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Abstract
Dynamic programming on path and tree decompositions of graphs is a technique that is ubiquit-
ous in the field of parameterized and exponential-time algorithms. However, one of its drawbacks
is that the space usage is exponential in the decomposition’s width. Following the work of Al-
lender et al. [Theory of Computing, ’14], we investigate whether this space complexity explosion is
unavoidable. Using the idea of reparameterization of Cai and Juedes [J. Comput. Syst. Sci., ’03],
we prove that the question is closely related to a conjecture that the Longest Common Sub-
sequence problem parameterized by the number of input strings does not admit an algorithm
that simultaneously uses XP time and FPT space. Moreover, we complete the complexity land-
scape sketched for pathwidth and treewidth by Allender et al. by considering the parameter
tree-depth. We prove that computations on tree-depth decompositions correspond to a model of
non-deterministic machines that work in polynomial time and logarithmic space, with access to
an auxiliary stack of maximum height equal to the decomposition’s depth. Together with the
results of Allender et al., this describes a hierarchy of complexity classes for polynomial-time non-
deterministic machines with different restrictions on the access to working space, which mirrors
the classic relations between treewidth, pathwidth, and tree-depth.
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1 Introduction

Treewidth is a parameter that measures how easily a graph can be decomposed into a tree-like
structure, called a tree decomposition. While initially introduced by Robertson and Seymour
in their Graph Minors project [41], treewidth has found numerous applications in the field of
algorithms, because many problems that are intractable on general graphs, become efficiently
solvable on graphs of small treewidth. Theorems of Courcelle [14] and of Arnborg et al. [5]
explain that every problem expressible in Monadic Second Order logic can be solved in time
f(s)·n on graphs of treewidth s and size n, for some function f . While f can be non-elementary
in general, for many classic problems, like Vertex Cover, 3Coloring, or Dominating
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57:2 On Space Efficiency of Algorithms Working on Structural Decompositions of Graphs

Set, the natural dynamic programming approach yields a running time of O(cs · n) for
a small constant c. Dynamic programming procedures working on tree decompositions
are important for applications, as they often serve as critical subroutines in more complex
techniques, e.g., subexponential parameterized algorithms derived using bidimensionality [16],
or approximation schemes obtained via Baker’s approach [7]. Algorithms working on tree
decompositions are usually analyzed in the paradigm of parameterized complexity, where
treewidth is the considered parameter. We refer to textbooks [15, 17, 22] for a broad
introduction, and to a recent survey of Langer et al. [30] for more specific results.

A certain limitation of dynamic programming on a tree decomposition is that it uses space
exponential in its width, which is often a prohibitive factor in practical applications. Therefore,
recently there is much focus on reducing the space complexity of exponential-time algorithms
to polynomial, even at the cost of slightly worsening the time complexity [6, 9, 23, 24, 34, 37].
Here, the usage of algebraic tools proved to be an extremely useful approach. Unfortunately,
algorithms working on treewidth remain a family where virtually no progress has been
achieved in this matter. Therefore, a natural question arises: Can we reduce the space
complexity of algorithms working on tree decompositions while keeping (or moderately
worsening) their time complexity? This was first asked explicitly by Lokshtanov et al. [33],
who sketched how a simple tradeoff achieves polynomial space complexity while increasing
the time complexity to 2O(s2) +O(n2). The question was reiterated later by Langer et al. [30].

Following early completeness results of Monien and Sudborough [36] on bandwidth-
constrained problems and of Gottlob et al. [26] on conjunctive queries of bounded treewidth,
Allender et al. [4] recently initiated the systematic study of satisfaction complexity in variable
path- and treewidth. Essentially, they observe that CSP-like problems—say, 3Coloring for
concreteness1—when limited to instances of small treewidth or pathwidth, are complete for
certain complexity classes under logspace reductions. More precisely, when the input graph
is equipped with a path decomposition of width at most s(n) ≥ logn, for some fixed function
s of the input size, then 3Coloring (denoted in this case as pw-3Coloring[s]) is complete
for the class N[poly

time
, s(poly)

space
]: problems that admit non-deterministic algorithms working

simultaneously in polynomial time and space O(s(poly(n)). Similarly tw-3Coloring[s],
where s(n) bounds the width of a given tree decomposition, is complete for the class
NAuxPDA[poly

time
, s(poly)

space
]; the difference with N[poly

time
, s(poly)

space
] is that the algorithm can

use an auxiliary push-down of unlimited size, to which read/write access is only from the
top. Allender et al. also describe the class in terms of semi-unbounded fan-in (SAC) circuits.
They assume s(n) = logk n, but the proof works in the more general setting given below.

I Theorem 1 ([4]). Let s(n) ≥ logn be a nice function2.
Then pw-3Coloring[s] is complete for N[poly

time
, s(poly)

space
] under logspace reductions, whereas

tw-3Coloring[s] is complete for NAuxPDA[poly
time

, s(poly)
space

] under logspace reductions.

