431,210 research outputs found

    Gradient Boosting in Motor Insurance Claim Frequency Modelling

    Get PDF
    Modelling claim frequency and claim severity are topics of great interest in property-casualty insurance for supporting underwriting, ratemaking, and reserving actuarial decisions. This paper investigates the predictive performance of Gradient Boosting with Decision Trees as base learners to model the claim frequency in motor insurance using a private cross-country large insurance dataset. The Gradient Boosting algorithm combines many weak base learners to tackle conceptual uncertainty in empirical research. The findings show that the Gradient Boosting model is superior to the standard Generalised Linear Model in the sense that it provides closer predictions in the claim frequency model. The finding also shows that Gradient Boosting can capture the nonlinear relation between the claim counts and feature variables and their complex interactions being, thus, a valuable tool for feature engineering and the development of a data-driven approach to risk management

    FEGRAMED : an interactive graphics editor for feature structures

    Get PDF
    This paper describes a tool for supporting grammar development in those linguistic frameworks which employ some constraint-based formalism, such as LFG (Lexical Functional Grammar), HPSG (Head-Driven Phrase Structure Grammar) , FUG (Functional Unification Grammar) and CUG (Categorial Unification Grammar). These approaches have in common that all or at least a substantial part of the grammar (such as rules, lexical entries, node labels etc.) is represented as sets of attribute-value pairs. In LISP or Prolog the structures can be internally represented as lists, but it is much more convenient and sometimes even indispensable to use graphical representations when developing grammars. During grammar processing, feature structures can become quite large (up to several thousand nodes), such that a customized view of the feature structure, which allows to selectively focus on relevant parts, becomes essential. Fegramed provides a fully interactive editor for developing, maintaining and viewing feature structures. It is a tool that is built to cope with the complexity of feature structures in grammar development and use

    An ontology of agile aspect oriented software development

    Get PDF
    Both agile methods and aspect oriented programming (AOP) have emerged in recent years as new paradigms in software development. Both promise to free the process of building software systems from some of the constraints of more traditional approaches. As a software engineering approach on the one hand, and a software development tool on the other, there is the potential for them to be used in conjunction. However, thus far, there has been little interplay between the two. Nevertheless, there is some evidence that there may be untapped synergies that may be exploited, if the appropriate approach is taken to integrating AOP with agile methods. This paper takes an ontological approach to supporting this integration, proposing ontology enabled development based on an analysis of existing ontologies of aspect oriented programming, a proposed ontology of agile methods, and a derived ontology of agile aspect oriented development

    Supporting the migration towards model-driven robotic systems

    Get PDF
    Robots are increasingly deployed to perform every-day tasks. It is crucial to implement reliable and reusable systems to reduce development effort. The complexity of robotic systems requires the collaboration of experts from different backgrounds. Therefore, clear and communicatable abstraction of components is essential for successful development process. There has been a demand in the community for increased adoption of software engineering approaches to support better robotic systems. Adopting model-driven approaches has been proved successful in supporting this movement. We aim to support the adaptation of model-driven approaches in robotic domain in three interest areas: behavior models, structural models and guaranteeing confidence in system behavior.The overall goal is to support the creation of reusable, verifiable and easy to communicate robotic missions and systems. To achieve that, we conducted a mix of knowledge-seeking and solution-seeking studies. We started with behavior models. We wanted to build knowledge about used behavior models in practice. We investigated the state-of-practice of an emerging behavior model, behavior trees, in comparison to two standardized UML models and a traditional roboticists choice. Moving to the second interest area, we wanted to support the creation of light-weight tools for building an understanding of system structure using feature models. We conducted a pilot evaluation of an already light-weight tool, called FeatureVista. The final interest area was guaranteeing confidence in system behavior. The usual engineering process of self-adaptive controllers in robotic involves different model-based approaches. We wanted to investigate an approach that reaffirm, at code-level, control properties while keeping the usual engineering process. We investigated an approach for mapping control properties to software ones using an appropriate input format for software model-based checking.Our investigations in the different interest areas have built knowledge and shed light on opportunities. We provided characteristics of behavior models, behavior trees and state machines, in popular robotic implementations and highlighted opportunities for improvements. We also provided usage trend for studied implementations in open-source projects. In addition, we provided corestructural characteristic and code-reuse patterns for studied behavior models in open-source projects. For feature models, our results showed promising results for using an interactive tool that provides an easy and initiative navigation between feature models and software components. Improvement aspects were also highlighted for developing similar tools. Finally, our work for the confidence of system behavior showed promising results in reaffirming the correctness of a control property at code-level using appropriate software notation, specification patterns. Also, our approach allowed keeping the current practices of using model-based approaches in self-adaptive robotic systems

