
Performance Evaluation 70 (2013) 663–681

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

On the numerical solution of Kronecker-based infinite
level-dependent QBD processes
H. Baumann a, T. Dayar b,∗, M.C. Orhan b, W. Sandmann c

a Department of Applied Stochastics and Operations Research, Clausthal University of Technology, D-38678 Clausthal–Zellerfeld,
Germany
b Department of Computer Engineering, Bilkent University, TR-06800 Bilkent, Ankara, Turkey
c Campus E1 3, Room 325, Saarland University, D-66123 Saarbrücken, Germany

a r t i c l e i n f o

Article history:
Available online 11 June 2013

Keywords:
Markov chain
Level-dependent QBD process
Kronecker product
Matrix analytic method
Steady-state expectation
Call center

a b s t r a c t

Infinite level-dependent quasi-birth-and-death (LDQBD) processes can be used to model
Markovian systems with countably infinite multidimensional state spaces. Recently it has
been shown that sums of Kronecker products can be used to represent the nonzero blocks
of the transition rate matrix underlying an LDQBD process for models from stochastic
chemical kinetics. This paper extends the form of the transition rates used recently so that
a larger class of models including those of call centers can be analyzed for their steady-
state. The challenge in thematrix analytic solution then is to compute conditional expected
sojourn timematrices of the LDQBDmodel under lowmemory and time requirements after
truncating its countably infinite state space judiciously. Results of numerical experiments
are presented using a Kronecker-based matrix-analytic solution on models with two or
more countably infinite dimensions and rules of thumb regarding better implementations
are derived. In doing this, a more recent approach that reduces memory requirements
further by enabling the computation of steady-state expectations without having to obtain
the steady-state distribution is also considered.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Continuous-time infinite level-dependent quasi-birth-and-death (LDQBD) processes [1–3] are continuous-time Markov
chain (CTMC) processes that have block tridiagonal transition rate matrices of the form

Q =

Q0,0 Q0,1
Q1,0 Q1,1 Q1,2

. . .
. . .

. . .

Ql,l−1 Ql,l Ql,l+1
. . .

. . .
. . .

when their states are appropriately ordered. This study is about their numerical steady-state analyses, and hereafter, we
shall be omitting the terms continuous-time and infinite in designating the LDQBD models we consider since they are all
continuous-time and infinite.

∗ Corresponding author. Tel.: +90 312 290 1981; fax: +90 312 266 4047.
E-mail addresses: hendrik.baumann@tu-clausthal.de (H. Baumann), tugrul@cs.bilkent.edu.tr (T. Dayar), morhan@cs.bilkent.edu.tr (M.C. Orhan),

sandmann@cs.uni-saarland.de (W. Sandmann).

0166-5316/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.peva.2013.05.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52923779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.peva.2013.05.001
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2013.05.001&domain=pdf
mailto:hendrik.baumann@tu-clausthal.de
mailto:tugrul@cs.bilkent.edu.tr
mailto:morhan@cs.bilkent.edu.tr
mailto:sandmann@cs.uni-saarland.de
http://dx.doi.org/10.1016/j.peva.2013.05.001

664 H. Baumann et al. / Performance Evaluation 70 (2013) 663–681

In the following, all vectors are column vectors as in linear algebra, except state vectors, consistent with the conventional
definition of state probability vectors as row vectors. e represents a column vector of 1’s. ei represents the ith column of the
identity matrix. diag(a) denotes a diagonal matrix with the entries of vector a along its diagonal. The lengths of the vectors
are determined by the context in which they are used, T denotes transposition, × when used with sets denotes Cartesian
product,⊗denotes Kronecker product [4],1denotes the indicator function,Z andR stand respectively for the sets of integers
and real numbers, whereas Z+ and R≥0 denote their nonnegative subsets.

Now, let S denote the irreducible state space of the LDQBD process under consideration, the state of the LDQBD process
at time t be given by X(t) = (X1(t), . . . , Xn(t)) ∈ S, and {X(t) ∈ S, t ≥ 0} be the associated n-dimensional CTMC
process. Furthermore, let the probability of the LDQBD process being in state x = (x1, . . . , xn) ∈ S at time t be expressed as
Pr{X(t) = x} = Pr{X1(t) = x1, . . . , Xn(t) = xn}.

Levels define a partition of S; that is, S =

∞

l=0 S(l) and S(l)
∩ S(m)

= ∅ for l ≠ m and l,m ∈ Z+, where S(l) is the subset
of states corresponding to level l. Therefore, the nonzero blocks at level l satisfy

Ql,l−1 ∈ R|S
(l)
|×|S(l−1)

|

≥0 , Ql,l ∈ R|S
(l)
|×|S(l)

|, Ql,l+1 ∈ R|S
(l)
|×|S(l+1)

|

≥0

with the exception that there are only two boundary blocks at level 0.
We consider ergodic LDQBD processes and investigate the numerical computation [5,6] of their steady-state probability

measures. The steady-state probability distribution row vector of an ergodic LDQBD process is defined as π =

limt→∞ Pr{X(t)}, and it satisfies

πQ = 0,

x∈S

π(x) = 1.

In particular, the steady-state vector of an ergodic LDQBD process can be accordingly partitioned and expressed as

π = (π (0), π (1), . . .),

and its subvector at level (l+ 1) can be obtained from the matrix analytic equation

π (l+1)
= π (l)Rl

as shown in [1], once the conditional expected sojourn time matrix at level l

Rl = Ql,l+1(−Ql+1,l+1 − Rl+1Ql+2,l+1)
−1

is determined for l ∈ Z+. Note that π (l)
∈ R1×|S(l)

|

≥0 , π (l+1)
∈ R1×|S(l+1)

|

≥0 , and Rl ∈ R|S
(l)
|×|S(l+1)

|

≥0 . LDQBD processes are a
generalization of QBD processes originally proposed in [7,8] and improved over the years [2,9] with two quadratically con-
vergent algorithms for their steady-state analyses. These algorithms are logarithmic reduction [10] and cyclic reduction [11].
In the level dependent context, the situation is more complicated since the conditional expected sojourn time matrix is not
constant and changes from level to level.

In many cases, the ergodicity of an LDQBD process can be established by relatively easy to check conditions on the
1-dimensional CTMC defined over its levels [12]. For computational purposes however, it is preferable to consider Lyapunov
function methods as discussed in [13,14], so that lower and higher level numbers (called Low and High, respectively) can be
computed as in [15–17] between which a specified percentage of the steady-state probability mass lies when the LDQBD is
ergodic. It is the latter approach we follow here. In this way, steady-state measures can be computed exactly up to machine
precision by choosing (High–Low) sufficiently large as discussed in [17].

Systems of stochastic chemical kinetics [18–21] and queueing networks [2,5,22–24] are two classes of problems that
can be modeled as LDQBD processes using the described n-dimensional state representation with some countably infinite
variables. For the former class of problems, countably infinite variables represent numbers of molecules of each chemical
species existing in the system. The remaining variables, if any, are finite. Up until recently, stochastic simulation [25,26]
seemed to be the only viable approach that would yield relatively accurate results for this class of problems. However, it
has been shown in [17] that systems of stochastic chemical kinetics can be modeled as LDQBD processes with the level
number determined by the maximum value among the countably infinite variables. Inspired by hierarchical Markovian
models (HMMs) introduced in [22], the result in [17] has been taken one step further in [16] by providing a Kronecker-based
representation for the nonzero blocksQl,l−1,Ql,l,Ql,l+1 at each level to copewith themultidimensionality of the product state
space of variables and its reachability. As suggested in [27] and as observed to be the best overall choice in [17], again RHigh is
set to 0 to initiate the computational procedure associatedwith thematrices of conditional expected sojourn times. Therein,
a comparative study between stochastic simulation and the matrix analytic approach has also been undertaken. Naturally,
the matrix analytic approach yields an accuracy measure obtained by computing the residual norm of the solution which is
not possible with simulation.

It is the latter class of problems on which we concentrate in this paper by considering various queueing network models
of call centers with multiple types of customers. In this context, the countably infinite variables represent occupancies of
queues with unbounded waiting space and finite variables represent occupancies of server pools. The interplay between
finite variables and countably infinite variables in these models is more intricate than that of models of stochastic chemical
kinetics systems. This requires us to extend the form of the transition rates used in [16]. To that end, we resort to generalized

H. Baumann et al. / Performance Evaluation 70 (2013) 663–681 665

functional transitions of stochastic automata networks (SANs) [28–30], and let the form of the dependency of the transition
rate on the values of the variables be more general. As we shall see, the use of such transition rates does not pose a
computational efficiency problem, since a direct method in which each nonzero block is processed once is employed in
the matrix analytic solution. In other words, each function is evaluated once for each state in the truncated state spaceHigh

l=Low S(l) during analysis. An implication of this extension is that not only dowe need to compute partitions of state spaces
of countably infinite variables as in [16], but now we also need to compute subpartitions of these partitions and partitions
of state spaces of finite variables to obtain a Kronecker-based representation for the nonzero blocks of Q .

We also consider the more recent approach in [31] that reduces memory requirements further by enabling the
computation of steady-state expectations without having to obtain the steady-state distribution. The approach is inspired
by a Horner-like computational scheme in which only the conditional expected sojourn time matrix at level l needs to be
allocated in step l; otherwise, there are no time savings. In other words, not all Rl matrices need to be stored simultaneously.
With this memory efficient approach, a tandem queueing network of two single server queues with infinite waiting spaces
and customers departing from the first queue leaving the system with a probability depending on the length of the second
queue is analyzed. The steady-state measures computed are those that are based on average costs or rewards, moments,
and cumulants. However, there is one drawback; it is the loss of the accuracy measure because the steady-state distribution
is no longer available. Ongoing work is concerned with obtaining accuracy measures for this approach as well, but they are
not yet available.

