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Abstract

There are deep, yet largely unexplored connections between computer science and biology. Both
disciplines examine how information proliferates in time and space. Central results in computer science
describe the complexity of algorithms that solve certain classes of problems. An algorithm is deemed
efficient if it can solve a problem in polynomial time, which means the running time of the algorithm
is a polynomial function of the length of the input. There are classes of harder problems for which the
fastest possible algorithm requires exponential time. Another criterion is the space requirement of the
algorithm. There is a crucial distinction between algorithms that can find a solution, verify a solution,
or list several distinct solutions in given time and space. The complexity hierarchy that is generated in
this way is the foundation of theoretical computer science. Precise complexity results can be notoriously
difficult. The famous P=NP question is one of the hardest open problems in computer science and all
of mathematics. Here we consider simple processes of ecological and evolutionary spatial dynamics. The
basic question is: what is the probability that a new invader (or a new mutant) takes over a resident
population? We derive precise complexity results for a variety of scenarios. We therefore show that some
fundamental questions in this area cannot be answered by simple equations.

1 Significance

There is a deep connection between computer science and biology, as both fields study how information
proliferates in time and space. In computer science, the space and time requirements of algorithms to
solve certain problems generate complexity classes, which represent the foundation of theoretical computer
science. The theory of evolution in structured population has provided an impressive range of results, but
an understanding of the computational complexity of even simple questions is still missing. In this work
we prove – unexpectedly – that some fundamental problems in ecological and evolutionary spatial dynamics
can be precisely characterized by well-established complexity classes of the theory of computation. Since we
show computational hardness for several basic problems, our results imply that the corresponding questions
cannot be answered by simple equations. For example, there cannot be a simple formula for the fixation
probability of a new mutant given frequency dependent selection in a structured population. We also show
that some problems, such as calculating the molecular clock of neutral evolution in structured populations,
admit efficient algorithmic solutions.

Evolutionary games on graphs — Fixation probability — Complexity classes

2 Introduction

Evolution occurs in populations of reproducing individuals. Mutation generates distinct types. Selection
favors some types over others. The mathematical formalism of evolution describes how populations change in
their genetic (or phenotypic) composition over time. Many papers study evolutionary dynamics in structured

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/162999119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Table 1: Complexity results for various models and computational questions
Qualitative Quantitative

Ecological Scenario NP-complete #P-complete
Linear fitness PSPACE-complete PSPACE-complete
Exponential fitness P PSPACE-complete

populations [1, 2, 3, 4, 5, 6, 7, 8]. Spatial structure can affect the rate of neutral evolution [9]. There are
results that describe which spatial structures do or do not affect the outcome of constant selection [10,
11, 12]. Constant selection refers to a situation where the competing types have constant reproductive
rates independent of the composition of the population. Some population structures can be amplifiers or
suppressors of constant selection [13, 6, 14] meaning that they modify the intensity of selective differences. A
large literature deals with evolutionary games [15, 16, 17, 18, 19] in structured populations [1, 20, 21, 22, 23,
24, 25, 26, 27, 28]. In evolutionary games the reproductive success of an individual depends on interactions
with others. Many population structures and update rules can affect the outcome of evolutionary games.
For example, spatial structure can favor evolution of cooperation [1, 29].

In this paper we are interested in stochastic evolutionary dynamics in populations of finite size. A typical
setting is provided by evolutionary graph theory [6, 30, 31, 32, 33, 34]. The individuals of a population
occupy the vertices of a graph. The links determine who interacts with whom for receiving payoff and for
reproduction. There can be a single graph for game dynamical interaction and evolutionary replacement,
or the interaction and replacement graphs can be distinct [35]. Often the graph is held constant during
evolutionary updating, but it is also possible to study dynamically changing graphs [36, 37, 38, 39, 40, 41,
42, 43, 44].

The study of spatial dynamics also has a long tradition in ecology [45, 46, 47, 48, 49]. Here the typical
setting is that different species compete for ecological niches. Many evolutionary models are formally equiv-
alent to ecological ones - especially if we consider only selection and not mutation. Then we can interpret
the different types as individuals of different species.

This paper is structured as follows. First we give an intuitive account of the foundation of theoretical
computer science. We describe classes of problems that can be solved by algorithms in certain time and space
constraints. Subsequently we present two simple problems of evolutionary dynamics in spatial settings. The
first problem is motivated by a very simple ecological dynamic; the second problem is the general setting of
evolutionary games on graphs. In both cases, the basic question is to calculate the take over probability (or
fixation probability) of a new type. That is we introduce a new type in a random position in the population
and we ask what is the complexity of an algorithm that can characterize the probability that the new type
takes over the population (becomes fixed). Unexpectedly we are able to prove exact complexity results (see
Table 1).

The class PTIME (denoted as P) consists of problems whose solutions can be computed by an algorithm
that uses polynomial time. This means the running time of the algorithm grows as a polynomial function
of the size of the input. In computer science, PTIME represents the class of problems which can be solved
efficiently.

The class NP (non-deterministic polynomial time) consists of problems, for which solutions exist that
are of polynomial length, and given a candidate for a solution of polynomial length, whether the candidate
is indeed a solution can be checked in polynomial time. Therefore, an NP algorithm can verify a solution in
polynomial time.

In order to proceed further, we need the notion of ‘reduction’ between classes of problems. A reduction,
from a given problem P1 to a problem P2, is a translation such that a solution for P2 can provide a solution for
P1. More precisely, if there is a polynomial-time reduction from P1 to P2, then a polynomial-time algorithm
for P2 implies a polynomial-time algorithm for P1.

A given problem is NP-hard if for every problem in NP there is a polynomial reduction to the given
problem. A problem is NP-complete, if it is both NP-hard, as well as there is an NP algorithm for the
problem.
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Figure 1: A pictorial illustration of the complexity classes P, NP, #P, and PSPACE. The complexity class P
is contained in NP, NP is contained in #P, and #P is contained in PSPACE. The widely believed conjecture
is that the complexity classes are different. A problem is NP-hard if it is at least as hard as each problem in
NP; and similar for #P-hardness and PSPACE-hardness. The intersection of NP and NP-hard gives the NP-
complete problems, and similarly for #P-complete and PSPACE-complete problems. Hence a polynomial-
time solution for a NP-hard or NP-complete problem would imply P=NP.
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Q1: Probability >0?
Q2: Approximate probability?

Figure 2: Illustration of mutant introduction. The residents (type A) are colored blue and the mutants
(type B) are colored red. The black edges are the edges of the interaction graph and the red are the edges
of the reproduction graph. The probability to introduce a mutant in a specific vertex is always one over
the number of vertices. The computational questions of interest regarding the take over probability are as
follows: whether the probability is positive (qualitative question), and compute an approximation of the
probability (quantitative question).
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Figure 3: Illustration of reproduction with matrix

(A B

A a b
B c d

)
. The residents (type A) are colored blue and

the mutants (type B) are colored red. The black edges are the edges of the interaction graph and the red are
the edges of the reproduction graph. In the first figure beside each vertex the payoff of the vertex (which is
the sum of the payoff of the interactions) is shown. Since the first figure shows the payoff computation, the
interaction edges that are responsible for payoff calculation are boldfaced. In the second figure the vertex
labeled 3 is selected for reproduction. The reproduction edges from vertex 3 are boldfaced, and each edge
has probability 1/2. Finally, the successor 5 is chosen for replacement, i.e., vertex 3 reproduces to vertex 5.
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Figure 4: Illustration of different payoffs to fitness with

( A B

A −1 2
B 1 −2

)
. The residents (type A) are blue and

the mutants (type B) red. The black edges are the edges of the interaction graph and the red are the edges
of the reproduction graph. In the figure of the first row we show the payoff for every vertex. In the next row
we show the fitness which is either a linear function of the payoff but at least 0; or an exponential function
of the payoff. Finally, in the third row, with each vertex we show the probability, which is the normalized
fitness, that the vertex is selected for reproduction (in the last figure, the number x is the sum of the fitness,

i.e., x = e2 + 2e + 2e
1
2 + 2e−

1
2 ).
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For example, consider a Boolean formula over variables, and the question whether there exists an assign-
ment to the variables such that the formula is true. A polynomial candidate solution is an assignment of
truth values to variables, and given a candidate assignment the formula can be evaluated in polynomial time.
This is the famous satisfiability, SAT, problem in computer science. The SAT problem is NP-complete.

The class P is contained in NP, and a major, long-standing open question in computer science is whether
P=NP? A polynomial-time algorithm for an NP-complete (or an NP-hard) problem would imply that P=NP,
resolving the long-standing open problem.

The class #P (sharpP) intuitively corresponds to counting the number of solutions. A problem is in
#P if it counts the number of distinct solutions such that (i) every possible candidate for a solution is of
polynomial length, and (ii) given a candidate for a solution, it can be checked in polynomial time whether
the candidate is a solution. For example, given a Boolean formula, the problem whether there are at least k
distinct satisfying assignments to the formula is a #P-problem. A given problem is #P-hard, if for every #P-
problem there is a polynomial-time reduction to the given problem. A #P-complete problem is a problem
that is both #P-hard, and there is a #P-solution. For example, counting the number of solutions in SAT is
#P-complete.

The class NP is contained in #P because given the enumeration of solutions for #P, it is easy to check
if there exists at least one solution. Intuitively, an NP problem asks whether there is at least one solution,
whereas #P is the counting version which asks if there are least k distinct solutions (and the special case of
k = 1 gives NP). Again a major open question is whether NP=#P? Note that a polynomial-time algorithm
for a #P-complete problem would be an even bigger result as it would imply both P=NP and P=#P.

The class PSPACE consists of problems which can be solved with polynomial space. Note that a poly-
nomial space algorithm can reuse space and can in general require exponential time. Every #P problem can
be solved in PSPACE by simply enumerating each candidate for a solution and checking if it is a solution.
Since we can reuse space to enumerate the candidates for solutions, the enumeration can be achieved in
polynomial space. Moreover, every polynomial-time algorithm uses at most polynomial space. Hence it
follows that #P is contained in PSPACE. The notion of PSPACE-hardness and PSPACE-completeness is
similar to the notion of NP-hardness and NP-completeness, but with respect to the problems in PSPACE.
Again a long-standing open question in computer science is whether #P=PSPACE, and a polynomial-time
algorithm for a PSPACE-complete (or PSPACE-hard) problem would imply P=NP=#P=PSPACE.

We have mentioned that the major questions about the equality of the complexity classes are open prob-
lems, but the widely believed conjecture is that P is strictly contained in NP, NP is strictly contained in
#P, and #P is strictly contained in PSPACE. In other words, it is widely believed that NP-complete prob-
lems cannot be solved in polynomial time, #P-complete problems are harder than NP-complete problems,
and PSPACE-complete problems are harder than #P-complete problems. A pictorial illustration of the
complexity classes is shown in Figure 1.

3 Results

The first problem is motivated by ecological dynamics. There is an ecosystem occupied by resident species.
The spatial structure of the ecosystem is given by a graph. An invading species is introduced (see Figure 2
for an illustration). We assume the invading species has a competitive advantage in the sense that once a
position is occupied by the invading species the resident cannot get it back. The invading species, however,
has a density constraint: if the number of invaders around a focal invader is above a threshold, h, then the
invader in the focal vertex can not colonize another vertex.

