
Theoretical CompL;ter Science 3 (1977) l-22.
@ North-Holland Pu blishi ng Company

Larry J. STOCKMEYER
Mathematical Sciences Department, IBM Thomas J. Watson Research Center,
Yorktown Heights, N. Y. 10598, U.S.A.

Communicated by A. Meyer
Received April 1975

The ;Jynomial-time hierarchy is that subrecursive analog of the Kleene arithmetical
hierarchy in which deterministic (nondeterministic) polynomial time plays the role of recursive
(recursively enumerable) time. Known properties of the polynomial-time hierarchy are summar-
izr i. A word problem which is complete in the second stage of the hierarchy is exhibited. In the
analogy between the polynomial-time hierarchy and the arithmetical hierarchy, the first order
theory of equality pldys the role of elementary arithmetic (as the o-jump of the hiei-arch!,). The
problem of deciding validity in the theory of equality ir, shown to be complete in polynomial-
space, and close upper and lower bounds on t/J; E space complexity of this problem are established.

1. Introduction

One goal of complexity theory is ts be able to characterize the amount of
computaGona1 resource (for example, time or space) required to solve specific
problems. For a number sf well-known problems, there are presently large gaps
between known upper and lower bounds on the requisite time and space. For
example, it is not known if there exists an algorithm which recognizes the satisfiable
Boolean formulas and which runs within time bounded by a polynomial in the
length of the input.

Failing to find close explicit upper and lower bounds on the complexity of a given
problem, one would nonetheless like to classify the problem as beiing complete in
s0me iark;er class of y -rob!ems; see, fsr example, 12, 6, 8, 12, 13, 15, 24, 251. Such a
result re!&es the comnlexity of the particular problerr to that of the larger class as a c

whole. For exampie, since Cook [6] has shown that the set of satisfiable Boolean
formulas is complete in NP with respect to polynomial-time reducibility, it fo!l~vs
that the set sf satisfiable formulas can be recognized in minais’tic polynonlial

ly if P = JVP (w ere 9 <NY) is t ages r(:cognizable by

stic (nondeterministic) Turing machines vdithin e ?~~~.~~~~j~~ in lkle

“Portions of this work were re
National Science Foundation Gr

s work was suppljrted in part by a
rant 6.8-34679.

1

2 L.J. Stockmeyer

length of the input). The large number of common computational problems which
are coml>lete in &P testify to the importance of this question of whether 9 = JV’~?

One pury[ose of the current work is to describe an summarize several basic
properties & a “hierarchy” of classes of sets called the polynomial-to’me hierarchy
(p-hierarchy). Briefly, the P-hierarchy is that subrecursive analog of the Kleene
arithmetical hierarchy (see [18]) irt which deterministic polynomial time plays the
role of recukrsive time. We are interested in studying the P-hierarchy mainly
because we feel that it will prove technically useful in classifying (by completeness
results) certain recursive problems just as the arithmetical hierarchy has proven
useful in classifying certain nonrecursive problems.

The classes of the P-hierarchy, Zc, I?$ and Af: for integer k 2 0, can be defined
as follows (complete definitions appear in Section 3): Z$ = floP = A Op = 9; sf+t
(Af+J is, the class of sets accepted within polynomial time by nondeterministic
(deterministic) Turing machines with oracles (cf. 14, 61) for sets in XI; and UP+, is
the class of sets whose complements are in z[+,. In particular, note that x$= Jg,
and~5:~~lir~~A~+lc~~+lr\nP+1 . The relation “set A is accepted within polyno-
mial time by a nondeterministic (deterministic) Turing machine with oracle B” is
the analog of the relation “A is r.e. (recursive) in B” in the arithmetical hierarchy.

For example, one problem for which the P-hierarchy might provide a precise
classificlation is the classical minimization problem for Boolean formulas (see [lo]).
This problem can be cast as a language recognition problem by defining MIN to be
the set of all pairs (F, k) such that F is (the encoding of) a Boolean fdrmula in
disjunctive normal form, k is (the binary representation of) an integer, and there is
a disjunctive form formula G equivalent to F, such that G contains k or fewer
occurrences of variables. It is not hard to see that MIN E Xf. Somewhat informally,
this is true because, given an input (E, k), a nondeterministic Turing machine can
“guess” a Boolean formula G containing at most k occurrences of variables, and
consult an oracle to determine whether or not the formula (F- G) is a tautology.
It is easy to see that the set of nontautologous formulas belongs to .ACP = 27 (see
fti]), and therefore MIN belongs to Xg.

II: is not known however if MIN E 2’: U lily. Indeed, it is not known if J$ f 22, or
if ZIZ Zg+, for any k a 0. However, one result (Theorem 3.2) states that if the
hierarchy collapses at the k th stage (i.e., sg = Xg+,), then it collapses entirely above

e., Zf: = 27 for all j 2 k). In particfcnlar, 2X+ 9 some k 2 1,
y ostensibly enlarging the class of sets for whit e 9 implies

eq# Np, the P-hierarchy may be useful in settling this question.
Section 4, we consider the existence of complete sets in the P-hierarchy.

fwugh we do not know if MIN is complete i 2’4, we do exhibit a simple
word problem (the inequivalence problem fs
P-hierarchv provides a precise classification; th d ”
in

The polynomial-time h&arch) 3

paper, to provide new examples of sell: which are complete in %SPACE.

is the class of languages recognizable by deterministic Turing machines
within polynomial space.) In fact, these results revea! &ri interesting relationship
between the p-hierarchy and polynomial Fpace, since these corn lete sets can be

viewed as the natu log for the g-hierarchy of @(WI (the w-jump of @) for the
arithmetical hierar ne of these sets, denoted lEQ, is the set of sentences
which are valid in the first-order theory of equality. We show that IEQ is complete

with respect to logsgace-reducibility. Although it is not known if 1EQ

ized in de inistic polynomial time, a consequence of completeness
is that 1E -9 iff .9 = SSPACE.. We also establish a lower bound

of cn ‘I2 on the space required (infinitely often) to recognize 1EQ.

2. Preliminaries

Familiarity w’+k) the basic concepts of formal language theory and autor,,ata
theory is assumed; see, for example, [l I]. A more detailed discussion of rhis
preliminary material can be found in [24, Chaps. 2, 31. We only outline Lhe
necessary concepts here.