Taking into account the experience gained from theMatlab implementation used in [16], we provide an implementation
in C based on the Nsolve package of the Abstract Petri Net Notation (APNN) Toolbox [32]. Our objective in doing so is to
have more control over memory usage and timings. Since the number of states within each level increases with increasing
level number in the models we consider, we conduct numerical experiments with timing results to see how and when
memory should be allocated and deallocated, and whether the conditional sojourn time matrices should be stored as full or
sparse matrices. With the existing continuous improvement in computer technology, we believe we have reason to invest
in numerical analysis approaches for multidimensional Markovian models as those discussed here to obtain more accurate
results at a finer level of detail.

In the next section, we extend the specification for the class of models considered to build a Kronecker representation of
the nonzero blocks in Q and introduce a running example. Due to space limitations, we refrain from discussing the models
of stochastic chemical kinetics systems used before and refer to [33]. We also introduce two other models of call centers
at the end of Section 2. In Section 3, we discuss implementation issues including the choice of Lyapunov functions and
provide results regarding memory usage for different implementations after giving the algorithm for the computation of
the steady-state distribution of LDQBD processes. In Section 4, we report on the results of numerical experiments with the
matrix analytic approach on the models introduced earlier to identify better implementations. In Section 5, we conclude.

2. Kronecker representation

We consider Markovian systems with interacting subsystems. The state space S is irreducible, countably infinite, and
n-dimensional with nI countably infinite state variables and nF finite state variables, where nI ≥ 2, nF ≥ 0, and n = nI +nF .
Hereafter, we shall be omitting the word ‘state’ and referring to state variables as variables. The state space of variable xh
is denoted by Sh and Sh ⊆ Z+ for h = 1, . . . , n. Without loss of generality, we assume that the first nI indices correspond
to countably infinite variables. Hence, Sh is countably infinite for h = 1, . . . , nI and finite for h = nI + 1, . . . , n. Clearly,
not all states in the product state space×n

h=1 Sh are necessarily reachable. However, each state in S is reachable from every
other state in S due to our assumption of irreducibility. In many cases, S is a proper subset of the product state space (i.e.,
S ⊂ ×n

h=1 Sh). Indeed, it is as such in the models of call centers introduced in the next section.
The n-dimensional Markovian models we consider are defined by a set of K transition classes over S and x =

(x1, . . . , xn) ∈ Z1×n
+ denotes a state in S. We relax some of the assumptions made in [16] so as to be able to analyze a larger

class of models. Observe in particular that we do not require product form transition rates here (cf. Definition 1 in [16]).

Definition 1. The kth transition class is a pair (αk, v
(k)), where αk ∈ R≥0 and v(k)

∈ Z1×n are respectively its transition rate
and state change vector for k = 1, . . . , K . The first element of the pair, αk(x), is a function of state x ∈ S and specifies the
transition rate from state x to state (x + v(k)) ∈ S. The second element of the pair, v(k), specifies the successor state of the
transition, where v

(k)
h denotes the value change in variable xh ∈ Sh due to the kth transition class.

Example 1 (N-Model). Consider the parallel service system in Fig. 1 known as the N-model under the threshold routing
control policy proposed in [34]. In this model, there are two types of customers, two types of infinite queues, and two types
of server pools. Customers of type 1 can be in queue 1, server pool 1, or server pool 2, but type 2 customers can only be in
queue 2 or server pool 2. Hence, x = (x1, x2, x3, x4, x5) is a possible state representation, where x1, x3, and x4 denote the
number of type 1 customers in queue 1, pool 1, and pool 2, respectively, whereas, x2 and x5 denote the number of type 2
customers in queue 2 and pool 2, respectively. Then, n = 5, nI = 2, and nF = 3. Type i customers arrive to the system
according to a Poisson process with rate λi and server pool i has Ni servers with exponentially distributed service times for
i = 1, 2. Hence, S1 = S2 = Z+, S3 = {0, . . . ,N1}, and S4 = S5 = {0, . . . ,N2}. Upon arrival, a type 1 customer joins pool 1

666 H. Baumann et al. / Performance Evaluation 70 (2013) 663–681

Fig. 1. N-model.

Table 1
Transition classes of the N-model.

k αk(x) v(k)

1 λ1 1x3=N1 1x4+x5=N2 eT1
2 λ1 1x3=N1 1x4+x5<N2 eT4
3 λ1 1x3<N1 eT3
4 λ2 1x4+x5=N2 eT2
5 λ2 1x4+x5<N2 eT5
6 µ1,1 x3 1x1=0 −eT3
7 µ1,1 x3 1x1>0 −eT1
8 µ1,2 x4 1x1=0 1x2=0 −eT4
9 µ2,2 x5 1x1=0 1x2=0 −eT5

10 µ1,2 x4 1x1>0 1x2=0 −eT1
11 µ2,2 x5 1x1>0 1x2=0 (−e1+e4−e5)T

12 µ1,2 x4 1x1≤M 1x2>0 (−e2−e4+e5)T

13 µ2,2 x5 1x1≤M 1x2>0 −eT2
14 µ1,2 x4 1x1>M 1x2>0 −eT1
15 µ2,2 x5 1x1>M 1x2>0 (−e1+e4−e5)T

if it has idle servers (i.e., x3 < N1) and receives service at a rate of µ1,1. If there are no idle servers in pool 1 (i.e., x3 = N1), an
arriving type 1 customer joins pool 2 if it has idle servers (i.e., x4+ x5 < N2) and receives service at a rate ofµ1,2. If there are
no idle servers in either pool (i.e., x3 = N1, x4+ x5 = N2), an arriving type 1 customer enters queue 1. On the other hand, an
arriving type 2 customer joins pool 2 if it has idle servers (i.e., x4+ x5 < N2) and receives service at a rate of µ2,2; otherwise
(i.e., x4 + x5 = N2) it enters queue 2. Upon departure of a customer from server pool 2, the first customer in queue 1 joins
it if the number of type 1 customers in queue 1 exceeds a given thresholdM (i.e., x1 > M); otherwise (i.e., x1 ≤ M) the first
customer in queue 2 joins it. Hence, type 1 customers take nonpreemptive priority over type 2 customers in server pool 2
when the number of type 1 customers in queue 1 exceedsM .

The transition classes of this model are given in Table 1. Note that the number of transition classes is K = 15,N1 and N2
are positive integers,M ∈ Z+, and λ1, λ2, µ1,1, µ1,2, µ2,2 ∈ R>0.

The following definition associates transition matrices with each transition class in Definition 1. Being motivated by
generalized functional transitions in SANs [28–30], we let the form of the dependency of the transition rate on the values
of the variables be more general. In order to achieve this, the local state dependent transition rates are moved out of the
transition matrices and replaced with 1’s in their respective places (cf. Definition 2 in [16]). As we shall see, the use of
such transition rates, which are functions of (global) state x ∈ S rather than product of functions of local states xh ∈ Sh
for h = 1, . . . , n, does not pose a computational efficiency problem in this context, since a direct method in which each

H. Baumann et al. / Performance Evaluation 70 (2013) 663–681 667

nonzero block is processed once is employed in thematrix analytic solution. In other words, each function is evaluated once
for each global state in the truncated state space

High
l=Low S(l) during analysis. Note that, here we do not differentiate between

countably infinite variables and finite variables in defining the transition matrices (cf. Definition 2 in [16]).

Definition 2. The transition matrix of variable xh ∈ Sh for the kth transition class, denoted by Z (k,h)
∈ R|Sh|×|Sh|

≥0 , for
h = 1, . . . , n and k = 1, . . . , K is given entrywise as

Z (k,h)(xh, yh) =

1 if yh = xh + v

(k)
h

0 otherwise
for xh, yh ∈ Sh.

Herewe refrain from providing transitionmatrices of models in Kronecker form due to the space limitations and because
they all follow in a straightforward manner from Definition 2 and the respective transition classes as was shown in [16].
Our goal is to obtain a Kronecker representation for the nonzero blocks of Q from the transition rates and the transition
matrices of Definitions 1 and 2, respectively. To this end, we use the same level definition in [16] since themaximum valued
countably infinite variable xh ∈ Sh for h = 1, . . . , nI in any state x ∈ S changes by at most one through any transition due
to the particular form of the state change vectors v(k) in the transition classes of models we consider.

Definition 3. The subset of states corresponding to level l ∈ Z+ is given by

S(l)
= {x ∈ S | l = max(x1, . . . , xnI)},

so that S =

∞

l=0 S(l).

Note that the set operationunderlying theKronecker product is theCartesianproduct, and therefore the subset of states at
each level needs to be expressed as a union of Cartesian products of state space partitions of the countably infinite variables.
Hence, level definitions, such as l =

nI
h=1 xh, which have arithmetic dependencies among countably infinite variables seem

to be less suitable in trying to come up with a Kronecker representation.
For each level l, the values a variable can take depend on the values of other variables. Therefore, as in [16] first we define

the partitions of state spaces of countably infinite variables where there is no such dependency in a way similar to HMMs
in [22]. Then we introduce a partition of S(l) in Definition 3 based on the partitions of state spaces of countably infinite
variables.

