs as part of more widespread 349 

coordinated activity during pitch production.  350 

The presence of synergy between cervical and strap muscles has important clinical implications. 351 

Muscle tension dysphonia (MTD), for example, is characterized by excessive tension in extrinsic or 352 

(para) laryngeal musculature. (47) Primary MTD, where dysphonia occurs in the absence of organic 353 

vocal pathology, affects up to 40% of those attending voice clinics. Multiple factors are thought to 354 

underlie its development but these are not fully understood.  Here, we ask whether postural neck 355 

muscles, like laryngeal muscles, could be considered as falling into two groups, with postural input 356 

from superficial neck flexors (e.g., sternocleidomastoid (SCM)) influencing the functional efficiency 357 

of deep cervical flexors (longus colli and longus capitis) and, therefore, the degree of pitch-related 358 

cervical spine movement; a view supported by evidence of synchronous activity between longus colli 359 

and SCM. (48) Overall, however, rather than synergies between these particular muscles or muscle 360 

groups it is, perhaps, more profitable to view the potential for synergy between different muscles in 361 

the head-neck region as being more widespread than previously thought, with activity in any one 362 

muscle or muscle group varying according to task demands at the time. 363 

Mode 9 364 
Like mode 1, mode 9 shows coordinated changes affecting craniofacial and cervical structures. Of 365 

particular interest here, however, are the coordinated changes affecting the VPO, the base of the 366 

tongue and dimensions of the hypopharyngeal airway. The existence of synergistic relationships 367 

between muscles controlling the size and shape of the VPO and hypopharynx receive strong support 368 

from recent anatomical studies demonstrating the presence of functional relationships between 369 

superior constrictor and airway dilator muscles (e.g. genioglossus). (25,49) Furthermore, the 370 

observation that changing hypopharyngeal dimensions reflect only part of more extensive 371 

coordinated pitch-related changes is especially interesting, particularly given the long-standing 372 
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search for mechanisms underlying the production of the “singing formant” where the presence of 373 

greater spectral energy around 3000 Hz allows the singer’s voice to be heard over the sound of an 374 

orchestra. (7) It is suggested that conditions for production of the “singing formant” are met when 375 

the ratio between the diameters of the laryngeal tube and hypopharynx is 6:1. Positional changes of 376 

the tongue and lowering of the larynx are known to affect hypopharyngeal dimensions (7) but, as 377 

yet, a coherent explanation of the mechanisms underlying these changes is lacking. (27,50)  378 

Our demonstration that changes of hypopharyngeal dimensions occur as part of a more extensive 379 

coordinated response illustrates the significant potential of active shape modelling to uncover 380 

mechanisms underlying the production of the ‘singing formant’, and explanations for vocal 381 

phenomena such the rise and fall of the larynx with changes of pitch. (8,9) Together, modes 1 and 9 382 

demonstrate that widespread, coordinated pitch-related adjustments occur throughout the head 383 

and neck during pitch production, even in the absence of articulator input (lip and jaw). Like the 384 

results of geometric analysis reported previously (11,12), these findings challenge traditional 385 

theories of pitch production that rely on source-tract independence. Instead, they align more 386 

comfortably with older theories suggesting that the voice source and filter (vocal tract and 387 

supralaryngeal structures) are mutually interdependent and that the vocal ‘instrument’ should be 388 

considered as a whole. (51-55) This view receives support from converging evidence pointing to the 389 

importance of the upper cervical region in allowing the ‘organism’ to function as a finely coordinated 390 

whole. (56-58) 391 

The importance of this method lies in its power to: 1) explain previous reports of synergy between 392 

vocal structures, illustrated by recent observations that pharyngeal constriction “almost always” 393 

occurs in parallel with other phenomena such as a “change in larynx height and a tendency to velar 394 

lowering.” (59); 2) account for a lack of synergy in situations where it was expected, such as the lack 395 

of correlation between hyoid and jaw movements in speech (60); and 3) to demonstrate that 396 

anatomical and functional variations involving individual vocal structures need to be considered in a 397 
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wider context if important information is not to be missed because they reflect only part of the 398 

underlying coordinated whole. We suggest that the presence of an underlying, independently 399 

controlled pitch-adjusting system could explain the above observations.  400 

The existence of a pitch-adjusting system that is integrated with the articulatory system but under 401 

independent control could offer a new and intriguing perspective from which to consider 402 

mechanisms underlying a wide range of speech and tonal phenomena: for example, how tonal 403 

differences affect supralaryngeal articulation (61), and the nature of speech production goals. (1) 404 