We are interested in the probability that the invader starting from a random initial position will take over
the entire ecosystem (and therefore drive the resident to extinction). There are two types of questions. The
‘qualitative question’ is whether the take over probability is greater than zero. The ‘quantitative question’
is concerned with computing the take over probability subject to a small error. Figure 2 gives a pictorial
illustration. We prove the following results. The qualitative question is NP-complete (See SI Appendix
Theorem 4). The quantitive question is #P-complete (See SI Appendix Theorem 8).

The second problem is concerned with evolutionary games in structured populations. There are two
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types, A and B, whose reproductive rates depend on local interactions. We consider the setting of games on
graphs. Each vertex is occupied by one individual, which is either A or B. Interactions occur pairwise with
all neighbors. The payoff matrix is given by

(A B

A a b
B c d

)
(1)

The entries of the payoff matrix can be positive or negative (or zero). Each individual interacts with all of
its neighbors on the graph to derive a payoff sum. The payoff sum is translated into reproductive success as
follows. If the payoff sum is positive, then the fecundity equals the payoff sum. If the payoff sum is negative,
then the fecundity is zero. We refer to this translation as linear fitness. In any one time step, a random
individual is chosen for reproduction proportional to its fecundity. The offspring, which is of the same type
as the parent, is placed into an adjacent position on the graph (see Figure 3 and Figure 4 for an illustration).

We are interested in the probability that a single A individual starting in a random position on the
graph generates a lineage which will take over the entire population; this probability is generally called
fixation probability. As before, there are two types of questions. The ‘qualitative question’ is whether
the fixation probability is positive. The ‘quantitative question’ is concerned with computing the fixation
probability subject to a small error. We prove the following results. The qualitative question is NP-hard
and in PSPACE. The quantitive question is #P-hard and in PSPACE. The results follow from SI Appendix
Theorem 4, Theorem 8, and Theorem 15.

Note that the first problem can also be obtained as a special case of the second problem. In the payoff
matrix (1) we can set, for example, a = −1, b = 1, c = d = 0. This ‘game’ has the property that type B
never reproduces and type A reproduces until half its neighbors are also of type A. This parameter choice
leads to the same qualitative behavior and the same complexity bounds as described in the first problem.

A generalization of games on graphs is the setting where the interaction graph and the replacement graph
are distinct [35]. Thus each individual interacts with all of its neighbors on the interaction graph to receive
payoff. Subsequently an individual is chosen for reproduction proportional to its fecundity. The offspring is
placed randomly among all neighbors of the focal individual on the replacement graph. In this case, both
the qualitative and quantitative questions become PSPACE-complete (See SI Appendix Theorem 15)

We also consider a variation of the second problem. In particular we change the mapping from payoff to
fecundity. We now assume that fecundity is an exponential function of payoff, and refer to it as exponential
fitness (see Figure 4 for an illustration). Therefore the fecundity of an individual is always positive (even if
its payoff sum is negative). In this setting the qualitative question can be decided in polynomial time. The
reason is that the fixation probability is positive if the graph is connected. Thus, in order to answer the
qualitative question the algorithm only needs to check whether the graph is connected; this problem is in
P. However, the quantitative question has the same complexity as the previous problem (See SI Appendix
Theorem 16 and Theorem 17).

A very special case of games on graphs is constant selection. Type A has constant fecundity a and type
B has constant fecundity b independent of any interactions, i.e., fecundity is independent of the population
structure. The qualitative question concerning the fixation probability of A is in P. The quantitative question
is in PSPACE, but any non-trivial lower bound is an open question.

Finally, while we establish computational hardness for several problems, we also show that two classic
problems can be solved in polynomial time (See SI Appendix Section 7). First, we consider the molecular
clock, which is the rate at which neutral mutations accumulate over time. The molecular clock is affected
by population structure [35]. We show that the molecular clock can be computed in polynomial time
because the problem reduces to solving a set of linear equalities, which can be achieved in polynomial time
using Gaussian elimination. Second, we consider evolutionary games in a well-mixed population structure,
where the underlying structure is the complete graph [51]. We show that the exact fixation probability
can be computed in polynomial time. In this case the problem can be reduced to computing absorption
probabilities in Markov chains, where each state represent the number of mutants. Hence the Markov chain
is linear in the number of vertices of the graphs, and since absorption probabilities in Markov chains can be
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computed in polynomial time (by solving a set of linear equalities) we obtain the desired result.

4 Methods: Proof Ideas

We now present the key intuition and main ideas of our results. The most interesting and technically
insightful results are the lower bounds (i.e., the hardness proofs), and we present the key ideas only for
them.

1. NP-hardness of the qualitative ecological problem. One of the most classic NP-complete problems is
the 3SAT-problem, which is the SAT problem where every clause has exactly three literals (a literal
is a Boolean variable x or a negation of a variable x). Given instances of the 3SAT problem we
construct instances of the ecological problem, where we have a start vertex where the mutant arises,
followed by a sequence of vertices (i.e., each vertex can reproduce a mutant to the next), one for
each clause. By our construction, a vertex in this sequence can reproduce at most three times, one
of which must be the next vertex of the sequence, and the others correspond to at most two literals
of the clause (intuitively these two lierals represent the ones that are not set to true by a candidate
satisfying assignment). The last vertex of the sequence reproduces to a new sequence of vertices that
corresponds to an assignment of truth values to the variables. Each vertex in this new sequence can
reproduce twice, one to the next vertex of the sequence, and other to a variable or its negation. The
variables or the corresponding negation can then reproduce mutants to the corresponding literals of
the clauses. After this sequence, all vertices that do not correspond to a literal in a clause become
mutants. In essence our construction ensures if there is a satisfying assignment, then with positive
probability all vertices can become mutants, and conversely, if there is no satisfying assignment, then
the probability that all vertices become mutants is zero.

2. #P-hardness of the quantitative ecological problem. A #P-complete problem is counting the number
of perfect matchings in a bipartite graph (which also corresponds to computing permanent of Boolean
matrices). A bipartite graph consists of two set of vertices, a set on the left side and a set on the right
side, with edges from the left side to right side. A perfect matching is a one-to-one mapping of each
vertex of the left side to a vertex on the right side such that there is an edge between them. First we
argue that for the hardness proof it suffices to consider bipartite graphs in which each vertex in the left
side has outdegree 2k for some integer k. A key idea in our construction is that in a full binary tree, if
the root becomes a mutant, and every vertex can reproduce exactly once, then the set of mutants will
eventually consists of a path from the root to a leaf, chosen uniformly at random. Our construction is
then as follows: We have a start vertex where the mutant arises, which reproduces to turn each of the
vertices in the left side of the bipartite graph to mutants. Each of the vertices in the left side is the
root of a full binary tree, where the leaves correspond to the right side of the bipartite graph. We show
that the fixation process corresponds to a perfect matching (defined from the path in the full binary
trees), and given an approximation of the fixation probability, the exact number of perfect matchings
of the bipartite graph can be computed.

3. PSPACE-hardness for the game on evolutionary graph problem. Our PSPACE-hardness proof shows
that the evolutionary process can solve the following concurrent-if problem, which we show is PSPACE-
hard. The concurrent-if problem consists of a set of Boolean variables x1, x2, . . . , xn, with a given initial
truth assignment to the variables, and a set of if-statements. Each if-statement si is of the follwing
form: If a conjunctive clause Ci over the variables is true, then assign a truth value to a variable (e.g.,
if (x2 ∧ x4 ∧ x5), then x3 is assigned false). The problem is to decide whether the first variable (which
is the accepting variable) eventually becomes true. We show that each variable can be represented as
four vertices, and each if statement as a single vertex, in the evolutionary graph, and the evolutionary
process can mimic the execution of the concurrent-if problem. Finally, if the accepting variable becomes
true, then it corresponds to making a special vertex in the evolutionary graph as mutant. There exists
a part of the evolutionary graph that can only become mutants after the special vertex has become a

9



mutant. Using this construction we show that for evolutionary games on graphs both the qualitative
and quantitative problems are PSPACE-hard.

5 Discussion

In summary, we have established computational complexity results for some fundamental problems of eco-
logical and evolutionary dynamics in structured populations. Our main results are summarized in Table 1.
We now discuss the significance of our findings.

1. Interdisciplinary connection. While both computer science and biology examine the proliferation of
information in time and space, the deep connection between them has been largely unexplored. Our
work provides precise computational complexity results for several well-studied problems in biology
and can be viewed as a step to establish a connection between the two disciplines.

2. Well-studied open problem. The problems we have considered are basic aspects of well-studied ques-
tions for ecological and evolutionary dynamics in structured populations [1, 5, 6, 14, 28, 29]. Several
reviews have been written on this topic [7, 30, 33, 50]. We first discuss the significance of an algorithmic
approach in evolutionary graph theory. An efficient algorithm, which considers all (even worst-case)
graphs for evolutionary processes, is important for the following reasons: (i) It has been shown that
some population structures (called amplifiers) can increase the effect of natural selection [6, 29]; but
amplifiers are rare and constructing them is difficult [6, 29, 14, 52, 53, 33]. If there was an efficient
algorithmic approach that worked for all graphs, then one could design candidates for amplifiers and
efficiently check their fixation probabilities. Since there exists no algorithmic approach, research has
to focus on special classes of graphs to identify simple formulas, such as calculating the fixation prob-
abilities on star like graphs [52]. (ii) It is known that some population structures and evolutionary
dynamics promote evolution of cooperation, but others do not [29]. An important open problem is to
characterize the set of graphs that promote cooperation. An efficient algorithmic approach would be
useful to check candidate structures. Since no efficient algorithm exists, one has to study special cases,
for example by considering nearly regular graphs [29].

Thus a general algorithmic approach is a very important problem for the well-studied question con-
cerning the effect of population structures on evolutionary dynamics. An algorithmic approach has
been studied for important special cases such as for complete graphs [54], and NP-hardness was stated
for the quantitative problem [6]. The review [50] identifies the complexity of computing fixation prob-
abilities on evolutionary graphs as important open question in the area. In [50], two open problems
(2.1 and 2.2) are identified that ask for the complexity of computing the exact fixation probabilities
for graphs and for games on graphs. Our results not only present answers to those crucial questions,
but also show that both the approximation problem and the qualitative question are computationally
hard. The most interesting aspects of our results are the lower bounds, which show that in most cases
there exists no efficient algorithm, under the widely believed conjecture that P is different from NP. A
simple equation based solution would give an efficient algorithm, and thus our result formally shows
that for evaluating the fixation probability in spatial settings there does not exist a simple equation
based solution in general. Our results are significant for the following reasons: (a) it establishes the
computational complexity for fundamental problems of ecological and evolutionary dynamics in struc-
tured populations considered in for example [1, 5, 6, 14, 28, 29, 7, 30, 33, 50]; and (b) it significantly
improves the complexity result of [6] and solves the computational complexity questions of the area as
identified in [50].

3. Methodological insight. Our proof ideas also reveal some important points. We show how evolutionary
processes in structured populations can mimic aspects of computation. This insight could be useful
for future research on understanding the computational complexities of other stochastic processes on
population structures.

10



References

[1] Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359:826.

