
IEEE copyright notice (© 2018 IEEE): This is an Author’s Accepted Manuscript consisting of a post-peer-review, pre-copyedit version of a paper to be published by IEEE in the

44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA) 2018. The final authenticated version will be available online.

A Quality Model for Actionable Analytics in Rapid

Software Development
Silverio Martínez-Fernández, Andreas Jedlitschka, Liliana Guzmán, Anna Maria Vollmer

Fraunhofer IESE

Kaiserslautern, Germany

{Silverio.Martinez, Andreas.Jedlitschka, Liliana.Guzman, Anna-Maria.Vollmer}@iese.fraunhofer.de

Abstract— Background: Accessing relevant data on the

product, process, and usage perspectives of software as well as

integrating and analyzing such data is crucial for getting

reliable and timely actionable insights aimed at continuously

managing software quality in Rapid Software Development

(RSD). In this context, several software analytics tools have been

developed in recent years. However, there is a lack of

explainable software analytics that software practitioners trust.

Aims: We aimed at creating a quality model (called Q-Rapids

quality model) for actionable analytics in RSD, implementing it,

and evaluating its understandability and relevance. Method:

We performed workshops at four companies in order to

determine relevant metrics as well as product and process

factors. We also elicited how these metrics and factors are used

and interpreted by practitioners when making decisions in RSD.

We specified the Q-Rapids quality model by comparing and

integrating the results of the four workshops. Then we

implemented the Q-Rapids tool to support the usage of the Q-

Rapids quality model as well as the gathering, integration, and

analysis of the required data. Afterwards we installed the Q-

Rapids tool in the four companies and performed semi-

structured interviews with eight product owners to evaluate the

understandability and relevance of the Q-Rapids quality model.

Results: The participants of the evaluation perceived the

metrics as well as the product and process factors of the Q-

Rapids quality model as understandable. Also, they considered

the Q-Rapids quality model relevant for identifying product and

process deficiencies (e.g., blocking code situations).

Conclusions: By means of heterogeneous data sources, the Q-

Rapids quality model enables detecting problems that take more

time to find manually and adds transparency among the

perspectives of system, process, and usage.

Keywords—quality model, software quality, software

analytics, rapid software development, Q-Rapids, H2020, agile

I. INTRODUCTION

A recent report by Capgemini states that the average
spending on quality management and testing in IT companies
grew from 18% in 2012 to 35% in 2015, that and this
proportion of the budget is estimated to increase to 40% by
2018 [1]. Companies want to avoid discovering a software
quality problem when it is already too late or too expensive to
fix it. Quality management is even more crucial in each cycle
of Rapid Software Development (RSD), as it allows making
preventive strategic decisions (e.g., prioritization of a product
backlog). RSD refers to the organizational capability to
develop, release, and learn from software in rapid cycles [2].

Software analytics is a recent approach for improving
software quality, development productivity, and user
experience [3]. It utilizes data-driven approaches to obtain
insightful and actionable information to help software
practitioners with their data-related tasks [4]. As of March
2018, a significant increase in the popularity of software
analytics has been noted [5]. Examples of commercial tools
include Microsoft Azure Application Insights, Codacy,
Seerene, and Revulytics. Regarding academic tools, examples
are SQUALE [6], QuASE [7], CodeFeedr [8], and the Q-
Rapids tool [9] (novel in generating data-driven quality
requirements from both runtime and design-time data [10]).
However, as argued by Dam et al.: “One of the key reasons is
that software practitioners are reluctant to trust predictions
produced by the analytics machinery without understanding
the rationale for those predictions” [11].

Our software analytics research is part of the Q-Rapids
European H2020 research project about managing quality
during rapid software development. The goal of our work is
to provide explainable software analytics so that decision
makers will trust our information when it comes to identifying
quality deficiencies, planning countermeasures, and
determining quality requirements in the context of RSD. For
this reason, we have created a quality model – hereafter
referred to as the Q-Rapids quality model – based on the
quality needs elicited during workshops with practitioners in
four companies. Asking practitioners is a more time-
consuming process than only collecting and analyzing data, as
most of the existing software analytics tools do. In return,
however, it improves the understandability of the quality
model and fosters the resolution of essential problems as
understood by practitioners.

Other features of the Q-Rapids quality model are the
integration of heterogeneous data sources, the aggregation and
interpretation of raw data, and the selection of relevant and
business-oriented metrics. First, the quality model integrates
and analyzes heterogeneous data sources during development
and at runtime. This makes it possible to increase the
stakeholders’ awareness of the holistic quality of software,
process, and usage. For instance, developers usually have a
limited view of software quality, lacking updated information
from runtime sources (i.e., system behavior and end user
feedback). Not measuring software quality in a holistic
manner leads to software quality issues being communicated
subjectively to other stakeholders. Second, the quality model
aggregates the collected raw data in order to provide an
assessed quality overview that focuses only on general quality
aspects. When a quality aspect is at risk, the model enables the

This work has been supported by the Q-Rapids H2020 European project (no. 732253), and the ERCIM Fellowship programme.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/SEAA.2018.00067

generation of quality alerts (i.e., the interpretation that a
quality aspect does not have the desired value). In the case of
a quality alert, the stakeholders can inspect the details of the
raw data and look for actionable analytics. Third, by focusing
on organization-specific indicators, only relevant metrics are
highlighted so that the stakeholders know where to look for
software quality issues objectively in a goal-oriented way (i.e.,
not wasting time by looking at irrelevant aspects).