If @ is a finite alphabet, O* denotes the set of all words over 0 including the

empty word A. 69“ = o 1 denotes the length of the word o. denotes the

nonnegative integer , ek ={w E O*: 101 = k}. Most of the computa-
tional problems considered here concern the recognition of a set of worlds (c

b’, for some finite alphabet 8. If A C O’, then A = 9.’ - iI-, ahc
ng clear from context. If % ir, a class of languages, then co-%’ =

.;A: L&E%}.
Our models of computation are nondeterministic and deterministic Turing

machines [I Ii which have, in addition to the read/write work tapes, an input tape
and an outpzd tape. The input tape is scanned by a 2-wsy read-only head, and LIPe
output tape by a l-way write-only head. Call these models simply Turing machines.
When used for language recognition, certain states of the machine are designated as

es. An accepting computation of a Turing machine A4 on an input.
word x is a computation of A4 which starts with the word x written on the input
tape with all work rapes blank, and terminates in an accepting state. The time of ;a

is its length. The space of a computation is the number of tape squares
4 the computation by heads on the work tapes.

Precise d4initions are not ere since our results are invariant under the
differences in the definitionso hine!; and their computations found in the

4 L.J. Stockmeyer

Definition. L&t 0 be a finite alphabet, A C_ O”, 1M be a Turing machine, and
F:N+N. M accepts A within time F(n) (within space F(n)) iff for all x E 0’:

t(i) If x E A then there is an a.ccepting computation of M on input x such that
the time (space) of the computation does not exceed F(1 x I); and

(ii) if xe A then there is no acceptmg computation of on input X.

Similarly, for finite alphabets (0 and A, a deterministic ‘luring machine ccruriputes
the function fi f: O+ -+ A +, within time (spuce) F(n) iff for each input x E 0’: (i)
the time (space) of the unique computation of iM on input x does not exceed
F(1 x I); and (ii) the computation produces f(x) on the output tape and then halts.

Let NTIME(F(n)) (DTIME(F(n))) be the class of languages accepted by
nondeterministic (deterministic) Turing machines within time F(n). Let
NSPACE (F(n)) (DSPACE (F(n))) be the class of languages accepted by nondeter-
ministic (deterministic) Turing machines within space F(n). In particular, let

P=
00

U
k=l

DTIME(nk); JKP= 5 NTIME(nk);
k=l

P-SPACE = fi DSPACE(nk).
k-1

Let logspace be the class of functions computable by deterministic Turing
machines within space log II. The base of the logarithm is immaterial to our
discussion; for definiteness it is convenient to define log n = [log2 n] if n > 1, and
log 1 = 1, where f~] is the least integer not less than t.

The following type of efficient reducibility plays a key role in the sequel. Since
this reducibility corresponds to the “many-one” reducibilities of recursive function
theory, following a definitional suggestion of Knuth [14] we use the term trunsfor-
mation for functions which reduce one set to another.

ebition, Let A c O+ and B c A + for finite alphabets 0 and A. A transforms to B
within logspare via f (A Q!, B via f) iff f is a transformation, f : O+ --) A +, such that
f E Zogspace and x G A - f(x)E B for all x e W.

emark. Since bgspace is closed under composition [12, 251, slog is a transitive
relation on sets of words. It is well-known that a Turing machine which computes
within space log n also computes within polynomial time; therefore A Glog B
implies A is polynomial-time-transformable to B in the sense of Karp [13]. Lind
[lG] gives a machine independent characterization of togspace by which one can
gi-de rigor0 us proofs of membership in logspace. Although, for the transformations
described in this paper, we at most sketch proofs of membership in logspace.

be a set and %’ be a class of sets.
G log for all ~4 e %.

T&e polynomial-time hierarchy

(2) B is log-complete in % iff
(i) % slog B, and

(ii) B E %.

iabtime hierarchy

In this section, we define the Shierarchy, summarize several of its known
properties, and state some open questions. As outlined in the introduction, the
P-hierarchy is defined in terms of polynomial-time bounded oracle machines. Our

notion of oracle machine is the query machine of [4, 61. A query mtzchine is a
(nondeterministic or deterministic) Turing machine with a distinguished work tape

called the qzcery tape, and three distinguished states, the query slate, the yes slate,
and the PW &Late. The computations of a query machine depend not only on the

input, but also on a given se{ of words called the oracle. The actior?s of a query
machil et: with oracle B are identical to those of Turing machines with one

exception. If the machine enters its query state at some step, the machine next
enters its yes state if the nonblank portion of the query tape contains a word in B;
otherwise the machine next enters its no state. An oracle machine A4 operates
within time T(n) iff, for every input x, every computation of M (relative to any
oracle) halts viithin T(1 x I) steps. Let M(B) denote the language accepted by oracle
machine M with oracle B. ‘(The dlefinition of acceptant; for oracle machines is

analogous to that for ordinary Turing mashin as.) The following notation of [27]
defines the analogs in the P-hierarchy of the relations “recursive in” and “r.e. in”
in the arithmetical hierarchy.

Definition. (a) Let B be a set of words.

P(B) (JW(B)) = {M(B): M is a deterministic (nondeterministic) oracle

machine which operates within time p(n) for
some polynomial p(n)}.

or a class of sets %,

g(W= U WV, NP(%‘)= CJ N!?(B).
BE% BE%

The polynomial-time hierarchy was defined previously by Meyer and the author
in [17]; the notion was also known to Karp 1131.

. The polynomial-time hierarchy (P-hierarchy) is {.Z[, Dt. At: k 2 I)),
where

6 LJ Stockmeyer

Also define 9%’ = UL 22.

In particular, note that 27 = JV’CP and 77k= co-JV’!?. Since obviously B E P(B)
and iP(B)C NiP(B) R co-NP(B) for any set B, the P-hierarchy possesses the
following inclusion structure:

It is not known however if these inclusions are proper. The following questions
are open:

(i) Does Z{# .Cpk+, for all k 2 O?
(ii) Does Xt# 77: for all k 2 l?

(iii) Does A f # Zpk n l7{ for all k 2 l?
Considering the analogs of these questions for the arithmetical hierarchy [18], (i)
and (ii) are true, while (iii) is false (taking the analog of aQ to be the class of sets
recursive in B for some B E C k-l).

The 9-hierarchy can be characterized as those languages definable by polyno-
mial bounded quantification over the variables of relations in 9. This characteriza-
tion further illuminates the analogy between the P-hierarchy and the arithmetical
hierarchy, and facilitates the proofs of certain properties of the P-hierarchy.