Definition 4. Let

S
(l,u)
h =

{xh | 0 ≤ xh ≤ l− 1} if h < u
{l} if h = u
{xh | 0 ≤ xh ≤ l} if h > u

for h, u = 1, . . . , nI ,

and S
(l,u)
h = Sh for h = nI + 1, . . . , n, and u = 1, . . . , nI . Then the uth partition of S(l), denoted by S(l,u), for u = 1, . . . , nI

satisfies

S(l,u)
= {x ∈ S(l)

| (x1, . . . , xn) ∈ ×n
h=1 S

(l,u)
h },

so that S(l)
=
nI

u=1 S(l,u). Without loss of generality, the partitions S(l,u) are assumed to be ordered within S(l) according to
increasing partition index, u.

Example 1 (N-Model (cntd.)). The partitions of S
(l)
h for h = 1, . . . , n and l ≥ 0 are computed from Definition 4 as

S
(0,1)
1 = S

(0,1)
2 = {0}, S

(0,1)
3 = {0, . . . ,N1}, S

(0,1)
4 = S

(0,1)
5 = {0, . . . ,N2},

S
(l,1)
1 = {l}, S

(l,1)
2 = {0, . . . , l}, S

(l,1)
3 = {0, . . . ,N1},

S
(l,1)
4 = S

(l,1)
5 = {0, . . . ,N2},

S
(l,2)
1 = {0, . . . , l− 1}, S

(l,2)
2 = {l}, S

(l,2)
3 = {0, . . . ,N1},

S
(l,2)
4 = S

(l,2)
5 = {0, . . . ,N2} for l > 0.

Note that partition S(l,u) consists only of reachable states, and is a subset of the Cartesian product of state space partitions
of all variables since certain values of finite variables may yield unreachable states (cf. Definition 5 in [16]). Therefore, we
define partitions of S(l,u) and S

(l,u)
h in Definition 4 to eliminate any unreachable states due to finite variables.

Definition 5. The ith partition of S(l,u), denoted by S(l,u,i), for i = 1, . . . , I(l,u) is given by

S(l,u,i)
= {x ∈ S(l,u)

| (x1, . . . , xn) ∈ ×n
h=1 S

(l,u,ih)
h },

so that S(l,u)
=
I(l,u)

i=1 S(l,u,i), where S
(l,u,ih)
h is the ihth partition of S(l,u)

h for h = 1, . . . , n, u = 1, . . . , nI , and ih = 1, . . . , I(l,u)h .
Without loss of generality, the partitions S(l,u,i) are assumed to be ordered within S(l,u) lexicographically according to the
corresponding partition indices, (i1, . . . , in).

668 H. Baumann et al. / Performance Evaluation 70 (2013) 663–681

Note that, partition S(l,u,i) consists only of reachable states, and is a subset of the Cartesian product of the state space
subpartitions of all variables since certain values of finite variables may yield unreachable states. As we shall see, the values
of I(l,u) and I(l,u)h for h = 1, . . . , ndependon themodel, and although I(l,u) =

n
h=1 I

(l,u)
h was true for all themodels considered

in [16] (due to the fact that I(l,u) and I(l,u)h for h = 1, . . . , nwere all 1’s), it need not be true in general.

Example 1 (N-Model (cntd.)). The total number of type 1 and type 2 customers cannot exceed the number of servers in pool
2, so x4+x5 ≤ N2. Besides, a queue can be nonempty only if all servers capable of serving that queue are busy. Then, x3 = N1

if x1 > 0, and x4 + x5 = N2 if x1 > 0 or x2 > 0. Due to these dependencies, partitions of S
(0,1)
h for h = 1, . . . , n and S(0,1)

can be written from Definition 5 as

I(0,1)1 = I(0,1)2 = I(0,1)3 = 1, I(0,1)4 = I(0,1)5 = N2 + 1,

S
(0,1,1)
1 = S

(0,1,1)
2 = {0}, S

(0,1,1)
3 = {0, . . . ,N1},

S
(0,1,i)
4 = {i− 1}, S

(0,1,i)
5 = {N2 + 1− i} for i = 1, . . . ,N2 + 1,

so that I(0,1) = (N2 + 1)(N2 + 2)/2 and

S(0,1,i)
= {0} × {0} × {0, . . . ,N1} × {x4} × {x5},

where i =
x4

j=1(N2 + 2− j)+ x5 + 1 for x5 = 0, . . . ,N2 − x4 and x4 = 0, . . . ,N2.
Partitions of S

(l,1)
h for h = 1, . . . , n and S(l,1) and l > 0 can be written from Definition 5 as

I(l,1)1 = I(l,1)2 = 1, I(l,1)3 = 2, I(l,1)4 = I(l,1)5 = N2 + 1,

S
(l,1,1)
1 = {l}, S

(l,1,1)
2 = {0, . . . , l}, S

(l,1,1)
3 = {0, . . . ,N1 − 1}, S

(l,1,2)
3 = {N1},

S
(l,1,i)
4 = {i− 1}, S

(l,1,i)
5 = {N2 + 1− i} for i = 1, . . . ,N2 + 1,

so that I(l,1) = N2 + 1 and

S(l,1,i)
= {l} × {0, . . . , l} × {N1} × {x4} × {x5},

where i = x4 + 1 and x5 = N2 − x4 for x4 = 0, . . . ,N2.
Partitions of S

(1,2)
h for h = 1, . . . , n and S(1,2) can be written from Definition 5 as

I(1,2)1 = I(1,2)2 = 1, I(1,2)3 = 1, I(1,2)4 = I(1,2)5 = N2 + 1,

S
(1,2,1)
1 = {0}, S

(1,2,1)
2 = {1}, S

(1,2,1)
3 = {0, . . . ,N1},

S
(1,2,i)
4 = {i− 1}, S

(1,2,i)
5 = {N2 + 1− i} for i = 1, . . . ,N2 + 1,

so that I(1,2) = N2 + 1 and

S(1,2,i)
= {0} × {1} × {0, . . . ,N1} × {x4} × {x5},

where i = x4 + 1 and x5 = N2 − x4 for x4 = 0, . . . ,N2. Furthermore, partitions of S(l,2)
h and S(l,2) for h = 1, . . . , n and l > 1

can be written from Definition 5 as

I(l,2)1 = 2, I(l,2)2 = 1, I(l,2)3 = 2, I(l,2)4 = I(l,2)5 = N2 + 1,

S
(l,2,1)
1 = {0}, S

(l,2,2)
1 = {1, . . . , l− 1}, S

(l,2,1)
2 = {l},

S
(l,2,1)
3 = {0, . . . ,N1 − 1}, S

(l,2,2)
3 = {N1},

S
(l,2,i)
4 = {i− 1}, S

(l,2,i)
5 = {N2 + 1− i} for i = 1, . . . ,N2 + 1,

so that I(l,2) = 3(N2 + 1) and

S(l,2,i1) = {0} × {l} × {0, . . . ,N1 − 1} × {x4} × {x5},
S(l,2,i2) = {0} × {l} × {N1} × {x4} × {x5},
S(l,2,i3) = {1, . . . , l− 1} × {l} × {N1} × {x4} × {x5},

where i1 = x4 + 1, i2 = (N2 + 1)+ x4 + 1, i3 = 2(N2 + 1)+ x4 + 1, x5 = N2 − x4 for x4 = 0, . . . ,N2.

Now, we are in a position to introduce the Kronecker representation of nonzero blocks in Q (cf. Definition 6 in [16])
following the partitions of subsets of states at each level given by Definition 5.

Definition 6. The nonzero blocksQ0,0,Q0,1,Q1,0, andQl,m for l > 0,m = l−1, l, l+1 are respectively (1×1), (1×nI), (nI×

1), and (nI × nI) block matrices as in

H. Baumann et al. / Performance Evaluation 70 (2013) 663–681 669

Q0,0 =

Q (1,1)
0,0

, Q0,1 =

Q (1,1)
0,1 · · · Q (1,nI)

0,1

,

Q1,0 =

Q (1,1)
1,0
...

Q (nI ,1)
1,0

 , Ql,m =

Q (1,1)
l,m · · · Q (1,nI)

l,m
...

. . .
...

Q (nI ,1)
l,m · · · Q (nI ,nI)

l,m

 ,

where Q (u,w)
l,m is an (I(l,u) × I(m,w)) block matrix given by

Q (u,w)
l,m =

Q ((u,1),(w,1))
l,m · · · Q ((u,1),(w,I(m,w)))

l,m
...

. . .
...

Q ((u,I(l,u)),(w,1))
l,m · · · Q ((u,I(l,u)),(w,I(m,w)))

l,m

 .

Furthermore, the blocks of Q (u,w)
l,m can be written in terms of transition rates and transition matrices as in

Q ((u,i),(w,j))
l,m =

Q̃ ((u,i),(w,j))
l,m − D((u,i),(w,j))

l,m if u = w and l = m
Q̃ ((u,i),(w,j))
l,m otherwise

for i = 1, . . . , I(l,u), j = 1, . . . , I(m,w), u, w = 1, . . . , nI , and l,m ≥ 0, where

D((u,i),(w,j))
l,m = diag

 l+1
m′=l−1

nI
w′=1

I(m,w)
j′=1

Q̃ ((u,i),(w′,j′))
l,m′ e

 ,

Q̃ ((u,i),(w,j))
l,m =

K
k=1

αk(x)

n

h=1

Z (k,h)(S
(l,u,ih)
h , S

(m,w,jh)
h)

,

αk(x) is the transition rate computed at state x ∈ ×n
h=1 S

(l,u,ih)
h , and Z (k,h)(S

(l,u,ih)
h , S

(m,w,jh)
h) denotes the submatrix of Z (k,h)

incident on row indices in S
(l,u,ih)
h and column indices in S

(m,w,jh)
h . The first summation in diag should have a starting index

of 0 rather than −1 for the equation of the blocks Q ((1,1),(1,1))
0,0 , . . . ,Q ((1,I(0,1)),(1,I(0,1)))

0,0 , and the second summation in diag

should have an ending index of 1 rather than nI for the equation of the blocks Q ((1,1),(1,1))
1,1 , . . . ,Q ((nI ,I(1,nI)),(nI ,I(1,nI)))

1,1 when
m′ = l− 1.