The Q-Rapids quality model is deployed in the four
industrial use cases of the Q-Rapids project. Its
implementation and deployment provide the whole quality
model in a single place, instead of spreading it across a variety
of tools. Additionally, we performed an evaluation with eight
practitioners based on real data from four use cases.

This paper is structured as follows. Section II presents a
brief background on quality modeling. Section III introduces
the research question and the research methodology applied.
Section IV defines the Q-Rapids quality model and how it is
executed and used. Section V explains how the quality model
has been implemented in the Q-Rapids tool. Section VI
reports the evaluation results from using the quality model in
the four use cases. Finally, Section VII reports the conclusions
and presents an outlook on future work.

II. BACKGROUND

There exists a multitude of software-related quality
models that are used in practice, as well as many classification
schemes [12]–[14]. One example is the ISO/IEC 25010
standard [15], which determines which quality aspects to take
into account when evaluating the properties of a software
product. A more recent example is the Quamoco quality
model [16], which integrates abstract quality aspects and
concrete quality measurements. To do so, abstract quality
aspects are broken down into product factors (attributes of
parts of the product that are concrete enough to be measured),
assessed metrics (concrete descriptions of how specific
product factors should be quantified and interpreted for a
specific context), and raw data (i.e., the data as it comes from
the different data sources, without any modifications); see Fig.
1 for an example. Nowadays, operationalized quality models
offering actionable analytics for multiple purposes (system,
process, and usage) are still a challenge.

To capture essential problems and provide a measurement
program, GQM offers an approach for goal-oriented
measurement [17]. Starting from the goals, questions are
derived. By answering these questions, respective metrics are
defined for quantifying the goals. Thus, GQM provides a way
to define metrics and interpret them. This allows
demonstrating how to make quality aspects measurable and
where to get the data. In addition, GQM+Strategies™ aligns
an organization’s goals and strategies across different units
through measurement [18]. Besides a clear understanding of
what the goals of the organization are, the use of
GQM+Strategies™ facilitates communication between
different units by creating a common understanding. It helps
to show the developers their contribution to the higher-level
key performance indicators. In our work, the use of
GQM+Strategies™ allowed identifying essential business

problems and relating them to the quality of product, process,
and usage.

III. RESEARCH METHODOLOGY

A. Research Questions

We aimed at creating the Q-Rapids quality model for
actionable analytics in the context of RSD. In view of this, we
defined the following research question: Which product and
process factors are relevant for providing actionable
analytics in RSD?

B. Context

The creation and evolution of the Q-Rapids quality model
is driven by four use cases defined in collaboration with
Nokia, Bittium, Softeam, and ITTI [2]. The use cases were
selected to show the generalizability of Q-Rapids. A use case
here refers to a software system developed in an RSD process
in which the Q-Rapids quality model is being used to provide
product owners with actionable analytics. The use cases cover
the quality management of single and multiple product lines
for several application domains such as telecommunication,
security, military, transport, health, and public administration.

C. Methodology

1) Specification of Use Cases: To specify the use cases,
we asked the representative of each company to present the
company setting (i.e., size, products, and type of projects) as
well as the project setting (i.e., application domain, project
goals, project organization, development methodology,
functional requirements, quality requirements, and current
quality issues). We also asked each representative to explain
their expectations on actionable analytics. Each presentation
was prepared following a predefined template designed by
researchers of Fraunhofer IESE. This template was intended
to gather the required information at a similar level of detail
across the four companies. The presentations lasted an
average of 60 minutes (Min = 45, Max = 65). At least two
researchers documented the gathered information.

We also carried out semi-structured interviews with team
members of each selected project. In total, we conducted ten
interviews. The goal of the interviews was to resolve open
issues and get detailed information regarding the project’s
products, processes, methodologies, and data sources. After
documenting each use case, each representative revised the
corresponding specification.

2) Quality Workshops: We performed one quality
workshop per company aimed at eliciting: (i) the needs of
managers and product owners regarding actionable analytics;
(ii) relevant product and process factors as well as their
metrics; and (iii) how product and process factors are used and
interpreted to make decisions. The results were documented
as a company-specific quality model.