Thus, the feasibility of various space-time tradeoffs when working on tree/path decompositions
is equivalent to inclusions of corresponding complexity classes. For instance (assuming for
conciseness ∀c s(nc) = O(s(n)), e.g., s(n) = logk n for k ≥ 1), pw-3Coloring[s] is solvable:

1 Allender et al. use SAT parameterized by treewidth/pathwidth of its primal graph as an exemplary
problem, but SAT and 3Coloring can be easily seen to be equivalent under logspace reductions; see
Lemma 10. In this paper, we prefer to use 3Coloring as an exemplary hard CSP-like problem.

2 By a nice function we mean a function s that is constructible and such that s(n)/ lg n is non-decreasing.
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in time 2o(s(n) log n) and space 2o(s(n)) if and only if N[poly
time

, s
space

] ⊆ D[2o(s·log)
time

, 2o(s)
space

];

in time 2O(s(n)) and space poly(n) if and only if N[poly
time

, s
space

] ⊆ D[2O(s)
time

, poly
space

].

Similar statements can be inferred for treewidth. In contrast, the best known determinization
for N[poly

time
, s

space
] come from a brute-force approach or Savitch’s theorem [43], yielding re-

spectively (for s(n) ≥ lgn) D[2O(s)
time

] = D[2O(s)
time

, 2O(s)
space

] and D[s · log
space

] = D[2O(s·log n)
time

, s · log
space

].

In this manner, Allender et al. conclude that, intuitively speaking, achieving better
time-space tradeoffs for algorithms working on path and tree decompositions of small width
would require developing a general technique of improving upon the tradeoff of Savitch. As
Lipton phrased it, “one of the biggest embarrassments of complexity theory is the fact that
Savitch’s theorem has not been improved [. . . ]. Nor has anyone proved that it is tight” [31].

Allender et al. argue that such an improvement would contradict certain rescaled variants
of known conjectures about the containment of time- and space-constrained classes, in
particular the assumption that NL * SC; we refer to [4] for details. We consider the study
of Allender et al. not as a definite answer in the topic, but rather as an invitation to a further
investigation of the introduced conjectures.

Our Contribution. In the Longest Common Subsequence problem (LCS), we are given
an alphabet Σ and k strings over Σ, and ask for the longest sequence of symbols that
appears as a subsequence in each input string. The applicability of the LCS problem in, e.g.,
computational biology, motivated many to search for faster, more space-efficient algorithms,
as the classical dynamic programming solution, running in time and space O(nk) (where n is
the length of each string) is often far from practical. From the point of view of parameterized
complexity, LCS parameterized by k is W[t]-hard for every level t [11], remains W[1]-hard for
a fixed-sized alphabet [39], and is W[1]-complete when parameterized jointly by k and `, the
target length of the subsequence [27]. In a recent breakthrough, Abboud et al. [1] proved that
the existence of an algorithm with running time O(nk−ε), for any ε > 0, would contradict
the Strong Exponential Time Hypothesis. As far as the space complexity is concerned, only
modest progress has been achieved: The best known result, by Barsky et al. [8], improves
the space complexity to O(nk−1). This motivates us to formulate the following conjecture.

I Conjecture 2. There is no algorithm for LCS that works in time nf(k) and space
f(k)poly(n) for a computable function f , where k is the number of input strings and n

their total length.

Quite surprisingly, we show that Conjecture 2 is closely related to the question of time-
space tradeoffs for algorithms working on small pathwidth, as detailed in Theorem 15. There,
the conjecture is sandwiched between a weaker statement that it is impossible to achieve
subexponential space while keeping single exponential time complexity, and a stronger
statement that this holds even if we allow the time complexity exponent to increase by an
arbitrarily slowly growing function of the width. To prove this, we use a completeness result
of Elberfeld et al. [21] for LCS, which allows to formulate Conjecture 2 as an equivalent
statement in parameterized complexity about the impossibility of determinization results
improving upon Savitch’s theorem. Using the ideas of Cai and Juedes [12] connecting
subexponential complexity to fixed-parameter tractability, we consider a reparameterized
version of pw-3Coloring. This allows us to compare questions concerning time-space
tradeoffs for pw-3Coloring and determinization of N[ t

time
, s

space
] classes to those concerning

parameterized classes and the complexity of LCS. In particular, we show that Conjecture 2
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implies NL 6⊆ D[poly
time

,poly log
space

] (the latter class being usually called SC) and is implied by

a rescaled version of the following stronger variant: NL 6⊆ D[2o(log2 n)
time

, no(1)
space

].

In the second part of this work, we complement the findings of Allender et al. [4] by
considering the graph parameter tree-depth. Tree-depth of a graph is lower bounded by its
pathwidth and upper bounded by its treewidth times lgn. Our motivation for considering
this parameter is two-fold. First, recent advances have uncovered a wide range of topics where
tree-depth appears naturally. For instance, it plays an important role in the theory of sparse
graphs of Nešetřil and Ossona de Mendez [38], it is the key factor in classifiyng homomorphism
problems that can be solved in logspace [13], and characterizes classes of graphs where the
expressive power of First-Order and Monadic Second-Order logic coincides [19]. It was
rediscovered several times under different names: minimum elimination tree height [40],
ordered chromatic number [28], vertex ranking [10], or the maximum number of introduce
nodes on a root-to-leaf path of a tree decomposition [24].