[2] Killingback T, Doebeli M (1996) Spatial evolutionary game theory: Hawks and doves revisited. Proc.
R. Soc. B 263(1374):1135–1144.
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[30] Szabó G, Fáth G (2007) Evolutionary games on graphs. Phys. Rep. 446:97–216.

[31] Yang HX, Wu ZX, Du WB (2012) Evolutionary games on scale-free networks with tunable degree
distribution. EPL (Europhysics Letters) 99(1):10006.

[32] Chen YT (2013) Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs. Ann.
Appl. Probab. 23:637–664.

[33] Allen B, Nowak MA (2014) Games on graphs. EMS Surv Math Sci 1:113–151.
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1 Introduction and Organization
In this supplementary information we will present the detailed proofs of the results mentioned in the main text. To
present a uniform treatment of the results we will consider the following notations:

1. We will always consider that there are two types of individuals that occupy the vertices of the graph, and call
them as mutants and residents (they represent type A and type B individuals, respectively, as mentioned in the
main article).

2. To model the ecological scenario, that the mutants has an advantage that once they occupy a position, then the
residents cannot win it over, we will model it as the case that the residents do not reproduce (note that a residents
reproducing to another vertex which is a resident does not change the scenario of the graph).

Organization of the results. The supplementary information is organized as follows:

1. We start with the formal definitions of the model and the computational questions in Section 2. We will consider
two functions to change payoffs to fitness, namely, linear bounded fitness (where the fitness is linear function
of the payoff, but at least 0), and the exponential fitness function. In the three following sections after Section 2
we present results about the linear bounded fitness model.

2. In Section 3 and Section 4, we consider linear bounded fitness and no resident reproduction (that models the
ecological scenario with advantage for the mutants). We establish NP-completeness of the qualitative question
in Section 3, and #P-completeness of the quantitative question in Section 4.

3. In Section 5 we consider linear bounded fitness with resident reproduction, and show that both the qualitative
and quantitative questions are PSPACE-complete.

4. We consider the exponential fitness function in Section 6. We show that the quantitative question for no resident
reproduction, and the qualitative question (even with resident reproduction) can be solved in polynomial time.
We show that the quantitative problem with resident reproduction is PSPACE-complete.

5. Finally, in Section 7 we argue that evolutionary games on well-mixed population, and finding the rate of molec-
ular clock problem can be solved in polynomial time.

2 Models of Evolution on Graphs
In this section we present the basic definitions related to the different models of evolution on graphs and the basic
computational questions.
Evolutionary graphs. An evolutionary graph G = (V,E

I

, E
R

) consists of a finite set V of vertices; a set E
I

✓ V ⇥V
of interaction edges; and a set E

R

✓ V ⇥V of replacement (or reproduction) edges [12]. The sets E
I

and E
R

consist

1



of directed edges, and the graph G
I

= (V,E
I

) is called the interaction graph, and G
R

= (V,E
R

) is called the
replacement graph. The graph G

I

is responsible for determining the interaction of individuals in the graph (which
affects the fitness or payoff), and the graph G

R

captures the underlying structure for reproduction and replacement of
individuals in the graph. Given an edge (v, u) we say u is a successor of v and v is a predecessor of u.
Payoff of individuals. Each vertex of the graph will be occupied by one of two types of individuals, namely, the
resident type and the mutant type. In evolutionary games, along with the evolutionary graph there is a payoff matrix,
which is defined as follows:

✓R M

R a b
M c d

◆

where the entries of the matrix are rational numbers and represent the payoff of an interaction, i.e., a (resp., b) is the
payoff of a resident type interacting with another resident (resp., mutant) type, and c (resp., d) is the payoff of a mutant
type interacting with a resident (resp., mutant) type. Given two vertices, x and y, we denote by pay(x, y) the payoff
of the type of vertex x versus the type of vertex y.
Fitness of individuals. The fitness of an individual denotes the fecundity (or reproductive rate) and must be a non-
negative number. Let E

I

(v) = {u | (v, u) 2 E
I

} denote the set of interaction successors of v. We define two natural
(but not equivalent) ways of defining the fitness of v, denoted as f(v), as follows:

1. Linear bounded fitness. The linear bounded fitness is the average payoff of the interactions but at least 0, i.e.,

f(v) = max

(P
u2EI(v)

pay(v, u)

|E
I

(v)| , 0

)
.

Note that since the fitness is non-negative it is bounded from below by 0.

2. Exponential fitness. The exponential fitness is an exponential function of the average payoff of the interactions,
i.e.,

f(v) = exp

✓P
u2EI(v)

pay(v, u)

|E
I

(v)|

◆
.

Note that the fitness function ensures that the fitness is always positive.

We will use LBF to refer to the linear bounded fitness function and ExF to refer to the exponential fitness function.
The evolutionary process. The evolutionary process we consider is the classical birth-death process on an evolution-
ary graph defined as follows:

1. Initially all vertices of the graph are of the resident type and a mutant type is introduced uniformly at random at
one of the vertices of the graph.

2. Repeat the following step (referred to as a generation): In every generation, a vertex v is selected proportional to
the fitness of the individual at the vertex to reproduce1. A new born individual replaces one of the replacement
successors of v, i.e., it replaces a vertex chosen uniformly at random from the set E

R

(v) = {u | (v, u) 2 E
R

}.

Step 2 (or generations) is repeated until nothing can change (in particular, if all vertices have fitness 0 or have the same
type, then nothing can change).
Fixation probability. The most relevant question from an evolutionary perspective is the fixation probability which is
the probability that the mutant takes over the population, i.e., eventually all vertices become the mutant type.
Computational questions. Given an evolutionary graph, a payoff matrix, and the payoff to fitness function (linear
bounded, or exponential) we consider the following questions:

1. the qualitative decision question asks whether the fixation probability is positive; and
1If every vertex has fitness 0, then no vertex is selected for reproduction.



2. the quantitative approximation question, given ✏ > 0, asks to compute an approximation of the fixation proba-
bility within an additive error of ✏.

In this work we will establish several complexity bounds for the problem, and our most interesting results are
the lower bounds. Lower bounds establish computational hardness of a problem, and if the lower bounds can be
established even in restricted cases, then it shows that even special cases of the general problem is computationally
hard, and thus the lower bounds become even more significant (e.g., a single lower bound for a special case can be
applied to all generalizations of the special case).
Special cases. There are several special cases of interest that we will explore.

1. Constant fitness with density constraints. A special case of the payoff matrix is the constant fitness (aka
constant selection) matrix defined as follows:

✓R M

R r r
M 1 1

◆

i.e., the mutant types always have fitness 1 and the resident types fitness r, where r � 0

2. Along with the
evolutionary graph and the payoff matrix, we have two thresholds, namely, ✓

R

and ✓
M

, for the resident type and
the mutant type, respectively. Intuitively, the thresholds represent a density constraint, and if an individual is
surrounded by a lot of individuals of the same type, then its reproductive strength decreases. The density con-
straint is relevant in many applications of evolution (see books [2, page 470] [13, page 320], also see Remark 1).
Let the selected vertex for reproduction be v. Let Same(v) denote the number of vertices in E

I

(v) that are of
the same type as v. If v is a mutant type, and Same(v)

|EI(v)|  ✓
M

(resp., if v is a resident type, and Same(v)
|EI(v)|  ✓

R

),
then the individual gives birth to an individual of the same type. Note that the density constraint implies that if
the constraint is violated, then the selected individual does not reproduce.

2. The I&R and IEQR models. One important special case is when the interaction and the replacement graphs
coincide, i.e., E

I

= E
R

[9, 11]. We refer to the general model as the I&R model (with possibly different
interaction and replacement graphs) and the special case where the graphs coincide as the IEQR model.

3. No resident reproduction. Another special case is when the payoff matrix is the constant payoff matrix with
r = 0. In this case, the resident types cannot reproduce. This represents the scenario that a mutant has an
advantage over the residents such that if a mutant occupies a position, then the residents cannot win it back.

Remark 1 (Matrix encoding of density constraints in LBF.). For many of our lower bounds, we will use constant
selection with density constraints, and we argue that the density constraints of our lower bounds, are special cases
of the linear bounded fitness without any density constraints. In our results for lower bounds we consider two types
of density constraints: (1) ✓

M

=

1

2

� �, for 0 < � < 1/10 (in Section 3 and Section 4), where there is no resident
reproduction (hence ✓

R

is irrelevant); and and (2) ✓
M

= ✓
R

= 0 in Section 5. In all the lower bounds, the payoff
matrix is constant. These two density constraints can be encoded as a payoff matrix (that is not constant) with linear
bounded fitness function as follows:

✓R M

R 0 0

M 1 �1

◆
;

✓ R M

R �N 1

M 1 �N

◆
.

The first payoff matrix encodes that a vertex that is a mutant can reproduce only if strictly less than half of the
successors in E

I

are mutants, and thus encode ✓
M

=

1

2

� �, for 0 < � < 1/10, in graphs where the outdegree
is at most five. The second matrix (for a graph with N vertices) encodes that a vertex can reproduce only if all the
successors in E

I

are of the opposite type.

2In the literature, an alternative notion is to consider that the mutant have fitness r and the residents have fitness 1, we follow the notation that
leads to uniform treatment



Organization. Our results are organized as follows.

1. In Section 3, Section 4, and Section 5, we consider the linear bounded fitness function. We will present upper
bounds for the general case, and lower bounds for the special case of constant payoff matrix with density con-
straints (which is a restricted case as explained in Remark 1). In Section 3 we consider no resident reproduction,
and present results for the qualitative case; and in Section 4 we again consider no resident reproduction and
present results for the quantitative approximation. Finally, in Section 5 we present results for the qualitative and
quantitative analysis in the general model with resident reproduction.

2. In Section 6 we present the results for the exponential fitness function.

No Resident Reproduction Resident Reproduction
IEQR model I&R model IEQR model I&R model

Qual. NP-c ((LB) Lem. 3) NP-c ((UB) Lem. 2) NP-h, PSPACE PSPACE-c ((LB) Lem. 11, (UB) Lem. 9)
Appr. #P-c ((LB) Thm. 8) #P-c ((UB) Thm. 8) #P-h, PSPACE PSPACE-c ((LB) Lem. 11, (UB) Lem. 9)

Table 1: Complexity of evolution on graphs with linear bounded fitness. Qual is short-hand for qualitative and appr for
approximation. Our main contributions of lower bounds (LB) and upper bounds (UB) are boldfaced. NP-c (resp., #P-
c, PSPACE-c) means NP-complete (resp., #P-complete, PSPACE-complete). Similarly, NP-h (resp., #P-h) means
NP-hard (resp., #P-hard).

3 Qualitative Analysis: No Resident Reproduction with LBF

In this section we establish two results for the no resident reproduction model with LBF: the qualitative analysis
problem is (1) in NP for the general I&R model; and (2) is NP-hard in the special case of IEQR model, and even in a
special case of LBF, where we have constant fitness with density constraints, (using density constraints mentioned in
Remark 1).

