THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Supporting the migration towards model-driven robotic
systems

RAZAN GHZOULI

Division of Interaction Design and Software Engineering
Department of Computer Science & Engineering
Chalmers University of Technology | University of Gothenburg
Gothenburg, Sweden, 2022

Supporting the migration towards model-driven robotic systems

RAZAN GHZOULI

Copyright ©2022 Razan Ghzouli
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering

Division of Interaction Design and Software Engineering
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using IXTEX.
Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2022.

ii

iv

Abstract

Robots are increasingly deployed to perform every-day tasks. It is crucial to
implement reliable and reusable systems to reduce development effort. The
complexity of robotic systems requires the collaboration of experts from different
backgrounds. Therefore, clear and communicatable abstraction of components
is essential for successful development process. There has been a demand in the
community for increased adoption of software engineering approaches to support
better robotic systems. Adopting model-driven approaches has been proved
successful in supporting this movement. We aim to support the adaptation of
model-driven approaches in robotic domain in three interest areas: behavior
models, structural models and guaranteeing confidence in system behavior.

The overall goal is to support the creation of reusable, verifiable and easy
to communicate robotic missions and systems. To achieve that, we conducted
a mix of knowledge-seeking and solution-seeking studies. We started with
behavior models. We wanted to build knowledge about used behavior models
in practice. We investigated the state-of-practice of an emerging behavior
model, behavior trees, in comparison to two standardized UML models and a
traditional roboticists choice. Moving to the second interest area, we wanted
to support the creation of light-weight tools for building an understanding of
system structure using feature models. We conducted a pilot evaluation of
an already light-weight tool, called FeatureVista. The final interest area was
guaranteeing confidence in system behavior. The usual engineering process of
self-adaptive controllers in robotic involves different model-based approaches.
We wanted to investigate an approach that reaffirm, at code-level, control
properties while keeping the usual engineering process. We investigated an
approach for mapping control properties to software ones using an appropriate
input format for software model-based checking.

Our investigations in the different interest areas have built knowledge and
shed light on opportunities. We provided characteristics of behavior models,
behavior trees and state machines, in popular robotic implementations and
highlighted opportunities for improvements. We also provided usage trend for
studied implementations in open-source projects. In addition, we provided core-
structural characteristic and code-reuse patterns for studied behavior models in
open-source projects. For feature models, our results showed promising results
for using an interactive tool that provides an easy and initiative navigation
between feature models and software components. Improvement aspects were
also highlighted for developing similar tools. Finally, our work for the confidence
of system behavior showed promising results in reaffirming the correctness of a
control property at code-level using appropriate software notation, specification
patterns. Also, our approach allowed keeping the current practices of using
model-based approaches in self-adaptive robotic systems.

Keywords

model-driven engineering, behavior trees, feature models, property specification,
empirical research

Acknowledgment

I would like to thank my supervisor Thorsten Berger and co-supervisor Patrizio
Pelliccione. Thorsten, you are teaching me how to keep focus and work
effectively. I would also like to acknowledge my gratitude to my friends in the
interaction design and software engineering division, especially my friends at
kuggen and room 351. Linda and Mazen, your support and kindness have given
me the energy needed to continue. Georgios, Joel and Hamdy, your friendship
and consistent support and advice is always appreciated. Kelsey and Kivanc,
your food reminders and laughter were important to keep balance. Ricardo
and Wardah, I appreciate your help whenever needed.

I also want to express gratitude towards my parents, my sister, Rawan,
and my brother, Faek. Our calls have given me the boost to continue working
and learning. My deepest gratitude is towards my partner in this life, Elias.
Without your love and support, that always motivate me to stay on track, I
could not have made it this far.

Finally, I would like to thank WASP for funding my work and providing
great opportunities. This work is supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice Wallen-
berg Foundation.

vii

List of Publications

Appended publications

This thesis is based on the following publications:

[A]

R. Ghzouli, T. Berger, E. B. Johnsen, S. Dragule, A. Wasowski “Behavior
Trees in Action: A Study of Robotics Applications”

Proceedings of the 13th ACM SIGPLAN International Conference on
Software Language Engineering (SLE), 2020.

R. Ghzouli, S. Dragule, T. Berger, E. B. Johnsen, A. Wasowski “Behavior
Trees and State Machines in Robotics Applications”

under review at IEEE Transactions on Software Engineering (TSE) jour-
nal, 2022.

A. Bergel, R. Ghzouli, T. Berger, M. RV. Chaudron “FeatureVista:
interactive feature visualization”
Proceedings of the 25th ACM International Systems and Software Product
Line Conference (SPLC), 2021.

R. Caldas, R. Ghzouli, A. V. Papadopoulos, P. Pelliccione, D. Weyns,
T. Berger “Towards Mapping Control Theory and Software Engineering
Properties using Specification Patterns”

2nd International Conference on Autonomic Computing and Self-Organizing

Systems (ACSOS). IEEE, 2021.

ix

Research Contribution

In this section, I describe my contributions to the appended papers. Table 1
summarize my contributions using the Contributor Roles Taxonomy (CRediT).!

In paper A, I led the conceptualization, methodology formulation and
writing of the whole paper. I led and implemented the data collection of
behavior tree literature, DSLs and projects. I also contributed to creating
the comparison with UML models. Finally, I conducted the quantitative and
qualitative analysis of projects and reported my observations.

In paper B, I led the conceptualization, methodology formulation and
writing of the whole paper. I led and implemented the data collection of state
machine literature and DSLs. I managed the data collection of state machine
projects. I led and reported the comparison between behavior trees and state
machines. Finally, I conducted the quantitative and qualitative analysis of
projects and reported my observations.

In paper C, I contributed to the conceptualization and methodology formu-
lation of the pilot experiment. I wrote the section related to the experiment
and contributed to reviewing parts of the paper. My contributions were mainly
the design and analysis of the pilot study to evaluate the tool.