An n-ary relation on words is a subset of O+ x 0’ x . . a x O+ (n times) for some
finite alphabet 0. If R is such a relation and %’ is a class of languages, then by
R E % we mzan that the language {x1 # x2 # . . . # x,: R(x,, x2,. . . , x,))} belongs
to % -for some new symbol # g 0.

eorem 3.1 (see [25]). Let 0 be a finite alphabet and A c O+. A E Jcf i” there is
a polynomial p(n), an alphabet J’, and a (k + I)-ary relca tion R E 9 such that for all
XEO’,

where the quantifiers alternate (so Qk is 3 (V) if k is odd (doen)), and yf, - l . 9 y, range
over a&l words in r’ of length not exceeding p(1 x 1).

Similarly, A E 77:: iff for all x,

x E A jff (vyl) (3~2) 0fy.t). . . (Qlyk) [R 0, ~1, ~2, . . . 9 yk)],

is odd (even)>.

ee

The polynomial-time hierarchy 7

As mentioned above, we have not been able to prove proper inclusion between
successive classes of the P-hierarchy. However, proper inclusion between sOPne
pair of successive classes implies P# JW as the following shows.

heorem 3.2. Assume Sg = PI{ for some k 3 1. Then zip = l7j’= 2: for all j 2 k.

roof. Assume Zf = l7f for some k 2 1. The proof is by induction on j. The basis

j = k is immediate. Assume for induction that 27-I = Q’-, = Zfl for some j > !c. -We
show that JSrc Z! and thus Zp= Zf. Let A E 27. The following is an easy
consequence of Theorem 3.1: There is a 2-ary relation R E LQ’-, and a polynomial p
such that for all words x,

xEA iff (3y)[(y)+(x() and R(x,y)].

By inducticn, we have R E 2,g. Now A E C $ because, for k a 1, 2:: is closed under
the operation of polynomial-bounded existential quantification over variables of
relations [27, Proposition 21. This establishes &‘= 2:; thus als(;, Up = gI[by

definition. Cl

Corollary 3.3. (i) If 2; # Zg for some k 3 l- then 9 # JVP.
(ii) If {2[: k 2 0) contains infinitely marzy distinct classes, then 2Y$ # 2$+, for all

ka0

An interesting open question is whether P# JW implies 2:: # Z{+ I for all k.
Theorem 3.2 does not contradict the possibility that 9# JVY but the P-hierarchy
contains oaly a finite number of distinct classes.

Regarding these questions, it is important to note the work of Baker et at [4].
Following a suggestion of Meyer, they consider the P-hierarchy “relativized” to
arbitrary sets. If X is a set of words, they define

For each X, Theorem 3.2 holds for the %hierarchy relativized to X. The relativized
y may extend either zero levels, exactly one level, or at least two levels

above XII.” depending on which X is chosen [4]; that is, there exist recursive sets
A, B and C such that

However, Baker et al. [4] leave open the following question: Is there a set X such
that .Et”/=’ zl:,“, for all k 2 O?

here is a natural correspondence between SW and the sets of finite

structures of formulas written in second-order predicate calculus. T

corres ence shown etwee .KP and generaliz

8 L.J. Stockmeyer

k Z: l,, define an open second-order k-formuh to be a formula CT written in
second-order predicate calculus such that CT is in prenex normal form with all
sticond-order qziantifiers preceding all first-order quantifiers, UT has k - 1 alterna-
tions of second-order quantifiers with leading quantifier existential, and CF contains

at least onfi c U iree predicate variable an contains no free first-order variable.

k 3 I, let GSk be the set of &’ such tha pen second-order k-formula 0,

& is the set of finite structures in which gin [9] describes an encoding E

of sets of finite structures to languages, and proves that
Combining this result and Theorem 3.1, it is easy o show that, for each k, A$ E GSk
iff E(d) tz X$. It is also true that, for each k 3 , there is an .# E GSk such that

E(d) is log-complete in 2:. In particular, it then follows that, for each k, 25: # sf+,
iff GS,# GZL.

We close this section by noting the following upper bound on the complexity of
sets in the &hierarchy.

f. As Baker et al. [4] point out, JVY ($&SPACE) = P-SPACE is an immediate

of the result of Savitch [19] that NSPACE(S(n)) c
(n)>‘). It then follows by induction on k that z’f: c P-SPACE for all

k. LI

It is not known if the containment of Theorem 3.4 is proper. H:)wever, Wrathall
[27] observes that if ?%’ = P-SPACE then the p-hierarc

A variety of well-known combinatorial optimization problems and decision
problems from automata theory and logic have been classified as being complete in
certain complexity classes such as JVY and %SPACE with respect to efficient
transforms such as slog [6, 8, 13, 15, 24,, 251. Even though it is not known whether
Jxf 2L, w feel that the g-hierarchy will prove technically useful in the
classification of other problems. For example, as mentioned in the mtrodurtion: the
minimization problem for oolean formulas (viewed as a recognition problem)

o _Z$‘, but is not known to belong to JV~ U co-JW? Possibly the
oblem is log-complete in 24, and this remains an intriguing open question.

s section is to exhibit a simply defined word proble
er e.rpressions (de ned b@zlow), whit

The polynomial-time hierarchy 9

the satisfiability problem for Booezan formulas as a question involving existential
quantification over the variables in formulas, these complete sets are the extensions
of the satisfiability pr ernating quantifiers.

We are concerned oolean formulas involving cloubly subscripted variable

S)WhdS Xij for i, nt symbds 0 and 1, operation symbols - , A, v, +, ++,

and parentheses. Assume these symbols are distinct.

olean formdas.
nd @E{A,v,+,++}, then -F and

(iii) Nothing is a Boolean formula unless implied by (i) or (ii).