3.1 Upper bound
The upper bound is relatively straightforward. We simply check if there exists an initial choice v

1

for the initial mutant
and a sequence (e

i

)

2in

of edges of length n � 1 in the replacement graph for reproductions that ensures that all
vertices are mutants. The initial vertex v

1

and the sequence of edges together define a unique sequence of vertices for
reproduction; and at every stage we check that for the vertex chosen for reproduction can reproduce (i.e., has fitness
strictly positive), and it is a mutant. We also need to check that in the end all vertices are mutants. The choice of the
initial vertex and the sequence of reproductions then happen with positive probability and we are done. Observe that
since there is no resident reproduction, if a vertex becomes a mutant, then it remains a mutant. Note that there always
exists a sequence of length n � 1, because if the fixation probability is positive, then we can WLOG assume (till all
vertices are mutants) that in each step i there is a vertex v that is a mutant, with strictly positive fitness, and an edge
(v, v0) in the replacement graph such that v0 is not a mutant (and becomes a mutant in step i), as otherwise nothing can
change. This shows that if the answer to the qualitative decision question is yes in the no resident reproduction model,
then there is a polynomial witness and polynomial-time verification procedure.

Lemma 2. The qualitative decision question for no resident reproduction in the general I&R model with LBF is in
NP.

3.2 Lower bound
In this section we present an NP lower bound, and we will prove it for the IEQR model with no resident reproduction.
We will also consider a special of LBF, which is constant fitness with density constraints. Moreover, since there is no
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Figure 1: Illustration of a predecessor gadget (u, v).

resident reproduction, the threshold ✓
R

does not matter. We will present a reduction from the 3-SAT problem (which
is NP-complete [3, 8, 5]) and use threshold ✓

M

as 1

2

� �, for any 0 < �  1

10

. However it would be easy to modify
our construction for any threshold ✓

M

in (0, 1). The “right” way to think of the threshold is that it is 1

2

and that the
density constraint uses a strict inequality. The upper bound is chosen because we will use vertices with degree five or
less; recall Remark 1.
Notation. Let X = {x

1

, x
2

, . . . , x
n

} be a set of n Boolean variables. Consider a 3-CNF formula ' = C
1

^C
2

^ · · ·^
C

m

, where each C
i

is a clause of a list of (precisely) three literals (where a literal is a variable x or its negation x,
where x 2 X). Each clause represents a disjunction of the literals that appear in it. An instance of the 3-SAT problem,
given a 3-CNF formula ', asks whether there exists a satisfying assignment. We will now construct an evolutionary
graph G('), given an instance of a 3-SAT problem, with (i) E

I

= E
R

, (ii) no resident reproduction, and (iii) threshold
✓
M

=

1

2

� �, for 0 < �  1

10

such that there is a satisfying assignment iff the answer to the qualitative decision
problem is YES. We first present two gadget constructions that will be used in the reduction.
Predecessor gadget. We present a predecessor gadget for a vertex pair (u, v) such that v is the only successor of u.
The gadget ensures the following property (namely, the predecessor gadget property): if all vertices become mutants,
then the vertex u must have become a mutant before vertex v. The construction of the gadget is as follows: Add a
new dummy vertex u0. Let the successors of u be v and u0, and the successor of u0 be only v. Then the only way for
u0 to become a mutant is if u is a mutant, since u is the only predecessor of u0. But u0 can only become a mutant if
u is a mutant and v is not (since otherwise the threshold condition with ✓

M

=

1

2

� � is not satisfied for u, for any
0 < �  1

10

). Hence, if all vertices become mutant, then u must become a mutant before v. There is an illustration of
the predecessor gadget for (u, v) in Figure 1. We will denote by PredEdges(u, v, u0

) the set {(u, v), (u, u0
), (u0, v)}

of edges of the predecessor gadget.
(Extended) Binary tree gadget. Given a vertex rt, and a set L of vertices, we will denote by BinTr(rt, L) a binary
tree with rt as root and L as leaf vertices3. In a binary tree, every non-leaf vertex has out-degree 2. Note that the
binary tree gadget adds additional vertices, and has O(|L|) vertices. By an abuse of notation we will use BinTr(rt, L)
to denote both the set of vertices and the set of edges of the binary tree, and it would either be clear from the context or
explicitly mentioned. Given a binary tree T and an extension vertex z 62 T , an extended binary tree (EBT) consists of
T and an edge from every non-leaf vertex to z. Given a root vertex rt, a set L of leaf vertices, and an extension vertex
z, we denote by ExBinTr(rt, L, z) the edge set of the extended binary tree that extends the binary tree of rt and L. We
will explicitly use the following property for an EBT (namely, qualitative EBT (QEBT) property):

• (QEBT Property). In an EBT, every non-leaf vertex has out-degree 3, and for density constraint with threshold
1

2

� �, for 0 < �  1

10

(the construction works even if � is up to 1

6

), if the root becomes a mutant and z is not
a mutant, then the root can be responsible for making every vertex in the tree a mutant. However, note that if
z is a mutant, then any vertex in the tree with out-degree 3 cannot make both its children in the underlying tree
mutants due to the density constraint.

There is an illustration of a binary tree BinTr(x, {v
1

, v
2

, v
3

}) and the corresponding EBT ExBinTr(x, {v
1

, v
2

, v
3

}, z)
in Figure 2.
The evolutionary graph G('). We now present the evolutionary graph G('), see Figure 3 for an illustration, where
we first describe the vertex set and then the edges. Recall that n is the number of variables and m the number of
clauses of the 3-SAT instance �.

3For a fixed L and rt there exists many possible binary trees BinTr(rt, L), however every one of them will work for our purpose
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)
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z

Figure 2: A binary tree BinTr(x, {v
1

, v
2

, v
3

}) and the corresponding EBT ExBinTr(x, {v
1

, v
2

, v
3

}, z), where we
extend with the vertex z. The edges to z are dotted to make the similarities easier to see.

The vertex set. The set V of vertices is as follows (intuitive descriptions follow):

{v>, z?, y?, z0?} [ {c
1

, c
2

, . . . , c
m

} [ {c1
i

, c2
i

, c3
i

| 1  i  m} [ {bc1
i

,bc2
i

,bc3
i

| 1  i  m}

[ {x
i

, xt

i

, xf

i

| x
i

2 X} [ {v
0

, v0
0

}

[ {ut

i

, uf

i

| 1  i  n} [
S

1in

(BinTr(xt

i

, Lt

i

) [ BinTr(xf

i

, Lf

i

))

The vertex v> will be the start vertex; and the vertices z?, y?, and z0? are end vertices (that will form a predecessor
gadget for (z?, y?) with dummy vertex z0?). We have a vertex c

i

for each clause C
i

(named the clause vertices);
and one for each literal c1

i

, c2
i

, and c3
i

in the clause (named the clause-literal vertices). Similarly, we have a vertex
x
i

for each variable in X (named the variable vertices), and vertices xt

i

and xf

i

(named the variable-value vertices)
to represent the truth values to be assigned to x

i

. Corresponding to xt

i

and xf

i

we also have vertices ut

i

and uf

i

(named the duplicate vertices). The vertex v
0

forms a predecessor gadget (using the dummy vertex v0
0

) to ut

1

. Let
Lt

i

= {bcj
k

| 1  k  m, 1  j  3, cj
k

= x
i

} denote a copy of the clause-literal vertices that correspond to x
i

and
Lf

i

= {bcj
k

| 1  k  m, 1  j  3, cj
k

= x
i

} denote a copy of the clause-literal vertices that correspond to negation
of x

i

. The set BinTr(xt

i

, Lt

i

) (resp., BinTr(xf

i

, Lf

i

)) represents the vertices of a binary tree with the root vertex xt

i

(resp., xf

i

) and leaf vertices Lt

i

(resp., Lf

i

).
The edge set. We now describe the edge set:

• There is an edge from the initial vertex v> to the first clause vertex c
1

; and we have two predecessor gadgets;
(i) (z?, y?) with dummy vertex z0?; and (ii) (v

0

, ut

1

) with dummy vertex v0
0

.

• For each clause vertex c
i

, there are five edges, three to clause-literal vertices cj
i

(for j = 1, 2, 3) of the clause,
one to the next clause vertex (for c

m

this next vertex is x
1

), and to the vertex ut

1

.

• For each variable vertex x
i

, there are three edges: to xt

i

and xf

i

, and to the next variable vertex x
i+1

(for x
n

the
next vertex is v

0

).

• Each duplicate vertex ut

i

has three edges: to uf

i

, to xt

i

, and to y?. Similarly, each vertex uf

i

has three edges: to
ut

i+1

(uf

n

has edge to z? instead), to xf

i

, and to y?.

• Finally, we have the EBT with x↵

i

(for ↵ 2 {t, f}) as root, L↵

i

as leaf vertices and y? as the extension vertex.
For each vertex in L↵

i

, for ↵ 2 {t, f}, we add edges to the corresponding clause-literal vertex and to ut

1

. This
ensures that every internal vertex of the binary tree has degree three, and leaf vertices have degree two.



The formal description is as follows:

{(v>, c1)} [ PredEdges(z?, y?, z
0
?) [ PredEdges(v

0

, ut

1

, v0
0

)

{(c
i

, cj
i

) | 1  i  m, 1  j  3} [ {(c
i

, ut

1

) | 1  i  m} [ {(c
i

, c
i+1

) | 1  i  m� 1} [ {(c
m

, x
1

)} [

{(x
i

, xt

i

), (x
i

, xf

i

) | 1  i  n} [ {(x
i

, x
i+1

) | 1  i  n� 1} [ {(x
n

, v
0

)} [

{(ut

i

, uf

i

) | 1  i  n} [ {(uf

i

, ut

i+1

) | 1  i  n� 1} [ {(uf

n

, z?)} [ {(u↵

i

, x↵

i

), (u↵

i

, y?) | 1  i  n,↵ 2 {t, f}} [

(

S
1in

(ExBinTr(xt

i

, Lt

i

, y?) [ ExBinTr(xf

i

, Lf

i

, y?)) [ {(bcj
k

, cj
k

), (bcj
k

, ut

1

) | bcj
k

2 L↵

i

, 1  i  n,↵ 2 {t, f}}

Example. We will now give an example of the graph G(') for ' = (x̄_ y_x)^ (z_x_ x̄). See Figure 3. The edges
to ut

1

are dashed and the edge from u↵

i

for all 1  i  3 and ↵ 2 {t, f} are dotted, for readability. Also, the vertex ut

1

is included twice to make it clearer that it is in a predecessor gadget.
Basic facts. We first mention some basic facts about the evolutionary graph obtained.

1. First, observe that the predecessor gadget property implies that for fixation the vertex v
0

must become a mutant
before vertex ut

1

; and vertex z? before vertex y?.

2. Second, for a vertex with degree `, it can reproduce a mutant as long as at most ` · ( 1
2

� �) successors are
mutants. In particular, for vertices with five (resp., three) successors, like the clause (resp., variable) vertices, it
can reproduce a mutant until at most three (resp., two) successors are mutants, because of the bounds on ✓

M

.
If a vertex has out-degree two (or one), then it can reproduce a mutant until at most one successor is a mutant,
because of the bounds on ✓

M

. The conditions follow from the density constraint with threshold 1

2

� �.

