
Great-Nsolve: a tool integration for
(Markov Regenerative) stochastic Petri nets

E.G. Amparore1, P. Buchholz2, and S. Donatelli1

1 Dipartimento di Informatica, Università degli Studi di Torino, Torino, Italy
2 Department of Computer Science, TU Dortmund, Germany,

amparore@di.unito.it, donatelli@di.unito.it,
peter.buchholz@cs.tu-dortmund.de

Abstract. This paper presents Great-Nsolve, the integration of GreatSPN (with
its user-friendly graphical interface and its numerous possibilities of stochastic
Petri net analysis) and Nsolve (with its very efficient numerical solution methods)
aimed at solving large Markov Regenerative Stochastic Petri Nets (MRSPN). The
support for general distribution is provided by the alphaFactory library.

1 The baseline

Generalized stochastic stochastic Petri nets (GSPN) [1] are a stochastic extension of
place/transition to associate exponentially distributed delays to transitions. The stochas-
tic process described by a GSPN is a continuous time Markov chain (CTMC). Markov
Regenerative Stochastic Petri Nets (MRSPN) [16] are an extension of GSPNs to allow
transitions to have a generally distributed delay, given that, in each state, at most one
non-exponential transition is enabled. The solution of a MRSPN is based on the solu-
tion of its underlying Markov Regenerative Processes (MRgP) which is typically based
on the construction and solution of the embedded discrete time Markov chain (DTMC)
at regeneration points (the so-called global kernel) and of the CTMC that describes the
stochastic behavior of the net in-between regeneration points (the so-called local ker-
nel). It is well known that the embedded DTMC matrix can be very dense (even if the
MRgP transition matrix is sparse) and therefore it can be built, stored and solved only
for small systems (thousands of states). This approach is called explicit, in contrast to
the implicit, matrix-free technique [18,6] which does not require to build and store the
embedded DTMC, but works with the (usually sparse) transition matrix.

When a net model is formulated as a set of components, the state space and tran-
sition matrix (and even the solution vector [14]) can be effectively represented in Kro-
necker form [20,11] allowing us to treat much larger state spaces.

A previous paper [5] has introduced the combination of matrix-free, as in [18,6],
and Kronecker representation to solve MRSPN. This demo tool paper describes how
the matrix-free solutions provided by GreatSPN [4] and the advanced Kronecker-based
techniques provided by Nsolve [12] have been integrated to implement the theory pre-
sented in [5] and have been made accessible in an easy manner through the graph-
ical interface of GreatSPN [3]. The support for general distributions is provided by
the alphaFactory library [8]. The resulting Great-Nsolve tool allows the user to experi-
ment and compare solutions of MRSPN based on a large variety of techniques: implicit

and matrix-free approaches [2], already present in GreatSPN, and Kronecker-based ap-
proaches, thanks to the tool integration presented in this paper.

The Nsolve tool. Nsolve [12] is a collection of advanced numerical solution methods
for the computation of stationary distributions of large structured Markov chains. The
tool is written in C and uses a two level hierarchical Kronecker structure to represent
generator matrices which can be built from a flat description of a model as a network
of synchronized components [13]. The matrix structure is described in [15]. Due to the
modular structure and the availability of basic functions for numerical operations it is
possible to easily integrate new numerical solution methods at the level of C functions.
Different interfaces exist to combine the numerical methods provided by Nsolve with
other tools as front- and/or back-ends. First, a file interface using small component ma-
trices stored in sparse format has been defined [12], then the internal C data structures
for sparse matrices can be used and the solution functions can be called directly. Fi-
nally, models can be provided in APNN format [10], an XML based format to describe
extended stochastic Petri nets. At the back-end Nsolve provides the stationary vector
and results computed from an appropriate reward structure. Nsolve cannot deal with
MRSPN models directly.

The GreatSPN tool. GreatSPN [4] is a tool for the qualitative and stochastic analy-
sis of (stochastic) Petri nets and various extensions of them. Through the support on a
Java-based, highly portable graphical interface (GUI) [3] that allows one to draw and
compose nets and to play the (colored) token game, GreatSPN offers a qualitative anal-
ysis that includes state space construction, model-checking of CTL properties based
on decision diagrams, various structural analysis techniques (like P- and T- invariants)
and a stochastic analysis with a rich variety of numerical solutions for ergodic and non-
ergodic models, as well as stochastic model checking of the CSLTA logic [17]. GreatSPN
has been tailored for teaching, but it is also a tool with advanced solution techniques
that regularly participates in the Petri net model checking competition [19]. For the
integration with Nsolve the most relevant features of the tool are the solvers [2] for MR-
SPNs, that include an explicit and a matrix-free solver as well as a component-based
method [7] for non-ergodic MRSPN.

The alphaFactory library This library [8] supports the definition of general distribu-
tions through their PDF fpxq, and the computation of the α factors to be used inside
any uniformization method implementation. Examples of fpxq are Irδs for a Dirac im-
pulse at time δ, i.e. a deterministic event, Rpa, bq for a uniform rectangular signal in the
ra, bs range, or more sophisticated functions like fpxq “ λr

pr´1q! ¨ x
r´1 ¨ e´λx for the

Erlang distribution with r phases of rate λ. Syntactic sugar for common distributions
(like Uniform, Erlang or Pareto) is available too.