Here we refrain from providing the Kronecker representation of nonzero blocks in Q due to space limitations, but refer
to [4,16] for two such example representations. Nevertheless, we indicate for our running example how the nonzero blocks
in Q will look like if they were represented as flat matrices.

Example 1 (N-Model (cntd.)). The first few nonzero blocks of Q for the N-model with N1 = 1 and N2 = 2 as flat sparse
matrices are given by

(0
,
0,

0,
0,

0)

(0
,
0,

0,
0,

1)

(0
,
0,

0,
0,

2)

(0
,
0,

0,
1,

0)

(0
,
0,

0,
1,

1)

(0
,
0,

0,
2,

0)

(0
,
0,

1,
0,

0)

(0
,
0,

1,
0,

1)

(0
,
0,

1,
0,

2)

(0
,
0,

1,
1,

0)

(0
,
0,

1,
1,

1)

(0
,
0,

1,
2,

0)

Q0,0=

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,0,2)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,0,2,0)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,0,2)
(0,0,1,1,0)
(0,0,1,1,1)
(0,0,1,2,0)

∗ λ2 λ1
µ2,2 ∗ λ2 λ1

2µ2,2 ∗ λ1
µ1,2 ∗ λ2 λ1

µ1,2 µ2,2 ∗ λ1
2µ1,2 ∗ λ1

µ1,1 ∗ λ2 λ1
µ1,1 µ2,2 ∗ λ2 λ1

µ1,1 2µ2,2 ∗

µ1,1 µ1,2 ∗ λ2 λ1
µ1,1 µ1,2 µ2,2 ∗

µ1,1 2µ1,2 ∗

,

670 H. Baumann et al. / Performance Evaluation 70 (2013) 663–681

(1
,
0,

1,
0,

2)

(1
,
0,

1,
1,

1)

(1
,
0,

1,
2,

0)

(1
,
1,

1,
0,

2)

(1
,
1,

1,
1,

1)

(1
,
1,

1,
2,

0)

(0
,
1,

0,
0,

2)

(0
,
1,

0,
1,

1)

(0
,
1,

0,
2,

0)

(0
,
1,

1,
0,

2)

(0
,
1,

1,
1,

1)

(0
,
1,

1,
2,

0)

Q0,1=

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,0,2)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,0,2,0)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,0,2)
(0,0,1,1,0)
(0,0,1,1,1)
(0,0,1,2,0)

λ2

λ2
λ2

λ1 λ2

λ1 λ2
λ1 λ2

,

(0
,
0,

0,
0,

0)

(0
,
0,

0,
0,

1)

(0
,
0,

0,
0,

2)

(0
,
0,

0,
1,

0)

(0
,
0,

0,
1,

1)

(0
,
0,

0,
2,

0)

(0
,
0,

1,
0,

0)

(0
,
0,

1,
0,

1)

(0
,
0,

1,
0,

2)

(0
,
0,

1,
1,

0)

(0
,
0,

1,
1,

1)

(0
,
0,

1,
2,

0)

Q1,0=

(1,0,1,0,2)
(1,0,1,1,1)
(1,0,1,2,0)
(1,1,1,0,2)
(1,1,1,1,1)
(1,1,1,2,0)
(0,1,0,0,2)
(0,1,0,1,1)
(0,1,0,2,0)
(0,1,1,0,2)
(0,1,1,1,1)
(0,1,1,2,0)

µ1,1 2µ2,2
µ1,1 + µ1,2 µ2,2

µ1,1 + 2µ1,2

2µ2,2
µ1,2 µ2,2

2µ1,2
2µ2,2
µ1,2 µ2,2

2µ1,2

,

(1
,
0,

1,
0,

2)

(1
,
0,

1,
1,

1)

(1
,
0,

1,
2,

0)
(1

,
1,

1,
0,

2)
(1

,
1,

1,
1,

1)
(1

,
1,

1,
2,

0)

(0
,
1,

0,
0,

2)
(0

,
1,

0,
1,

1)
(0

,
1,

0,
2,

0)

(0
,
1,

1,
0,

2)

(0
,
1,

1,
1,

1)

(0
,
1,

1,
2,

0)

Q1,1=

(1,0,1,0,2)
(1,0,1,1,1)
(1,0,1,2,0)
(1,1,1,0,2)
(1,1,1,1,1)
(1,1,1,2,0)
(0,1,0,0,2)
(0,1,0,1,1)
(0,1,0,2,0)
(0,1,1,0,2)
(0,1,1,1,1)
(0,1,1,2,0)

∗ λ2
∗ λ2
∗ λ2

2µ2,211≤M ∗ µ1,1 2µ2,211>M
µ1,211≤M µ2,211≤M ∗ µ1,1 + µ1,211>M µ2,211>M

2µ1,211≤M ∗ µ1,1 + 2µ1,211>M
∗ λ1
∗ λ1
∗ λ1

λ1 µ1,1 ∗

λ1 µ1,1 ∗

λ1 µ1,1 ∗

.

The nonzero blocks are generally very sparse and have nonzero entries that may depend on the level number. The off-
diagonal entries of Q are nonnegative, whereas its diagonal entries are negative. Clearly, the ordering of states within a level
is only fixed up to a permutation. Observe that transitions are possible only between adjacent levels and the number of
states within each level increases with increasing level number. The latter is due to the increase in the number of different
possibilities for the nI countably infinite variables according to the level definition being used.

Other than the N-model in Example 1, we also consider two other models of call centers, namely theW-model under the
fixed queue ratio routing control policy proposed in [35] and the V-model with T = 2, 3, 4 types of customers under the

H. Baumann et al. / Performance Evaluation 70 (2013) 663–681 671

static priority control policy proposed in [36]. Due to space limitations, here we provide only their brief summaries. Details
of these models can be found in [33].

Example 2 (W-model). In the W-model, there are three types of customers, three types of infinite queues, and two types
of server pools. Customers of type 1 can be in queue 1 or server pool 1, customers of type 3 can be in queue 3 or server
pool 2, and customers of type 2 can be in queue 2 or either server pool. Since the server pools do not differentiate between
the two types of customers they serve, x = (x1, x2, x3, x4, x5) is a possible state representation, where x1, x2, and x3 denote
the number of customers in queues 1, 2, and 3, respectively, whereas x4 and x5 denote the number of busy servers in pools
1 and 2, respectively. Then n = 5, nI = 3, nF = 2 and the respective state spaces are given by S1 = S2 = S3 = Z+,
S4 = {0, . . . ,N1}, S5 = {0, . . . ,N2}, where Ni is the number of servers in pool i = 1, 2. For this model, K = 19.

Example 3 (V-Model). In the V-model, there are as many types of infinite queues as there are types of customers, T , and one
pool of N servers serving the queues. Since the servers in the pool do not differentiate among the types of customers they
serve, x = (x1, . . . , xT , xT+1) is a possible state representation, where xh denotes the number of customers of type i in queue
i for i = 1, . . . , T and xT+1 denotes the number of busy servers. Then n = T + 1, nI = T , nF = 1, and the respective state
spaces are given by S1 = · · · = ST = Z+, ST+1 = {0, . . . ,N}. For this model, K = 1+ 3T .

3. Implementation issues

In C, we implemented an LDQBD solver [37] built on the Nsolve package [38] of the APNN toolbox [32], which includes
data structures and functions for sparse and Kronecker structured matrices. In this solver, we set RHigh to 0 as suggested
in [27] and as observed to be the best overall choice in [17].

In the next two subsections, we first discuss how Low and High are computed with the help of Lyapunov functions from
stability theory. Then we explain in detail how memory usage is monitored and reported during the experiments.

3.1. Handling infiniteness

By judiciously choosing a Lyapunov function g(x) : S → R≥0 and therefore, g ∈ R1×|S|
≥0 as its corresponding row vector

ordered conformally with the state indices in Q , we are able to compute the drift of the LDQBD process, d(x) : S → R,
or its corresponding row vector d ∈ R1×|S| as dT = QgT again ordered conformally, to prove that there exists a finite set
C ⊂ S with positive scalars γ , c ∈ R≥0 for which c = supx∈S d(x) < ∞,−γ ≥ supx∈S\C d(x), and the set of states
g(x) attains a finite value is always finite if and only if the LDQBD process is ergodic. When the LDQBD process is ergodic,

x∈C π(x) ≥ 1 − ϵ, where ϵ = c/(c + γ) ∈ (0, 1). Since c is the supremum of the drift over S, we compute the drift at
the states in the neighborhood of all extrema and choose its maximum value. In doing this, the resulting nonlinear equation
systems are solved using the HOM4PS2-2.0 package [39], an implementation of the polyhedral homotopy continuation
method as in [15–17]. Hence, we set Low = min{l ∈ Z+ | S(l)

∩C ≠ ∅} and High = max{l ∈ Z+ | S(l)
∩C ≠ ∅}, so that the

finite set
High

l=Low S(l) contains at least (1− ϵ) of the steady-state probability.
In [16], g(x) =

n
h=1 x

2
h is chosen as the Lyapunov function for models of stochastic chemical kinetics systems.