Each workshop lasted eight hours and included up to ten
team members of the corresponding project. Two researchers
of Fraunhofer IESE moderated each workshop based on a
standardized guideline combining the approaches presented in

Section II. First, we briefly introduced quality modeling and
explained GQM+Strategies™ and ISO/IEC 25010. Second,
we asked each participant to work individually and specify
goals related to product and process factors using the GQM
goal template. Then each participant explained the specified
product and process factors and (if appropriate) mapped each
one to ISO/IEC 25010. Third, we asked the participants to
work in small groups to derive measurement goals (including
metrics) from a subset of the specified product and process
factors. The results were documented and discussed with all
participants using the GQM abstraction sheet. Fourth, we
asked each group to specify operational quality gates for each
GQM abstraction sheet. An operational quality gate includes:
(i) the questions to be answered in the corresponding GQM
goal template; (ii) an example of the visualization of the
metrics required for providing an answer as well as its
interpretation; and, (iii) the necessary data sources. The group
results were discussed with all participants. Finally, we
summarized the workshop results.

3) Consolidation of the Quality Model: Based on the
workshops results, we specified practitioner-relevant user
stories. Moreover, we created the Q-Rapids quality model by
comparing, relating, and integrating the company-specific
quality models. Thus, we identified commonalities and
variabilities regarding relevant product and process factors as
well as metrics among the four companies. We also checked
these factors and metrics regarding their feasibility for being
measured automatically. Then we presented the Q-Rapids
quality model in two face-to-face meetings to a subset of the
participants who had attended the quality workshops. These
meetings were intended to get further feedback and improve
the Q-Rapids quality model. Although more metrics had been
identified in the workshops, the Q-Rapids quality model
includes an initial list that was applied in the four companies.

We elicited and implemented the Q-Rapids quality model
between December 2016 and December 2017. In total, 20
practitioners working in RSD attended the quality workshops
and were involved in the review of the company-specific
quality models, and eight participants attended the face-to-
face workshops to provide feedback on the Q-Rapids quality
model. The Q-Rapids tool includes the implementation of the
Q-Rapids quality model as well as the gathering, integration,
and analysis of the required data.

IV. Q-RAPIDS QUALITY MODEL

In this section, we will describe the elements of the Q-
Rapids quality model and explain how to use it for quality
assessment and actionable analytics.

A. Elements of the Q-Rapids Quality Model

Table I shows all the elements of the Q-Rapids quality
model: quality aspects, product and process factors, assessed
metrics, and raw data. Next, we will further explain several
product and process factors for the maintainability, reliability,
functional suitability, and productivity quality aspects. The
first three quality aspects are from ISO 25010 and refer to the
quality of the software system. The fourth quality aspect refers
to the productivity of the software development process.

1) Code quality (product factor): Developers, code
guardians, and integrators want to gather data about the
impact of code changes on code quality, so that they can
manage maintainability resources. Metrics for code quality,
such as complexity, comment density, and duplication
density, come from static code analysis (e.g., SonarQube).
Code quality is actionable when the product owner decides to
invest a cycle into maintainability and understandability.

2) Blocking code (product factor): Developers, code
guardians, and integrators want to gather data about code
changes, so that they can identify new quality issues and
blocking code. Metrics about the fulfilment/violation of
quality rules and technical debt indices come from static code
analysis (e.g., SonarQube). To identify risky files, these
metrics should be combined with commit information from
repositories (e.g., SVN, git, GitLab), such as number of lines
of code modified, and how many times a file or a set of files
has been jointly modified. Action points for blocking code
include resolving blocker quality rule violations or
refactoring highly changed files (e.g., God objects or
configuration files).

3) Testing status (product factor): Test managers,
quality assessors, and integrators want to gather data about
the quality and stability level of testing, so that tests
meaningful on the one hand and not skipped on the other
hand. Example metrics for testing and integration are test
coverage from static code analysis (e.g., SonarQube) and the
results and the duration of tests performed by continuous
integration tools (e.g., Jenkins). It is also important to
differentiate between defects discovered during development
validation and at runtime (e.g., from end users’ complaints).
Action points for testing status include improving tests that
do not detect critical bugs during development, or improving
the performance of the test pipeline.

4) Software stability (product factor): Product directors
and quality managers want to gather data about the most
critical issues at runtime, so that they can maintain efficient
service capability/quality/prioritization. Metrics for crashes
at runtime (e.g., type of error, mean time between failures)
can be gathered from logs and network monitoring tools (e.g.,
Kibana, Zabbios, Nagios). It is important to indicate in the
issue tracking tools which bugs are discovered at runtime.
This way, statistics over time and across users can be shown,
and testing effectiveness can be measured. Actionable
analytics for software stability include the urgent generation
of alerts when a fault has occurred.

5) Software usage (product factor): Product directors
and product owners want to gather data about the product
usage (e.g., total time spent on functionalities, and
functionalities used most/least), so that it makes completely
clear how heavily each feature is used by customers and in
which order the features should be prioritized for inclusion.
Metrics for the statistics of product usage, such as the number
of times a feature is used, may come from log file analysis or
from a customized plugin to be embedded in the product. An
example of an action point for software usage is the removal
of features that are not used in the software product.