If V is a set of variable sym ols, a V-assignment is a mapping from V to {0,1}. If
F is a Boolean formula containing t e set V of variable symbols, tken F defines, in

the obviccls way, a function mapping V-assignments to (0, 1); - , A, v, ++ and ++
are interpreted as the Boolean operations com?lementation, conjunction, disjunc-
tion, implication and equivalence, respectively; and 0 and 1 are interpreted as

ants. A literal is eitker x or - x where x denotes a variable symbol.
rr,ula F is in conjunctive normal form iff F is a conjunction of

disjunctions of literals. F is in disjunctive normal form iff F is a disjunction of
conjunctions of literals. Let CNF (DNF) denote tkc set of Boolean formulas in
conjunctive (disjunctive) normal form. Let 3CNF denote the set of F E CNF suck
that F is C6 A C. A . . L A C,,, where, for 1 G i G m, Ci is a disjunction of at most three
literals. 3DNF is defined dually. (When writing formulas within the text, parentk-
eses are deletecl when not needed to determine the precedence of operationc) Jn
describing Boolean formulas, we write Xi for the sequence of variable symbol;

Xi13 Xi23 Xi39 . . . ,3Ki for 3~~~3~~~. . . ; etc. These abbreviations do not appear in tke

Boolean formula emselves. We use the notation F(X,, . . . , Xk), G(X,, . . . , rt,),
etc. to denote a olean formula containing r’10 variable symbol xii witk i > k.

Boolean formulas are encoded as words over a linite alphabet by encoding
nbols as words over tke alphabet (x, 0, 1, # }; Xi, is encoded as xw, # OJ~

where wi, (8 \ E i and j. Where no con

can arise, we its encoding, and wi
nction it defines. as a set of words

et k 21

k): is a oolean for la, an

10 L.J. Stockmieyer

lreorem 41.1. Let k 2 1.

(1) J!& is log-complete in y p 4~ k-
(2) &f k is odd (even), then Bk n 3CNF (resp., & n 3 DNF) Js log-complete in 2 g.

Theorem 4.1 was first nc?ted in [17, 251. A proof of part (l), by a direct
“arithmetization” of query machines, is given in [17]. Wrathall [27] gives a simpler
proof of Theorem 4 _ 1, using Theorem 3.1.

43ne value of the sets Bk is to serve as starting points for further transformations.
AS the work of Karp [131 demonstrates, sets which are known to be complete in a
class often facilitate proofs that other sets are complete in that class. For example,

to show that 2’; +og A for some set A, it suffices to show Bz n DNF <lag A (since
< - log is transitive). Using & f1 DNF in this way, we prove that the inequivalence
problem for integer expressions is log-complete ;in 24. Even though this decision
problem may seem somewhat contrived, it does serve to illustrate how one might so
utilize BZ f7 DNF. Possibly this will suggest further examples of problems which are
complete in 21 or n$ for some k 3 2.

Integer expressions a.re syn;iaetically similar to the familiar regular expressions of
finite automata theory [2], but they define sets of nonnegative integers rather than
sets of words.

r&ion. If 2 E N, let bin(t) r: (0, l}* denote he binary representation 01 Z.
We define the class of integer expressions and simultaneously define the map L

which maps integer expressions to subsets of N.
(i) If z E NT then bin (2’) is an integer expression, and L (bin (2)) = {z F.

(ii) If E and F are integer expressions.. then (E U F) and (E + F) are Ctteger
expressions, and

L((E U F)) = L(E) u L(F),

L((E + F)) = (m

Let N-INEQ = {(E, F):

eorern 3. N-INIF=,Q is

t n : m E L(E) and IE e L(F)}.

E and F are &trger expressions and L(E) # L(F)}.

log -complete in C p.

. (1) N-VJEQ E 2;. Given z E and integer expression E, we first deline a
“proof” that z E L(E) recursively as follows: bin (z) is a proof of (z, bin (2)); iB’ 19, is
a proof of (zl, E,), Pz is .S proof of (zZ, Ez), and z = zI i- zz, then (P, -t PJ is a proof
o: (z,(E, + &)); if PI is a proof of (2, E), then P, is a proof of (z,(E U

(s, (F U E)) for any inte r expression F. Let Q be the relation Q(
x= bin(z) for some z and R is a proof of (P, E). It is not hard

the str r-e o i: E en

T+e polynomiai- time hierarchy 11

/bin(z)] 6 IE 1; (ii) if P is a proof of (2, E), then 1 P 1 s 1 E I. Therefore, for alI
integer expressions E, and Ez,

(E,, E2) et N-IN

(3.x) [(iPI) [c?(x, Et, PI)] c) - (a&) [Q(x, Ear &)I],

where quantifiers range over words of length s I(&, &)I. Standard manipulation
of quantifiers and Theorem 3.1 now imply that

(2) zz Gl*g MNEQ. By Th, porem 4.1, it suffices to show that Bz n DNF slog N-
INEQ via some transformation g. We describe a g which accomplishes this.

Let G be a given input. If Gbf DNF or G contains a variable X,j with i > 2, then
GfZ BZ n DNF, and we can take g(G) = (0,O). (The test that G is a well-formed
Boolean formula can be performed within space log (I G I) by well-known methods;

see [3].)
Thus .Jve rna:r assume G = G@&, X2) E DNF. For simplicity (and without loss of

generality> assplme that, for i = 1,2 and j > 1, if G contairs xii then G contains
Xi, j--l* Let ,. = max(j: Xfj or X 23 appears in G}. Say G = C, v Cz v . . . v C,,,, where,
for 1 s i s m, Ci is a conjunction of literals. We may als3 assume that, for all i, j
and k, Ck does not contain both xii and - xii, and Cti doe:; not contain a constant
symbol 0 or 1. If n! is a literal, define [cu G Ck] to be I d N appears in Ck ; and
[cuEC&obeOi a! &oes not appear in Ck. For each literal cy define I(a) t’lV to be

I(a)= &(YEC#bL, where b = 2’+lngn.
.“. =I

Ldet a = XT= 1 b“, and for 1 s k s m let Fk be the integer expression

((ban(bk)UC))+Ibin(bk)UO)+ . . . +(bin(b*)U9)).

where the term (bin (b’) lo 0) appears 2n - f times. (IJnnecessary parentheses have

been omitted.)
Finally de$Rne integer expressions

E, -= (2 (bin (a - 1(x1,)) CI bin (a - I(--x,,)))+bin(na)),

n E2 = (bin (I&)) U bin (I(- x1,))) +
j=l

T;Tow note four facts about E, and E,. In (a)-(d) Mow.
y < b’“+‘, let al, a?,. . . ,

O~ak<b.I’ori=l,2an~l
some j either (xi! appears in

s k s m, we say that an X,-assignment kills rC, i
ck and Xii is assigned value 0) or (- Xii a

L. J. Stockheyer

(b) For each XI-assignment there is a y E LI&) such that, for 1 s k 3; m,
Q~ =:= 2n iff the assignment does not kill Ck.

