51,487 research outputs found

    The polynomial-time hierarchy

    Get PDF
    AbstractThe polynomial-time hierarchy is that subrecursive analog of the Kleene arithmetical hierarchy in which deterministic (nondeterministic) polynomial time plays the role of recursive (recursively enumerable) time. Known properties of the polynomial-time hierarchy are summarized. A word problem which is complete in the second stage of the hierarchy is exhibited. In the analogy between the polynomial-time hierarchy and the arithmetical hierarchy, the first order theory of equality plays the role of elementary arithmetic (as the ω-jump of the hierarchy). The problem of deciding validity in the theory of equality is shown to be complete in polynomial-space, and close upper and lower bounds on the space complexity of this problem are established

    On space efficiency of algorithms working on structural decompositions of graphs

    Get PDF
    Dynamic programming on path and tree decompositions of graphs is a technique that is ubiquitous in the field of parameterized and exponential-time algorithms. However, one of its drawbacks is that the space usage is exponential in the decomposition's width. Following the work of Allender et al. [Theory of Computing, '14], we investigate whether this space complexity explosion is unavoidable. Using the idea of reparameterization of Cai and Juedes [J. Comput. Syst. Sci., '03], we prove that the question is closely related to a conjecture that the Longest Common Subsequence problem parameterized by the number of input strings does not admit an algorithm that simultaneously uses XP time and FPT space. Moreover, we complete the complexity landscape sketched for pathwidth and treewidth by Allender et al. by considering the parameter tree-depth. We prove that computations on tree-depth decompositions correspond to a model of non-deterministic machines that work in polynomial time and logarithmic space, with access to an auxiliary stack of maximum height equal to the decomposition's depth. Together with the results of Allender et al., this describes a hierarchy of complexity classes for polynomial-time non-deterministic machines with different restrictions on the access to working space, which mirrors the classic relations between treewidth, pathwidth, and tree-depth.Comment: An extended abstract appeared in the proceedings of STACS'16. The new version is augmented with a space-efficient algorithm for Dominating Set using the Chinese remainder theore

    Computational complexity of ecological and evolutionary spatial dynamics

    Get PDF
    There are deep, yet largely unexplored, connections between computer science and biology. Both disciplines examine how information proliferates in time and space. Central results in computer science describe the complexity of algorithms that solve certain classes of problems. An algorithm is deemed efficient if it can solve a problem in polynomial time, which means the running time of the algorithm is a polynomial function of the length of the input. There are classes of harder problems for which the fastest possible algorithm requires exponential time. Another criterion is the space requirement of the algorithm. There is a crucial distinction between algorithms that can find a solution, verify a solution, or list several distinct solutions in given time and space. The complexity hierarchy that is generated in this way is the foundation of theoretical computer science. Precise complexity results can be notoriously difficult. The famous question whether polynomial time equals nondeterministic polynomial time (i.e., P = NP) is one of the hardest open problems in computer science and all of mathematics. Here, we consider simple processes of ecological and evolutionary spatial dynamics. The basic question is: What is the probability that a new invader (or a new mutant) will take over a resident population? We derive precise complexity results for a variety of scenarios. We therefore show that some fundamental questions in this area cannot be answered by simple equations (assuming that P is not equal to NP)

    Robust Simulations and Significant Separations

    Get PDF
    We define and study a new notion of "robust simulations" between complexity classes which is intermediate between the traditional notions of infinitely-often and almost-everywhere, as well as a corresponding notion of "significant separations". A language L has a robust simulation in a complexity class C if there is a language in C which agrees with L on arbitrarily large polynomial stretches of input lengths. There is a significant separation of L from C if there is no robust simulation of L in C. The new notion of simulation is a cleaner and more natural notion of simulation than the infinitely-often notion. We show that various implications in complexity theory such as the collapse of PH if NP = P and the Karp-Lipton theorem have analogues for robust simulations. We then use these results to prove that most known separations in complexity theory, such as hierarchy theorems, fixed polynomial circuit lower bounds, time-space tradeoffs, and the theorems of Allender and Williams, can be strengthened to significant separations, though in each case, an almost everywhere separation is unknown. Proving our results requires several new ideas, including a completely different proof of the hierarchy theorem for non-deterministic polynomial time than the ones previously known