Recent demonstrations of the existence of separate pathways for the control of innate and learned 405 

vocalization patterns are consistent with this view. (28) 406 

Mode 2 407 
The results for mode 2, accounting for a fifth of total variance, were not significant, i.e., for this 408 

mode there were no significant differences in this score between each of the 6 conditions. However, 409 

lack of significance does not mean that this mode is not important as a source of valuable 410 

information. Evidence from orthodontic literature indicating the presence of coordinated patterns of 411 

growth affecting head and neck development suggest that this mode reflects the wide variation of 412 

individual head-neck shapes within this group of 10 subjects. Solow and Tallgren (1976), for 413 

example, reported an association between upper craniocervical angles and craniofacial dimensions 414 

(62) and, more recently, we reported correlations between the lower craniocervical angle and 415 

craniofacial dimensions. (11) The findings of this mode highlight the potential of this method to 416 

significantly advance knowledge and understanding of underlying coordinated patterns of head-neck 417 

development in health and disease. Consequently, these findings are also likely to be of interest to 418 

other disciplines interested in factors affecting the size and shape of the airway; orthodontics, 419 

maxillofacial surgery and sleep apnoea research, for example.  420 

Overall, the findings of modes 1, 2 and 9 demonstrate the importance of investigating vocal 421 

structures and the vocal tract within the context of their wider structural relationships if important 422 
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findings are not to be missed, thereby supporting Oudeyer’s assertion (2005) that a wider focus, 423 

necessary to appreciate interactions of many components, could potentially “uncover major 424 

phenomena of speech and language.” (63)  425 

Limitations 426 

This study has a number of limitations. It is based on a small sample. Increasing the number of 427 

participants would improve the capacity of this method to model variation within the chosen 428 

population. Vocal tract morphology, for example, is known to differ between men and women (e.g. 429 

vocal tract length is greater in men (4), and hyoid position is higher and more posterior in women 430 

(64)). With only 5 men and 5 women, numbers here are too small to draw meaningful conclusions 431 

about male/female differences; however, with a larger sample size, and its ability to uncover hidden 432 

shape patterns, active shape modelling offers a promising new approach in the search to understand 433 

factors underlying sex-related differences of vocal morphology. Manual annotation of the MR 434 

images is time consuming. As the number of images incorporated into the model increases, the 435 

model’s ability to find and map on to the defined shape in a new image improves. However, even 436 

with 60 images incorporated into the model it is still necessary to precisely match each point of the 437 

new image to the flexible template. Without such fine adjustment, the likelihood of the model being 438 

able to register subtle synergistic activity involving key vocal tract regions (e.g., VPO and the width of 439 

the laryngeal tube opening) would be significantly diminished. The values assigned to the modes are 440 

not directly comparable with existing conventional geometric measurements. Nevertheless, by 441 

identifying how structures move in relation to each other, findings derived from this method 442 

complement and extend information obtained by using traditional measurements. Mode scores 443 

refer to variations about the mean for this particular set of images. This means that results obtained 444 

from this model cannot be directly compared with those obtained from a model based on a different 445 

set of images. Only one observer (NAM) annotated the images therefore more work needs to be 446 

done to establish the reliability of these findings. However, reports of low intra-investigator 447 
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variability compared with inter-investigator variability suggest point placement by trained observers 448 

is reliable and, unsurprisingly, that preference should be given to such intra-investigator 449 

contributions when comparing a series of MR images. (65) Finally, the ASM was built using 450 

midsagittal MR images. Unlike coronal images, a midsagittal view does not show changes affecting 451 

the lateral wall of the vocal tract/airway which are known to be active in voice production. (8) 452 