In paper D, I contributed to the conceptualization and methodology for-
mulation of the evaluation of the proposed approach. I contributed to writing
sections related to the experiment and reviewing the whole paper. My contribu-
tions were mainly designing and conducting a literature review to identify what
and how traditional software engineering properties are used for self-adaptation,
alongside the employed modeling notation that would help with the mapping.
I contributed to setting the experiment to evaluate the proposed approach,
then finding and producing experimental scenarios for validation.

Table 1: The individual contributions of the author of this thesis to the
appended papers.

Role Paper A Paper B Paper C Paper D

X
X

Conceptualization
Methodology

Data curation
Software

Formal analysis
Investigation
Validation
Visualization
Writing-original draft
Writing-review & editing
Project administration
Supervision

Resources

Funding acquisition

M

eRale

S R IS Bl i i
>

oI il e i

Lhttps://casrai.org/credit/

https://casrai.org/credit/

xii

Contents

Abstract

Acknowledgement

List of Publications

Personal Contribution

1 Introduction

1.1 Research Focus
1.2 Background Lo

1.2.1 Model-driven Engineering in Robotics

1.2.2 Behavior Models:o

1.2.3 Structural Models
1.3 Research Methodology
1.4 Research Results
1.5 Conclusion
1.6 Future Work

2 Paper A

2.1 Imtroduction. L
2.2 Background
2.3 Methodology

2.3.1 Behavior Tree Languages

2.3.2 Behavior Tree Models
2.4 Behavior Tree Languages (RQ1)

2.4.1 Language Subject Matter

2.4.2 Language Design and Architecture
2.5 Behavior Tree Models (RQ2 & RQ3)
2.6 Threats to Validity L.
2.7 Related Work
2.8 Conclusion

3 Paper B

3.1 Imtroduction
3.2 Background o o
3.3 Methodology

3.3.1 Identifying Languages and Concepts (RQ1)

xiii

vii

ix

19
20
21
23
23
23
24
25
26
33
43
44
44

Xiv CONTENTS

3.3.2 Language Implementations (RQ2) 55
3.3.3 Identifying Languages Projects and Analysis (RQ3) .. 55

3.4 Language Concepts (RQ1), 60
3.4.1 Behavior Trees: Concepts and Semantics 62
3.4.2 State Machines: Concepts and Semantics 68

3.5 Language Implementation (RQ2) 70
3.5.1 Behavior Trees: Language Design and Architecture . . . 71
3.5.2 State Machines: Language Design and Architecture . . 73

3.6 Behavior Tree and State Machine Models (RQ3) 75
3.6.1 Language Popularity 75
3.6.2 Characteristics of Models 76
3.6.3 Reuse 82

3.7 Threats to Validity 87
3.8 Related Work 88
3.9 Conclusion 89
4 Paper C 93
4.1 Imtroduction 94
4.2 FeatureVista. Lo o 95
4.2.1 FeatureVista in a Nutshell 95
4.2.2 Visual Properties 98

4.3 Pilot Evaluation 99
4.4 Related Worko 101
4.5 Conclusion and Directions, 101
5 Paper D 103
5.1 Imtroductiono 104
5.2 Background and Motivation oL 105
5.3 System Model Design 106
5.4 Modeling Stability as a SE Property 108
5.5 Checking the Mapping 110
5.6 Related Worko 111
5.7 Conclusion and Future Work 112

Bibliography 113

Chapter 1

Introduction

Robots are increasingly used to perform tasks ranging from simple pick-and-
place to fire fighting in dangerous areas or disinfection hospitals. With the
rising complexity of robotic missions and their integration into human life,
further research is needed to ensure the safety and reliability of systems.
Different practices have been deployed by robotic developers when designing
missions and systems, which have been mainly ad-hoc driven. It has been
highlighted by multiple researches that the lack of using software practices
hinders the development process of robotic solutions [1-3]. This challenges
the communication to different stakeholders, reusability of components and
verifiability of systems.

Multiple researchers have confirmed the need to adopt software engineering
practices, such as model-driven and model-based approaches [3-7]. In the
last decade, pushes in the community have increased to adopt some of the
best practices from model-driven engineering (MDE). Multiple Projects have
been funded by the European Union’s Horizon 2020 Research and Innovation
Program under the RobMoSys project umbrella. The projects created methods
and tools for adopting MDE practices and supporting model-based design for
robotic missions and systems. Other projects, such as BRICS [8], have been
promoting a mixture of software product line (SPL) engineering and MDE
practices to manage the variability of robotic systems.

A recent study by G. L. Casalaro et al. [9] spotted a remarkable trend of
solution-seeking research to create MDE methods and tools in mobile robotics.
However, according to the same study, the majority of these methods and tools
are lab proofed or applied to simple examples. So, additional work need to be
done to make them usable in practice and everyday life [9].

Model-driven approaches allow better reuse of systems. Keeping confidence
of system behavior and maintainability are important aspects to keep in mind
for future reuse cases. The first lunching of Ariane 5 in June 1996 crashed after
around 38 seconds due to a software error [10]. The project reused code from
an earlier version (Ariane 4) that had a specific requirement mentioned in an
obscured part of the mission documents [11]. The requirement had no explicit
specification in the code, which caused a disaster error when code was reused.

Through this research, we want to support the migration to better model-
driven approaches in robotics. To improve, we first need to understand. In this

2 CHAPTER 1. INTRODUCTION

thesis, we investigate the characteristics of model-driven robotic applications.
In addition, we propose an approach to build confidence in a system behavior
while using model-driven approaches.

1.1 Research Focus

The PhD thesis goal is to enable reusable, verifiable, and easy to communicate
robotic missions and systems. According to the robotic 2020 multi-annual
report ICT-2017, a shift towards adopting software practices is needed to
manage the complexity of robotic systems [3]. We envision using model-driven
and model-based approaches to increase the level of abstraction of missions
and systems, resulting in better robotic systems. We want to establish novel
methods and tools that support model-driven and model-based engineering in
robotics. To achieve the overall goal, we start in this thesis by decomposing
the big picture into three interest area: behavior models, structural models
and guaranteeing confidence in system behavior.