Second, algorithms working on tree-depth decompositions model generic exponential-time
Divide&Conquer algorithms. In this approach, after finding a small, balanced separator
S in the graph, the algorithm tries all possible ways a solution can interact with S, and
solves connected components of G− S recursively. This naturally gives rise to a tree-depth
decomposition of the graph, where S is placed on top, and decompositions of the components
of G− S are attached below it as subtrees. The maximum total number of separator vertices
handled at any moment in the recursion corresponds to the depth of the decomposition. Thus,
many classic Divide&Conquer algorithms, including the ones derived for planar graphs using
the Lipton-Tarjan separator theorem [32], can be reinterpreted as first building a tree-depth
decomposition of the graph using a separator theorem, and then running the algorithm on it.

Most importantly for us, recursive algorithms working on tree-depth decompositions
run in polynomial space. For instance, such an algorithm for 3Coloring on a tree-depth
decomposition of depth s runs in time 3s · poly(n) and space O(s+ logn) (see Lemma 20),
which places td-3Coloring[s] in D[2O(s)poly

time
, s+ log

space
] = D[s+ logn

space
]. This is immediate

for CSP-like problems like 3Coloring, but recently Fürer and Yu [24] showed that algebraic
transforms can be used to reduce the space usage to polynomial in n also for other problems,
like counting perfect matchings or dominating sets. We describe how this approach gives an
3s · poly(n)-time poly(n)-space algorithm for Dominating Set in more detail in the full
version of the article. This means that the reduction of space complexity that is conjectured
to be impossible for treewidth and pathwidth, actually is possible for tree-depth. Therefore,
we believe that it is useful to study the computation model standing behind low tree-depth
decompositions, in order to understand how it differs from the models for treewidth and
pathwidth.

Consequently, mirroring Theorem 1, we prove that computations on tree-depth decom-
positions exactly correspond to the class NAuxSA[poly

time
, log

space
, s

height
]: problems that can be

decided by a non-deterministic Turing Machine that uses polynomial time and logarithmic
space, but also has access to an auxiliary stack of maximum height s. The stack can be
freely read by the machine, just as the input tape, but write access is only via push/pop
operations.

I Theorem 3. Let s(n) ≥ log2 n be a nice function. Then td-3Coloring[s] is complete for
NAuxSA[poly

time
, log

space
, s(poly)

height

] under logspace reductions.
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Thus, computations on tree-depth and path decompositions differ by the access restrictions
to O(s) space used by the machine. While for pathwidth this space can be accessed freely,
for tree-depth all except an O(logn) working buffer has to be organized in a stack.

The proof of Theorem 3 largely follows the approach of Akatov and Gottlob [3], who
proved a different completeness result for the class NAuxSA[poly

time
, log

space
, log2

height
], which they

call DC1. The main idea is to regularize the run of the machine so that the push-pop tree
has the rigid shape of a full binary tree. Then we can use this concrete structure to “wrap
around” gadgets encoding an accepting run of a regularized NAuxSA machine. However,
the motivation in the work of Akatov and Gottlob was answering conjunctive queries in a
hypergraph by exploiting a kind of balanced decomposition, and hence the problem proven
to be complete for DC1 is a quite general and expressive problem originating in database
motivations; see [2, 3] for details. In our setting, in order to get a reduction to 3Coloring,
we need to work more to encode an accepting run. In particular, to encode each part of
the computation where no push or pop is performed, instead of producing a single atom
in a conjunctive query, we use computation gadgets that originate in Cook’s proof of the
NP-completeness of SAT. The assumption that the computation has a polynomial number of
steps is essential here for bounding the tree-depth of each such gadget. This way, Theorem 3
presents a more natural complete problem for DC1.

Another difference is that Theorem 3 works for any well-behaved function s(n) ≥ log2 n,
as opposed to the bound s(n) = log2 n inherent to the problem considered by Akatov and
Gottlob. For this, the crucial new idea is to increase the working space of the machine to
s(n)/ logn in order to be able to perform regularization – a move that looks dangerous at
first glance, but turns out not to increase the expressive power of the computation model.
This proves the following interesting by-product of our work.

I Theorem 4. Let s(n) ≥ log2 n be a nice function. Then

NAuxSA[poly
time

, log
space

, s(poly)
height

] = NAuxSA[poly
time

, s(poly)/ log
space

, s(poly)
height

].

The following determinization follows from the O(s+ logn) algorithm for td-3Coloring.

I Theorem 5. Let s(n) ≥ log2(n) be a nice function. Then

NAuxSA[poly
time

, log
space

, s(poly)
height

] ⊆ D[s(poly)
space

].

Theorem 5 for s(n) = log2 n also follows from the work of Akatov and Gottlob [3].
Observe that now the justification for the assumption s(n) ≥ log2 n becomes apparent: for,
say, s(n) = logn, the theorem would state that L = NL, a highly unexpected outcome.