Unfortunately, the drift associated with this Lyapunov function in call center models we consider has a countably infinite
variable whose coefficient is positive for the states where a customer from the corresponding queue cannot join the
respective server pool. Although the coefficients of other countably infinite variables may be negative, there are values
of x ∈ S for which the countably infinite variable with positive coefficient dominates the drift and causes it to grow
unboundedly.

Example 1 (N-Model (cntd.)). x2 has this property whenM < x1 <∞.

Hence, Lyapunov functions for call centers should be carefully chosen by considering transition classes of their models
since dependencies among their variables are more intricate than those in models of stochastic chemical kinetics systems.
Here, we use Lyapunov functions of the form

g(x) =
S

s=1

h∈Hs

xh + rs

2

(1)

so that the kth transition class affects xh for h ∈ Hs if

h∈Hs
v

(k)
h ≠ 0, where S ∈ Z+, rs ∈ R,Hs ⊆ {1, . . . , n}, and

{1, . . . , nI} ⊆
S

s=1 Hs. The corresponding drift is given by

d(x) =
nI

h=1

d(h)(x)xh + D(x), (2)

672 H. Baumann et al. / Performance Evaluation 70 (2013) 663–681

where d(h)(x) = 2
S

s=1
K

k=1 1h∈Hs

h′∈Hs

v
(k)
h′

αk(x) and

D(x) =
S

s=1

K
k=1

h∈Hs

v
(k)
h

n

h=nI+1

1h∈Hs2xh + 2rs +

h∈Hs

v
(k)
h

αk(x).

Note that,

h∈Hs
v

(k)
h is the total change in the value of the variables that are in Hs for the kth transition class.

In the Appendix, we first prove that the set of states g(x) attains a finite value is always finite (see Lemma 1). The form
of d(x) suggests that c = supx∈S d(x) < ∞ and C is finite if supx∈S D(x) < ∞, supx∈S d(h)(x) < ∞, and there exists
a finite Uh ∈ Z+ such that supx∈S,xh>Uh

d(h)(x) < 0 for h = 1, . . . , nI (see Lemmas 2 and 3 in the Appendix). In models
of call centers we consider, the first two conditions hold since supx∈S αk(x) < ∞ for k = 1, . . . , K (see Table 1 and
those in [33]). Therefore, Lyapunov functions should be chosen to satisfy the third condition. To that end, we let S be the
number of server pools and Hs be the union of indices of variables denoting the number of customers in queues fromwhich
departing customers can join server pool s and indices of variables used in defining the number of busy servers in pool s
for s = 1, . . . , S. Note that the value of rs has no effect on the finiteness of the set of states g(x) attains a finite value, the
boundedness of the drift, and the finiteness of the set C.

Example 1 (N-Model (cntd.)). For this model, S = 2,H1 = {1, 3}, and H2 = {1, 2, 4, 5}. Furthermore, U1 = M and U2 = 0.
These choices yield the condition

λ1 + λ2 < N2 min

µ1,2, µ2,2

,

which requires that the maximum arrival rate to server pool 2 be smaller than the minimum service rate of that pool when
all servers are busy.

Along with S and Hs, the value of rs needs to be determined for a smaller High value. Hence, we let rs be the negated
approximation to the average number of busy servers in pool s for s = 1, . . . , S, in some sense similar to what was done
in [17] to find a smaller value of High. In the following, H(Low,High) represents the number of states within levels Low
through High.

Example 1 (N-Model (cntd.)). We let λ1 = 40, λ2 = 32, µ1,1 = 7, µ1,2 = 8, µ2,2 = 9,M = 4, N1 = 4, and N2 = 11 be the
parameters. Then the drift is given by

d(x1, x2, x3, x4, x5) = (2(x1 + x3 − 4)+ 1)

40(1x3=4 1x4+x5=11 + 1x3<4)

+ (2(x1 + x2 + x4 + x5 − 5.06)+ 1)

40 1x3=4 + 32

+ (−2(x1 + x3 − 4)+ 1)

7x3 + (8x4 + 9x5)(1x1>0 1x2=0 + 1x1>4 1x2>0)

+ (−2(x1 + x2 + x4 + x5 − 5.06)+ 1)

7x3 1x1>0 + (8x4 + 9x5)

for the Lyapunov function

g(x) = (x1 + x3 − r1)2 + (x1 + x2 + x4 + x5 − r2)2,

where r1 = N1 and r2 = (λ1−N1µ1,1)/µ1,2+λ2/µ2,2 are used to obtain a smaller value of High. Note that r1 is the number
of servers in pool 1. Hence, (x1+ x3− r1) is the number of customers in queue 1 if x3 = r1 and x4+ x5 = N2. It is the negated
number of idle servers in pool 1 if x3 < r1 or x4+ x5 < N2 (i.e., x1 = 0). On the other hand, r2 is the average number of busy
servers in pool 2 when there are no idle servers in pool 1 (i.e., x3 = N1). In this case, (x1 + x2 + x4 + x5 − r2) is the total
number of customers in queues 1 and 2 plus the average number of idle servers in pool 2 if x4+ x5 = N2. It is the difference
between the number of busy servers and the average number of busy servers in pool 2 if x4 + x5 < N2 (i.e., x1 = 0, x2 = 0).
In this way, we have a Lyapunov function that depends on the real parameters of themodel. We obtain the global maximum
drift as c = 218.22. For ϵ = 0.1, we compute γ = 1963.98, (Low,High) = (0, 62), and H(0, 62) = 50, 982.

Unless otherwise specified, in all models we set ϵ = 0.1. The particular Lyapunov functions used with the W- and
V-models, can be found in [33]. Note that, none of the drifts used for the models of call centers we consider are nonlinear
functions of the countably infinite variables. Hence, there is no need to resort to the HOM4PS2-2.0 package for thesemodels.
We remark that Low turns out to be 0 in all models for the chosen parameters. If this were not the case, it would still
be possible to work with RHigh set to 0 as shown in [17]. In passing, we remark that the Rl matrices and the π (l) solution
subvectors become approximations once RHigh is set to 0, and how good approximations they are depends on the value of
ϵ [4,17].

3.2. Reporting memory usage

We consider the solution of the linear system of equations

R̃lAl = Bl starting from l = High− 1 down to Low

H. Baumann et al. / Performance Evaluation 70 (2013) 663–681 673

for the rectangular matrix R̃l of unknowns, where

Al = Ql+1,l+1 + R̃l+1Ql+2,l+1

is the square coefficient matrix and

Bl = −Ql,l+1

is the rectangularmatrix ofmultiple right-hand sides such that R̃l ∈ R|S
(l)
|×|S(l+1)

|

≥0 , Al ∈ R|S
(l+1)
|×|S(l+1)

|, and Bl ∈ R|S
(l)
|×|S(l+1)

|.
Clearly, R̃l+1 must be readily available at step l for this to be possible. The fact that Rl and π (l) become approximations once
RHigh is set to 0 is indicated by using tilde over them. Then the algorithm is as follows.

Algorithm 1. Computation of steady-state vector of an LDQBD process

Choose an appropriate Lyapunov function g(x) proving ergodicity:
Choose g(x) such that the set of states for which g(x) <∞ is finite
Obtain the drift d(x) and show that it is bounded
c ← supx∈S d(x) (using HOM4PS2-2.0 if necessary)
γ ← c(1/ϵ − 1) for given ϵ

Show that C = {x ∈ S | d(x) > −γ } is finite
Compute (Low,High)
R̃High ← 0
for l = High− 1, . . . , Low do

Al ← Ql+1,l+1 + R̃l+1Ql+2,l+1

Bl ←−Ql,l+1

Solve R̃lAl = Bl for R̃l

endfor
ALow−1 ← QLow,Low + R̃LowQLow+1,Low

Solve π̃ (Low)ALow−1 = 0 for π̃ (Low) subject to ∥π̃ (Low)
∥1 = 1

for l = Low, . . . ,High− 1 do
π̃ (l+1)

← π̃ (l)R̃l

Normalize π̃ subject to ∥(π̃ (Low), . . . , π̃ (l+1))∥1 = 1
endfor

Having observed in our previous Matlab implementation [17] that the R̃l matrices are not necessarily very sparse (see
Fig. 2), we considered their full and sparse storages. If we exclude the change in the value of the nonzero density at the
boundary level when going from 1 to 0 and observe the nonzero density’s value for l ≤ High − 1, we see that it is at least
45% and attained by the V-model with 4 type of customers (see Fig. 2(e)).

In order to compute R̃l, we need to obtain the nonzero blocks Ql+1,l+1 and Ql+2,l+1 of Q , form Al by multiplying R̃l+1 with
Ql+2,l+1, and then add Ql+1,l+1 to the product. At the end, Al should be LU factorized and the linear system solved for each
right-hand side vector in Bl. The matrix–matrix multiplication R̃l+1Ql+2,l+1 can proceed in two different ways. First, Ql+2,l+1

may be generated from the Kronecker representation as a sparse matrix and the pre-multiplication with R̃l+1 performed.
Second, the efficient vector-Kronecker product algorithm [4,28] can be used to multiply rows of R̃l+1 with Ql+2,l+1 while the
latter operand is being held in Kronecker form.