According to Garcia et al. [2], a roadblock for reusing in robotics is lack
of documentations. This restricts the ability to form an understanding of the
system behavior and structure. However, we believe embedding explicit models
into the development process can mitigate that. Behavior models and structural
models support increasing the abstraction level of systems. Currently, constrains
and assumptions for missions are glued to the implementations code with no
model to communicate the missions flow to non-expert users, or even developers
who are not actively involved in the project. By having explicit behavior
models for robotic missions, communicating with stakeholders regardless of
their background becomes smoother. In addition, it is easy to maintain robotic
systems and reuse their missions by forming a better understanding of their
components. Structural models allow better understanding of the system
functionalities and variability, thus, contributing to maintainability and reuse
of different components.

In the Ariane 5 example mentioned above, the missing requirement spec-
ifications caused the explosion of a $500 million worth rocket. As stated by
Jézéquel et al. [11] "reuse without a precise specification mechanism is a disas-
trous risk". Therefore, it is important to have explicit specifications for system
requirements across the different phases of the development process. The
robotic 2020 multi-annual report ICT-2017 [3] emphasized the role of adopting
software engineering approaches on producing robotic systems that comply
with design requirements through explicit and well-defined properties (e.g.,
safety, robustness, etc). keeping confidence in the system behavior is essential.
Hence, we want to support explicit property specification across development
phases. Precise property specifications allow reaffirming confidence in system
behavior for compliance with mission requirements, supporting reusability and
maintainability of a system in the long-run.

To achieve our research goal, we conducted four studies and organized our
work into two main RQs. RQ1 corresponds to understanding the characteristics
of model-driven approaches usage, and RQ2 corresponds to investigating an
approach to support the usage of model-driven methods while keeping confidence
in the system behavior. In the followings, we list our research questions and

1.1. RESEARCH FOCUS 3

the motivation behind each of them.

RQ1. What are the characteristics of used model-driven approaches in robotics?

This question addresses the need to seek knowledge about currently used
model-driven approaches in robotics to develop better supporting tools. We
focus on understanding the usage and the support needed for behavior trees
and feature models, two types of models describing the behavior and structural
aspects of robotic systems. Two sub-research questions are investigated, each
corresponding to a model type.

RQ1.1 What are the characteristics of currently used behavior models in
practice?

Multiple tools have been developed in the form of domain-specific languages
(DSLs) to support the implementation of behavior modeling languages in
robotics, but there have been no study to understand their usage and scope
in real-world. This question addresses the current knowledge gap. We believe
understanding these behavior modeling languages in practice can support the
improvements of model-driven tools to make them usable in everyday life.
Behavior tree is one of the modeling languages that has caught the attention of
roboticists for supporting modularity, flexibility and reusability [12-18]. Our
goal is to understand the characteristics of behavior tree models and compare
them with the most well-understood and standardized (via the Unified Modeling
Language (UML)) behavior models, activity diagram and state machine. In
addition, we want to understand the similarities and differences of behavior
tree implementations to more traditional and widely used implementations in
robotics for state machine models. We also investigate the characteristics of
behavior trees and state machines in practice. We want to understand what
these languages offer, how they are engineered in practice, and how their models
are used in actual projects. By reporting on the current status of the behavior
modeling languages that supports model-based development in robotics, we can
extract design insights and observe recommendations for better tools. Paper A
and B report on the results to answer this question.

RQ1.2 What are the characteristics of a light-weight support tool for struc-
tural model

Feature model is one of the model-based approaches to represent features
that captures the structural aspect of a system. Also, it provides an overview of
a system variability. Multiple tools exist to support the visualization of feature
models. However, few provide a comprehensive view of feature models and the
relation between features and software components without the need of expert
knowledge in programming. Often to understand how a feature is scattered
in a software, there is a need to navigate multiple code-files and keep track of
other features sharing the same file location. The current process hinders the
understandability of features in a software system.

This question addresses the need to understand the design requirements of
light-weight tools for supporting explicit feature representation of a software
system. We investigate the potential of an existing light-weight tool to build
knowledge for further development of light-weight tools for representing the
structural aspect of robotic systems. Paper C reports on the results to answer
this question.

4 CHAPTER 1. INTRODUCTION

RQ2. What processes can support the usage of model-driven approaches across
different development phases of robotic systems?

This question addresses the need to support the usage of model-driven ap-
proaches in different phases of the development process for self-adaptive robotic
systems. Depending on the mission, robotic systems might contain self-adaptive
controllers that are desired to satisfy specific behaviors. The development of
such components starts with a control design phase and moves to a software
implementation phase. Model-based control design is one of the common
control approaches to create the controller components [19]. The compliance
of the developed components with desired properties is guaranteed-by-design
by using mathematical principles of control theory [20]. The code of developed
component is usually automatically generated by MATLAB/Simulink.! How-
ever, there are also cases of manual code implementation. Whether the code
was manually or automatically generated, it needs modification in the software
implementation phase to integrate it with other system components. In the
software implementation phase, model-based checking is a common method to
verify the compliance of the software implementation with desired properties.
Specific notations in modeling software properties should be used to formulate
the properties as an input to the model-based checking method. When moving
from control design phase to software implementation phase, it is unknown
whether the properties that were previously guaranteed-by-design (control
properties) still hold after modification of the code or manual implementation.
The reasons for that is a lack of understanding of how the verified control
properties relate to software properties, or how to even describe the control
properties in-terms of software notation. Thus, the software engineering team
need an approach to reaffirm, at code level, the correctness of the design.

One reason for using model-driven engineering is to enable the reuse of
developed components. We need to guarantee the developed component will
still hold a desired property in the integrated software. We want to provide
an approach for explicit property specifications to support reaffirming the
correctness of designed component’s behavior across different phases without
interrupting the usual engineering process. By achieving that we support using
model-based approaches across different phases in robotic systems while keeping
confidence in system behavior. Paper D reports on the results to answer this
question.

1.2 Background

In this section, we provide the background and introduce key concepts used in
this thesis.