We find Theorem 5 interesting, because a naive simulation of the whole configuration
space for NAuxSA would require space exponential in s. It appears, however, that the
exponential blow-up of the space complexity can be avoided. We do not see any significantly
simpler way to prove this result other than going through the td-3Coloring[s] problem, and
hence it seems that the tree-depth view gives a valuable insight into the computation model
of NAuxSA. The classic relations between treewidth, pathwidth and tree-depth are, through
completeness results, mirrored in a hierarchy between NAuxPDA, N, and NAuxSA classes,
as detailed in the concluding section. In particular, this answers a question of Akatov and
Gottlob [2, 3] about the relation of NAuxSA[poly

time
, log

space
,poly log

height
] to other classes in NP.

Finally, using Theorem 3 we also give an alternative view on NAuxSA computations
using alternating Turing machines in Theorem 21, answering another question of Akatov
and Gottlob. From this point of view, Theorem 5 is immediate.

STACS 2016
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2 Preliminaries

Reductions and complexity classes. For two languages P,Q, we write P ≤L Q when P
is logspace reducible to Q. Most of the complexity classes we consider are closed under
logspace reductions. Because we handle various measures of complexity and compare a
wide array of classes that bound two measures simultaneously, we introduce the following
notation. A complexity class is first described by the machine model: D, N, A denote
deterministic, non-deterministic, and alternating (see [42]) Turing machines, respectively.
Then bounds on complexity measures are described (up to constant factors) as a list of
functions with the measure’s name underneath. All functions except the symbol f (which
we reserve for classes in parameterized complexity) are functions of the input size n. For
example, N[ t

time
, s

space
] is the class often known as NTiSp(t(n), s(n)). We write poly(n) for

nO(1), e.g., D[poly
time

] = P. An auxiliary push-down or stack is denoted as AuxPDA or AuxSA,
respectively: the difference is that a push-down can only be read at the top, while a stack
can be read just as a tape (both can be written to only by pushing and popping symbols at
the top), see e.g. [44]. The measure named height is the maximum height of the push-down
or stack.

We write lg for the logarithm with base 2 and log when the base is irrelevant. We say a
function s : N→ N is constructible if there is a Turing machine which given a number n in
unary outputs s(n) in unary using logarithmic space; in particular, this implies s(n) ≤ poly(n).
A function s is nice if it is constructible and s(n)

lg n is non-decreasing. For simplicity, we will
assume all functions s : N→ N describing complexity bounds to be nice.

Note that logspace reductions can blow-up instance sizes polynomially, hence the closure
of N[poly

time
, s

space
] under such reductions is N[poly

time
, s(poly)

space
], for example. These are equal for

functions s(n) such that s(poly(n)) ≤ O(s(n)) (that is, if for every c > 0 there is a d > 0
such that s(nc) ≤ d · s(n)). This includes lgk(n) for any k ≥ 1 and lgn lg lgn, for example.

Structural parameters. We recall the definition of tree-depth. See e.g. [15, 41] for definitions
of treewidth and pathwidth. For technical reasons, we assume that in all given tree and path
decompositions T , |T | ≤ 2|V (G)|2; standard methods allow to prune any decomposition
to this size in logspace, see e.g. [29, Lemma 13.1.2]. For conciseness, we will refer to the
certifying structures as decompositions for all three parameters.

I Definition 6 (tree-depth). A tree-depth decomposition of an undirected graph G is a rooted
forest T (disjoint union of rooted trees) together with a bijection µ from the vertices of G to
the nodes of T , such that for every edge uv of G, µ(u) is an ancestor of µ(v) or vice-versa
in T . The depth of T is the largest number of nodes on a path between a root and a leaf.
The tree-depth of G is the minimum depth over all possible tree-depth decompositions of G.

The following lemma describes well-known inequalities between the three parameters.

I Lemma 7 (♠). 3 There is a constant c ∈ N such that for any graph G, td(G) ≥ pw(G) ≥
tw(G) ≥ td(G)/(c · log |V (G)|). Furthermore, each inequality is certified by an algorithm that
transforms the respective graph decompositions in logspace.

For a graph problem, such as 3Coloring, a structural parameter π ∈ {td, pw, tw}, and a
nice function s : N→ N, we define π-3Coloring[s] to be the decision problem where given

3 Proofs of statements marked with ♠ are deferred to the full version of the article (in the appendix).



M. Pilipczuk and M. Wrochna 57:7

an instance G of 3Coloring and a π-decomposition of G, we ask whether the decomposition
has width at most s(|V (G)|) and G is a yes-instance of 3Coloring. The assumption that
a decomposition is given on input is to factor away the complexity of finding it, which is
a problem not directly relevant to our work. Note that the validity and width/depth of a
decomposition given in any natural encoding can easily be checked in logarithmic space.

Observe also that for any c > 0, π-3Coloring[s(n)] is equivalent to π-3Coloring[s(nc)]
under logspace reductions. A reduction to π-3Coloring[s(nc)] is trivial, while the reverse
reduction follows easily by padding: adding isolated vertices up to size nc that do not change
the answer nor the value of π. Also, as we assume s to be nice, we have s(n)

lg n ≤
s(nc)
lg nc , hence

c · s(n) ≤ s(nc) for any c ≥ 1. This implies that π-3Coloring[c · s(n)] is equivalent to
π-3Coloring[s(n)]. Thus, the hierarchy of Lemma 7 takes the following form.