2 Great-Nsolve: the integration

Changes to the GreatSPN GUI GreatSPN already has support for MRSPN: the GUI
supports the labelling of general transitions with a PDF function fpxq in alphaFac-

2

Fig. 1: Net partition in the GUI and a component of a Moving Server System model.

tory form, and the execution of different forms of MRSPN solutions, including a matrix-
free approach. In Great-Nsolve the net model of the GUI has been extended to include
the module information (a partition of places) to be exploited by Nsolve. The same net
model is then shared by both the GreatSPN solvers (that ignores it) and the Kronecker-
based solvers of Nsolve. The extensions of the GUI include: 1) Places can be partitioned
by the use of labels: places with the same label are in the same partition; Such separa-
tion is compulsory for Nsolve, and it is ignored by other solvers. 2) The GUI outputs the
model in the internal representation of Nsolve, i.e. the APNN model. This format re-
quires the place bounds to be known in advance, hence place bounds are first computed
from the place invariants. Nets not fully covered by P-invariants are currently not sup-
ported. 3) the results computed by Nsolve are shown back in the GUI (directly on the net
or in tabular form), as for any other GreatSPN solver. These changes allow any user to
exploit the efficient techniques presented in [5] in a fully transparent, 1-click approach
manner. As a by-product of the integration, Kronecker based solution for GSPNs are
also 1-click available.
Extension of Nsolve for MRP solutions Two main modifications were needed: 1)
Computation of the hierarchical state space structure cannot be done with the standard
algorithm from [13] since the hierarchical matrix structure for MRgPs differs from the
matrix structure of CTMCs and requires the implementation of the algorithm in [5].
2) The steady-state solution for MRgPs has been implemented to work using matrix in
Kronecker form inside a matrix-free iterative method, similar to the one in [6]. Currently
the iterative methods supported are the Power method, GMRES and BiCG-Stab. The
matrix-free solution requires the computation of the local kernels using Uniformization
w.r.t. the PDF fpxq of the general transition, and the computation of the Uniformization
coefficients is delegated to the alphaFactory library.

3 Great-Nsolve in action

Great-Nsolve is available as a virtual machine with all software preinstalled and ready
to use that can be downloaded at: http://www.di.unito.it/˜greatspn/VBox/
Ubuntu64_with_Great-nsolve.ova. The code of GreatSPN with the Nsolve inte-
gration can be found at https://github.com/greatspn/SOURCES.
AlphaFactory can be found at https://github.com/amparore/alphaFactory.

3

http://www.di.unito.it/~greatspn/VBox/Ubuntu64_with_Great-nsolve.ova
http://www.di.unito.it/~greatspn/VBox/Ubuntu64_with_Great-nsolve.ova
https://github.com/greatspn/SOURCES
https://github.com/amparore/alphaFactory

The Kronecker-based solution of MRSPN in Great-Nsolve is limited to ergodic sys-
tems. If the system is non-ergodic, but finite, the model can still be solved using the
matrix-free techniques and the component-based method [7,2] of GreatSPN.

To show the use of the integrated tool consider the Moving Server System (MSS)
obtained by concatenating 4 stations (components) modeled by the net in Figure 1(right).
Places are partitioned according to stations. The black and thick transitions have a gen-
eral distribution. This is an Erlang-3 with rate 1. Experiments are performed for a vari-
able numbermi of requests arriving to the station’s queues (in the reported experiments
the same value for all queues). The number of macro states (top states in the hierarchical
structure of the MRSPN) is constant, and equal to 12. Macro states are built automati-
cally. Table 1 summarizes the comparison in space based on the number of states and
of non-zeros of the matrices used. The following cases are considered (left to right): 1)
structured matrix-free representation of the MRgP matrices for the MRSPN in Figure 1,
2) structured representation of the CTMC of the GSPN obtained from the MRSPN in
Figure 1 through phase-expansion (each Erlang-3 transition is substituted by a sequence
of three exponential transitions) 3) matrix-free representation of the MRgP matrices for
the MRSPN in Figure 1 and 4) explicit solution for the same matrices as 3). The first
two cases are the new solvers of Great-Nsolve , while the last two cases are the best
solutions available in GreatSPN. The explicit solution (last column) is not able to cope
with large state spaces, while the matrix-free unstructured, although better than explicit,
occupies much more space than the corresponding structured case proposed in this pa-
per, as an example: 840 entries against more than 7 millions for the mi “ 20 case. Note
also that the structured approach does not suffer much for the substitution of general
distribution with their phase expansion.