(c) For each y E L(Ez) there is an X,-assignment such that, for 1 G k s m, if
ak = 2n then the assignment kills Ck.

(d) Let A2 be an X2-assignment and y be an integer such that n s ak 6 2n, and
ak = & ?z implies that A2 kills C$, for 1 G k G m. Then y e L(E2).

For example, to prove (a), choose any “parse” of El as a sum of integers such
that the sum equals y. Assign xlj = 0 if the integer a - I(Xlj) is chosen in the parse,
or assign X 1 j = 1 if the integer a - P(- Xl]) is chosen in the parse. The proofs of (b),
(c) and (d) are similar, and are left to the reader.

We now claim that

@%)@&)[G(& X2)= O] iff L(E,)C L(E2).

To verify this, first note that for any (X, CI X&assignment, G(X,, X2) = 0 ifI for all
k, 1 s k s m, the assignment k& Ck. Now the “only if” direetion of the claim is
easily proved from (a) and (d), while “if” follows from (b) and (c).

Therefore, we finally have

-L(J%)CL(Ez)

- ((E, u Ez), Ez) ES N-INEQ.

The required transformation g maps G(X,, X2) to ((El U E2), E2). The reader can
verify that g E logspace, which completes the proof. (Cf. the proof of Lemma 6.3
,.uhere we argue that a certain transformation belongs to logspace. Essentially the
szme argument applies to this g.) Cl

e o-j

Define

he natural analog of 8’“’ in the
eveals an interesting relationship

P-hierarchy and polynomial space.

5. NF are log-co

The polynomial time hierarchy 13

suffices to show that clog A. Thus one can avoid carrying out for each such A
the “arithmetization” of Turing mat nes by which we here show that 9-

The sets B, and B, n CNF have already proven useful in two

c~41 applications: Ladner [IS] has shown that the validity problem for certain
systems of modal logic is log-complete in P-SPACE; and Even and Tarjan [8] have
srxxvn that the set of graphs for which the first player has a winning strategy in a
“Shannon switching game on vertices” is log-complete in %SPACE.

It is convenient to prove %SPACE slog by modifications to the proof, given
in Section 6, that P-S ACE is transformable to the first order theory of equality
(Lemma 6.3). For the present, we only observe thse following.

Lemma 5.2. B, E DSPACE(n).

roof (sketch). Linear space is obviously sufficient to determine if a given input is
(the encoding of) a well-formed Boolean formula. Assume then that I’(X,, . . . , Xk),

some k 3 1, ES the input of length n. The deterministic Turing machine M checks if
3x,vx,. . . c?kXl([F‘(X,, . . . , mply by cycling, in the proper order,
through all possible assignments of oolean values to the variables of F. M
operates within space proportional to the space y1 sufficient to record the
assignment. The cla4cal constant factor “speedup” result [23, cf. 1 l] then gives the
conchrsion. q

6. The first or er theory of e

The proble&n of accepting B,, is computationally very similar to the problem of
decsiding validity in the first order theory of equality. (In fact, as implied by tk .:
results below, these two problems are equivalent with respect to sing .)

Let d;PIEodenote the set of formulas written in the first order predicate calcului

using only the binary relational symbol = , together with the usual logical
connectives A. v, - , + and -, quantifiers 3 and If, variables, and parentheses.
We use (multrply) subscripted letters U, o, w, y, z to denote variables. Similar to
Section 4, hese variables are coded into words over the alphabet

(u, Q M’, y, 230. 1, # 1; u2, h becoming u 10 # 110, etc. Let ZPrlEo denote the for-
mulas in JZ,,, which are in prenex normal form. A sentence is a formula containing
IICI free variables. Let 1EQ (PrlEQ) deilote the set of sentences in JZ’,F.O (resp.,
9 ,PrlEO) which are valid in [i.e., true in every model for] the theory of equality.

bviously, a
cardinality of its domain. See, f
terms.

res

14 L.J. Stockmeyfr

The proof is immediate from Lemmas 6.2 and 6.3 to follow.
It is well-known thati :EEQ is decidable because a sentence u in ZIEO containing

m +antifiers belongs to 1EQ iff c is true in the models of cardinalities 1 through m

(see [l]). (We note that even though this fact is stated in [l] only for prenex
sentences, the proof applies to arbitrary sentences as well.) This fact is used in the
following.

ma 6.2. (1) ZEQ E DSPACE (n log n);
(2) PrlEQ E DSPACE (n).

roof. (2) Given a sentence v E .? lEQ such that G contains m quantifiers, the outer

loop of the Turi machine 1M cycles through the integers I, 2,3,. . . , tn. For a given

integer k s m, decides whether (r is true in the model of cardinality k. This is
done by a straightforward recursive procedure, the details of which are left to the
reader. For example, similar to Lemma 5.2, quantifiers (e.g., (3~)F) are handled by
recursively determining the truth of F for each possible assignment of domain
element to the variable u. 1M can be designed to use space proportional to the space
sufficient to r:cord an assignment of domain elements to the variables of a.
encoding domain elements as binary words of length O(logm), this space is
0(m log m j. Certainly m s n, where n is the length of a, which, together with
’ ‘sncedup” [23], proves (I).

(2) A4 also accepts PrlEQ. However, if a is in prenex normal form with m
q\lantifiers, we can assume without loss of generality that distinct variables occur in
tk phzfix of (+. Due to the combined lengths of the encodings of these variables, we
havz tz 2 Z; ! loq (ci), f or some constant c > 0, which implies m = O(n/log n). The
space 0 (m log k) used by /kZ now becomes 0 (n). q

We now turn to the main result of this sectton, that P-SPACE slog PrlEQ
(Lemma 6.3). Ithin the proof of this result, it is convenient to assume that Turing
machines are .a particular simple form described next. A simple Turing machine
(STM) has tiire head and one tape. The single tape is one-way infinite to the right.

is given input x by writing x left-justified on the otherwise blank tape
ead scanning the left st tape square, and the control placed in a unique

designated initial state. An ST can accept an input only by entering a unique
designated accepting state with zl me tape entirely blank and the head scanning the
leftmost tape square. It is convenie assume that w
accepting configuration is entered, the continues “runni
tion.