I Corollary 8. Let s : N→ N be a nice function. Then

td-3Coloring[s] ≤L pw-3Coloring[s] ≤L tw-3Coloring[s] ≤L td-3Coloring[s · log].

Equivalence of problems. A reduction between two graph problems preserves structural
parameters if for each parameter tw, pw, td and any instance with graph G, a decomposition
of G of width/depth at most s can be transformed in logspace into a decomposition of
the graph H produced by the reduction of width/depth at most O(s). Many NP-hardness
reductions have this property, in particular those that replace each vertex or edge with a
constant-size gadget (see the ‘local replacement’ and ‘component design’ methods in Garey
and Johnson [25]). For example, 3Coloring and variants of SAT are equivalent in all our
theorems, while Vertex Cover or Dominating Set (defined in [25]) are at least as hard.

I Definition 9. Let φ be a CNF formula. The primal (Gaifman) graph of φ is the graph
with a vertex for each variable of φ and an edge between every pair of variables that appear
together in some clause. The incidence graph of φ is the bipartite graph with a vertex for
each clause and each variable of φ, where every clause is adjacent to variables contained in it.

I Lemma 10 (♠). The following problems are equivalent under logspace reductions preserving
structural parameters: 3Coloring, CNF-SAT (with the primal graph), k-SAT (with either
the primal or incidence graph) for each k ≥ 3. Furthermore, Vertex Cover, Independent
Set and Dominating Set each admit such a reduction from the above problems.

Cook’s theorem with bounded space. A common element in our reductions is the descrip-
tion of Turing machine computations using CNF formulas, as in Cook’s theorem. Already
Monien and Sudborough [36] observed that Cook’s reduction applied to machines with
bounded space yields formulas of bounded width. The difference is that machine’s worktape
space bound can be much smaller than the input word—access to the read-only input tape
has to be implemented differently. To later handle stack machines, we also need to consider a
second input tape separately. We informally state the version of Cook’s construction we need.

I Lemma 11 (Computation gadget, ♠). Let M be an NTM over alphabet Σ with two read-only
input tapes and one work tape. Given an input word α of length n and integers s, t, h in
unary such that lgn, lg h ≤ O(s), one can in logspace output a CNF formula such that:

The formula has poly(n, t, s, h) variables, including named variables w1, . . . , wh·d|Σ|e,
u1, . . . , uΘ(s), v1, . . . , vΘ(s), describing: a word w̄ and two configurations u, v of M (up
to s symbols of the working tape, heads’ positions encoded in binary, and the state).
Any assignment to the named variables can be extended to a satisfying assignment iff M

on inputs α and w̄ has a run from u to v, using at most t steps and s space.
The formula’s primal graph has pathwidth O(s+h) and tree-depth O(s·log(n+s+t+h)+h).

STACS 2016
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3 Connections with Tradeoffs for LCS

In this section we relate Conjecture 2 to statements of varying strength concerning different
time-space tradeoffs. The results are summarized in Figure 1.

A pl-reduction between parameterized problems is an algorithm that transforms an
instance of one problem with parameter k into an equivalent instance of another problem
with parameter k′ ≤ f(k), working in space f(k)+O(logn), for some computable f . Following
Elberfeld et al. [21] we define4 N[fpoly, f log ] as the class of parameterized problems that can
be solved in non-deterministic time f(k)poly(n) and space f(k) log(n) for some computable
function f , where k is the parameter. Deterministic classes D[t, s] are defined analogously
for various expressions t, s. All those mentioned in the article are closed under pl-reductions.
We do not use the better known fpt-reductions because N[fpoly, f log ] is not expected to be
closed under them; its closure under fpt-reductions has been called WNL by Guillemot [27].

We use oeff(h(n)) as an effective variant of o(h(n)): for f, h : N→ N we write f = oeff(h)
if there is a non-decreasing, unbounded, computable function g(n) such that f = O( h

g ).
The inverse of a function f is the function f−1(n) := max{i | f(i) ≤ n}; observe that
f(f−1(n)) ≤ n ≤ f−1(f(n)). Conjecture 2 concerns the following parameterized problem.

LCS Parameter: k

Input: A finite alphabet Σ, k strings s1, s2, . . . , sk over Σ, and an integer `.
Question: Is there a common subsequence of s1, s2, . . . , sk of length at least `?

Elberfeld et al. [21], drawing on the work of Guillemot [27], pinpointed the complexity of
LCS, allowing Conjecture 2 to be phrased as a general statement in parameterized complexity.

I Theorem 12 ([21]). LCS is complete for N[fpoly, f log ] under pl-reductions.

I Corollary 13. Conjecture 2 holds if and only if N[fpoly, f log ] 6⊆ D[nf , fpoly].

Similarly as described in the introduction, the best known determinization results can only
place N[fpoly, f log ] in D[nf , nf ] (commonly known as XP) and D[nf(k)·log n, f(k) · log2 n].

Following Cai and Juedes [12], to relate parameterized tractability bounds to subexpo-
nential bounds, we define a reparameterized version of pw-3Coloring.

pw-3Coloringlog n Parameter: s/ lg n

Input: A graph G and a path decomposition of G of width s
Question: Is G 3-colorable?