1.2.1 Model-driven Engineering in Robotics

According to the robotic 2020 multi-annual report ICT-2017, the robotic domain
needs to adopt model-driven (MD) methods to reduce the complexity of its
systems and improve reusability and maintainability of systems [3]. It might
come across the reader’s mind what does the term model-driven mean?

Lhttps://se.mathworks.com /products/simulink.html

https://se.mathworks.com/products/simulink.html

1.2. BACKGROUND 5

Model-driven engineering is sometimes mixed-up with another term, model-
based engineering. We decided to use the definition and illustration of Brambilla
et al. [21] to clarify what we mean through this thesis. As shown in Figure 1.1,
the relation between the different MD terms is illustrated by Brambilla et
al. [21].

Figure 1.1: The relation between the different MD terms. (Photo courtesy of
Brambilla et al. [21].)

Model-based engineering (MBE) uses models in the development process,
but they are not the key artifacts. Model-driven engineering (MDE) con-
sider models as the key artifacts of their development process. Other devel-
opment methods include model-driven development (MDD), where code is
(semi)automatically generated from models, and model-driven architecture
(MDA), where the Object Management Group (OMG) vision is adopted into
MDD. MDA supports the definition of models at different levels of abstraction
presented in Fig. 1.2. It is out of the thesis scope to dive into each of these
terms. We focus on the idea of using models as an approach to improve robotic
systems regardless of if the models are the main artifacts or not.

CIM
(Computational Independant Model)

PIM
(Platiorm Independant Model)

PSM

(Platform Specific Model)

MDA: Different model levels,
model transformations between them

Figure 1.2: The three levels of modeling abstraction in MDA according to [22].

Another question that might come across the reader’s mind is: what is
considered a model? Our definition of a model is a combination of Da-Silva’s
definition [23] and Nordmann et al. [24]. A model is "an abstraction of a system
often used to replace the system under study" [23] "and often represents a partial
and simplified view of a system or specific aspect” [24]. This definition shows
the potential of models to capture different aspects of the system. In this thesis,

6 CHAPTER 1. INTRODUCTION

we focus on two categories of models, one capturing the behavioral aspect
(behavior models) and another capturing the structural aspect (structural
models) of software systems.

1.2.2 Behavior Models:

Behavior models in robotics are used as high-level representations of the
coordination between different skills that form a mission [25,26]. There exist
many behavior modeling languages in robotics such as behavior trees, state
machines, subsumption architecture [27], teleo-reactive [28] and decision trees
[29], each having advantages and disadvantages compared to the others [14,30—-
32]. Behavior modeling languages contribute to shifting robotic missions into
model-based design making them easier to communicate and reuse. The study
by G. L. Casalaro et al. [9] have spotted a trend of solution-seeking research to
create MDE tools in mobile robotic systems where modeling robotic missions
was one of the focus areas.

Domain-specific languages (DSLs) are common MDE tools for expressing
behavior models. DSLs are also a popular approach in adopting MDE in
robotics [9,24,33]. DSLs are programming languages that extend generic-
purpose programming languages GPLs, such as C++ and Python. DSLs
provide a set of concepts and notation closer to the application domain to make
it easier for users of a domain to describe functionalities [21,34,35]. In addition,
DSLs raise the abstraction level beyond the programming language [36], which
facilitate the adaptation of two important software approaches to improve
robotics, separation of concerns [5,37] and separation of roles [38]. In this
thesis, we investigate popular DSLs for two behavior modeling languages and
we report on some of the characteristic of these DSLs that might make them
useful for robotic domain. More details are provided later in Section 1.4.

Behavior Trees

To understand robotic missions, let us take an example of a disinfecting mission
for a robot operating in a health facility. The robot performs a disinfecting
sequence for four rooms. It needs to navigate to a room then disinfect it, which
is then repeated four times. In case, the battery is low, it needs to interrupt
the disinfecting sequence and charge. Figure 1.3 shows a representation of the
mission using behavior trees (explained shortly below). Missions are usually
composed of different skills (like CollectWayPoints) that can be programmed
at a low-level using GPLs. The coordination of skills can be represented using
high-level models to enables better understanding of involved skills beyond the
implementation level (GPLs low-level).

In recent years, behavior trees have become one of the popular behavior
modeling languages for specifying missions in high-level representations. Behav-
ior trees are directed trees with two type of nodes: execution nodes (leaf nodes)
and control-flow nodes (non-leaf nodes). Execution nodes can be either an
action (e.g., CollectWayPoints), or a condition (e.g., BatteryLow). The main
types of control-flow nodes are sequence, selector, decorator and parallel. The
example in Fig. 1.3 illustrates three sequence nodes (Recharge, ExploreSeq
and DisinfectSeq), one selector (Main) and one decorator node (Repeat).

1.2. BACKGROUND 7

7 Fallback

Main

A MoveToRechargeStation A CollectWayPoints

MoveToRechargeStation CollectWayPoints

A PopWayPoints A:MoveBase A Disinfect

PopWayPoints MoveBase Disinfect

Figure 1.3: An example of behavior trees shown in the Groot GUI from
BehaviorTree.CPP.

Behavior trees are time-triggered using ticks that are issued according to a
specified frequency. A tick is propagated from the root down to its children to
return the status of a node. A ticked node returns to its parent: (1) success
when execution completed successfully, (2) failure when execution failed, and
(3) running when still under execution. We refer the reader to the background
sections in paper A and B for more details about behavior trees.

Modularity, flexibility and reusability [12—18] are some of the reasons behind
behavior trees popularity. The ability to decompose a mission into smaller tasks
(like Recharge) and reuse these tasks in other similar missions is an example of
how behavior trees enable modular design of missions. The emergence trend of
using behavior trees in robotics have caused the development of several DSLs
to accommodate the needs of roboticists. Multiple studies in robotics have
been invested to promote and improve behavior tree models [13-18,32,39-42],
but little have been done to investigate the tools used to implement behavior
trees from software engineering perspective, i.e, their DSLs.