Two phases for fixation. For mutants to attain fixation (i.e., all vertices become mutants), certain conditions must
be fulfilled. The first basic fact above implies that for the evolutionary process to attain fixation, it must make vertex
x
n

a mutant (then vertex v
0

a mutant) before vertex ut

1

. We thus split the process of fixation in two phases: in the
first phase ut

1

is not a mutant, and in the second phase ut

1

will be a mutant. We further split the first phase into two
sub-phases, the first sub-phase is related to clause vertices becoming mutants, and the next sub-phase is related to the
variable vertices becoming mutants. The description of the phases for fixation are as follows:

1. (Phase 1:Part A). The mutant must be initialized at the start vertex v> (since v> has no predecessor). After
v>, the clause vertex c

1

becomes a mutant. Since at most half (three) successors can become mutant from c
1

(recall that c
1

has five successors), and one of them must be c
2

(as the only incoming edge for c
2

is from c
1

),
it follows that c

2

and at most two clause-literal vertices for clause C
1

becomes mutant from c
1

. This process is
then repeated for all the clause vertices c

i

till x
1

becomes a mutant.

2. (Phase 1:Part B). Each of the vertices x
i

has three successors, and hence can make two of them mutants. One
of them must be x

i+1

(as x
i+1

has only x
i

as the predecessor), and the other one is at most one of xt

i

or xf

i

.
This continues till we reach v

0

. Note that once xt

i

becomes a mutant, then the entire EBT under xt

i

, including
the corresponding clause-literal vertices, but not y? and ut

1

, can become mutants, as long as y? and ut

1

are not
mutants. The reasoning is as follows: the leaf vertices has two out-going edges, and since ut

1

is not a mutant, it
can reproduce a mutant to the corresponding clause-literal vertices, and the rest follows from the QEBT property.
The phase 1 ends with the predecessor gadget of (v

0

, ut

1

) becoming mutants. Note that this phase corresponds to
a partial assignment of truth values to the variables as follows: for a variable x

i

, if xt

i

was chosen (made mutant),
it corresponds to assigning true to x

i

; if xf

i

was chosen, it corresponds to assigning false to x
i

; otherwise, if
neither was chosen, then it corresponds to no assignment to x

i

(if fixation is reached without having made an
assignment to some set U of variables, then any possible assignment of values to the variables of U will make
the partial assignment a satisfying assignment).

3. (Phase 2). This phase starts after ut

1

is a mutant. We establish a key property of this phase that will be used in
the proof. Consider the EBT under some variable-value vertex. Each leaf vertex of the tree has out-degree two:



one of the successors is ut

1

and the other is a clause-literal vertex. It follows that once ut

1

has become a mutant,
then the leaf vertices cannot reproduce any more. Thus the key property of Phase 2 is as follows: leaf vertices
of EBTs cannot reproduce mutants to clause-literal vertices after Phase 2 starts.

The graph G(') has positive fixation probability iff ' is satisfiable. We present two directions of the proof.

1. Satisfiablity implies positive fixation. Consider a satisfying assignment to ', and intuitively the assignment
chooses at least one literal in each clause. The sequence of mutants reproduced in the two phases for fixation is
as follows:

• (Phase 1). The sequence in Phase 1 is the following: (1) initial vertex v> becomes a mutant which then
reproduces a mutant to c

1

; (2) in vertex c
i

, it reproduces upto three mutants, one to c
i+1

(to x
1

for i = m)
and upto two mutants for vertices cj

i

of the clauses which are not chosen by the satisfying assignment (this
corresponds to Phase 1:Part A); (3) for a vertex x

i

it reproduces two mutants, one to x
i+1

(to v
0

for i = n),
and the other to xt

i

(resp., xf

i

) if the assignment chooses x
i

to be true (resp., false); and moreover, the entire
EBT under xt

i

(resp., xf

i

) including the clause-literal vertices become mutants (other than u1

t

and y?); and
(4) then v0

0

becomes a mutant and then ut

1

becomes a mutant from v
0

, and proceed to Phase 2.

• (Phase 2). The sequence in Phase 2 is the following: (1) In every vertex u↵

i

(for ↵ = t or f ) it makes x↵

i

mutant (if it is not already a mutant) and then it makes the next vertex in line a mutant (if i = n and ↵ = f ,
then the next vertex is z?, otherwise, the next vertex is uf

i

if ↵ = t and ut

i+1

if ↵ = f ); moreover, once x↵

i

becomes a mutant, so does the entire binary tree (other than y?) under it (but not the clause-literal vertices
since ut

1

is a mutant); and (2) finally the (z?, y?) predecessor gadget becomes mutants.

The claim follows.

2. No satisfying assignment implies no fixation. Note that for fixation we need the two phases. In every clause c
i

at least one of the clause-literal vertices cj
i

was not made a mutant by c
i

in Phase 1:Part A (or even after that).
This implies that if Phase 2 has started and not all clause-literal vertices cj

i

of a clause c
i

have become mutants,
then at least one of these vertices cannot become a mutant, by the key property of Phase 2. For each (partial)
assignment that is not satisfying, there exists at least one clause, in which no literals are chosen. Recall that the
reproduction of mutants in Phase 1:Part B gives a partial assignment of truth values to variables. Hence, in the
process of reproducing mutants in Phase 1:Part B, there must remain a clause where at most two clause-literal
vertices are mutants. Therefore it implies that if there is no satisfying assignment, then fixation is not possible.

We obtain the following result. Lemma 2 and Lemma 3 give Theorem 4.

Lemma 3. The qualitative decision question for no resident reproduction in the IEQR model with LBF is NP-hard.

Theorem 4. The qualitative decision question for no resident reproduction in both the general I&R model and the
IEQR model with LBF is NP-complete.

4 Quantitative Approximation: No Resident Reproduction with LBF

In this section we show that in the no resident reproduction model with LBF the following assertions hold: (i) the
precise fixation probability can be computed in #P (for the general I&R model); and (ii) for ✏ > 0, the problem of
approximating the fixation probability within an additive error of ✏ is #P-hard (even in the IEQR model). Again in
our lower bound we will consider a special case of LBF where we have constant fitness with density constraint.

4.1 Upper bound
Consider a sequence of reproductions ((v

i

, u
i

))

i

that leads to fixation, where v
1

is the first vertex to be a mutant. In
other words, for a given i, the i-th reproduction consists of v

i

reproducing a mutant to u
i

. The sequence ((v
i

, u
i

))

i
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Figure 3: The graph G(') for ' = (z̄ _ y _x)^ (z _x_ x̄). Edges to ut
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are dashed and edges from u↵

i

are dotted for
readability. The vertex ut

1

is included twice to make it clearer that it is in a predecessor gadget. The notation c2
1

= y
indicates that the second variable of the first clause is variable y. The notation x

1

= x indicates that the first variable
is variable x.



defines the sequence of probabilities (p
i

)

i

such that p
i

is the probability for vertex v
i

to reproduce to u
i

in the graph
where {v

1

, u
1

, . . . , u
i�1

} is the set of mutants. Let d be the least common multiplier of the denominators of (i) 1

N

,
where N is the number of vertices (this represents the probability that a given vertex is the start vertex), and (ii) p

i

for
each i in each sequence (p

i

)

i

defined from a sequence of reproductions leading to fixation.
We will next argue that d is at most exponential. Consider some payoff matrix

✓R M

R 0 0

M a b

◆
(1)

where a and b are integers given in binary. The denominator for selecting a certain mutant to reproduce is the sum of
the fitness of the mutants that can reproduce (SFMR4). The SFMR is a number on the form

a · i+ b · j

where i (resp., j) is the number of edges (u, v) 2 E
I

, where u is a mutant that can reproduce and v is a resident (resp.,
mutant). Note that the description of i and j shows that they are non-negative numbers such that i+ j  N2. Hence,
there are at most k  N4 different SFMRs. A mutant can only reproduce if it has positive fitness and thus each SFMR
is positive. Also, each SFMR have value at most S  |a| · N2

+ |b| · N2. Therefore, d  N · Sk, which is at most
exponential (the N factor is to select the start mutant).

For a fixed sequence of reproductions ((v
i

, u
i

))

i

, let p =

Q
i pi

N

. Observe that p is the probability that the first
mutant is v, and the reproductions happen exactly according to ((v

i

, u
i

))

i

. Also, note that p

d

n is an integer.
We consider the following probability counting problem: Pick a sequence of reproductions ((v

i

, u
i

))

i

leading to
fixation, and an integer c between 1 and p

d

n . This is a candidate solution, and it is easy to check in polynomial time
if it is indeed one. Thus counting the number of solutions is in #P. Observe that a fixed vertex v and sequence
of reproductions ((v

i

, u
i

))

i

is used in exactly p

d

n solutions. Hence, by multiplying the number of solutions of the
probability counting problem with dn we get the probability that the original system fixate for the mutants. We get the
following result:

Lemma 5. The fixation probability computation for no resident reproduction in both the general I&R model and the
IEQR model with LBF is in #P.

Remark 6. Note that the quantitative approximation problem is not defined as a decision problem. For #P upper
bound above, for the approximate (as well as exact) fixation probability we mean that given the number of solutions
to an #P problem we can compute in polynomial time the exact fixation probability.

4.2 Lower bound
The remainder of this section will be on our lower bound, where we reduce the problem of counting perfect matchings
in bipartite graphs to approximating the probability that mutants fixates. Like in the previous section, we will consider
constant fitness with density constraints, and the threshold ✓

M

will be 1

2

� �, for any 0 < �  1

10

(because the degree
is again bounded by 5). Moreover our lower bound will be for the IEQR model.
Perfect matching in bipartite graphs. We present a reduction from the computation of the number of perfect match-
ings in a bipartite graph G = (V,E). In a bipartite graph G, the vertex set V is partitioned into vertices V

`

(left
vertices) and V

r

(right vertices) and all edges go from a vertex in V
`

to a vertex in V
r

(i.e., E ✓ V
`

⇥ V
r

). We also
have |V

`

| = |V
r

| = n. A perfect matching PM is a set {e
1

, e
2

, . . . , e
n

} of n edges from E such that for every vertex
v
`

2 V
`

(resp., v
r

2 V
r

) there exists an edge e
`

= (v
`

, v0
r

) (resp., e
r

= (v0
`

, v
r

)) in PM. Given a bipartite graph, the
problem of computing the number of distinct perfect matchings was shown by Valiant [16] to be #P-complete.
Uniform degree property. First, we will show that we only need to consider bipartite graphs for which there exists
an integer k such that all vertices in V

`

have either degree 2

k or 1. We refer to the property as the uniform degree
property.

4S stands sum, F for fitness, M for mutant, R for reproduce



Reduction to uniform-degree graphs. We present a reduction from counting the number of perfect matchings in a
general bipartite graph G = (V,E) (with |V

`

| = |V
r

| = n) to counting the number of perfect matchings in a bipartite
graph G0

= (V 0, E0
) with at most 6n vertices and which has the uniform degree property. Let k = dlog d

max

e, where
d
max

is the maximum degree of any vertex in G. The graph G0 will have precisely as many perfect matchings as G.
Observe that 2k < 2n. We construct G0 by adding 2

k new pairs of vertices, one on each side, and for each new pair
(v, v0), we add an edge from v to v0. Then, for vertex v 2 V

`

, we add edges from v to some newly added vertex in
V 0
r

until v has degree 2

k. It is clear that any perfect matching in G corresponds to a perfect matching in G0 using the
same edges, and the edges between newly added pairs. Conversely, we also see that in each perfect matching in G0,
for each newly added pair (v, v0), the matching must use the edge between v and v0, since the vertex in (V 0

`

\ V
`

) has
degree 1. Thus every perfect matching in G0 corresponds to one in G.
Perfect binary trees. We will consider perfect binary trees as gadgets.

