18 research outputs found

    On the numerical solution of Kronecker-based infinite level-dependent QBD processes

    Get PDF
    Cataloged from PDF version of article.Infinite level-dependent quasi-birth-and-death (LDQBD) processes can be used to model Markovian systems with countably infinite multidimensional state spaces. Recently it has been shown that sums of Kronecker products can be used to represent the nonzero blocks of the transition rate matrix underlying an LDQBD process for models from stochastic chemical kinetics. This paper extends the form of the transition rates used recently so that a larger class of models including those of call centers can be analyzed for their steady-state. The challenge in the matrix analytic solution then is to compute conditional expected sojourn time matrices of the LDQBD model under low memory and time requirements after truncating its countably infinite state space judiciously. Results of numerical experiments are presented using a Kronecker-based matrix-analytic solution on models with two or more countably infinite dimensions and rules of thumb regarding better implementations are derived. In doing this, a more recent approach that reduces memory requirements further by enabling the computation of steady-state expectations without having to obtain the steady-state distribution is also considered. (C) 2013 Elsevier B.V. All rights reserved

    Block SOR for Kronecker structured representations

    Get PDF
    Cataloged from PDF version of article.The Kronecker structure of a hierarchical Markovian model (HMM) induces nested block partitionings in the transition matrix of its underlying Markov chain. This paper shows how sparse real Schur factors of certain diagonal blocks of a given partitioning induced by the Kronecker structure can be constructed from smaller component matrices and their real Schur factors. Furthermore, it shows how the column approximate minimum degree (COLAMD) ordering algorithm can be used to reduce fill-in of the remaining diagonal blocks that are sparse LU factorized. Combining these ideas, the paper proposes three-level block successive over-relaxation (BSOR) as a competitive steady state solver for HMMs. Finally, on a set of numerical experiments it demonstrates how these ideas reduce storage required by the factors of the diagonal blocks and improve solution time compared to an all LU factorization implementation of the BSOR solver. © 2004 Elsevier Inc. All rights reserved

    List of requirements on formalisms and selection of appropriate tools

    Get PDF
    This deliverable reports on the activities for the set-up of the modelling environments for the evaluation activities of WP5. To this objective, it reports on the identified modelling peculiarities of the electric power infrastructure and the information infrastructures and of their interdependencies, recalls the tools that have been considered and concentrates on the tools that are, and will be, used in the project: DrawNET, DEEM and EPSys which have been developed before and during the project by the partners, and M\uf6bius and PRISM, developed respectively at the University of Illinois at Urbana Champaign and at the University of Birmingham (and recently at the University of Oxford)

    Decompositional analysis of Kronecker structured Markov chains

    Get PDF
    This contribution proposes a decompositional iterative method with low memory requirements for the steadystate analysis ofKronecker structured Markov chains. The Markovian system is formed by a composition of subsystems using the Kronecker sum operator for local transitions and the Kronecker product operator for synchronized transitions. Even though the interactions among subsystems, which are captured by synchronized transitions, need not be weak, numerical experiments indicate that the solver benefits considerably from weak interactions among subsystems, and is to be recommended specifically in this case. © 2008, Kent State University

    On the numerical solution of Kronecker-based infinite level-dependent QBD processes

    Get PDF
    Infinite level-dependent quasi-birth-and-death (LDQBD) processes can be used to model Markovian systems with countably infinite multidimensional state spaces. Recently it has been shown that sums of Kronecker products can be used to represent the nonzero blocks of the transition rate matrix underlying an LDQBD process for models from stochastic chemical kinetics. This paper extends the form of the transition rates used recently so that a larger class of models including those of call centers can be analyzed for their steady-state. The challenge in the matrix analytic solution then is to compute conditional expected sojourn time matrices of the LDQBD model under low memory and time requirements after truncating its countably infinite state space judiciously. Results of numerical experiments are presented using a Kronecker-based matrix-analytic solution on models with two or more countably infinite dimensions and rules of thumb regarding better implementations are derived. In doing this, a more recent approach that reduces memory requirements further by enabling the computation of steady-state expectations without having to obtain the steady-state distribution is also considered. © 2013 Elsevier B.V. All rights reserved
    corecore