Structured representation (Great-Nsolve) Unstructured representation
General (MRgP) Phase-expansion (CTMC) General (MRgP)

Matrix-free - Matrix-free Explicit
mi states nnz Time states nnz Time states nnz Time nnz Time

1 128 80 0.1 320 416 0.2 128 384 0.6 544 1.1
10 117128 440 1.8 244904 1856 2.5 117128 543048 11.8 7452116 67.7
20 1555848 840 47.5 3185784 3456 64.3 1555848 7482888 606.8 88318068 12202.1
25 3655808 1040 140.5 7452224 4256 208.5 3655808 17716608 1687.8 - -
30 7388168 1240 369.3 15014664 5056 613.4 7388168 35987528 4048.4 - -

Table 1: MSS: State space sizes and memory occupations.

Future work From a theoretical point of view, we are currently working on an opti-
mization of the solution presented in [5]. We are also considering whether the component-
based MRgP solution techniques presented in [7] can profit of a Kronecker-based ap-
proach for the solution of single components. From a tool point of view we plan to lift
the requirement that all places are covered by a p-invariant. If this is not the case, in-
deed the place bounds cannot be computed through structural analysis, but, if the state

4

space is finite, they can be computed on the actual state space, that can be efficiently
generated in GreatSPN using decision-diagrams [9].

References

1. Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the
performance evaluation of multiprocessor systems. ACM Transactions on Computer Systems
2, 93–122 (May 1984)

2. Amparore, E.G., Donatelli, S.: DSPN-Tool: a new DSPN and GSPN solver for GreatSPN.
QEST 2010 pp. 79–80 (2010)

3. Amparore, E.: A new GreatSPN GUI for GSPN editing and CSLTA model checking. In:
Proca of the 11th QEST Conference. vol. 8657 LNCS, pp. 170–173. Springer (2014)

4. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 Years of Great-
SPN, chap. In: Principles of Performance and Reliability Modeling and Evaluation: Essays
in Honor of Kishor Trivedi, pp. 227–254. Springer (2016)

5. Amparore, E.G., Buchholz, P., Donatelli, S.: A structured solution approach for Markov
Regenerative Processes. In: Procs. of the 11th QEST Conference. pp. 9–24. Springer (2014)

6. Amparore, E.G., Donatelli, S.: Revisiting the matrix-free solution of Markov regenerative
processes. Numerical Linear Algebra with Applications 18, 1067–1083 (2011)

7. Amparore, E.G., Donatelli, S.: A component-based solution for reducible Markov regenera-
tive processes. Performance Evaluation 70(6), 400 – 422 (2013)

8. Amparore, E.G., Donatelli, S.: alphaFactory: A tool for generating the alpha factors of gen-
eral distributions. In: Proceedings of the 14th QEST Conference,. pp. 36–51. Springer (2017)

9. Babar, J., Beccuti, M., Donatelli, S., Miner, A.: GreatSPN enhanced with decision diagram
data structures. In: Proceedings of the 31st International Conference on Application and
Theory of Petri Nets and Concurrency, June 21-25, 2010. vol. 6128 LNCS, pp. 416–425

10. Bause, F., Buchholz, P., Kemper, P.: A toolbox for functional and quantitative analysis of
DEDS. In: Procs. of the 10th Int. Tools Conf. LNCS, vol. 1469, pp. 356–359. Springer (1998)

11. Buchholz, P., Ciardo, G., Donatelli, S., Kemper, P.: Complexity of memory-efficient Kro-
necker operations with applications to the solution of Markov models. INFORMS Journal
on Computing 12(3), 203–222 (2000)

12. Buchholz, P.: Markov matrix market. http://ls4-www.cs.tu-dortmund.de/
download/buchholz/struct-matrix-market.html

13. Buchholz, P.: Hierarchical Structuring of Superposed GSPNs. IEEE Transactions on Soft-
ware Engineering 25(2), 166–181 (1999)

14. Buchholz, P., Dayar, T., Kriege, J., Orhan, M.C.: On compact solution vectors in Kronecker-
based Markovian analysis. Perform. Eval. 115, 132–149 (2017)

15. Buchholz, P., Kemper, P.: Kronecker based matrix representations for large Markov models.
In: Validation of Stochastic Systems. LNCS, vol. 2925, pp. 256–295. Springer (2004)

16. Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets. Perfor-
mance Evaluation 20(1-3), 337–357 (1994)

17. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with
CSLTA. IEEE Transactions on Software Engineering 35(2), 224–240 (2009)

18. German, R.: Iterative analysis of Markov regenerative models. Performance Evaluation 44,
51–72 (April 2001)

19. Kordon, F., & all: Complete results for the 2019 edition of the Model Checking Contest
(2019), http://mcc.lip6.fr/2019/results.php

20. Plateau, B., Fourneau, J.M.: A methodology for solving Markov models of parallel systems.
J. Parallel Distrib. Comput. 12(4), 370–387 (1991)

5

http://ls4-www.cs.tu-dortmund.de/download/buchholz/struct-matrix-market.html
http://ls4-www.cs.tu-dortmund.de/download/buchholz/struct-matrix-market.html
http://mcc.lip6.fr/2019/results.php

	Great-Nsolve: a tool integration for (Markov Regenerative) stochastic Petri nets