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    A Quality Model for Actionable Analytics in Rapid Software Development

    Get PDF
    Background: Accessing relevant data on the product, process, and usage perspectives of software as well as integrating and analyzing such data is crucial for getting reliable and timely actionable insights aimed at continuously managing software quality in Rapid Software Development (RSD). In this context, several software analytics tools have been developed in recent years. However, there is a lack of explainable software analytics that software practitioners trust. Aims: We aimed at creating a quality model (called Q-Rapids quality model) for actionable analytics in RSD, implementing it, and evaluating its understandability and relevance. Method: We performed workshops at four companies in order to determine relevant metrics as well as product and process factors. We also elicited how these metrics and factors are used and interpreted by practitioners when making decisions in RSD. We specified the Q-Rapids quality model by comparing and integrating the results of the four workshops. Then we implemented the Q-Rapids tool to support the usage of the Q-Rapids quality model as well as the gathering, integration, and analysis of the required data. Afterwards we installed the Q-Rapids tool in the four companies and performed semi-structured interviews with eight product owners to evaluate the understandability and relevance of the Q-Rapids quality model. Results: The participants of the evaluation perceived the metrics as well as the product and process factors of the Q-Rapids quality model as understandable. Also, they considered the Q-Rapids quality model relevant for identifying product and process deficiencies (e.g., blocking code situations). Conclusions: By means of heterogeneous data sources, the Q-Rapids quality model enables detecting problems that take more time to find manually and adds transparency among the perspectives of system, process, and usage.Comment: This is an Author's Accepted Manuscript of a paper to be published by IEEE in the 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA) 2018. The final authenticated version will be available onlin

    Principles for aerospace manufacturing engineering in integrated new product introduction

    Get PDF
    This article investigates the value-adding practices of Manufacturing Engineering for integrated New Product Introduction. A model representing how current practices align to support lean integration in Manufacturing Engineering has been defined. The results are used to identify a novel set of guiding principles for integrated Manufacturing Engineering. These are as follows: (1) use a data-driven process, (2) build from core capabilities, (3) develop the standard, (4) deliver through responsive processes and (5) align cross-functional and customer requirements. The investigation used a mixed-method approach. This comprises case studies to identify current practice and a survey to understand implementation in a sample of component development projects within a major aerospace manufacturer. The research contribution is an illustration of aerospace Manufacturing Engineering practices for New Product Introduction. The conclusions will be used to indicate new priorities for New Product Introduction and the cross-functional interactions to support flawless and innovative New Product Introduction. The final principles have been validated through a series of consultations with experts in the sponsoring company to ensure that correct and relevant content has been defined

    XRound : A reversible template language and its application in model-based security analysis

    Get PDF
    Successful analysis of the models used in Model-Driven Development requires the ability to synthesise the results of analysis and automatically integrate these results with the models themselves. This paper presents a reversible template language called XRound which supports round-trip transformations between models and the logic used to encode system properties. A template processor that supports the language is described, and the use of the template language is illustrated by its application in an analysis workbench, designed to support analysis of security properties of UML and MOF-based models. As a result of using reversible templates, it is possible to seamlessly and automatically integrate the results of a security analysis with a model. (C) 2008 Elsevier B.V. All rights reserved
    corecore