The polynomial- time hiararch y 15

describing the symbols on the tape squares in an interval around the head, with 4
the state of the control, q being positio in 6 immediately to the left of
mbol s being scanned. e associate with a function

(2’ denotes the set of subsets of set S.) NextM (6) is the set of i.d.“s 6’ such that
I&(= 1 S 1 and 8 can reach 6’ in one step of . (The definition of NextM can easily
be made formal; see [24]. lso define Next,@, 0) = {a}, and Next&, i + 1) =
NextM (Next&S, i)) for i EE

The folllowing technical lemma formalizes the assertion that one can determine
whether &E NextM(&) by making “local checks” within 6, and &. This should be

obvious since, i l one step, only a few symbols around the state symbol can possibly
change.

Lemma 6.3.1 (see [24]). Let M be a nondeterministic STM with states Q and tape
alphabet LY Assume $E Q U Let 2 = Q U r U {$}. There is a set X,,,, C c6 with
the following properties.

(1) Let 6, be any i.d. of M, let h: = I& 1, and write $&$ = &.a S1., . . . S ,,k &, k+l
where 6,,; E C f[r 0 G j Gk+l. LetSz=Sz.DSz.I...Sr.kSZ.k+l where Sz.jESfor
0 s j s k + 1. Tizen 62 E Next&G,) iff 61,i-1 S1.j Sl,j+l Sz,j-1 S2.i 62,i+l E XM for ali
j,lsjsk. v

(2) If ~b,o-~cr~~~a+~E XM, then gi = $ iff 0: = $ for i = 1,2,3.

See [24] for a proof of Lemma 6.3.1 and further discussion of STM’s. It is
convenient to summarize our conventions concerning STM’s in the folloving
lemma.

Lemma 2. Let A E NSPACE (S(n)). There is a nondeterministic STM M and
an a E sxh that for all x,

x (_z A if q1 # ’ E Next,,,, (qnx # s-n9 2”)

where n = f x I, s = max(S(n), pz + l), # denotes the blank tape symbol, and q. (q,)

denotes the unique initial (accepting) state of

ne readily verifies that there is a nondeterministic S

conclusion follows since, for
X st enter , #’ before

16 . L. J. Stockmeyer

ition. Let f:@++A+ and L: -*N. f is kngth L(n) bounded iff If(x)] <

L(lxl> for all x E3 @+.
Let B be a set a.nd % be a class of sets. %’ <tog B via length order n) iff for each

A E % there is a constant % and an fE logspace such that A slog via f(and f is

length c l L(n) bounded.

3. Let d be an integer, d 3 1.

(1) NSPACE(nd) slog Prl EQ via length order n 2d log n.
(2) NSPACE (nd) sing B, via length order n2d log n.

roof. (1) Let A E NSPACE(nd) and A C (:W for an alphabet 0. For each x E @+

we describe a sentence Fx E 9 &IEQ such that x E A iff F, E PrlEQ. Letting f be
the function mapping x to Fx for all X, we shall see f E logspace and f is length
CnZd log n bounded for some constant c, thus proving part (1) of the lemma.

Let ,IM be the nondeterrn _.inistic ST!4 of L#emma 6.3.2. Let Q, r and 2 be as in
Lemma 63.1 for this M: Let x E 0 +, n = 1 x I, and s = max (n d, n + 1).

The sentence fX involves variables uk, 1, m, ok, I, u, w k, I,a, y for 0 s k G t, 0 s I s s + 2
a;?d (7 (Z 2, where the integer t is specified below. Let uk abbreviate {u k.&
u E &O s l s s + 2). Similarly, 3 uk abbreviates the sequence {%.&, 1, m}. The nota-
tions v uk, vk9 3 w., etc. are analogous.

A fixed interpretation of a sequence of variables (i.e., & Vk, or wk for Some k)
encodes an i.d. of in a way very similar to [6, cf. 21. Let D be some domain, and

let 24.1.~~~ G E C and 0 s 1 s s + 2 and k fixed. Let U: denote (u&~.
Let S be an i-d. of M with 1 S 1 = s + 1. (By Lemma 6.3.2, it is sufficient to consider
only i.d.‘s of length s -I- I.) We say that (U:, y’) encodes 6 iff (i) for each I there is
exactly one (r E 2 such that u i.rU = y ’ (let ai denote this unique element of X);
and (ii) CTO CT~ uz . . . crst2 = S.

We construct, for 0 s k *d t, a formula & (uk, Vk9 y) with free variables &, vk
and y. Informally, Fa asserts that the i.d. encoded by (\‘,r y) follows, in 2k steps of
M, from the -i-d. encoded by (uk, y). More formally, Fk satisfies the following
property Pk : Let D be a domain of cardinality 2 2. Let (U:, y ‘) encode an i.d. S as
above. Let v:,~,,E D for 0 s I s s + 2 and 0 E 2; let Vi denote (v :, ,.cr). Then
Fk(Z, v:, y’ true o’ver D iff (VL, y ‘) encodes an i.d. S’E Next&$, 2k). (
we let Fk (UL, M’) denote an instance of Fk, with u;.,,, replacing occurren
Ck 1. cm u i. 1. cf re ing V1i.IeU, etc.)

The formulas FI are constructed induct,vely.

EU(k, !, ‘0) dlenote (uk.,.m= y) A A - (Uk.I.r= ;
TfU

The polynom id-time hierarchy 17

Let XM be the set o Lemma 6 3.1. Let denote ~,a~~r~a~ola<. Now

Ff,([G, Vo, y) is

s+l
A v (EU$, 1 - 1, a,)/\ EL’(0, I, az) A EW(O,l + 1,173)
I=, UEXM

A E V(0, 1 - 1, a:) A !?V(O, f, a;) A E V(0, I + 1, o-5)).

By Lemma 6.3. it is clear that 5, satisfies property PO.
We now write F k+, using Fk as a subformula. The basic idea, used also by Savitch

[I9], is that S’E Next&G, 2’+,) iff there exists an i.d. ,u such that both p E

Next@, 2’) and S’ E Next,,&, 2’). Thus Fk+,(Uk+,, vk+,, y) could be written in the

obvious way as

(3wk+,)(F;,(Ukc,r wk+,, y)A Fk(l)lJk+,, vi‘+,., y)), (1)

where .“;(r&+,, wk + 1, y) iS identical to Fk (& vk7 y) with Wk+t, f. u rephCing 2, k.I.cr

etc. Ckarly, the formula (1) satisfies property &+, if Fk satisfies property pk.