When the R̃l matrices are chosen to be stored as full matrices, a temporary matrix in full storage needs to be kept to form
Al and then compute its LU factorization in place. Since R̃High = 0, the sparsity pattern of AHigh−1 is equal to that of QHigh,High.
Therefore, it makes sense to obtain R̃High−1 using sparse LU factorization even though it will be stored as a full matrix. Now,
although all the R̃l matrices should be kept until the end of the computation to obtain the steady-state solution and the sizes
of the matrices are known at the outset (i.e., R̃l is (|S(l)

| × |S(l+1)
|) and Al is (|S(l+1)

| × |S(l+1)
|)), it is still possible to use two

different memory allocation–deallocation schemes for the R̃l matrices and the temporary matrix. First, memory to store all
R̃l matrices from l = High − 1 down to Low and the largest temporary matrix, AHigh−1, can be allocated at the outset and
deallocated at the end of the computation. In this scheme, successive Al matrices will overwrite the same temporary matrix.
Second, it is possible to deallocate the memory of Al at the end of step l and allocate the memory for R̃l−1 and Al−1 at the
beginning of step (l− 1). When the temporary matrix is allocated once at the beginning of the program, peak total memory
usage is higher especially when nI is larger. See Table 2 in which peak total memory usage values are computed analytically
in Megabytes (MB) using the sizes of the matrices across all models for the full storage of R̃l matrices, R̃l matrices plus
temporary matrix AHigh−1 at the outset, and R̃l matrices plus Al at each level. In the next section, these analytically obtained
values will be used to verify the memory usage measurements in the numerical experiments. On the other hand, when the

674 H. Baumann et al. / Performance Evaluation 70 (2013) 663–681

(a) N. (b) W.

(c) V (2 types). (d) V (3 types).

(e) V (4 types).

Fig. 2. Nonzero densities of R̃l matrices at levels l = 0 . . . ,High− 1 for the call center models.

R̃l matrices are chosen to be stored as sparse matrices, the temporary matrix to form Al is also stored as a sparse matrix and
memory is allocated at each level. This implies that extra memory needs to be allocated for the sparse LU factorization of Al
since there is expected to be fill-in.

We monitor the memory allocation of the LDQBD solver with the pidstat command of the sysstat package under
Linux. This command returns thememory allocated by the programat run time in one second intervals.When the R̃l matrices

H. Baumann et al. / Performance Evaluation 70 (2013) 663–681 675

Table 2
Peak totalmemory usage of full storage R̃l matrices, R̃l matrices plus AHigh−1 at outset, and R̃l matrices
plus Al matrices at each level for the call center models.

Model High Peak R̃l (MB) R̃l, AHigh−1 at outset (MB) R̃l, Al at each level (MB)

N 62 0 412 431 412
W 26 5 192 228 192
V (2 types) 321 0 354 358 354
V (3 types) 28 6 270 318 270
V (4 types) 9 7 125 219 150

and the temporary matrix are allocated at each level, the peak total memory usage is attained at a particular level, say Peak,
between 0 and High − 1 (see Table 2). If allocated memory is monitored at Peak (meaning granularity of the monitoring
period is small enough), peak total memory usage is obtained correctly. When Peak is close to 0 and the R̃l matrices around
level 0 are computed relatively fast, peak total memory usage may not be reported correctly. In order to circumvent this
measurement problem, we repeated the numerical experiments three times for each model, reported the maximum of the
peak total memory usages, and indicated the level at which the maximum is attained as Peak.

In the proposed Kronecker representation of Definition 6, nonzero entries of transition matrices of variables should be
available during computation when required. In many cases, transition matrices have specific nonzero structures such as
being subdiagonal, diagonal, or superdiagonal. If two transition matrices belonging to the same transition class have the
same nonzero structure, then it is possible for the two matrices to share the storage space of one vector. The vector will
be allocated as long as the larger state space size of two variables in this case. Besides, when I(0,1)h = 1 and I(l,u)h = 1
for h = 1, . . . , n, u = 1, . . . , nI , and l > Low, memory required to store the nonzero entries of submatrices of transition
matrices at a given level is smaller than that of a higher level. In this case, it is feasible to allocatememory to store submatrices
once at the highest level and keep reusing it when moving from level High down to Low. Otherwise, memory necessary to
store nonzero entries may be allocated and deallocated on the fly. Furthermore, vector-Kronecker product multiplication
requires an additional vector over vector–matrix multiplication. When R̃l and Al are stored as sparse matrices, an additional
temporary vector is used to compute, compact, and store the rows of Al. Besides, adding a row of a matrix in Kronecker
form to a vector requires two additional vectors. We also store the values of the transition rate functions for states in levels
l − 1, l, l + 1 when processing level l in order not to evaluate the functions more than once. We allocate all the additional
vectors at the beginning of the program and deallocate them at the end. Amount of memory allocated for all these vectors is
negligible compared to the total amount of memory allocated for the R̃l matrices. Hence, we do not report them separately.

Themore recent approach in [31] that reducesmemory requirements by not having to store all R̃l matrices for l = High−1
down to Low simultaneously is also implemented. The approach is based on a Horner-like computational scheme. In order
to evaluate K different functions of the steady-state distribution, (K + 1) temporary vectors as long as the number of states
within levels Low through High must be used. For instance, if the mean is to be computed for K = nI countably infinite
variables, (nI + 1) temporary vectors of length H(Low,High) must be allocated. The additional vector is employed for
normalization purposes. At step l, R̃l is computed as usual and stored. This implies that R̃l+1 from the previous step need
not be in memory any longer, and hence, R̃l is the only conditional expected sojourn time matrix in memory at step l in this
approach. Then R̃l is multiplied with the subvectors corresponding to level (l + 1) of the (K + 1) temporary vectors. The
product is added to the running sum of subvectors corresponding to level l of the (K +1) temporary vectors in order to keep
on accumulating steady-state expectations. This alternative approach is not able to compute the steady-state distribution
anddoes not introduce any time savings, but yields significantmemory savings at the expense of loss of the accuracymeasure
as we shall see in the next section.

4. Numerical results

We performed experiments on a PC with an Intel Core2 Duo 2.4 GHz processor and 4 Gigabytes (GB) of main memory.
The R̃l and Al matrices are allocated at each level having observed that it is the more memory efficient implementation in
Table 2. We considered the eight LDQBD solvers listed in Table 3, where π indicates that the solver computes the steady-
state distribution and Eπ indicates that the solver uses the alternative memory efficient approach [31], thus computing
steady-state expectations but not the distribution. Timing results are provided in seconds (s) of CPU time.

In the first set of results in Table 4 we present, solver Eπ emerges as the better one in terms of memory usage. This is in
line with our expectations. Memory savings can be substantial as in the N-model and V-model with 2 types of customers.
In between full and sparse storages of R̃l matrices, full storage is better in the W-model. This is a model having very high
nonzero densities in the R̃l matrices for l = 0, . . . ,High − 1 (see Fig. 2). In the call center models except the W-model,
sparse storage yields better results than full storage in terms of memory usage.When there arememory savings with sparse
storage of R̃l matrices, the respective time savings are even more substantial. In this case, the LU factorization of Al seems to
be benefiting considerably from sparsity. On the other hand, there is no significant difference between using sparse versus
Kronecker representations of the Ql+1,l matrices. We believe this to be the case because each subdiagonal nonzero block is

676 H. Baumann et al. / Performance Evaluation 70 (2013) 663–681

Table 3
LDQBD solvers used.

Solver Type R̃l Ql+1,l

1 π Full Kronecker
2 Sparse
3 Sparse Kronecker
4 Sparse
5 Eπ Full Kronecker
6 Sparse
7 Sparse Kronecker
8 Sparse

Table 4
Time in s (Ti) andmemory requirements in MB (Mi) for LDQBD solver i, i = 1, . . . , 8, in the call center models.

Model High T1 T2 T3 T4 T5 T6 T7 T8
M1 M2 M3 M4 M5 M6 M7 M8

N 62 149 146 51 48 150 146 51 47
417 416 363 364 43 43 28 28

W 26 79 78 106 105 79 78 106 105
196 194 284 284 71 71 93 93

V (2 types) 321 44 43 16 15 44 42 15 15
358 359 341 340 11 10 9 7

V (3 types) 28 127 126 21 20 127 127 21 20
273 273 205 202 93 93 44 44

V (4 types) 9 46 46 8 8 45 46 8 8
154 154 88 89 148 148 57 57

Table 5
Mean values of variables, their errors and relative errors for solver Eπ with respect
to the mean values obtained with solver π in the call center models.

Model High Variable Mean Error Rel. err

N 62 X1 0.03944 2e−15 5e−14
X2 0.03051 1e−15 3e−14
X3 3.15592 1e−13 4e−14
X4 2.23857 2e−13 7e−14
X5 3.55556 1e−13 3e−14

W 26 X1 0.00831 2e−16 3e−14
X2 0.00351 1e−16 3e−14
X3 0.06069 2e−15 3e−14
X4 3.74418 9e−14 3e−14
X5 3.61130 1e−13 3e−14

V (2 types) 321 X1 0.83072 2e−14 3e−14
X2 25.96154 5e−13 2e−14
X3 26.54969 4e−13 2e−14

V (3 types) 28 X1 0.07139 3e−15 4e−14
X2 0.12167 3e−15 2e−14
X3 0.31274 1e−14 4e−14
X4 19.24928 8e−13 4e−14

V (4 types) 9 X1 0.00570 3e−17 5e−15
X2 0.00743 2e−17 3e−15
X3 0.01001 5e−17 5e−15
X4 0.01299 4e−17 3e−15
X5 15.74957 8e−14 5e−15

used once and the sparse generation procedure associatedwith it and the pre-multiplicationwith R̃l+1 amount to performing
the same number of floating-point operations as would be done by the vector-Kronecker product multiplication algorithm
between the rows of R̃l+1 and the subdiagonal nonzero block when the latter is kept in Kronecker form.