6) Issues’ velocity (process factor): Product owners and
project managers want to gather data about content delivered
at feature build compared to planned content on exit, so that
they can see the planning capability and accuracy of the team.
Relevant metrics for the accuracy of planning tasks are the
estimated time and the actually invested time for a task from
issue tracking tools (e.g., Redmine, GitLab, JIRA, Mantis).
From the same data sources, metrics for the productivity of
closing tickets for tasks and issues such as starting and ending
date can be gathered. It is important to combine this
information with commit information to aggregate data about
the effort invested in code changes. For this, it is crucial that
developers indicate the id of the task or issue in the commit
description (e.g., git). Actionable analytics for issues’
velocity require updates for the process, such as learning from
inaccurate planning or estimation, in order to better plan the
next cycles, or specifying how to use the issue tracking
system.

B. Execution of the Quality Model Assessment

Decision makers want to easily aggregate raw data from
heterogeneous data sources into product and process factors
as well as quality aspects. For instance, as can be seen in Table
I, reliability is computed based on data from continuous
integration systems, tests, issue tracking systems, logs, and
network monitoring tools.

The assessment of the Q-Rapids quality model follows the
Quamoco bottom-up approach shown in Fig. 1. Quality
aspects are calculated based on product and process factors.
Both product and process factors are calculated based on the
assessed metrics. These are calculated from raw data, which
may come from heterogeneous data sources.

The example presented in Fig. 1 illustrates how to
compute the quality aspect maintainability according to its
definition in Table I. This is done in the following six steps.

TABLE I. Q-RAPIDS QUALITY MODEL

QAa Factor c Assessed Metric
c

Description
Raw Data Data Source

M
ai

n
ta

in
ab

il
it

y
 Code

Quality

Non-complex files b
Files below the threshold of cyclomatic

complexity (10 by default)

Cyclomatic complexity per function of each

file, total number of files
SonarQube

Commented files b
Files whose comment density is outside the

defined thresholds (by default 10%-30%)

Density of comment lines and lines of code

per each file
SonarQube

Absence of
duplications b

Files below the threshold of duplicated
lines percentage

Duplicated lines and lines of code per file SonarQube

Blocking

Code

Fulfillment of

critical/blocker
quality rules b

Files without critical or blocker quality rule

violations

Number of quality rule violations per file and

their severity (blocker, critical, major, minor,
info) and type (code smell, bug, vulnerability)

SonarQube,

Coverity,
CodeSonar

Highly changed files
Unstable files that have been highly

changed in the last commits

For each commit: files changed, lines of code

added/modified/deleted, author, and revision
SVN, git, Gerrit

R
el

ia
b

il
it

y

Testing

Status

Passed tests b Unit test success density
Number of unit test errors, failures, skipped,

and total
Jenkins, GitLab

Fast test builds b Test builds below the duration threshold
Duration of unit test execution, tests

conforming to a pipeline
Jenkins, GitLab

Test coverage Tests with appropriate coverage
Condition coverage and line coverage per

unit test

Jenkins (JaCoCo

plugin),

SonarQube

Software
Stability

Non-bug density b
Ratio of open issues of the type bug with

respect to the total number of issues within

a customized timeframe

Total number of issues (a.k.a. tasks) per

status (e.g., open, done), type (e.g., bug,

maintenance, feature), and timeframe (e.g.,
current/last month or current/last sprint)

Jira, GitLab,
Redmine,

Mantis

Errors at runtime
Occurrence of critical errors at runtime at

the end user site

All tracks of logs, including type of error

(fatal, error, warning, info, debug, trace), file

and line where it occurred, and error message

Logs

Availability uptime
Percentage of time that the product is

accessible

Timestamp at which the system is not

available and derived metrics, e.g.,

availability uptime, mean time between
failures

Zabbix, Nagios

F
u

n
ct

io
n

al

S
u

it
ab

il
it

y

Software
Usage

Feature usage
Appropriateness of the features included in
the software product regarding their usage

For each functionality (or feature): number of

times used, average usage time, customer

feedback on the feature (if available)

Logs,

monitoring

plugin

P
ro

d
u

ct
iv

it
y

Issues’

Velocity

Resolved issues

assigned to a date

Resolved issues assigned to a date (simple

date, iteration, or release)

For each issue (a.k.a. task): time created,

status, time updated, iteration(s), release(s).

Jira, GitLab,
Redmine,

Mantis

Issues completely

specified b

Density of incomplete issues within a

timeframe

Fields of each issue (e.g., description, due

date, assignee, estimated time)

Jira, GitLab,

Redmine,

Mantis

a. QA (Quality Aspect). b. The assessed metrics marked with ‘b’ were implemented in the quality model and evaluated in January 2018 (see Section VI). The other identified assessed metrics from the workshops have

not been implemented yet. c. Each assessed metric can be classified into more than one product or process factor. In the same way, each product and process factor can be classified into more than one QA.

Fig. 1. Example of utility functions for assessing the “maintainability” quality aspect (adapted from Quamoco).