    The Descriptive Complexity of the Deterministic Exponential Time Hierarchy

    Get PDF
    AbstractIn Descriptive Complexity, we investigate the use of logics to characterize computational complexity classes. Since 1974, when Fagin proved that the class NP is captured by existential second-order logic, considered the first result in this area, other relations between logics and complexity classes have been established. Well-known results usually involve first-order logic and its extensions, and complexity classes in polynomial time or space. Some examples are that the first-order logic extended by the least fixed-point operator captures the class P and the second-order logic extended by the transitive closure operator captures the class PSPACE. In this paper, we will analyze the combined use of higher-order logics of order i, HOi, for i⩾2, extended by the least fixed-point operator, and we will prove that each level of this hierarchy captures each level of the deterministic exponential time hierarchy. As a corollary, we will prove that the hierarchy of HOi(LFP), for i⩾2, does not collapse, that is, HOi(LFP)⊂HOi+1(LFP)

    The word problem for omega-terms over the Trotter-Weil hierarchy [extended abstract]

    Get PDF
    © Springer International Publishing Switzerland 2016. Over finitewords, there is a tight connection between the quantifier alternation hierarchy inside two-variable first-order logic FO 2 and a hierarchy of finite monoids: theTrotter-Weil Hierarchy. The variousways of climbing up this hierarchy include Mal’cev products, deterministic and codeterministic concatenation as well as identities of ω-terms.We show that the word problem for ω-terms over each level of the Trotter-Weil Hierarchy is decidable; this means, for every variety V of the hierarchy and every identity u = v of ω-terms, one can decide whether all monoids in V satisfy u = v. More precisely, for every fixed variety V, our approach yields nondeterministic logarithmic space (NL) and deterministic polynomial time algorithms, which are more efficient than straightforward translations of the NL-algorithms. From a language perspective, the word problem for ω- terms is the following: for every language variety V in theTrotter-Weil Hierarchy and every language varietyWgivenbyan identity of ω-terms, one can decide whether V ⊆ W. This includes the case where V is some level of the FO 2 quantifier alternation hierarchy. As an application of our results, we show that the separation problems for the so-called corners of the Trotter- Weil Hierarchy are decidable

    Stochastic Schroedinger equation from optimal observable evolution

    Get PDF
    In this article, we consider a set of trial wave-functions denoted by | Q \right> and an associated set of operators AαA_\alpha which generate transformations connecting those trial states. Using variational principles, we show that we can always obtain a quantum Monte-Carlo method where the quantum evolution of a system is replaced by jumps between density matrices of the form D=∣Qa><Qb∣D = |Q_a> <Q_b|, and where the average evolutions of the moments of AαA_\alpha up to a given order kk, i.e. , $< A_{\alpha_1} A_{\alpha_2} >$,..., , are constrained to follow the exact Ehrenfest evolution at each time step along each stochastic trajectory. Then, a set of more and more elaborated stochastic approximations of a quantum problem is obtained which approach the exact solution when more and more constraints are imposed, i.e. when kk increases. The Monte-Carlo process might even become exact if the Hamiltonian HH applied on the trial state can be written as a polynomial of AαA_\alpha. The formalism makes a natural connection between quantum jumps in Hilbert space and phase-space dynamics. We show that the derivation of stochastic Schroedinger equations can be greatly simplified by taking advantage of the existence of this hierarchy of approximations and its connection to the Ehrenfest theorem. Several examples are illustrated: the free wave-packet expansion, the Kerr oscillator, a generalized version of the Kerr oscillator, as well as interacting bosons or fermions.Comment: 13 pages, 1 figur

    Space Efficiency of Propositional Knowledge Representation Formalisms

    Full text link
    We investigate the space efficiency of a Propositional Knowledge Representation (PKR) formalism. Intuitively, the space efficiency of a formalism F in representing a certain piece of knowledge A, is the size of the shortest formula of F that represents A. In this paper we assume that knowledge is either a set of propositional interpretations (models) or a set of propositional formulae (theorems). We provide a formal way of talking about the relative ability of PKR formalisms to compactly represent a set of models or a set of theorems. We introduce two new compactness measures, the corresponding classes, and show that the relative space efficiency of a PKR formalism in representing models/theorems is directly related to such classes. In particular, we consider formalisms for nonmonotonic reasoning, such as circumscription and default logic, as well as belief revision operators and the stable model semantics for logic programs with negation. One interesting result is that formalisms with the same time complexity do not necessarily belong to the same space efficiency class
    • …
    corecore