• A perfect binary tree (PBT) is a balanced binary tree (every internal vertex has exactly two children) with all
leaves at the same level (i.e. with 2

k leaf vertices, for some non-negative integer k). For a PBT we will use the
following property, which we refer to as the probabilistic PBT (PPBT) property: if the root becomes a mutant,
then eventually all vertices in a path from the root to some leaf will become mutants, where such a path is chosen
uniformly at random. Since every non-leaf vertex has out-degree two, due to the density constraint, each internal
vertex can make one of its children (chosen uniformly) a mutant and hence the PPBT property follows.

The graph Red(G). Given a bipartite graph G with the uniform degree property, let the vertex sets be V
`

and V
r

,
respectively. Let N(v) = {u | (v, u) 2 E} denote the successors of a vertex v 2 V

`

. Let V k

`

= {v 2 V
`

| |N(v)| =
2

k} be the set of vertices with degree 2

k; and V 1

`

= V
`

\ V k

`

be the set of vertices in V
`

with degree 1. Our reduction,
denoted Red(G), will construct an evolutionary graph (with E

I

= E
R

and hence we only specify one set of edges),
which consists of three parts: part 1 sub-graph, then edges related to V

r

, and a copy of part 1 with some additional
edges. We first describe the part 1 sub-graph and then its copy.

• (Part 1). We have a start vertex v
s

, a final vertex y?, and we create an EBT B
s

as follows: ExBinTr(v
s

, V
`

, y?),
i.e., the start vertex is the root, V

`

is the set of leaf vertices, and y? is the extension vertex. For every vertex
v 2 V k

`

, let N(v) = {u1, u2, . . . , uj}, and we consider the set Lk

v

= {u1

v

, u2

v

, . . . , uj

v

} of j = 2

k vertices and
construct a PBT P

v

= BinTr(v, Lk

v

). Note that B
s

is an EBT, but the underlying binary tree is not necessarily
perfect.

• (Edges related to V
r

). From every vertex v 2 V k

`

, and every ui

v

in Lk

v

, we add two edges: one to ui 2 N(v) and
one to y?. From every vertex v 2 V 1

`

(with degree 1), we add two edges: to the unique u 2 N(v) and to y?.
Every vertex in V

r

has an edge to y?.

• (Copy 1 of Part 1 with additional edges). First, we create a copy of the part of the graph described in part 1,
along with one additional vertex z?. For every vertex v of part 1, let the corresponding vertex in the copy be
called v, and the copy of the extension vertex is y?. We describe the difference in the copy as compared to the
graph of part 1: (i) first there is an edge from y? to the copy v

s

of the start vertex; (ii) for every vertex z which
is a copy of a non-leaf vertex z in P

v

, for some v 2 V k

`

, (i.e., z 62 Lk

v

), there are three additional edges from z:
(a) to z (i.e., from the copy to the original vertex), (b) to y?, and (c) to z?; and (iii) for every vertex z which is
a copy of a leaf vertex z in P

v

, for some v 2 V k

`

, (i.e., z 2 Lk

v

), there is only one edge which goes to z (i.e.,
there is no edge to V

r

or y?, but an edge from the copy to the original vertex). Hence in the copy of P
v

, for any
v, internal vertices have degree five, and leaf vertices have degree 1.

• Finally, we have the following edges: {(y?, y?), (y?, z?), (y?, z?)}.

We denote by bn the number of vertices in Red(G), and note that bn = O(m), where m is the number of edges in G.
Example. We consider the graph G with six vertices, where V

`

= {v
1

, v
2

, v
3

} and V
r

= {v
4

, v
5

, v
6

}, such that v
1

and
v
2

each have edges to v
4

and v
5

and v
3

has an edge to v
6

. See Figure 4 for an illustration. Observe that G satisfies
the uniform degree property. In Figure 5 we have part 1 of the graph Red(G) along with V

r

. In Figure 6 we have the
remainder of Red(G). Consider some fixed perfect matching PM in G, i.e. v

1

! v
4

and v
2

! v
5

and v
3

! v
6

. The



graph Red(G)

PM is then the same graph as in Figure 5 and Figure 6, except that in Figure 5 it does not contain the
edges from v1

2

or v2
1

.
The process of fixation in Red(G). The process of fixation in Red(G) can be decomposed in two phases. The first
phase (Phase 1) is over when y? becomes a mutant; and the second phase (Phase 2) is over with the fixation. A
key property of Phase 2 is as follows: vertices in V

r

cannot become a mutant after y? has become a mutant: This is
because for each vertex u in V

r

, every predecessor v of u has exactly two successors, and one them is y? (and hence
the density constraint with threshold 1

2

� � ensures that if y? is a mutant, then vertices in V
r

cannot become mutants
after that).

• Phase 1. In Phase 1, the vertex v
s

must be the first vertex to become a mutant (since it has no predecessor).
After v

s

, all vertices in B
s

turn into mutants (by the QEBT property). Once a vertex v 2 V k

`

becomes a mutant,
then a path in the PBT P

v

under v is chosen uniformly at random to become mutants (by the PPBT property),
and then the leaf of the path can make the corresponding vertex in V

r

a mutant. Once a vertex v in V 1

`

with
degree 1 becomes a mutant, then it can reproduce a mutant to the unique neighbor in V

r

. In the end, some vertex
in V

r

reproduces a mutant to y? and Phase 1 ends.

• In Phase 2, first the copy v
s

becomes a mutant from y?. After v
s

, all vertices which are copy of vertices in B
s

become mutants (again by the QEBT property). Once copies of vertices in V k

`

become mutant, then the tree
underneath them in the copy become mutants. Consider a vertex u which is a copy of a vertex u 2 P

v

, for some
v 2 V k

`

, and there are two cases: (i) if u is a non-leaf vertex, then u has degree five, and can reproduce mutants
until the two children in the tree and the original vertex u are mutants (note if y? or z? is a mutant, then both the
children and the original copy cannot all become mutants due to the density constraint); (ii) if u is a leaf-vertex,
then u has degree one, and can reproduce mutant for u. Finally, y? makes y? a mutant, which then makes z? a
mutant.

Fixation and a perfect matching. Observe that fixation implies that all vertices in V
r

have become mutant, and
no vertex in V

r

can become a mutant in the second phase. Each vertex in V
`

is responsible for making at most one
neighbor in V

r

a mutant (for vertices with degree 1 it is the unique successor in V
r

, and for vertices with degree 2

k, it
corresponds to the leaf of the path in the perfect binary tree chosen uniformly at random by the PPBT property). This
defines a perfect matching. Conversely, given a perfect matching, Phase 1 and Phase 2 of fixation can be described
using the pairs of the matching (to chose paths uniformly at random in the perfect binary trees). Thus given fixation,
it defines a perfect matching, and we say that fixation has used the perfect matching.
Exact fixation probability. Consider some perfect matching PM. Observe that if there are s > 0 perfect matchings,
then the exact fixation probability is s · xPM, where xPM is the probability that we have fixation and used PM. This is
because each perfect matching has the same probability to be the chosen matching in Phase 1 by the PPBT property. In
Phase 2, any vertex v which is either a vertex in V 1

`

or a leaf in P
v

, for v 2 V k

`

, cannot reproduce by the key property
of Phase 2 (and thus can be viewed as having no out-going edges). Thus in Phase 2, by symmetry, the probability xPM

of fixation for a perfect matching PM is independent of PM.
Bounds on x and s. We show that the probability x for fixation of a fixed matching is at least ⌘ = bn�2bn, where bn is
the number of vertices in Red(G). Each possible way that all vertices can become mutants happens with probability at
least bn�2bn, because there are at most bn reproductions (effective reproductions which produce a new mutant) and each
specific reproduction chooses two vertices v and v0 at random from some set of vertices and thus, a specific choice
happens with probability at least bn�2. Thus the lower bound ⌘ on x follows. Finally, observe that the number s of
perfect matchings can be at most n! (i.e., upper bound on s is n!).
The graph Red(G)

PM. Given a perfect matching PM, we can find x as the fixation probability for the graph
Red(G)

PM, which is similar to Red(G), except that each leaf vertex ui

v

in P
v

, for v 2 V k

`

, if (v, ui

) is not in the
matching, then we remove all out-edges from ui

v

, and otherwise ui

v

has the same edges as in Red(G). It is clear that
the fixation probability in Red(G)

PM is x.
Approximating the fixation probability is #P-hard. Our reduction is as follows: Given a graph G with the uniform
degree property, we want to find the number of perfect matchings s in it. First, (i) we find an arbitrary perfect
matching PM in polynomial time using the algorithm of [6] (if there exists none, we are done); (ii) construct Red(G)



and Red(G)

PM in polynomial time; and (iii) compute the approximation y0 of the fixation probability y⇤ in Red(G)

for ✏ = ⌘

16

, and the approximation x0 of the fixation probability x in Red(G)

PM for ✏PM =

⌘

n!·16 =

✏

n!

. We now show
how to obtain s from y0 and x0. We have that y0 is such that

y0  x · s+ ✏  (x0
+ ✏PM) · s+ ✏ = x0 · s+ ⌘

n! · 16 · s+ ⌘

16

 x0 · s+ ⌘

8

,

and similarly y0 � x0 · s� ⌘

8

. This shows that

s� ⌘

8x0 
y0

x0  s+
⌘

8x0 .

Since we also have x0 � x� ✏ = ⌘ � ⌘

n!·16 � 15·⌘
16

we see that ⌘

8x

0 < 1/3 and thus s is the integer closest to y

0

x

0 .

Lemma 7. The quantitative approximation problem for 0 < ✏ < 1, with ✏ given in binary, for no resident reproduction
in both the general I&R model and the IEQR model with LBF is #P-hard.

Lemma 5 and Lemma 7 gives the following result (also recall Remark 6).

Theorem 8. The quantitative approximation problem, where the approximation number 0 < ✏ < 1 is given in binary,
for no resident reproduction in both the general I&R model and the IEQR model with LBF is #P-complete (and even
the exact fixation probability can be computed in #P).



v
1

v
2

v
3

v
4

v
5

v
6

Figure 4: The graph G.

v
s

v1
s

v
3

v
2

v
1

v
4

v
5

v
6

u1

v1
u2

v1
u1

v2
u2

v2

Part 1
The EBT B

s

y?

The set V
r

The PBT P
v1 The PBT P

v2

Figure 5: Part 1 and the edges related to V
r

of the graph Red(G). The edges to y? are dotted for readability.
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5 Qualitative Analysis and Quantitative Approximation: I&R Model with
Resident Reproduction and LBF

In this section we will establish the polynomial space upper bound and lower bound in the I&R model with resident
reproduction, when the fitness function is LBF.

5.1 Upper bound
Our algorithms is based on an exponential Markov chain construction. We first describe what is a Markov chain and
Markov chains associated with an evolutionary graph.
Markov chain. A Markov chain M = (S,�) consists of a finite set S of states, and a probabilistic transition function
� that assigns transition probabilities �(s, s0) for all s, s0 2 S, i.e., 0  �(s, s0)  1 for all s, s0 2 S and for all
s 2 S we have

P
s

02S

�(s, s0) = 1. Given a Markov chain, its graph (S,E) consists of the set S as the set of vertices,
and E = {(s, s0) | �(s, s0) > 0} positive transition probabilities as the set of edges.