Table 5 indicates that solver Eπ is able to computemean values of variables stably as solverπ . The reported relative errors
of the mean values obtained with solver Eπ with respect to those obtained with solver π are close to machine precision in
all cases.

We have investigated the scalability of the eight LDQBD solvers for increasing values of ϵ. In Fig. 3, we plot the results
for the N-model and V-model with 3 types of customers. In doing this, we provide timing results only with solver π since
timings of solvers π and Eπ are almost identical as can be seen in Table 4. Note that we have two models with nI = 2 (N-
model and V-model with 2 types of customers), twomodels with nI = 3 (W-model and V-model with 3 types of customers),
and one model with nI = 4 (V-model with 4 types of customers). Results of numerical experiments on these models for
increasing values of High can be found in [33]. Since time complexity of Al’s LU factorization at level l is cubic in the order

H. Baumann et al. / Performance Evaluation 70 (2013) 663–681 677

(a) N time. (b) V (3 types) time.

(c) N memory for solver π . (d) V (3 types) memory for solver π .

(e) N memory for solver Eπ . (f) V (3 types) memory for solver Eπ .

Fig. 3. Time and memory requirements of LDQBD solvers for increasing ϵ values of the call center N-model and V-model with 3 types of customers.

of |S(l)
| for dense R̃l matrices and |S(l)

| is a polynomial with degree (l − 1), time requirements become more pronounced
for models with higher nI values. The situation regarding memory is better since the requirements at level l is quadratic in
|S(l)
| for dense R̃l matrices. Clearly, the time and memory requirements are much better when the R̃l matrices are sparser.

678 H. Baumann et al. / Performance Evaluation 70 (2013) 663–681

(a) N. (b) V (3 types).

Fig. 4. Logarithmic residual norms of LDQBD solver for increasing ϵ values of the call center N-model and V-model with 3 types of customers.

In Fig. 4, we provide the logarithmic residual norms obtained with solver π for the steady-state distributions π̃ of the
N-model and V-model with 3 types of customers for increasing values of ϵ. The results confirm our recent findings in [17]
that it is possible to improve the accuracy of the solution in the residual norm (toward machine precision) by considering
smaller values of ϵ in each model.

5. Conclusion

We have considered the Kronecker representation of nonzero blocks of transition matrices underlying level-dependent
QBD processes. A representation proposed recently for models from systems of stochastic chemical kinetics has been
extended so that queueing network models of call centers can also be analyzed for their steady-state. The improved
representation requires the partitions of state spaces of countably infinite state variables obtained recently and the state
spaces of the finite state variables to be partitioned to eliminate unreachable states from the product state space of the
model.

An analysis regarding peakmemory usage has suggested that it is better to allocate memory for thematrix of conditional
expected sojourn times and the coefficient matrix of the linear system to be solved at each level before the computation at
that level commences rather than at the outset. Having decided on when to allocate memory for the matrices used in the
matrix analytic solution, an extensive numerical study is undertaken in which full versus sparse storages of the matrices
of conditional expected sojourn times and sparse versus Kronecker representations of the subdiagonal nonzero blocks are
considered for implementation. Results indicate that it is better to opt for full storage of thematrices of conditional expected
sojourn times when they are relatively dense, whereas either of sparse and Kronecker representations of the subdiagonal
nonzero blocks can be used. Besides, a more recent approach that enables the computation of steady-state expectations
without computing the steady-state distribution has been shown to perform stably and can be utilized to improve memory
usage at the expense of losing the accuracymeasure associatedwith the solution. Ongoingwork is concernedwith obtaining
accuracy measures for this approach as well, but they are not yet available. Both the more recent approach and the original
matrix analytic solution have room for improvement regarding their scalability formodels with a large number of countably
infinite state variables.

Acknowledgments

The work of M.C. Orhan is supported by The Scientific and Technological Research Council of Turkey. We thank the
anonymous referees whose comments led to an improved manuscript.

Appendix

Lemma 1. The set of states the Lyapunov function g(x) in (1) attains a finite value is always finite.

Proof. Consider the Lyapunov function g(x) with {1, . . . , nI} ⊆
S

s=1 Hs

g(x) =
S

s=1

h∈Hs

xh + rs

2

=

S
s=1

h∈Hs

xh

2

+ 2

h∈Hs

xh

rs + r2s

H. Baumann et al. / Performance Evaluation 70 (2013) 663–681 679

≥

S
s=1

n
h=1

1h∈Hsx

2
h + 1h∈Hs2rsxh

+

S
s=1

r2s

=

S
s=1

nI
h=1

1h∈Hsx

2
h + 1h∈Hs2rsxh

+ G(x),

where G(x) =
S

s=1
n

h=nI+1
1h∈Hs

x2h + 2rsxh

+
S

s=1 r
2
s is finite. Then

g(x) ≥
nI

h=1

S

s=1

1h∈Hs

x2h + 2

S

s=1

1h∈Hs rs

xh

+ G(x).

Let ah,1 and ah,2 denote
S

s=1 1h∈Hs and
S

s=1 1h∈Hs rs

/
S

s=1 1h∈Hs

, respectively.

S
s=1 Hs includes all countably infinite

variables by our assumption. So, ah,1 > 0 holds and ah,2 is well-defined for h = 1, . . . , nI . Therefore,

g(x) ≥
nI

h=1

ah,1

x2h + 2ah,2xh

+ G(x)

=

nI
h=1

ah,1

xh + ah,2
2
− a2h,2

+ G(x)

=

nI
h=1

ah,1

xh + ah,2

2
−

nI
h=1

ah,1a2h,2 + G(x).

Now,
nI

h=1 ah,1

xh + ah,2

2 attains finite values only in a finite number of states since it is a weighted sum of squares of all
countably infinite variables each shifted by a scalar and−

nI
h=1 ah,1a

2
h,2 + G(x) is finite. The set of states that g(x) is finite

is a subset of the states of a function that is smaller than g(x) in all states. Hence, the set of states g(x) attains a finite value
is always finite if {1, . . . , nI} ⊆

S
s=1 Hs. �

Lemma 2. The drift d(x) in (2) satisfies c = supx∈S d(x) < ∞ if supx∈S D(x) < ∞, supx∈S d(h)(x) < ∞, and there exists a
finite Uh ∈ Z+ such that supx∈S,xh>Uh

d(h)(x) < 0 for h = 1, . . . , nI .

Proof. The result follows from

sup
x∈S

d(x) ≤
nI

h=1

sup
x∈S

(d(h)(x)xh)+ sup
x∈S

D(x)

≤

nI
h=1

max(sup
x∈S,xh≤Uh

(d(h)(x)xh), sup
x∈S,xh>Uh

(d(h)(x)xh))+ sup
x∈S

D(x)

≤

nI
h=1

max(sup
x∈S,xh≤Uh

(d(h)(x)xh), 0)+ sup
x∈S

D(x)

≤

nI
h=1

Uh max(sup
x∈S

d(h)(x), 0)+ sup
x∈S

D(x) <∞. �

Lemma 3. The set C = {x ∈ S | d(x) > −γ } is finite for the drift d(x) in (2) if supx∈S D(x) < ∞, supx∈S d(h)(x) < ∞,
and there exists a finite Uh ∈ Z+ such that supx∈S,xh>Uh

d(h)(x) < 0 for h = 1, . . . , nI , where γ = c(1/ϵ − 1) ∈ R≥0, c =
supx∈S d(x) <∞, and ϵ ∈ (0, 1).

Proof. Let us define

mh = −

γ +
nI

h′=1
1h′≠h sup

x∈S
(d(h′)(x)xh′)+ sup

x∈S
D(x)

sup
x∈S

d(h)(x)

and

Dh = {x ∈ S|xh > max(Uh,mh)}

680 H. Baumann et al. / Performance Evaluation 70 (2013) 663–681

for h = 1, . . . , nI . Observing that mh ≥ −γ − d(x) + d(h)(x)xh/ supx∈S d(h)(x) holds for x ∈ S, xh > Uh, and h = 1, . . . , nI ,
we have

Dh ⊆ {x ∈ S|xh > Uh, sup
x∈S

(d(h)(x))xh < −γ − d(x)+ d(h)(x)xh}

⊆ {x ∈ S|xh > Uh, d(x)+ (sup
x∈S

d(h)(x)− d(h)(x))xh < −γ }

⊆ {x ∈ S|xh > Uh, d(x) < −γ }.

Then C ∩Dh = ∅ since C ∩ {x ∈ S|xh > Uh, d(x) < −γ } = ∅ for h = 1, . . . , nI , and

C ⊆ S \

nI

h=1

Dh

= {x ∈ S|xh ≤ max(Uh,mh) for h = 1, . . . , nI}

holds. The set C is a subset of the finite set

{x ∈ S|xh ≤ max(Uh,mh) for h = 1, . . . , nI}.

Hence, C is also finite. �

References

[1] L. Bright, P.G. Taylor, Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes, Stochastic Models 11 (1995)
497–525.