Similarly as in Theorem 1, pathwidth-constrained problems turn out to be complete for
non-deterministic computation with simultaneous time and space bounds.

I Theorem 14 (♠). pw-3Coloringlog n is complete for N[fpoly,f log] under pl-reductions.

Containement follows from a poly-time, O(s + logn)-space non-deterministic algorithm
that proceeds on consecutive bags of the decomposition, guessing each vertex color and
remembering only those in the current bag. Completeness is proved with a direct application
of Lemma 11 to a problem with parameter k solved in space O(f(k) logn), yielding through
Lemma 10 a pw-3Coloring instance of width s = O(f(k) logn).

Conjecture 2 is thus equivalent to the statement that pw-3Coloringlog n is not in
D[nf , fpoly], which gives Theorem 15.1. To contrast pathwidth with tree-depth, Lemma 20

4 In this section, we only use time-space-bounded classes, hence we drop the subscripts for readability.
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(introduced later) places td-3Coloringlog n in D[nf , f log ], a class known as XL. Similarly as
in the work of Cai and Juedes [12], we show that also subexponential bounds on the complexity
of pw-3Coloring are related to the parameterized complexity of pw-3Coloringlog n. This
gives the sandwiching of Conjecture 2 between two similar statements in Theorem 15.2, 15.3.
An even weaker statement is proved equivalent to NL 6⊆ SC by a simple padding argument
in Theorem 15.4. For a somewhat less natural, stronger variant of Conjecture 2, we can show
a similar, but exact correspondence in 15.5 (note the quasi-polynomial factor on both sides).

I Theorem 15 (♠). Consider deterministic algorithms for pw-3Coloring working on
instances of size n with a given path decomposition of width s (uniformly for all values
of s).
1. There is no such algorithm working in time nf(s/ lg n) and space f(s/ lgn)poly(n) for any

computable f if and only if Conjecture 2 holds.
2. Assuming Conjecture 2, there is no such algorithm working in time 2O(s)poly(n) and

space 2oeff(s)poly(n).
3. If Conjecture 2 fails, then for every unbounded, computable function g, there is such an

algorithm working in time 2s·g(s)poly(n) and space 2oeff(s)poly(n).
4. There is no such algorithm working in time 2O(s)poly(n) and space poly(s, logn) if and

only if NL 6⊆ SC.
5. There is no such algorithm working in time 2oeff(s2)nO(log n) and space 2oeff(s)poly(n) if

and only if N[fpoly, f log ] 6⊆ D[nf+log, fpoly].

Proof of Theorem 15(2). Suppose to the contrary that pw-3Coloring can be solved in
time 2O(s)poly(n) and space 2oeff(s)poly(n). We show that N[fpoly, f log ] ⊆ D[nf , fpoly],
contradicting Conjecture 2. The assumption implies that pw-3Coloringlog n can be solved
in time 2O(k·lg n) = nO(k) and space 2k·lg n/g(k·lg n) for some unbounded and non-decreasing
computable function g(·). If k ≤ g(k · lgn), then the bound on space is bounded by n.
Otherwise, if k > g(k lgn) ≥ g(lgn), then n ≤ 2g−1(k). In this case the bound on space is
bounded by a computable function of k, namely 2k·g−1(k). Hence in each case, the same
algorithm solves pw-3Coloringlog n in time nO(k) and space n+ 2k·g−1(k). By Theorem 14,
this implies N[fpoly, f log ] ⊆ D[nf , fpoly]. J

We summarize the relationships around Conjecture 2 in Figure 1. The weakest statement
there is NL 6⊆ SC, a widely explored hypothesis in complexity theory. Since Directed
(s, t)-Reachability (asking given a directed graph and two nodes s, t, whether is t reachable
from s) is an NL-complete problem, this is also equivalent to the question of whether this
problem can be decided in polynomial time and polylogarithmic space. However, even this
weakest statement is not known to be implied by better known conjectures such as the
Exponential Time Hypothesis. It seems that the simultaneous requirement on bounding
two complexity measures—time and space—has a nature independent of the usual time
complexity considerations. Hence, new assumptions may be needed to explore this paradigm,
and we hope that Conjecture 2 may serve as a transparent and robust example of such.

In a certain restricted computation model (allowing operations on graph nodes only,
not on individual bits), unconditional tight lower bounds have been proved by Edmonds
et al. [18]: it is impossible to decide Directed (s, t)-Reachability in time 2o(log2 n) and
space O(n1−ε) (for any ε > 0), even if randomization is allowed. Essentially all known
techniques for solving Directed (s, t)-Reachability are known to be implementable in
this model [35] (including DFS, BFS, theorems of Savitch, of Immerman and Szelepcsényi, as
well as Reingold’s breakthrough), therefore this strongly suggests that no algorithm running
in time 2oeff(log2 n) and space noeff(1) is possible, that is, NL 6⊆ D[2oeff(log2 n)

time
, noeff(1)

space
].