 First, we gather information from the static code analysis
executed by SonarQube data source. Second, we identify the
basic metrics contained in the raw data, namely: M1, M2, M3,
M4. Third, we need to interpret the raw data. The
interpretation of raw data is performed with a utility function,
which interprets the raw data value by using the preferences
and judgments of experts and/or learned data (e.g., machine
learning). Therefore, utility functions model the preferences of
decision makers with respect to the data. The output of the
interpretation of a basic metric is a value between 0 and 1, with
0 being the worst value and 1 the best value regarding quality.
In the example in Fig. 1, we can see the utility functions U1
and U2 for comment density (M1) and average cyclomatic
complexity per function (M3/M4) as basic metrics of raw data.
For instance, the ideal raw value of cyclomatic complexity is
0, which is mapped to 1 (best). When the cyclomatic
complexity has a value of 6, it is mapped to the interpreted or
assessed utility value 0.4. Another example: when the
cyclomatic complexity is equal to or greater than 10, the
assessed value is 0. Fourth, the assessed metrics are computed
using the raw data interpretation from the previous step. In the
example, we can see that the assessed metric non-complex files
is calculated after analyzing the cyclomatic complexity of all
the functions of the source code by applying the utility
function U2 in all files (f sub-index). Fifth, the assessed metrics
are aggregated into product or process factors (such as code
quality) depending on their weight. The weight is determined
either by experts and/or learned data. The weight qualifies the
relative importance of the assessed metric for the product and
process factor. Sixth, product and process factors are
aggregated into quality aspects (such as maintainability) in the
same way as in the previous step.

C. Using the Quality Model: Quality Alerts

As shown in Fig. 1, the three most abstract levels (quality
aspects, product and process factors, and assessed metrics)
work as “traffic lights”, with a normalized value between 0
and 1 and customized thresholds. Hence, the users of the Q-
Rapids quality model can customize at which point quality
alerts should be raised. Below, we give an example of how to
use our quality model with respect to the maintainability
quality aspect:

A company has to improve maintainability for one of their
high-quality products. In the quality model, the quality aspect
maintainability is composed of two product factors: code
quality and blocking code. In this company, Bob, a quality
manager, decides to use the Q-Rapids tool to manage
maintainability problems. He installs the tool and the quality
model does not raise any alert. However, at the beginning of
the next cycle, Bob receives an alert because the
maintainability bell is ringing. He sees in the tool that the
maintainability traffic light has moved from green to orange.
He calls for a meeting with Jane, a senior developer. Together,
they go deeper into the quality model to analyze the situation
in depth. Although code quality is green, blocking code
appears as red. They further explore the assessed metrics and
raw data of highly changed files and fulfillment of
critical/blocker quality rules. For evaluation purposes (see
Section VI), we trained the users to only use the three most
abstract levels. However, if trained to visualize the collected
raw data, they could identify that in the last cycle, the classes
of a directory were changed many times by a single developer.
Moreover, these classes contained five violations of blocker
quality rules about code smells. Raw data visualization offers
actionable analytics to refactor the classes of the problematic
directory, clearly indicating which classes have been heavily
modified and an explanation of the violated quality rules. They

A
 B

o
tto

m
-U

p
 A

p
p

ro
a

c
h

11

Utility function 2

U2(M3/M4) = 0.4

Maintainability

Blocking CodeCode Quality

AM2: Non-complex
files

AM1: Commented
files

w = 0.41 w = 0.59

Static Sw. Code
Analysis from

SonarQube

Utility function 1

U1(M1) = 0.5

Value = 0.26

M3: Cyclomatic
complexity of a file

M2: Total number
of files

Absence of
duplications

10.0

1 .0

0 .0

U
ti
li
ty

U
2

0.0 20.0

v eto

0.4

6.0

Avg. cyclomatic complexity per function

1.0

0.0
1.0

U
ti
lit

y

Comments density

0.0 3.02.0

0.5 M4: Number of
functions of a file

M1: Density of
comments of a file

w = 0.19 w = 0.46 w = 0.35

Assessed
Metric

Quality
Aspect

Data Source

Product/
Process

Factor

Legend

Raw Data

U
1

M1 M3/M4

…

could take action by adding a new issue to the backlog so that
the author can solve these problems and not accumulate
technical debt. As an example, see Fig. 2, where the violations
of blocker quality rules are highlighted at the bottom right. In
Section VI.E, we will present the improved training so that the
quality model will also offer actionable analytics.

Fig. 2. Example of raw data visualization and actions for maintainability.

V. IMPLEMENTATION OF THE QUALITY MODEL

This section explains how the Q-Rapids quality model has
been implemented within the Q-Rapids tool [9]. Fig. 3 shows
a high-level architecture view depicting the modules of the Q-
Rapids tool and the data flow. It employs the idea of the
Lambda architecture approach used for Big Data solutions
[19]. We report below the red part of Fig. 3, composing the
four layers related to the Q-Rapids quality model. For further
details, the reader is referred to [9].

Fig. 3. Adjusted Lambda Architecture for the Q-Rapids quality model.

First, the data producers layer consists of external
heterogeneous data sources with information about software
quality. Currently, the Q-Rapids tool supports data gathering
from static code analysis, tests executed during development,
code repositories, and issue tracking tools.