Exponential Markov chain. Given an evolutionary graph G = (V,E
I

, E
R

), with a payoff matrix, and the LBF

function, an exponential Markov chain M
E

= (S,�) is constructed as follows: (1) S consists of subsets of V which
denotes the set of vertices of V which are currently mutants; (2) for s 2 S and s0 2 S there is positive transition
probability if the cardinality of s and s0 differ by 1 and the transition probability �(s, s0) is computed depending on
the payoff matrix, E

I

, and E
R

. Observe that for the Markov chain M
E

, the transition probabilities of a state in the
Markov chain can be constructed in polynomial space, and hence the Markov chain can be constructed in polynomial
(working) space.
Qualitative analysis and approximation of Markov chains. We sketch the arguments for the upper bounds.

• The qualitative analysis is achieved by simply checking if in the graph of the Markov chain the state s
f

= V is
reachable from some state s = {v} for v 2 V . Since the reachability problem can be solved in non-deterministic
logspace [14], applying such a reachability algorithm on the Markov chain M

E

(constructed on the fly) we get
a non-deterministic polynomial space algorithm. Since by Savitch’s theorem [15] non-deterministic polynomial
space is equivalent to deterministic polynomial space, it follows that the qualitative question is in PSPACE.

• For the approximation problem we simulate the Markov chain as follows. We start at an initial state uniformly
at random among those where there is exactly one mutant. Consider a trial run of the Markov chain as follows.
Given the current state, we first check if (i) the current state is V ; else we check (ii) if there is a path from the
current state to s

f

= V . If (i) is true we have a success; and if (ii) is false we have a failure. If we neither
succeed or fail, we use the transition probability of the Markov chain to obtain the next state till we succeed
or fail. Note that each trial run succeeds or fails eventually with probability 1. We can view the outcome
of each trial run as the outcome of a Bernoulli distributed random variable with success probability equal to
the fixation probability. Hence repeating the trial runs independently an exponential number of times, we can
approximate the fixation probability using Chernoff bounds, within any given ✏ > 0, with double-exponential
small error probability. Then using the result of [10] we get a polynomial space upper bound for the quantitative
approximation problem.

Lemma 9. For the general I&R model with resident reproduction and LBF, the following assertions hold: (1) The
qualitative decision problem is in PSPACE; and (2) the quantitative approximation problem can be solved in polyno-
mial space.

Remark 10. Observe that since precise probabilities to reach a state in a Markov chain can be computed in polynomial
time in the size of the Markov chain [7], it follows that the precise fixation probabilities can be computed in exponential
time.

5.2 Lower bound
In this section we present two lower bounds: (i) the qualitative decision question is PSPACE-hard; and (ii) the question
that given an evolutionary graph with the promise that the fixation probability is close to either 0 or 1, deciding
which is the case is PSPACE-hard (which implies PSPACE-hardness for the quantitative approximation problem). For
simplicity, we present our lower bounds in two steps. We will first reduce the problem to a problem which we call
concurrent-if, and then show that the concurrent-if problem is PSPACE-complete.
Concurrent-if problem. The intuitive description of the concurrent-if problem is as follows: it consists of a set of
Boolean variables, and a set of if statements where each conditional is a conjunction of some of the Boolean variables
or their negation, and if the conditional is true, then a Boolean variable is set to a truth value. At each step, any of the
if-statements can be executed. The process ends either when the first Boolean variable is true or nothing can change
(i.e., the conditional of all if-statements are false). Note that the execution can loop, and perhaps run forever. We first
define an if-statement.
If-statement. Let B = {b

1

, b
2

, . . . , b
n

} be a set of n Boolean variables. An if-statement s is as follows:
^

(cn

1

, . . . , cn
k

) ) b
i

:= val,



vjfs vjts

vjfv vjtv

Figure 7: Boolean-value gadget: Dashed edges are in E
I

and non-dashed are in E
R

.

where 1  i, k  n, val is either true or false, each cn

j

is either a Boolean variable b
`

or its negation b
`

. An if-
statement is satisfied if each of the cn

j

is true (i.e., cn
j

is true if one of the following holds: if cn
j

is b
`

and b
`

is true,
or cn

j

is b
`

and b
`

is false).
Concurrent-if system. A concurrent-if system consists of a set B = {b

1

, b
2

, . . . , b
n

} of n Boolean variables and a set
P = {s

1

, s
2

, . . . , s
m

} of m if-statements over the Boolean variables in B. The set of statements defines an execution
from an initial setting of the Boolean variables as follows: repeatedly, a satisfied if-statement

V
(cn

1

, . . . , cn
k

) )
b
i

:= val is selected and then b
i

is set to val. If the first Boolean variable b
1

is eventually true, then the execution is
accepted. If at each point of an execution there is at most one satisfied if-statement, then we say that the execution is
deterministic.
The decision problem. Given a concurrent-if system, the associated decision problem is as follows: Given a set B
of Boolean variables, an initial setting of the variables of B, and a set P of concurrent if-statements, such that the
execution e from the initial setting is deterministic, whether e is accepting.

5.2.1 Reduction of the concurrent-if problem to evolutionary games on graphs

We first describe how we encode the Boolean variables and the if-statements of a concurrent-if system in evolutionary
games on graphs. Later we show how to construct a graph such that if the fixation of the mutant happens, then the
fixation happens according to three phases which are as follows.

1. First phase: The setup phase (to initialize the Boolean variables).

2. Second phase: The execution of the concurrent-if system.

3. Third phase: The fixation phase.

The fixation can only happen if the execution of the concurrent-if system accepts.
Density constraint. Again our lower bound result will be for a special case of LBF, where we have constant fitness
with density constraints (recall Remark 1). Our construction will be for ✓

R

= ✓
M

= 0, but a similar construction will
work for any choice of ✓

R

, ✓
M

2 [0, 1). The thresholds ✓
R

= ✓
M

= 0 indicates that a vertex v can reproduce precisely
as long as all its successors in E

I

are of the opposite type of v, because of the density constraint.
Ideas and gadgets behind the reduction. We first introduce some key ideas and gadgets behind the reduction.

• States which are nearly always a mutant/resident: Similar to the previous lower bounds, we have a vertex v
s

without any predecessor in E
R

. Thus, if v
s

is not made a mutant at the start, then it cannot become a mutant.
Hence we will only consider the case when v

s

is a mutant in the beginning and stays a mutant forever. We
will also have a vertex bv

s

, and our construction will ensure that it stays a resident until all other vertices are
mutants and then (after a few more steps) all vertices become mutants, and we get fixation. We will use the
vertices v

s

and bv
s

to ensure that a given vertex has a desired type, and otherwise the vertex cannot reproduce.
Our construction will ensure (using the density constraint) the following properties:

– A vertex v with bv
s

as a successor under E
I

can only reproduce if it is a mutant (using the density constraint
and bv

s

is a resident). Similarly, a vertex v with v
s

as a successor under E
I

can only reproduce if it is a
resident.



• Boolean-value gadgets: We describe how to implement boolean-value gadgets in evolutionary graphs for the
Boolean variables of the concurrent-if system. Each boolean-value gadget j consist of four vertices vjtv (the
true-value-vertex), vjfv (the false-value-vertex), vjts (the true-setter-vertex) and vjfs (the false-setter-vertex). In
the second phase (the execution of the concurrent-if system phase) each boolean-value gadget is such that the
two setters, vjts and vjfs , are mutants. Also, at most one of the value vertices vjtv and vjfv , can be a mutant at any
given point. If vjtv is a mutant, then the value of j is true. If vjfv is a mutant, then the value of j is false. If neither
is a mutant, then we say that j has no value. The edge set is as follows: (i) both vjts and vjfs have bv

s

, vjtv , v
j

fv

as successors under E
I

; (ii) vjts (resp., vjfs ) has only vjtv (resp., vjfv ) as a successor under E
R

(see Figure 7).
The purpose of the edges in E

I

are as follows: the edge to bv
s

enforces that the setter vertex is a mutant before
reproduction; and the other two edges enforce that only if the gadget has no value (i.e., both value vertices are
resident), then the setter vertex can reproduce a mutant (by the density constraint and that ✓

R

= ✓
M

= 0).
Observe that when the gadget has no value, then each of the setter vertices can set the value of the gadget to
either true or false with positive probability in any such step.

• If-statement gadgets: Each if-statement gadget, for the if-statement
V
(cn

1

, . . . , cn
k

) ) b
i

:= val, is imple-
mented using a single vertex v (the if-statement-vertex). The if-statement gadget works under the requirement
that v is a resident, and our construction will ensure that in the second phase (the execution of the concurrent-if
system phase) each if-statement-vertex v is a resident. The edge set is as follows:

1. The vertex v has the following edges in E
i

: an edge to v
s

; and for each Boolean variable j in (cn

1

, . . . , cn
k

)

an edge to vjtv , and for each negation of a Boolean variable j0 in (cn

1

, . . . , cn
k

) an edge to vj
0

fv .

2. The vertex v has vifv (resp., vitv ) as successor under E
R

if val is true (resp., false).

The purpose of the edges in E
I

are as follows: the edge to v
s

enforces that the if-statement-vertex is a resident
before v reproduces; the other edges enforces that each literal in (cn

1

, . . . , cn
k

) has the correct value before
reproduction. Consider the case where val is true (the case where it is false is similar). If v can reproduce at a
given point in time, then

V
(cn

1

, . . . , cn
k

) must be true. In that case, if the boolean-value-gadget for b
i

has value
false, then v reproduces to set b

i

to no value. This then allows the setter-vertices of b
i

to reproduce, and set b
i

eventually to a value again. Observe that even though v tries to set b
i

to true, the value of b
i

might not be set
to true immediately. The process is as follows: v tries to set b

i

to true by ensuring that if it is false, then it sets
it to no value, and ensures that the true-setter vertex has positive probability to set it to true. Hence eventually
with probability 1 it is set to true. Note that given

V
(cn

1

, . . . , cn
k

) is still true, v can simply reproduce until
b
i

becomes true. Since there is a fixed positive probability that the setter-vertices will set b
i

to either value,
eventually b

i

becomes true with probability 1. We will only use the boolean-value gadgets for deterministic
executions and thus, the condition

V
(cn

1

, . . . , cn
k

) remains true until b
i

becomes true. This is because the
execution is deterministic and thus, no other if-statement is satisfied in the current situation as long as b

i

is false
or has no value. Especially, for the next if-statement to be satisfied it must depend on b

i

being true.

We now describe how to construct the graph such that fixation implies the existence of an accepting execution of
the concurrent-if system. First we will describe the vertices that reproduces in the setup phase, then how to use the
boolean-value gadgets and the if-statement gadgets to encode some execution of the concurrent-if system, and finally
how to ensure fixation if the execution is accepted.
The first phase: Setup. First, as mentioned, we consider the case where v

s

becomes a mutant at the start (as otherwise
fixation does not happen). The setup phase is split into two parts. The first part ensures that each boolean-value-gadget
of the concurrent-if system has the right initial value, and the second part ensures that all setter-vertices of the boolean-
value-gadgets are mutants. Each part corresponds to a boolean-value-gadget, s

1

, s
2

, respectively, and starts when the
false-setter vertex, v

1

, v
2

, respectively, of the corresponding gadget becomes a mutant, and ends when the gadget has
true value. The vertex v

s

has only bv
s

as successor in E
I

(ensuring that it is a mutant when it reproduces) and v
1

as a
successor in E

R

. Hence, eventually v
1

becomes a mutant and this starts the first part of the setup phase.