1.2.3 Structural Models

Structural models are used as high-level representations of the system parts
on different abstraction and implementation levels. Also, they capture the
structural relation between the different system parts. In Figure 1.4, an
overview of the UML classification of behavioral and structural models is
presented. Different types of structural models are available, and they are not

8 CHAPTER 1. INTRODUCTION

UML 2.4 Diagram

‘ Structure Diagram ‘ | Behavior Diagram |

UseCase Diagram
Activity Diagram |7}
State Machine
Diagram
Interaction Diagram
Sequence Diagram
Communication
Diagram
Interaction Overview
Diagram

uml-diagrams.org

4

Class Diagram

Object Diagram

Package Diagram

Model Diagram —

Composite Structure
Diagram

Component Diagram

Manifestation Diagram |

Deployment Diagram

Network Architecture |
Diagram

Profile Diagram

Figure 1.4: An overview of the UML 2.4 classification of diagrams. (Photo
courtesy of [44])

limited to the presented UML models in Fig. 1.4. Although, feature models
can not be spotted along the other UML models, they are considered structural
models. Feature models capture the structural aspect of a system by showing
the compositional relation between its features [43] and the different possible
variants of a system (described shortly below).

Feature Models:

Feature models capture the functionality of a complex-system structure. It is
a common approach from software product-line engineering to provide better
understanding of available features of a software system family. It also enhances
the maintainability of systems and supports the reuse of common components.
Feature-models are tree-like structure that organize hierarchically features
representing the commonalities and variabilities aspects of complex-system
variants [21,45,46]. To understand the concept of variants of a software
system family, we use Figure 1.5 from PAL robotics? to illustrate how a
robotic complex-system could have different products depending on the different
features combinations. By reusing common components, there is no need to
start from scratch to create different products. Although feature-model is a
software product-line approach, it is also considered a model-driven approach
since a model is used to decompose the system structure in terms of features
and raise the abstraction-level [21].

Multiple studies have been done in robotic to adopt feature-models in
managing the variabilities of robotic systems [47-50]. HyperFlex tool-chain
[51] is a nice example of using feature-models to show the relation between

2https://pal-robotics.com/robots/tiago-base/

1.3. RESEARCH METHODOLOGY 9

)

puse’ N’ l'x T I TR
Figure 1.5: An example of variants for a robotic system.

application requirements and system capabilities [50]. However, few studies
have explored creating tools for supporting non-expert users in understanding
the relation between features and software system components.

1.3 Research Methodology

In software engineering, knowledge-seeking and solution-seeking studies are
used to build and expand the domain knowledge as well as build solutions to
solve problems [52]. By knowledge-seeking, we refer to understanding the world
by conducting analysis and observational studies on software artifacts such as,
but not limited to, software tools. By building knowledge about a software
problem, one can move to solution-seeking studies to build appropriate tools
and methods.

The overall goal of this research is to establish novel methods and tools to
enable reusable, verifiable, and easy to communicate robotic missions and sys-
tems through model-based and model-driven engineering. Usually this requires
solution-seeking studies to come up with the tools and methods. However,
the current state of model-based and model-driven engineering research in
robotic is still immature [1-3] and needs to build a better understanding of
the current status of this world. To achieve our overall goal, we start in this
thesis by conducting a combination of knowledge-seeking and solution-seeking
studies. We investigate the model-driven status in robotics from different
aspects: behavioral aspect and structural aspect. We also develop a solution
for building confidence in robotic systems while using model-based approaches.

RQ1.1: To answer this question, we conducted a knowledge-seeking study
about the currently used behavior modeling languages for representing robotic
missions. To improve the current practices in using behavior models, we need
to understand the existing solutions. We conducted two empirical studies to
understand the current state-of-practice of an emerging behavior modeling
language, behavior trees, in comparison to (1) two UML standardized behavior
models (paper A) and (2) a more practical choice of roboticists for modeling
behavior (paper B).

We chose the most popular, well-understood and standardized UML behav-
ior models, state machines and activity diagrams for the first comparison. We
started by searching and identifying behavior tree DSLs (libraries) according
to specified criteria. We conducted an exploratory literature search and docu-
mentations inspection of identified DSLs to understand key characteristics and
existing modeling concepts of behavior trees in practice. We mapped identified
behavior tree concepts, based on semantic, to the UML behavior models. We
focused on behavior tree concepts and whether state machines and activity

10 CHAPTER 1. INTRODUCTION

diagrams offer direct support for similar concepts, or they need to be expressed
indirectly.

Our goal is to build an understanding of behavior models usage in practice.
Thus, after understanding the expressiveness of behavior trees in comparison to
UML behavior models, we wanted to shift the comparison focus towards actual
robotic implementations of behavior models. State machine implementations
are a traditional choice of roboticists and since we wanted to build knowledge
in practice, it was a natural choice to compare against them.

Using a similar process as in the first study, we identified state machine
DSLs and explored their literature and documentations to extract key charac-
teristics and existing modeling concepts in practice. We mapped the identified
behavior tree concepts from the earlier study to the extracted concepts of state
machine implementations. To understand the usage of the behavior modeling
implementations in robotic projects, we mined GitHub for open-source reposi-
tories using the identified DSLs (behavior trees and state machines DSLs) and
filtered them according to specified criteria. We checked the usage trend of
the DSLs among the mined open-source projects. We sampled our projects
to conduct a quantitative and qualitative analysis for the usage of models in
practice. We analyzed the usage of concepts, core-structural aspects of models
and code-reuse patterns of robotic skills and tasks for the DSLs. More details
about used methodology and criteria can be found in the paper A and B.

RQ1.2: To answer this question, we conducted an empirical validation
study of a light-weight feature visualization tool. To contribute towards
easily understanding the structural aspect of software systems in robotics,
an interactive tool was presented to visualize feature model and the feature
characteristics in relation to software components (e.g., packages, classes).
We designed and conducted a pilot experiment to evaluate the tool. Three
research questions guided the experiment design. Eventually, we created task-
based questions that corresponded to the research questions. We conducted
a qualitative data analysis to extract the opinion of the participant and we
found improvements suggestions that were reported in the paper. We refer the
reader to paper C for more details about the pilot experiment.