Second, the data ingestion layer consists of several Apache
Kafka connectors to gather data from data producers. These
connectors query the API of data producers to ingest the data
into Kafka. Apache Kafka is a Big Data technology serving as
the primary ingestion layer and messaging platform, and
offering scalability via cluster capabilities.

Third, the distributed data sink layer is used for data
storage, indexing, and analysis purposes. Both the raw data
(i.e., data collected from different RSD cycles) and the quality
model assessment (i.e., the aggregations) are stored in a search

engine called Elasticsearch. This allows defining four types of
indices: three for the most abstract elements of the quality
model (quality aspects, product and process factors, and
metrics), and the fourth for the raw data. Like Apache Kafka,
Elasticsearch offers scalability via cluster capabilities, which
is required when storing huge amounts of data. Besides, we
have selected the Elastic stack due to its capability to quickly
perform aggregations, which becomes fundamental for the
different levels of the quality model.

Fourth, the data analysis and processing layer performs the
quality model assessment (see Fig. 1). The execution of the
quality model assessment is performed by querying the
distributed data sink and applying the utility functions in
properties files to interpret the raw data. This is highly
customizable for the needs of each use case. For instance, the
Q-Rapids tool users can set up the quality model (utility
functions, weight of product factors, and so on), and the
frequency in which the quality model assessment is executed
(e.g., daily, hourly). When the upper levels do not fulfill the
thresholds, quality alerts are raised. Quality alerts offer
actionable analytics, including raw data visualization, to help
decision makers (see Fig. 2).

VI. EVALUATION

A. Evaluation Goals and Methodology

We aimed at characterizing the understandability and
relevance of the Q-Rapids quality model from the perspective
of product owners and at identifying need for improvement.
We defined three evaluation questions:

Q1. Understandability of the quality model – To what
extent is the Q-Rapids quality model understandable
for product owners?

Q2. Relevance of the quality model – To what extent do
product owners believe the Q-Rapids quality model
is relevant?

Q3. Need for improvement – What needs to be improved
to increase the understandability and relevance of the
Q-Rapids quality model?

We had two main constraints regarding the design of the
evaluation of the Q-Rapids quality model: (i) The context was
predefined, namely the four use cases selected by the
companies working in the Q-Rapids project; and (ii) the
availability of practitioners for participation in the first
evaluation was low (up to two hours per person). Thus, we
performed individual semi-structured interviews with eight
participants: First, we explained the study goals and
procedure. Second, we trained the participant in the Q-Rapids
quality model by explaining its implemented elements (see
Section IV) and in the Q-Rapids tool functionalities. Third, the
participant used the Q-Rapids tool to explore the Q-Rapids
quality model and the underlying project data. We encouraged
the participant to think aloud and mention positive aspects as
well as suggestions for improvement of the Q-Rapids quality
model. Fourth, we collected further feedback regarding the
understandability and relevance of the Q-Rapids quality
model by using a questionnaire.

Data Ingestion

Analyst
Decision
Maker

Data Producers
(Bulk+Streaming)

Dashboard

Q-Rapids Tool

Distributed Data Sink

Data Analysis and
Processing

QR-Eval

Elasticsearch

Data Gathering and
Analysis

Kafka Cluster

Strategic
Decision Making

Connector

Connector

Connector

We operationalized the understandability and relevance of the
Q-Rapids quality model based on the definitions and questions
introduced in [20] and [21], respectively. Each Likert scale
included up to four statements to be rated using a response
scale from 1: strongly disagree to 5: strongly agree and an
additional “I don’t know” option. We instantiated the selected
questions according to the purpose and content of the Q-
Rapids quality model. At the time of the evaluation, the Q-
Rapids quality model provided product owners with support
for identifying product and process deficiencies.

B. Execution

In December 2017, we installed the Q-Rapids tool in each
company. We gathered product and process data in each
company for at least two weeks. Then we evaluated the Q-
Rapids quality model in January 2018 following the
procedures described above.

C. Data Analysis

We first carried out within-case analyses of the
quantitative and qualitative data for each company. Then we
compared, correlated, and integrated the results among the
companies (cross-case analyses) [22].

We report descriptive statistics including the sample size
(N), median (Mdn), minimum (Min), maximum (Max), and
modal value (Mode) for the quantitative analyses. Regarding
the qualitative analysis, we used data-driven thematic analysis
[23] to analyze the participants’ feedback on the Q-Rapids
quality model. We inductively derived themes (i.e., we
explicitly mentioned suggestions for improvement) by coding
and interpreting all observation protocols.

D. Results

In total, three product owners, four project managers, and
one developer across the four companies participated in the
evaluation. They all had at least three years of work
experience in their companies (Mdn = 10.5, Min = 3, Max =
30) and at least half a year of work experience in their current
role (Mdn = 7, Min = 0.5, Max = 30).