Implications and future work 453 

Our findings demonstrate the significant potential of active shape modelling to advance knowledge 454 

and understanding of factors underlying anatomical and functional variations affecting the cervical 455 

spine, airway, and craniofacial and vocal structures, both during development and as a result of 456 

disease. We suggest that use of this method could lead to important new insights into causal 457 

mechanisms underlying such variations. In turn, this could assist our ability to quantify and interpret 458 

changes associated with voice production and, therefore, find answers for fundamental questions in 459 

voice science.  Identification of coordinated mechanisms underlying vocal behavior could pave the 460 

way for more effective treatments and therapies for those with communication difficulties and, by 461 

looking beyond vocal tract geometry, the development of perceptually more accurate biomechanical 462 

models for voice synthesis.  463 

Work is underway to further explore the use of this model. In previously published work, results 464 

obtained for the professional singer were opposite to those obtained from the rest of the group. As 465 

trained singers are encouraged to adopt a low larynx, it is possible that the switch from low- to high-466 

note humming was associated with different modes of variation. To investigate this possibility 467 

further, we are repeating this study with professional singers.  468 

As this model combines shape information from a number of individuals, we cannot draw 469 

conclusions about underlying causal mechanisms in any one individual. However, findings from 470 

ASMs could inform the choice of muscles targeted in electromyography experiments which, in turn, 471 

could enlighten our understanding of muscles underlying pitch-related phenomena such as the rise 472 
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and fall of the larynx, and mechanisms that underlie the control of the VPO and hypopharynx. 473 

Improved knowledge of mechanisms underlying such coordinated activity has important implications 474 

for our understanding and, therefore, teaching of vocal techniques in professional singers. 475 

Recognition of the importance of the coordinating role of lower cranial nerves and upper cervical 476 

nerves in pitch-related activity, together with knowledge of structural attachments (e.g. of omohyoid 477 

to scapula) could also, we suggest, lead to a better understanding of mechanisms responsible for the 478 

close association of pitch with posture (66), gesture (67), and expression. (68) 479 

Conclusion 480 

Our results highlight active shape modelling’s significant potential as an important method for 481 

identifying and distinguishing between structural and functional changes affecting the cervical spine, 482 

vocal structures and the airway. Use of this method can also show how different vocal structures 483 

move together as the overall shape varies according to development or function. By presenting 484 

results in a dynamic visual format, ASM not only complements findings of a previous study where 485 

more conventional measurements were used, it also extends them by demonstrating an unexpected 486 

and surprising association between pitch-related voice production and changes involving the cervical 487 

spine. Our results highlight the potential of active shape modelling to significantly advance 488 

knowledge and understanding of factors underlying structural and functional variations in health and 489 

disease. In turn, this could lead to better treatments and therapies for those with voice difficulties, 490 

more effective strategies for improving vocal technique in professional singers, and new insights and 491 

testable hypotheses for a wide range of vocal phenomena.  492 
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Figure 1 
Midsagittal MR images from 2 subjects, A and B, acquired a) while at rest b) while 
humming a low note and c) while humming a high note. Note differences between 
subjects at rest (e.g. of cervical alignment), and differences within and between 
subjects humming low and high notes (e.g. of cervical alignment, larynx height, 
tongue shape and soft palate). 
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Figure 2 
 

Summary of steps taken to build an active shape model 



Figure 3 

Figure 1. Typical midsagittal MR image  
showing positions of the 80 landmark  
points used to define the template of the  
active shape model representing vocal  
structures, the airway and the cervical  
spine  (C2-C7) 
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Table 1  

Mode of variance Retained variance % Cumulative variance % 
1 30.64 31 
2 20.39 51 
3 12.65 64 
4 8.13 72 
5 6.24 78 
6 4.33 82 
7 3.68 86 
8 2.87 89 
9 1.82 91 

10 1.34 92 
11 0.98 93 
12 0.86 94 
13 0.75 95 
14 0.71 95 
15 0.59 96 
16 0.56 97 
17 0.40 97 
18 0.30 97 
19 0.27 98 
20 0.26 98 

Table of modes of variation and percentage variance 
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Figure 4 Mean shape illustrating key anatomical features 



Figure 5.  Shapes described by varying Mode 1 (5a) 
 and Mode 9 (5b) by +2 to -2 standard deviations  
about the mean shape of all 60 images. Click images  
to see shape animations 
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Figure 5a Mode 1 
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Figure 5b Mode 9 
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  Figure 6. Shapes described by varying Mode 2 by  +2 to –2  
  standard deviations about the mean shape of all 60 images.  
  Click image to see shape animation. 
. 
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Figure 6 Mode 2 
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