However, to obtain the desired bound on the length of F,, it is essential that Fk+,

contain only 0ne occurrence of Fk. Therefore we write Fk+, as follows. Let

‘TJk = wk+,” abbreviate

and similarly for “Uk = Uk+,“, etc.

s+2

Fk+,(&+,, I/‘+,, y) is the fc)rmula

e3Wk+I)(WUk)(~Vk)(((Uk = Uk*,A Vk = WC+,)

V(Uk = l&k+,/\ vf(= v,+,))-+ Fk(Ukr Kc., y)).

F k+lr w written, is equivalent to (1) above. This completes the inductive
construction of B;;,, . . . , F,.

Now let a be the constant of Lemma 6.3.2 and let t = us, so that M accepts x iff
4, # ’ E Next, (qllx # ‘-“, 2’).

Now ccnstruct a formula Init, (U,, y) which asserts that (I/r, y) encodes the initial
i.d. q,,a: + ‘---, and construct Acc(Vr, y) to assert that (V,, y) encodes the accepting;
id. q1 # . Let x = x,x2xJ.. .x,.

Init, (U,, y) is the formula

?I+, 9+1
(&O,$)A E?_J(t. l,q,,)/\ A EU(tJ,x ,--,)n A EU(F,i, #>A El/(t,s + =‘).

I=? I-n+2

) is written similar

18 L.J. Srocheyer

I.et F’ be thle prenex form formula equivalent to F: obtained by standard
mauipulation of quantifiers. For example, replace occurrences of (G + (3z)W) by
@rj(G + W), and (G +(Wz)H) by (Vz)(G + H), where G and M denote
subformulas of FX and z denotes a variable. Note that each variable occurring in F:

is bound by exactly one quantifier; and - , A, v and + are the only logical
counectives appearing in F:. Therefore 11% 1 = 1 FL1 (viewing these formulas as
words over the alphabet of 5&).

We now bound the lengrh of F,. First note that, since I e s + 2 s d + 3 and
1 K < a% s cz(& + l), each variable occurring in Fx is encoded as a word of length
Q(lolig n). The following relitions are now obvious by inspection. (Of course, the
abbreviations A i.l: etc. must be fully expanded when bounding the lengths of these
formulas.)

lF~+,~~iF~!+c’n”logt~ for .Osk<f,

IFxI = IF:1 =s IEI +c’ndlogn,

where C’ is a constant depending on A4 and d, but not on n. These relations imply
i F, (s altos log n for some constant c and all X, where n = I x I. If f : 0‘ + 5fPrIEQ is
defined by f(x) = F,, f is length anon log m bounded.

It renains only to observe that f E log,spuce. The verification of this fact is not
oilj$~ul_:; we only sketch the outline, leaving the details to the reader. First recall
that ali occurrences of k and I in the descriptions of F,, . . . , F, denote integers
whose binary representations are of length Q(log n). It can be seen that, given X, a
Turing machine can pro&r+ bLc. the formula! F0 while using only space 0 (log n). In
fact, our description of F0 above can serve as a finite “program” for this machine.
Now thinking of Fk and F: as words over the alphabet of gIEQ, write Fk+, as okFk7k

for 0 s k C ts and write F: as CC&-,, where ok and rk are the appropriate words over
this alphabet (cf. the descriptions of F k+l an.d FL above). As for r;‘o, ok and Tk can be
produced within space: 10 (log n), given x and the binary representation of k. Since
also t is of “length” O(log n), and

F: can be produced using space O(log n). The transformation mapping F: to F,

belongs to logspace as the reader can verify. Thus f E logspace because logsyace is
closed under composition [12, 251. This completes the proof of part (1).

be as in part (1). For each x, one can construct, by minor modifications
ole:an formula FX such that x E A i

occurrence of an atomic formula (zf k,,,,-, = y) (resp.,
Ie symbol u k.l.L/ (resp., &,[,a, w I;&. The r

e abbreviations ‘Wk =

The polynomial-time hierarchy 19

the variable symbols as the oubly subscripted variables required by our definition
of Boolean formulas; and the naming is done such that Ex is the matrix (i.e., the
non-prefix part) of the s-esulting form . That is, the variables (U* U V, U Wt) are

renamed as variables in the set X1, (i U Vt-,) are renamed as Xzj, and Wl-j as
X21+1 for 1 s j s t. If g(x) = 5X, one verifies just as in part (1) that g E logspace and
8 is length cn2d log n bounded. 0

Lemmas 6.2 an 6.3(l) prove Theorem 6.f.. Lemmas 5.2 and 6.3(2) prove that I3”
is log-complete in %SPAC e following Lemma 6.4 completes the proof af
Theorem 5.1.

Lemma 6.4. (1) There is Q transformation f and a c E such that B, slog B, n
3CNF via f, aEd f is length cn

(2) For each d a 1, NSPACE (tt d, %g B, n 3CNF via length order n 2d log n.

Proof. (lj The transformation f rests on a technique of Tseitin [26, cf. 51 for
converting an arbitrary Boolean formula to a formula in 3CNF while preserving
satisfiability. Let G(X,, . . . , Xk) be a given oolean formula for some k 3 1.
Tseitin’s technique yields a Boolean formula F(XI, . . . , Xk, Xk +1) belonging to
3CNF such that ;or all assignments of Boolean values to the variables X1 1J . . . U

Xkr

G(X,,..., Xk) = 1 iff (3Xk+,)[F(X,, . . .: Xk, XL+,) = I]?

If f is the transformation mapping G to F, ofle verifies by inspection of 126, S] :tiat
f E logspace ar5’ f is length cn bounded for some constam c. If k is even, f is the
required translormation. If k is odd, construct F as ab%Dve except rename the
variables in Xk + l as variables in Xk+2.

(2) This is immediate from part (1) of this lemma, Lemma 6.3(2), and closure of
logspace under composition. 17

It is now straightforward to obtain corollaries concerning the complexity cf The
sets 1EQ end B,. The following lemma is- needed.

(Jones [12], Meyer [25]). Let T(n) and S(n) be monotone nondecreasing
via f, where f is length L (n > bmrzded.

I
(S(n)) impdies (S(L(n))+ log n).