The majority of the participants claimed that the assessed
metrics included in the implemented Q-Rapids quality model
are understandable (N = 7, Mdn = 4, Min = 2, Max = 5, Mode
= 4). One participant pointed out: “I need more clarification
and details” to understand the assessed metrics. S/he and other
participants suggested adding the actual values of the metrics
(i.e., raw values before normalization via utility functions). In
general, most of the participants had difficulties understanding
the normalized values, as stated by one participant: “I don’t
understand […] what it means. I know 1 is good and 0 is bad,
but what about when it is 0.91?” Moreover, they perceived the
understandability of the product and process factors as
moderately understandable (N = 7, Mdn = 3, Min = 2, Max =
5, Mode = 2.5). In general, the participants proposed avoiding
negated formulations of the factors or metrics in order to
increase their understandability; for instance, using complex
files instead of non-complex files.

All participants agreed that the current Q-Rapids quality
model is relevant for their work (N = 7, Mdn = 4, Min = 3,

Max = 4.5, Mode = 4). They recommended linking the
provided information about the product and process factors as
well as the assessed metrics with further information sources
(e.g., issue reports) in order to better support the decision-
making process. The participants agreed that integrating
several heterogeneous data sources is an added value for
supporting actionable analytics in their companies.

E. Implications of the Results: Ongoing Work

One of the most important suggestions for improvement
was to visualize raw data to facilitate decision-making. As
explained in Fig. 1, the three most abstract levels (i.e., quality
aspects, product factors, and assessed metrics) work as “traffic
lights”, with a normalized value between 0 and 1 and
customized thresholds. Bearing in mind the evaluation results,
we plan to train stakeholders to explore the raw data in Kibana
so they can look for the problem and make a decision when a
quality alert is raised. Below, we provide another example on
how to use our quality model with respect to the reliability
quality aspect including actionable analytics:

At the end of the last cycle, a new release of the product
was launched. Unfortunately, during the current cycle the
traffic light for reliability suddenly turned red and an alarm
was triggered. The Q-Rapids quality model showed Bob
orange for testing status and red for software stability. He
called an immediate meeting with Jane. Together, they
recognized that the problem was related to errors at runtime.
Jane further explored the raw data from the logs and noticed
many critical errors (e.g., 5xx errors) caused by one module.
Therefore, immediate action was required to solve the crashes
and exceptions identified at the client side. Using further drill-
down, Jane was able to identify the exact line of code
responsible for the mess and informed her team to work on the
issue. Going further, Jane realized that the test coverage of this
module was worse than average. Therefore, the product owner
was able to identify it and include it in the product backlog
with lower priority. The errors at runtime metric was
recovered within one hour, whereas the test coverage got a
stable desired value a few days later.

F. Threats to validity

We developed and evaluated the Q-Rapids quality model
drawing on a convenient sample of product owners and
managers (Sample Bias). Thus, our results are tied to the
context of the elicited use cases and the companies involved
in the Q-Rapids project. To mitigate the risk of social
desirability, we informed all participants that this evaluation
was being performed at an early stage of the Q-Rapids project
to get early feedback on the Q-Rapids quality model and
support the development of the Q-Rapids tool. Moreover, the
evaluation included only one treatment – the Q-Rapids quality
model – (Mono-Operation Bias). Therefore, the results can
only be interpreted as an indication of the understandability
and relevance of the Q-Rapids quality model. The Q-Rapids
quality model might serve as a basis for supporting actionable
analytics in companies developing their RSD projects in a
similar setting. Further evaluations in different company
settings, including a larger sample of decision makers and

alternative treatments, are required in order to generalize the
results to other organizations applying RSD.

VII. CONCLUSIONS AND FUTURE WORK

There is a need for making software development
decisions and their rationale available to all project members.
If tacit knowledge is replaced by a tangible quality model, it is
possible to raise quality alerts on a real-time basis based on the
measurement and analysis of software quality, development
productivity, and software usage. These quality alerts enable
actionable analytics. These actions can be added to the product
backlog of the next RSD cycle and, hence, increase the
transparency of decision-making [10].

In this paper, we presented three main contributions: (i) a
quality model combining heterogeneous data sources, elicited
systematically together with practitioners (c.f. Table I); (ii) the
implementation of the quality model based on Big Data
technologies, including frameworks for collecting and
analyzing data. Other organizations can use the implemented
quality model to gather and analyze information automatically
and manage software quality in each RSD cycle. The proposed
solution will be released in 2019 on our website: http://q-
rapids.eu/. (iii) The preliminary evaluation of the quality
model indicates that the assessed metrics and the implemented
factors are understandable. Yet, their understandability can be
further improved, e.g., by additionally providing the actual
values without normalizations. All participants assessed the
quality model as relevant for their work and as supporting
actionable analytics within their companies.

Despite the diverse contexts across the four companies we
worked with, we observed an overlap regarding the available
data and quality issues to be addressed when managing
software quality. We conclude that it is possible to create a
tailorable quality model for managing software quality in
different RSD settings. Such a quality model has to be adapted
to the company and to the project-specific context. Moreover,
some interviewees in our study believe that the quality model
introduced in Table I could be used as a benchmark for
comparing the quality of competing software systems in a
shared domain.