[2] G. Latouche, V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, SIAM Press, Philadelphia, PA, 1999.
[3] V. Ramaswami, P.G. Taylor, Some properties of the rate operators in level dependent quasi-birth-and-death processes with a countable number of

phases, Stochastic Models 12 (1996) 143–164.
[4] T. Dayar, Analyzing Markov Chains Using Kronecker Products: Theory and Applications, Springer, New York, 2012.
[5] W.K. Grassman (Ed.), Computational Probability, Kluwer, Norwell, MA, 2000.
[6] W.J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton University Press, Princeton, NJ, 1994.
[7] M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models, The Johns Hopkins University Press, Baltimore, MD, 1981.
[8] M.F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel Dekker, New York, 1989.
[9] D.A. Bini, G. Latouche, B. Meini, Numerical Methods for Structured Markov Chains, Oxford University Press, Oxford, 2005.

[10] G. Latouche, V. Ramaswami, A logarithmic reduction algorithm for quasi-birth-and-death processes, Journal of Applied Probability 30 (1993) 650–674.
[11] D.A. Bini, B. Meini, On the solution of a nonlinear matrix equation arising in queueing problems, SIAM Journal on Matrix Analysis and Applications 17

(1996) 906–926.
[12] P.K. Pollett, P.G. Taylor, On the problem of establishing the existence of stationary distributions for continuous-timeMarkov chains, Probability in the

Engineering and Informational Sciences 7 (1993) 529–543.
[13] P. Glynn, A. Zeevi, Bounding stationary expectations ofMarkov processes, in: S.N. Ethier, J. Feng, R.H. Stockbridge (Eds.), Markov Processes and Related

Topics: A Festschrift for Thomas G. Kurtz, IMS Collections, vol. 4, IMS, Beachwood, Ohio, 2008, pp. 195–214.
[14] R.L. Tweedie, Sufficient conditions for regularity, recurrence and ergodicity of Markov processes, Mathematical Proceedings of the Cambridge

Philosophical Society 78 (1975) 125–136.
[15] T. Dayar, H. Hermanns, D. Spieler, V. Wolf, Bounding the equilibrium distribution of Markov population models, Numerical Linear Algebra with

Applications 18 (2011) 931–946.
[16] T. Dayar, M.C. Orhan, Kronecker-based infinite level-dependent QBDs, Journal of Applied Probability 49 (2012) 1166–1187.
[17] T. Dayar, W. Sandmann, D. Spieler, V. Wolf, Infinite level-dependent QBD processes and matrix analytic solutions for stochastic chemical kinetics,

Advances in Applied Probability 38 (2011) 1005–1026.
[18] T.G. Kurtz, The relationship between stochastic and deterministic models for chemical reactions, Journal of Chemical Physics 57 (1972) 2976–2978.
[19] D.A. McQuarrie, Stochastic approach to chemical kinetics, Journal of Applied Probability 4 (1967) 413–478.
[20] K. Singer, Application of the theory of stochastic processes to the study of irreproducible chemical reactions and nucleation processes, Journal of the

Royal Statistical Society: Series B 15 (1953) 92–106.
[21] N.G. van Kampen, Stochastic Processes in Physics and Chemistry, Elsevier, Amsterdam, The Netherlands, 1992.
[22] P. Buchholz, A class of hierarchical queueing networks and their analysis, Queueing Systems 15 (1994) 59–80.
[23] T. Hanschke, A matrix continued fraction algorithm for the multiserver repeated order queue, Mathematical and Computer Modelling 30 (1999)

159–170.
[24] W.J. Stewart, Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling, Princeton University Press,

Princeton, NJ, 2009.
[25] D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions, The Journal of Physical Chemistry 81 (1977) 2340–2361.
[26] H. Li, Y. Cao, L.R. Petzold, D. Gillespie, Algorithms and software for stochastic simulation of biochemical reacting systems, Biotechnology Progress 24

(2008) 56–62.
[27] H. Baumann,W. Sandmann, Numerical solution of level dependent quasi-birth-and-death processes, Procedia Computer Science 1 (2010) 1555–1563.
[28] P. Fernandes, B. Plateau, W.J. Stewart, Efficient descriptor–vector multiplications in stochastic automata networks, Journal of the ACM 45 (1998)

381–414.
[29] B. Plateau, On the stochastic structure of parallelism and synchronization models for distributed algorithms, Performance Evaluation Review 13 (2)

(1985) 147–154.
[30] B. Plateau,W.J. Stewart, Stochastic automata networks, in:W.K. Grassmann (Ed.), Computational Probability, Kluwer, Norwell, MA, 2000, pp. 113–152.
[31] H. Baumann, W. Sandmann, Computing stationary expectations in level-dependent QBD processes, Journal of Applied Probability 50 (2013) 151–165.
[32] F. Bause, P. Buchholz, P. Kemper, A toolbox for functional and quantitative analysis of DEDS, in: R. Puigjaner, N.N. Savino, B. Serra (Eds.), Quantitative

Evaluation of Computing and Communication Systems, in: Lecture Notes in Computer Science, vol. 1469, Springer, Berlin, 1998, pp. 356–359.
[33] H. Baumann, T. Dayar, M.C. Orhan, W. Sandmann, On the numerical solution of Kronecker-based infinite level-dependent QBD processes, Technical

Report BU-CE-1206, Department of Computer Engineering, Bilkent University, Ankara, Turkey, 2012.
[34] S.L. Bell, R.J. Williams, Dynamic scheduling of a parallel server system in heavy traffic with complete resource pooling: asymptotic optimality of a

threshold policy, The Annals of Applied Probability 11 (2001) 608–649.
[35] I. Gurvich,W.Whitt, Service-level differentiation inmany-server service systems: a solution based on fixed-queue-ratio routing, Operations Research

29 (2007) 567–588.
[36] I. Gurvich,M. Armony, A.Mandelbaum, Service-level differentiation in call centerswith fully flexible servers,Management Science 54 (2008) 279–294.

http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref1
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref2
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref3
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref4
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref5
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref6
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref7
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref8
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref9
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref10
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref11
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref12
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref13
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref14
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref15
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref16
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref17
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref18
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref19
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref20
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref21
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref22
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref23
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref24
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref25
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref26
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref27
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref28
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref29
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref30
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref31
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref32
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref33
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref34
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref35
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref36

H. Baumann et al. / Performance Evaluation 70 (2013) 663–681 681

[37] T. Dayar, M.C. Orhan, LDQBD Solver version 3, http://www.cs.bilkent.edu.tr/~tugrul/software.html (accessed: 21.01.13).
[38] P. Buchholz, The Nsolve Package, http://ls4-www.cs.tu-dortmund.de/download/buchholz/struct-matrix-market.html (accessed: 21.01.13).
[39] T.L. Lee, T.Y. Li, C.H. Tsai, HOM4PS-2.0, a software package for solving polynomial systems by the polyhedral homotopy continuation method,

Computing 83 (2008) 109–133.

H. Baumann is a postdoc working at Clausthal University of Technology, Germany. He graduated in mathematics in 2008 and
completed his Ph.D. in 2010with the thesis titled ‘‘Continued fractions in Banach algebras—convergence criteria and applications’’
at the same university. His research interests include numericalmethods forMarkov chains, particularlymatrix-analyticmethods,
and (generalized) matrix continued fractions and their applications to difference equations.

T. Dayar received his B.S. degree in Computer Engineering from Middle East Technical University, Ankara, Turkey, in 1989, and
the M.S. and Ph.D. degrees in Computer Science from North Carolina State University, Raleigh, NC, in 1991 and 1994, respectively.
Since 1995, he has been with the Department of Computer Engineering at Bilkent University, Ankara, Turkey, where he is now a
full professor. His research interests are in the areas of performancemodeling and analysis, numerical linear algebra for stochastic
matrices, scientific computing, bioinformatics, and computer networks. He is a member of Upsilon Pi Epsilon, IEEE Computer
Society, ACM Special Interest Group on Measurement and Evaluation, SIAM Activity Group on Linear Algebra, and AMS.

M.C. Orhan received his B.S. andM.S. degrees in Computer Engineering from Bilkent University, Ankara, Turkey, in 2009 and 2011,
respectively. He is currently a Ph.D. student in the same department. His research interests include performance modeling and
analysis, bioinformatics, numerical linear algebra, and scientific computing.

W. Sandmann received his Ph.D. in Computer Science and Applied Mathematics from the University of Bonn, Germany, in 2004.
From 2004 to 2009 he was an Assistant Professor of Computer Science at the University of Bamberg, and from 2009 to 2012 an
Associate Professor of Mathematics and Substitute Chair of Stochastic Models in the Engineering Sciences at Clausthal University
of Technology. Currently, he is a senior researcher in the Group of Modeling and Simulation at Saarland University. His research
interests are in applied and computational stochastics, in particular stochastic modeling and system analysis with applications to
performance evaluation of computer and communication networks, operations research, and systems biology.

http://www.cs.bilkent.edu.tr/~tugrul/software.html
http://ls4-www.cs.tu-dortmund.de/download/buchholz/struct-matrix-market.html
http://refhub.elsevier.com/S0166-5316(13)00051-5/sbref39

	On the numerical solution of Kronecker-based infinite level-dependent QBD processes
	Introduction
	Kronecker representation
	Implementation issues
	Handling infiniteness
	Reporting memory usage

	Numerical results
	Conclusion
	Acknowledgments
	Appendix
	References