RQ2: To answer this question, we conducted a solution-seeking study to
provide an approach to ensure that a verified property in the control design
phase still holds and can be verified in the software implementation phase of
self-adaptive robotic systems. To achieve that a mapping between the control
property and an input property to the model-based checking should be defined.
Software properties that are verified using model-based checking use common
notation such as linear temporal logic (LTL) for formulating the properties.
Thus, we suggested an approach using established specification patterns speci-
fied in temporal logic [53,54] to map control properties syntactically to them.
We designed a controlled experimentation to verify the proposed mapping for
an adaptive cruise control (ACC) system. We used a model-based approach to
design a self-adaptive controller that guarantees a control property. We also
mapped the verified control property syntactically using specification patterns,
and then validated our suggested mapping using model-based checking. More
details about the mapping and verification can be found in paper D.

1.4. RESEARCH RESULTS 11

1.4 Research Results

In this section, we highlight the main results of each paper towards answering
our research questions.

RQ1.1: What are the characteristics of currently used behavior
models in practice?

Through RQ1.1, we wanted to investigate the offered modeling concepts of
behavior trees and compare them to the other popular modeling language, (1)
the two UML standardized behavior models, state diagram and state machine
and (2) state machines in real language implementations (libraries). In the
followings, we present highlights from our results. More details can be checked
in paper A and paper B.

300 { — PyTrees ROS

PyTrees
200 - BehaviorTree.CPP

= FlexBE
100 { —— sMACH

50 4

20 /—
10 4

Number of Active Projects

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Year

Figure 1.6: An overview of the usage of state machines and behavior trees
DSLs in open-source projects on GitHub over time.

We analyzed four implementations (libraries) of state machines and behavior
trees. We also sampled and analyzed 150 models of open-source projects using
the identified behavior tree and state machine DSLs, 75 models for each behavior
modeling language. We provide an overview of their domains in Fig. 1.7.

In general, we confirmed that the usage of behavior trees is rapidly increasing
within open-source robotics projects. Figure 1.6 shows an overview of the
different DSLs usage overtime in the total population of mined projects. FlexBe
and BehaviorTree.CPP overall usage growth since 2018 is much higher than
SMACH and pytrees. It is noteworthy that both FlexBe and Behavior-
Tree.CPP exhibit similar characteristics in adopting model-driven and model-
based design approaches. Although we cannot confirm if that is the reason for
their popularity compared to the other two implementations, but it would be
an interesting aspect to investigate.

Our comparison of behavior trees and the two UML models, state diagram
and state machine, showed that behavior trees provide direct support of
multiple frequent flow-patterns needed in robotic. Meanwhile, the studied
UML behavior models require customization to offer similar support. Openness

INTRODUCTION

CHAPTER 1.

12

surewop s109(oxd pozATeuR JO MOIAISAO WY :)'T 9INSL

STOC

1c-0c0t ~a8uajieyd win gv1INOY¥AIHL
-DUN-VINSD 194 3|dwes” 1dm

—

sa10qoy aseds

_~I0sInJadns

_-SoJ-suey

ouAp
|ensn-joqoy

[a1e)@aymiuwo

enyeuy

Aiamjaqg paseg-auoiq
13 swJems auoig

yaJew™ wes sa1noqoy Suiuesp)

uoljes8ajul—
9qX3|} SM™paJteys” esl

uonoadsu|
Aajes pue yijeay

Suliquiassesig
/3ulquiassy
aAneJoqe||0)

100~ 21199MS

XUOISIA
SM™1S917S0Y

pueqsJ” Jeaqd

1207 sIm uojuedwo)

$2130q0Y dAleIdU|

19Y19H

MBIINSITPU0IAS S||1IJa4
1239(04d™10q04 " 9jIg0W ‘ —
1snpJeis :

Suijjoazed onoqoy

$3130q0Y JaNEM

—— Sjuos
SOIBUSIS-OA
~uonesSaul

bE) QEou.mm

20
n w\r_\ D

30q1|NWZ30quol

scitNﬁm_.obmuw o T —

N ABU-SOJ-1NQ0Y cmzmm;mc ° ~(punoiShe|d~Azzia)

— qIXa} 1003[3NY " SYd N

— —— JaAe|d-sa130qou T o

- — __seauy Joineyaq Azzin >

HOVINIS i Sgxs|jiewop 103(01d”s310q04 —

ddosos" @311 Joineyaq)

agxal4

soa”saasy Ad

uone.qijed-aka-puey Suiuueld

-IN0IABYDg-S213000Y

“120(01d-NOYIN

zso

18

ddD @34]101neyag

1.4. RESEARCH RESULTS 13

and the possibility of run-time modification are another features of behavior
trees that are restricted in the studied UML behavior models. Thus, it might
be easier and initiative to use behavior trees in practice compared to the
studied UML behavior models. We refer the reader to check Table 2.2 in
paper A for more details on the similarities and differences between offered
behavior tree concepts and studied UML behavior models. Similar results
to ours in-terms of the need to customize UML modeling languages before
using them were reported by Whittle et al. [55], and a recent survey has also
shown that practitioners prefer using DSLs over UML modeling language due
to expressiveness and ease of use in practice [33].

Behavior tree and state machine implementations in robotics share common-
alities in modeling concepts and language-engineering practices. Openness is a
common feature that we observed, where no fixed model is enforced and users
are expected to extend their modes depending on the need. This characteristic
might be needed in robotic behavior-modeling languages, due to lack of agree-
ment in the robotic community about the optimal coordination model for robot
behavior. Another commonality was offering frequent control-flow patterns as
modeling constructs, such as sequence and repeat behaviors. Of course the
range of offered constructs and their usage in practice varied between behavior
trees and state machine DSLs, but it seems a common need in modeling robotic
missions. We refer te reader to check Table 3.2 for further details.