Future work will target several directions, mainly related
to learning data in order to add new elements to the quality
model, improving utility functions, identifying correlations,
further customizing weights, as well as exploiting parallelism
with Big Data analysis technologies.

ACKNOWLEDGMENTS

This work has received support from the European
Union’s Horizon 2020 program under grant n° 732253. We
thank all members of Bittium, ITTI, Nokia, and Softeam who
participated in the workshops for creating and evaluating the
Q-Rapids quality model as well as the company
representatives (Sanja Aaramaa, Rafał Kozik, Jari Partanen,
and Andrey Sadovykh) for supporting our research. We also
thank Axel Wickenkamp for implementing the Q-Rapids
quality model as well as Lidia López, Woubshet Behutiye, and
Pertti Karhapää for supporting the evaluation execution.

REFERENCES

[1] Capgemini, “World Quality Report 2015-16,” 2015. [Online].
Available: https://www.capgemini.com/resources/world-quality-
report-2015-16.

[2] L. Guzmán, M. Oriol, P. Rodríguez, X. Franch, A. Jedlitschka, and M.
Oivo, “How can quality awareness support rapid software
development? - A research preview,” in REFSQ 2017, 2017, vol.
10153 LNCS, pp. 167–173.

[3] D. Zhang, S. Han, Y. Dang, J. G. Lou, H. Zhang, and T. Xie, “Software
analytics in practice,” IEEE Softw., vol. 30, no. 5, pp. 30–37, 2013.

[4] H. Gall, T. Menzies, L. Williams, and T. Zimmermann, “Software
Development Analytics (Dagstuhl Seminar 14261),” Dagstuhl Reports,
vol. 4, no. 6, pp. 64–83, 2014.

[5] Y. Yang, D. Falessi, T. Menzies, and J. Hihn, “Actionable Analytics
for Software Engineering,” IEEE Softw., vol. 35, no. 1, pp. 51–53,
2017.

[6] A. Bergel et al., “SQUALE- Software QUALity Enhancement,” in
CSMR, 2009, pp. 285–288.

[7] V. A. Shekhovtsov, H. C. Mayr, and V. Lubenskyi, “QuASE: A tool
supported approach to facilitating quality-related communication in
software development,” QUATIC, pp. 162–165, 2014.

[8] E. L. Vargas, J. Hejderup, M. Kechagia, M. Bruntink, and G. Gousios,
“Enabling Real-Time Feedback in Software Engineering,” in ICSE,
2018.

[9] L. López, S. Martínez-Fernández, C. Gómez, et al., “Q-Rapids Tool
Prototype: Supporting Decision-Makers in Managing Quality in Rapid
Software Development Q-Rapids Method,” in CAiSE, 2018, pp. 200–
208.

[10] X. Franch et al., “Data-Driven Elicitation, Assessment and
Documentation of Quality Requirements in Agile Software
Development,” in CAiSE, 2018, pp. 587–602.

[11] H. K. Dam, T. Tran, and A. Ghose, “Explainable Software Analytics,”
in NIER@ICSE, 2018.

[12] M. Kläs, J. Heidrich, J. Münch, and A. Trendowicz, “CQML scheme:
A classification scheme for comprehensive quality model landscapes,”
Conf. Proc. EUROMICRO, pp. 243–250, 2009.

[13] C. Ebert and R. Dumke, Software measurement: Establish - Extract -
Evaluate - Execute. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007.

[14] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, vol. 2. 1997.

[15] International Organization For Standardization Iso, “ISO/IEC
25010:2011,” Software Process: Improvement and Practice, 2011.
[Online]. Available:
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.ht
m?csnumber=35733.

[16] S. Wagner et al., “Operationalised product quality models and
assessment: The Quamoco approach,” Inf. Softw. Technol., vol. 62, pp.
101–123, 2015.

[17] V. R. Basili, G. Caldiera, and H. D. Rombach, “The Goal Question
Metric Approach,” in Encyclopedia of Software Engineering, Wiley,
1994.

[18] V. Basili et al., “Aligning Organizations Through Measurement - The
GQM+Strategies Approach,” p. 205, 2014.

[19] N. Marz and J. Warren, Big Data: Principles and best practices of
scalable realtime data systems. 2013.

[20] V. McKinney, K. Yoon, and F. “Mariam” Zahedi, “The Measurement
of Web-Customer Satisfaction: An Expectation and Disconfirmation
Approach,” Inf. Syst. Res., vol. 13, no. 3, pp. 296–315, Sep. 2002.

[21] Y. W. Lee and D. M. Strong, “Knowing-Why About Data Processes
and Data Quality,” J. Manag. Inf. Syst., vol. 20, no. 3, pp. 13–39, Dec.
2003.

[22] M. B. Miles, A. M. Huberman, and J. Saldaña, Qualitative Data
Analysis: A Methods Sourcebook: Third Edition. 2014.

[23] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qual. Res. Psychol., vol. 3, no. 2, pp. 77–101, Jan. 2006.

http://q-rapids.eu/
http://q-rapids.eu/