STACS 2016
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There is no algorithm for pw-3Coloring working
in time 2oeff(s2)nO(log n) and space 2oeff(s)poly(n)

⇓ (trivial)
For some computable unbounded function g

there is no algorithm for pw-3Coloring working
in time 2s·g(s)poly(n) and space 2oeff(s)poly(n)

⇓ (Thm 15.3)
There is no algorithm for pw-3Coloring working

in time nf(s/ lg n) and space f(s/ lgn)poly(n)
for a computable f

⇓ (Thm 15.2)

There is no algorithm for pw-3Coloring working
in time 2O(s)poly(n) and space 2oeff(s)poly(n)

⇓ (trivial)
There is no algorithm for pw-3Coloring working

in time 2O(s)poly(n) and space poly(s, logn)

N[fpoly, f log ] 6⊆ D[nf+log, fpoly]⇐⇒
(Thm 15.5)

NL 6⊆ D[2oeff(log2 n)
time

, noeff(1)
space

]

res
cal
ing

Conjecture 2
(Thm 12) m

N[fpoly, f log ] 6⊆ D[nf , fpoly]

⇐⇒
(Thm 14)

NL 6⊆ SC ⇐⇒
(Thm 15.4)

Figure 1 A summary of the relationships between various statements related to Conjecture 2.

By Theorem 1, this is equivalent to saying that pw-3Coloring[log] cannot be solved in
these time and space bounds. The strongest statement on Figure 1 is a rescaling of this,
that is, it implies NL 6⊆ D[2oeff(log2 n)

time
, noeff(1)

space
] by a trivial padding argument, but the reverse

implication is also probable in the sense that any proof of the latter would likely scale to
prove the former. However, it is still possible that an algorithm working in polynomial space
refutes the stronger statement even though NL 6⊆ D[2oeff(log2 n)

time
, noeff(1)

space
].

4 Treedepth

In this section we sketch the proof of Theorem 3. Let s : N→ N be a nice function. First, we
discuss more precisely the model of machines used to define class NAuxSA[poly

time
, log

space
, s

height
].

The machine has three tapes, each using a fixed, finite alphabet Σ: a read-only input tape, a
working tape of length O(logn), and a stack tape of length s(n). On each of the tapes there
is a head; the transitions of the machine depend on its state and the triple of symbols under
the heads. The input tape is read-only. The stack tape can be read but not freely written
on; instead, the transitions of the machine may contain instructions pushσ or pop, working
naturally. Since s is nice, s(n) ≤ poly(n) so within the working tape the machine can keep
track of the current height of the stack and the indices on which the heads are positioned.

We start the proof of Theorem 3 by showing containment, exemplifying how the resources
are used. The idea is to perform a depth-first search of the tree-depth decomposition, guessing
the color of each entered vertex, pushing it onto the stack and popping it when withdrawing
from the vertex. Thus, the stack maintains the guessed colors on the path from the current
vertex to the root, allowing correctness to be checked.
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I Lemma 16 (♠). For any nice s(n), td-3Coloring[s] is in NAuxSA[poly
time

, log
space

, s
height

].

Clearly if s(n) ≥ log2 n, NAuxSA[poly
time

, log
space

, s
height

] ⊆ NAuxSA[poly
time

, s/ log
space

, s
height

].

The next step is to show how the stack operations of the latter class’ machines can be
regularized. This idea originates in the approach of Akatov and Gottlob [3]. Following [3],
we define a regular stack machine in the following way. For any valid sequence S of
push/pop operations that starts and ends with an empty stack, define the corresponding
push-pop tree τ(S) to be the ordered tree (a rooted tree with an order imposed on the
children of each node) in which a depth-first search would result in the sequence S, where
entering/withdrawing from a vertex corresponds to a push/pop operation. We say that
a language is in reg-NAuxSA[poly

time
, s/ log

space
, s

height
] if it is recognized by an NTM M with

s(n)/ log(n) working space and an auxiliary stack of height s(n) that has the following
properties:
(1) M pushes and pops blocks of b = ds(n)/ lg(n)e symbols at a time, say, simultaneously

from/to the first b positions of the worktape.
(2) Whenever M decides to push or pop, it can only change its state. Moreover, the decision

about using a push or pop transition depends only on the machine’s state.
(3) If M accepts input α, then there is a run on α where the push-pop tree (where

pushing/popping a block is considered atomic) is the full binary tree of depth exactly
cdlgne, for some fixed integer c. In particular, at the moment of accepting the stack is
empty.
Restriction (2) is a technical adjustment. Restriction (1) is easily achieved by simulating

the top symbols from the stack in a length b buffer on the working tape, pushing and popping
a full buffer when needed. The most important restriction is (3): the push-pop tree has a
fixed shape of a full binary tree. For this, we use the following observation of Akatov and
Gottlob [3, 2], used also by Elberfeld et al. [20]. The traversal ordering of the nodes of an
ordered tree is the linear ordering which places a parent before its children and, for children
a, b of a node, a occurring before b, places all descendants of a before all descendants of b.

I Lemma 17 (Lemma 3.3 of [2]; Theorem 3.14 of [20]). Given an ordered tree T with n nodes
and depth at most lgn, one can in logarithmic space compute an embedding (an injection that
preserves the ancestor relation and traversal ordering) into a full binary tree of depth 4 lgn.