In our analysis, we noticed the four studied DSLs are distributed as libraries,
not as language tool chains or modeling environments. Two of them (Behavior-
Tree.CPP and FlexBe) are realized as external DSL, but exposes aspect of
dynamic internal DSLs. While SMACH and PyTrees_ros are just like any other
internal DSL. Through the GUIs provided by BehaviorTree.CPP and FlexBe
editing and monitoring functionality are available. An interesting observation
during the analysis of projects is built-in constructs were used more often
in these two DSLs with GUIs compared to the other two. Projects using
implementations with no GUI leaked these construct to the code instead of the
model. This shows that external DSLs enforce using the DSL constructs, while
in internal DSLs, it is easy to deviate and use GPLs constructs. In the long-run,
intertwined model and code compromise the maintainability and analyzability
of the behavior model, so such a pragmatic practice is not recommended.

Moving to another observation, the studied behavior models DSLs support
developing platform-specific models (PSM). In the analyzed projects, although
used models simplified and conceptualized the description of a mission, they
were tightly intertwined with the robotic system. States and nodes referred
to system elements directly and interacted with the system API. As a result,
it was hard to use these models separately from the robot. We foresee an
improvement by using the MDA approach to achieve better separation of
concerns [56]. BehaviorTree.CPP uses a light version of this approach and
during our analysis of its projects this helped in analyzing the models without
the need for a working environment. For the other DSLs, we needed to hack
our way to analyze the models. Better separation allows models to be processed
outside the system for visualization, testing and reuse. In addition, it ensures
the interoperability, productivity and portability of robotic systems [33].

Our analysis results showed that keeping the structure of models simple
was common in both behavior modeling languages. Shallow behavior tree and

14 CHAPTER 1. INTRODUCTION

state machine models, and moderate sizes of models was observed. From our
own experience in analyzing these models, keeping the behavior model simple,
regardless of the type, helps in its understandability.

In our work, reusing refers to the ability to reuse skill code (also known
as action), or reusing code of a repeated task (composed of different skills) in
the same model or across models in a project. We use skill-level and task-level
to reference each. We observed three types of reuse: intra-model referencing,
reuse by clone-and-own and inter-model referencing. Reuse by clone-and-own
was the top used pattern among studied DSLs for task-level reuse. Meanwhile,
inter-model referencing was the top used pattern for skill-level reuse. We refer
the reader to paper B for more details and examples of the different observed
reuse patterns. Finally, we contributed a dataset of open-source behavior
models for further development of these languages.

RQ1.2: What are the characteristics of a light-weight support tool
for structural model?

Wy

Wildgy i

(A)

1
—

T

Figure 1.8: An overview of the main visualizations in FeatureVista.

Feature model has been a successful strategy to form an abstraction of the
system structure and break the complexity of managing the software variability
of complex robotic systems [47-49]. Multiple tools were developed to assist
developers in using feature models [57,58], however they still require code
navigation and expert knowledge to understand a system variability. We build
on previous studies knowledge [57-60] and we contribute an intuitive and
interactive feature-oriented visualization tool called FeatureVista. Figure 1.8
provides an overview of main visualizations available in FeatureVista for feature
model (A in Fig. 1.8), the contribution of selected features in classes and
packages in a software (B), and the classes that are contributed by selected
features within the system (D).

In the followings, we provide a brief overview of our pilot evaluation results
of FeatureVista to answer RQ1.2 The scope of the thesis is not the design of
the tool itself, rather the evaluation of using such tool. We want to build an
understanding of the needed characteristics for better support of model-driven
approaches. We refer the reader of this thesis to check Paper C for more
technical details about the tool itself.

Our results showed an ability to form a comprehensive understanding of

1.4. RESEARCH RESULTS 15

the studied software features and software components. The evaluation high-
lighted the importance of feature model supported by visual aid and interactive
navigation in understanding what is usually a complicated relation between
features and software components. Context-scoping, selecting a specific feature,
was appreciated for creating the understanding of a feature relation to other
features and software components. However, an improvement was highlighted
of not only using visual information in representing specific characteristics
related to software metrics e.g., size according to line of code. It was also
highlighted in our results the limitation of feature models when the model gets
overwhelmingly bigger to extract useful information. In general, we contributed
an initial understanding of the need to use a mixture of visual interactive
display and textual one when inspecting information about features.

RQ2: What processes can support the usage of model-driven ap-
proaches across different development phases of robotic systems?

Different approaches have been suggested to bridge the gap between control
and software properties in self-adaptive systems [61-65]. However, some of
these approaches can be time consuming and prone to errors. We wanted to
provide an approach that does not interrupt the usual workflow of engineers and
supports using control model-based design and software model-based checking
techniques. In the followings, we provide a brief description of the suggested
mapping and our verification results to answer RQ2. More details can be found
in paper D.

CT Properties

Simulate

Simulink
Model

Simulink
Coder
esults

| ‘ Adjust

lalb

Q i Hardware- \
N . O s

o 2 0 specific J
Model-based C++ COde

cheking tool

SE Properties

Figure 1.9: An overview of the verification process of mapping CT-SE proper-
ties.

We proposed a bottom-up approach to mapping control properties to
software properties. The approach starts by syntactically mapping the desired
control property to the specification patterns specified in LTL. By using the
specification patterns as a middle language for mapping, engineers can keep
on using control model-based design to create components that have explicit
control properties specifications. Then, the output of the mapping (properties
described using the specification pattern) can be used as an input to a model-
based checking tool for verifying that the control properties still hold. Thus,

16 CHAPTER 1. INTRODUCTION

explicit specifications of the desired control properties are provided in the
software phase as well. If adjustments are presented later in the software
phase, or the software code is reused, we have explicit specification in the
software phase of desired behavior to reaffirm the correctness of the controller
component.