20 L.J. Sockmeyer

ary &6. Let B be one of the sets lEQ, PrlEQ, BW or B, f7 3CNF.
(I) B tz $p iff 9 = 9’SPACE.
1;2) [f a nondeterministic Turing mc;chine accepts (VI), then there is

a constmt c > 0 s:sch that S(n) > c(n/log n)‘12 for infinitely many n.

roof. (1) This is immediate from ‘Theorems 5.1 and 6.1 and Lemma 6.5(Z).
(2) Suppose to the contrary that a nondeterministic Turing machine accepts B

wii thin spat: S(yt), where for all rational c > 0, S(n) s e(n/logn)“’ for al!! but
finitely manly n. Let S’(n) = max {S(m): m e n}. Therl B E NSPACE(S’(n)) and

S’(n) is nondecreasing.
From the hierarchy theorem for nondeterministic space, prove by S‘eiferas et al.

f21, ZZ!], we have the following fact: There is a set A E NS ACE(n) such that for

all s,(n),

lim Sl(n + 1)/n = 0 implies A E NSPACE(S&z)). (2) ?I+=

Now since A E NSPACE (n), Lemma 6.3 or 6.4 implies A slog B via f, where f is
length bn’log n bounded for some constant b >O. Therefore

A E NSPACE(S’(bn210g n) + log n) by Lemma 6.5(l). However, choosing S,(n) =
S’(bn 2 log n) + log n now contradicts the condition (2). El

As a final remark, we note that this lower bound on space complexity can be
improved in the case of 1EQ and PrlEQ. In the proo of Lemma 63(l), the
particular method of encoding i.d.‘s as sequences of variables was chosen to
simplify the argument and to be able to obtain part (2) of the lemma by
modifications to part (1). However, Meyer has suggested a more efficient encoding
which yields a slightly stronger lo-wer bound.

~ollasy 6.7. (I) NSPACE (nd) sloe Pr 1EQ uia length order 12 2d.
(2) If a no~dete~rn~~~sti~ Turing machine accepts PrlEQ w~t~~?i~ space S(n), then

S(n) > en” for some c > 0 and i~~~itely many n.

. (1) The construction is very similar to that of Lemma 6.3(l).

ffeaences. Notation is as in Lemma 6.3(l). reak the i.d. at length (roughly) nd
into blocks of length b, where b is chosen belo An id. is thus viewed as a word of
1 ,ength m = r!“/b over the alphabet Zb of cardinality lp == r*, where r = card(Z)
depends or@ on the machine M. IP place of the variable y. introduce 0 variables

22 L.J. Stockmeyer

[5] M. Bauer, D. Brand, M. Fischer, A. Meyer and M. Paterson, A note OII disjunctive form
tautologies, SIGACT News 5 (April 1973) 17-20.

[6] S.A. Cook, The complexity of theorem proving procedures, pros. Third Annual ACM Symposium
on Theory of Computing (1971) 151-158.

[7] S.A. Cook and R.A. Reckhow, Time bounded random access machirres, J. Comput. System Sci. 7
(1973) 354-375.

[8) S Even and R.E. Tarjan, A combinatorial problem which is complete in polynomial space, Proc.
Skenth Aniiaual ACM Symposium on Theory of Cornput@ (1975) 6641,

f9] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in: R. Karp, ed.,
Complexity of Computation, SIAM-AMS P~oc. 7 (1974) 43-73.

IlO] M.A. Harrison, Introduction to Switching and Automata Theory (McGraw-Hill, New York, 1965).
[llj J.E. Hopcroft and J.D. WB’lman, Formal Languages and their Relation to Automata (Addison-

Wesley, Reading, Mass., 1969).
[12] N.D. Jones, Space-bounded reducibility among combinatorial problems, J. Comput. System Sci. II

(1975) 68-85.
j131 RX Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher, eds.,

Complexity of Computer Computations (Plenum Press, New York, 1972) 85-104.
[14] D.E. Knuth, Postscript about NP-hard problems, SIGACT News 6 (April 1974) 15-16.
[15] R.E. Ladner, The computational complexity of validity in T, S4, and SS, manuscript, University of

Washington, Seattle, Wash. (1974).
f16] J.C. Lind, Computing in logarithmic space, Tech. Memo. 52, M.I.T., Project MAC, Cambridge,

Mass. (1974).
[173 A-R. Meyer and L.J. Stockmeyer, The equivalence problem for regu!ar expressions with squaring

requires exponential space, Proc. Thirteenth Annual IEEE Symposium on Switching and Automata
Theory (1972) 125-129.

[18] H. Rogers, Jr., Theory of Recursive Functiuns and Efiective Computability (McGraw-Hill, New
York, 1967).

[19] W.J. Savitch, Relationships between nondeterministic and deterministic tape complexities, J.
Comput. System Sci. 4 (1970) 177-192.

[20] J.R. Shoenfield, Mathematical Logic (Addison-Wesley, Reading, Mass., 1967).
[21] J.I. Seiferas, Nondeterministic time and space complexity classes, Doctoral Thesis, Report TR-137,

M.I.T.. Project &fAC, Cambridge, Mass. (1974).
[22] J.i. Seiferas, M.J. Fischer and A.R. Meyer, Reiicements of the nondeterministic time and space

hierarchies, Proc. Fourteenth Annual IEEE Symposium on Switching and Automata Theory (1973)
13&137.

[23] R.E. Stearns, J. Hartmanis and P.M. Lewis, Hierarchies of memory limited computations, Sixth
IEEE Symposium on Switching Circuit Theory and Logical Design (1965) 179-190.

[24] L.J. Stockmeyer, The complexity of decision problems in automata theory and logic, Doctoral
Thesis, Report TR-133, M.I.T., Project MAC, Cambridge, Mass. (1974).

1251 L.J. Stockmeyer and A.R. Meyer, Word problems requiring exponential time: preliminary report,
hoc. Fifth Annual ACM Symposium on Theory of Computing (1973) t-9.

[26] G.S. Tseitin, On the complexity of derivation in propositional calculus, in: A.0. Slisenko, ed.,
Studies in Co.v;structive Mathematics and Mathematical Logic, Part II (Steklov Math. Institute,
Leningrad, 1968): in Russian; English Transl.: Consultants Bureau, New York, 1970, 115-125.

i.271 C. Wrathall, Complete sets and the polynomial hierarchy, Theoret. Camp. Sci. 3 (1976).