As in [3], this allows us to regularize our machines, as dummy pushes/pops can be non-
deterministically guessed so that the push-pop tree of at least one run is a full binary tree.

I Lemma 18 (♠). NAuxSA[poly
time

, s/ log
space

, s
height

] ⊆ reg-NAuxSA[poly
time

, s/ log
space

, s
height

].

Knowing that computations for NAuxSA can be conveniently regularized, we can describe
the existence of such a computation by a CNF formula “wrapped around” the rigid shape of
the full binary tree that encodes the push-pop tree of the run. We think of the computation
as starting at the root node, moving down an edge whenever a push is made and moving
up an edge whenever a pop is made. This was also the idea of Akatov and Gottlob [3], but
our reduction needs to introduce many more elements, in particular copies of the gadget
of Lemma 11 for every fragment between two push/pop operations. Each part of the
computation depends only on symbols pushed onto the stack on the path to the root. This,
together with the O( s(n)

log n · logn) = O(s(n)) bound on the tree-depth of the computation
gadget, will give rise to a tree-depth decomposition of depth O(s(n)) of the obtained formula’s
primal graph.
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I Lemma 19 (♠). If L ∈ reg-NAuxSA[poly
time

, s/ log
space

, s
height

], then L ≤L td-CNF-SAT[s].

Lemmas 18 and 19 show that td-CNF-SAT[s] is hard for NAuxSA[poly
time

, s/ log
space

, s
height

],

and by Lemma 10 so is td-3Coloring[s]. Since the closure of NAuxSA[poly, log, s] under
logspace reductions is NAuxSA[poly, log, s(poly)], Lemmas 16, 18, 19 give the following
chain of containments (here [A]L denotes the class of problems reducible to A in logspace):

[td-3Coloring[s(poly)]]L ⊆ [td-3Coloring[s]]L ⊆ NAuxSA[poly, log, s(poly)]
⊆NAuxSA[poly

time
, s(poly)/ log

space
, s(poly)

height

]

⊆ [td-3Coloring[s(poly)]]L

Therefore, all containments must be equalities, which concludes the proof of Theorems 3
and 4. Now, to prove the determinization of Theorem 5, we only need an algorithm for
td-3Coloring[s]. The following lemma implies td-3Coloring[s] ∈ D[ s

space
] (for nice s),

hence Theorem 3, and the fact that D[s(poly)
space

] is closed under logspace, yield Theorem 5.

I Lemma 20 (♠). td-3Coloring[s] can be solved in time 3s ·poly(n) and space O(s+logn).

Characterization via alternating machines. In the full version of this paper, we use The-
orem 3 to give another characterization in terms of alternating Turing machines with polyno-
mial size of an accepting tree, i.e. treesize. Both the notions of ATMs and that of treesize later
introduced by Ruzzo [42] gave a new unified view on various complexity classes, simplifying
a few containment proofs. Ruzzo showed that NAuxPDA[poly

time
, s

space
] = A[ s

space
, poly

treesize
].

We show that bounding the time (as opposed to space) of a polynomial treesize ATM, leads
to the classes corresponding to small tree-depth, as opposed to small treewidth.

I Theorem 21 (♠). Let s(n) ≥ log2(n) be a nice function. Then

NAuxSA[poly
time

, log
space

, s(poly)
height

] = A[s(poly)
time

, poly
treesize

].

5 Conclusions

Let s(n) ≥ log2 n be a nice function such that ∀c s(nc) = O(s(n)) (e.g. s(n) = lgk n, k ≥ 2).
The hierarchy of graph parameters of Corollary 8 together with Theorems 1, 3, and 21 implies
the following hierarchy of complexity classes between NL and NP.

NAuxSA[poly
time

, log
space

, s
height

] = [td-3Coloring[s]]L = A[ s
time

, poly
treesize

] ⊆ D[ s
space

]

⊆

N[poly
time

, s
space

] = [pw-3Coloring[s]]L = N[poly
time

, s
space

]

⊆

NAuxPDA[poly
time

, s
space

] = [tw-3Coloring[s]]L = A[ s
space

, poly
treesize

] ⊆ D[2O(s)

time

]

⊆

NAuxSA[poly
time

, log
space

, s · log
height

] = [td-3Coloring[s · log]]L = A[s · log
time

, poly
treesize

] ⊆ D[s · log
space

]

For s(n) = logk(n), the classes have been considered under different names:
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NAuxSA[poly
time

, log
space

, logk

height
] was named DCk−1 (for divide and conquer) in [3, 2],

N[poly
time

, logk

space
] are known as NSCk (the non-deterministic variant of Steve’s Class),

NAuxPDA[poly
time

, logk

space
] is shown equal to a class named SACk

quasi in [4].

This yields the following hierarchy:

L ⊆
NL
‖

NSC1
⊆

SAC1

‖
SAC1

quasi

⊆ DC1 ⊆ · · · ⊆ DCk−1 ⊆ NSCk ⊆ SACk
quasi ⊆ DCk ⊆ · · · ⊆ NP
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