We verified our approach using a case study inspired by Scuderia Ferrari (F1)
engineering process [66]. We illustrated the usage of our approach by mapping
the control property, stability, to a specification pattern that syntactically
coincides with it. To verify that the syntactically mapped property holds the
same semantic as the control property, we provided the verification process
shown in Fig. 1.9. We provided an online replication package [67] of our
verification experiment for the community to take inspiration and develop
further the suggested mapping. Our work shows promising results in supporting
the usage of model-driven approaches across different development phases while
keeping confidence. We illustrate that using the right common-ground language
is a key factor for that.

1.5 Conclusion

Promoting and adopting model-driven engineering practices have been on the
rise in the robotic community to improve reusability and maintainability of
systems [33,51,68-72]. This thesis investigate model-driven approaches from
multiple angles that contribute to building better robotic systems.

The first angle is behavior models that contribute to high-level system
abstraction, a corner stone requirement of model driven engineering. Behavior
models provide an abstraction of the robotic missions. The coordination of the
different skills is represented by them, and the skills are typically programmed
at a relatively low level of abstraction. We started by building knowledge on
the characteristics of behavior models in popular robotic implementations and
open-source projects. Our results show DSLs adopting software design principle
and model-based design approaches seem well received in the robotic community.
We have observed aspects of the modeling DSLs that pose interesting opportu-
nities to improve. Our analysis of behavior models from open-source projects
contributed to building an understanding of core-structural characteristics of
models and code-reuse patterns in practice.

The second angle is structural models, another high-level abstraction model,
but for the structure of a system. Our goal was to build knowledge on the
characteristics of a light-weight tool that creates a comprehensive view of the
system without the need of high expert-knowledge in programming. Our work
shows promising results for using interactive visualization supported by easy
navigation techniques that equally support features and structural components.
Our pilot evaluation spotted potential improvements and limitations of such
tool.

The final angle is guaranteeing confidence in system behavior. When de-
signing self-adaptive robotic systems, the usual workflow of engineers involves
using model-based approaches in the control design phase and software imple-
mentation phase of the development process. The correctness of properties
from control design phase is often unknown when moving to the software

1.6. FUTURE WORK 17

implementation phase. We provided an approach to verify properties while
keeping the usual workflow. We proposed a bottom-up approach to mapping
control properties syntactically to software ones using specification patterns.
Our evaluation of the approach shows promising results on the applicability
of our approach for the stability property, a common control property. We
contributed an approach that supports using model-based design in control
phase and model-based checking in the software implementation phase while
reaffirming properties.

1.6 Future Work

This work paves the way towards building reusable, verifiable, and easy to
communicate robotic missions and systems. Up to this point, we have built
an understanding of the current status of used model-driven approaches in
robotics. We have spotted multiple opportunities for us to contribute to better
robotic systems using such software engineering approaches. In the followings,
we briefly describe what we foresee as a continuity of our work.

We intend to support the generation of mission descriptions from behavior
trees and vice-versa. During our analysis of behavior models solutions, we
noticed there exist no clear guidelines for creating behavior tree models from
mission descriptions—moving from problem domain (mission requirements)
to solution domain (mission specification using behavior trees). In order to
generate such guidelines, existing models need to be clearly described and
patterns should be extracted from the description (for which proper datasets
need to be created — a challenge of its own). During our qualitative analysis
of behavior tree projects, missions were rarely described. Thus, we envision
creating the required dataset by building on our RQ1 dataset. By creating
such dataset, we can extract specification patterns that could be used in
system verification through model checkers, simulators or planners [26]. In
addition, the combination of mission requirements and mission specification
using behavior trees allow clear communication with different stakeholders and
facilitate reusing similar parts of missions.

We also plan on expanding the knowledge of designing light-weight tool
for explicit feature representation by applying a mixed-method evaluation of
FeatureVista with multiple participants. In particular, we want to collect and
contrast results of a narrative data (e.g., think aloud protocol) with numerical
data (e.g., metrics describing performance to complete well defined tasks). The
results of such study could provide insights and lessons to improve such tools.

Finally, we want to facilitate better communication between people of dif-
ferent backgrounds involved in designing robotic missions. During a discussions
with researchers from user experience (UX) and human-robot interaction HRI,
we noticed the design phase output for designing robotic missions are often
dropped later in the development process by roboticists. Also, a challenge of
communication among different stakeholders due to lack of common ground was
mentioned. We want to support the usage of design stage output into the work-
flow of developing robotic systems, instead of just having them on the shelf. We
envision building a cross-disciplinary common language to improve communica-
tion across different stages. We also aim at providing guidelines that promotes
the usage of studied model-driven approaches in facilitating the communication.

18

CHAPTER 1.

INTRODUCTION

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Introduction
	Research Focus
	Background
	Model-driven Engineering in Robotics
	Behavior Models:
	Structural Models

	Research Methodology
	Research Results
	Conclusion
	Future Work

	Paper A
	Introduction
	Background
	Methodology
	Behavior Tree Languages
	Behavior Tree Models

	Behavior Tree Languages (RQ1)
	Language Subject Matter
	Language Design and Architecture

	Behavior Tree Models (RQ2 & RQ3)
	Threats to Validity
	Related Work
	Conclusion

	Paper B
	Introduction
	Background
	Methodology
	Identifying Languages and Concepts (RQ1)
	Language Implementations (RQ2)
	Identifying Languages Projects and Analysis (RQ3)

	Language Concepts (RQ1)
	Behavior Trees: Concepts and Semantics
	State Machines: Concepts and Semantics

	Language Implementation (RQ2)
	Behavior Trees: Language Design and Architecture
	State Machines: Language Design and Architecture

	Behavior Tree and State Machine Models (RQ3)
	Language Popularity
	Characteristics of Models
	Reuse

	Threats to Validity
	Related Work
	Conclusion

	Paper C
	Introduction
	FeatureVista
	FeatureVista in a Nutshell
	Visual Properties

	Pilot Evaluation
	Related Work
	Conclusion and Directions

	Paper D
	Introduction
	Background and Motivation
	System Model Design
	Modeling Stability as a SE Property
	Checking the Mapping
	Related Work
	Conclusion and Future Work

	Bibliography