• The start of the first part of setup: The vertex v
1

has only bv
s

as successor in E
I

(ensuring that it is a mutant
when it reproduces), but has the following successors under E

R

: The setter vertices of s
1

and the value vertices



corresponding to the initial value of each Boolean variable of the concurrent-if system. Hence, eventually all
vertices which are successor of v

1

in E
R

become mutants as well.

• The end of the first part of setup: There is an if-statement vertex bv
1

, (which, since it has not become a mutant
yet, must be a resident), who has v

1

and all states which are successors of v
1

in E
R

as successors under E
I

;
and v

1

as the lone successor in E
R

. This vertex then can first reproduce once v
1

is done reproducing and then
eventually sets s

1

to true. This completes the first part.

• Between first and second part: The true-value-vertex vs1tv of s
1

has only bv
s

as successor in E
I

; and v
1

, v
2

, and
bv
1

as successor in E
R

. Hence, after s
1

has become true, each of the vertices v
1

, v
2

and bv
1

becomes mutants.

• The start of the second part of setup: The vertex v
2

has only bv
s

as successor in E
I

(ensuring that it is a mutant
when it reproduces), but each setter vertex of s

2

and the boolean-value gadgets used in the concurrent-if system
as successors in E

R

. Hence, eventually, every successor of v
2

under E
R

becomes a mutant.

• The end of the second part of setup: Similarly to the end of the first part of setup, there is an if-statement vertex
bv
2

, (which, since it has not become a mutant yet, must be a resident), who has v
2

and all states which are
successors of v

2

in E
R

as successors under E
I

; and v
2

as the lone successor in E
R

. This vertex then can first
reproduce once v

2

is done reproducing and then eventually sets s
2

to true. This completes the second part of
setup.

• The end of setup: The true-value-vertex of s
2

has bv
s

as successor in E
I

(ensuring that it can only reproduce if it
is a mutant) and v

2

and bv
2

as successors in E
R

. They then eventually become mutants.

The second phase: Execution of the concurrent-if system. We extend the construction of the graph for the
concurrent-if system slightly as follows: Each if-statement-vertex v has some additional successors in E

I

, besides
the ones described in construction: The vertex v

s

(ensuring that v is a resident before reproduction), the true-value-
vertex of s

2

(ensuring that the setup phase is complete before v reproduces), and the false-value-vertex of the boolean-
value-gadget for the first Boolean variable b

1

(ensuring that the second phase is not over). Hence, this ensures that
the if-statement vertices are only active in the second phase. Clearly, if the execution is accepting, then the Boolean
variable b

1

is eventually true.
The third phase: Fixation. The fixation part uses two special vertices v1

e

and v2
e

(that have not been used before). If
the Boolean variable b

1

is true, then fixation will be achieved in the following steps as follows:

• (step 1): the true-value vertex of the boolean-value-gadget for b
1

will reproduce to set v1
e

to a mutant;

• (step 2): then v1
e

reproduces to turn all vertices (other than v
s

and bv
s

), including v2
e

, into mutants;

• (step 3): after this step, v1
e

again becomes a resident (but other than bv
s

and v1
e

, all vertices are mutants);

• (step 4:) finally, v2
e

makes bv
s

a mutant, and at the end the true-value-vertex for b
1

again makes v1
e

a mutant.

We now describe the above steps.

• The true-value-vertex v0 = vb1tv of b
1

has no successor in E
I

, and v1
e

as a successor in E
R

. Hence once v0 is a
mutant, it reproduces to turn v1

e

into a mutant (step 1).

• The vertex v1
e

has bv
s

as successor in E
I

(hence can only reproduce if it is a mutant); and each vertex (including
v2
e

) other than vertex v
s

(since no vertex should have v
s

as a successor in the replacement graph) and vertex bv
s

as successors in E
R

. All the successors of v1
e

in E
R

becomes mutants (observe that the if-statement vertices
might try to make the value-vertices of the boolean-value gadgets into residents, but sooner or later v1

e

will have
made all the if-statements vertices into mutants). This is step 2 above.

• After this only bv
s

is a resident. The vertex bv
s

has all other states as successors in E
I

(ensuring that it can only
reproduce at this point), and vertex v1

e

as a successor in E
R

. Thus now bv
s

turns v1
e

into a resident. Note that at
this point other than v1

e

and bv
s

all vertices are mutants. This is step 3 above.



• The vertex v2
e

has v1
e

as successor in E
I

and bv
s

as successor in E
R

. Notice that when v1
e

has been made a resident
by bv

s

both v0 and v2
e

can reproduce. Whenever v0 does so, we are back to the situation before bv
s

reproduced,
which then reproduces again. Hence, sooner or later v2

e

reproduces making bv
s

a mutant before v0 and then v0

reproduce after that making v1
e

a mutant. At this point all vertices are mutants and fixation is achieved. This is
step 4 above.

Hence it follows that if the first mutant is v
s

, then (i) if the execution is accepting, then fixation happens with proba-
bility 1, and (ii) if the execution is not accepting, then the fixation probability is 0. Also note that if the first mutant is
not v

s

, then the fixation probability 0 because no vertex has v
s

as successor in E
R

.

Lemma 11. Given a concurrent-if system that is deterministic we can construct in polynomial time an evolutionary
game graph in the I&R model with resident reproduction and LBF such that (i) if the concurrent-if system accepts,
then the fixation probability is positive; and (ii) if the concurrent-if system does not accept, then the fixation probability
is 0.

Fixation amplification. In the construction described above, the fixation happens only if v
s

is the first mutant and
the concurrent-if system executes an accepting run. However, the probability that the first mutant is v

s

is 1

n

as the
first mutant is selected uniformly at random, where n is the number of vertices. We now present a construction that
amplifies the fixation probability.
Modified construction. Consider a set S of new vertices. Each vertex in S has bv

s

as the only successor in E
I

and v
s

as
the only successor in E

R

. The vertex v1
e

has also the vertices of S as successors in E
R

. (Also, the vertex bv
s

still has
all other vertices as successors.)
Correctness argument. Observe that if a vertex of S becomes the first mutant, then v

s

becomes the next mutant, and
then fixation happens if and only if the concurrent-if system accepts similar to before. Hence, we get the following
statement.

• If the execution is accepting, then the fixation probability is at least |S|
|S|+n

(i.e., the probability that any of the
vertices in S is the first mutant).

• If the execution is not accepting, then the fixation probability is at most n

|S|+n

(i.e., the probability that none of
the vertices in S is the first mutant).

By making S much larger than the remaining graph (e.g., |S| = n2 or |S| = n3), the fixation probability is close to 1,
if the execution is accepting, and close to 0 otherwise.

Lemma 12. Given a concurrent-if system that is deterministic we can construct in polynomial time an evolutionary
game graph in the I&R model with resident reproduction and LBF such that (i) if the concurrent-if system accepts, then
the fixation probability is close to 1; and (ii) if the concurrent-if system does not accept, then the fixation probability
is close to 0.

5.2.2 Concurrent-if can simulate a deterministic space-bounded Turing machine

In this section we show that the concurrent-if problem is PSPACE-complete.
The PSPACE upper bound. The upper bound is straightforward and the argument is as follows. A PSPACE algorithm
uses memory (or tape cells of the Turing machine) to store the Boolean variables, and then repeatedly execute in every
round the following steps: (a) check if b

1

is true, and if so then accept; (b) check if more than 2

n rounds has been
executed (by keeping a counter of n + 1 bits and incrementing at the end of every round), in which case the system
must be cycling (by the pigeonhole principle), and we can reject; (c) find a satisfied if-statement (along with checking
that there is exactly one, and otherwise reject), and update the Boolean variable according to the if-statement.
The PSPACE lower bound. We show that the concurrent-if problem is PSPACE-hard by showing that concurrent-if
systems can simulate polynomial space-bounded deterministic Turing machines. Our simulation will be such that
(a) if the Turing machine rejects the input or exceeds the space bound, then the execution stops; and (b) if the Turing
machine accepts, then the special boolean b

1

becomes true; and (c) if the Turing machine loops, then the execution



loops. Also, each step of the Turing machine corresponds to between two and three iterations of the concurrent if-
system (three in case when the space should be updated, two otherwise). For the remainder of this section, fix some
deterministic Turing machine M , an input I for M , and a polynomial bound N on space5. We will next describe the
concurrent-if system simulating M on I .
Notations. Every tape cell i 2 {0, 1, . . . , N} of the Turing machine is a bit (i.e., either 0 or 1). A configuration of the
Turing machine consists of the valuation of every tape cell, the current state of the Turing machine, and the current
head position 0  p  N of the Turing machine. A tape-configuration (v, p, c) consists of the current state v of the
Turing machine, the current head position p, and the content c of the tape cell at the current head position. Note that
the number of tape-configurations is polynomial given the input.
The Boolean variables. To describe the encoding of the Turing machine as the concurrent-if system, we first describe
the Boolean variables and the encoding.

• Product Turing machine: We will use three copies M3 of the given Turing machine M and modify it such
that each move takes the current state to the next Turing machine (starting over when the third is reached).
More precisely, if the current state of M forms the sequence (v

i

)

i

, then the current state of M3 forms the
sequence ((v

i

, i mod 3))

i

. This allows us to achieve the following: given two adjacent states of the sequence
to distinguish which is the first.

• Tape encoding: We will use a tape-boolean t
i

for the i-th bit of the tape. We will have such a Boolean variable
for i 2 {0, . . . , N +1} (note that we have additional Boolean variables 0 and N +1 so that we can check if the
space usage has been exceeded in each direction).

• Configuration: We will use a configuration-boolean b(v, p, c) for each possible current tape configuration
(v, p, c) of the Turing machine defined as follows

– The current state v of the Turing machine.

– The current position p of the tape head (i.e., p has a value in {0, . . . , N + 1}, in other words, there are
configuration-booleans also corresponding to being just outside the space bound).

– The content of the tape c (either 1 or 0) under the tape head as the Turing machine entered the current state
and position.

In other words, we have a single boolean for simultaneously being in state v, position p, and the content of the
tape head being c as the tape head was moved to the current position.

Initialization. Initially, the tape-boolean t
i

is true iff the i-th bit of the input I is true. Also, the only true configuration-
boolean is the one for being in the start state, at the start position, and having t

1

as the content of the tape.
The if-statements. Observe that the current tape-configuration (v

1

, p
1

, c
1

), for p
1

2 {1, . . . , N} of the Turing ma-
chine, and the current content of the tape cells, uniquely defines the next tape-configuration (v

2

, p
2

, c
2

). Simulating a
move of the Turing machine is split into three iterations of the concurrent-if system, namely,

1. update space;

2. tape-configuration super-position; and

3. resolve super-position.

In the first step, the tape-boolean t
p1 is possibly updated. In the second step, either b(v

2

, p
2

, true) or b(v
2

, p
2

, false) is
set to true6. In the third step, the configuration-boolean b(v

1

, p
1

, c
1

) is set to false.
5For readers not familiar with computer science, we point out that the problem we consider is similar to the halting problem for Turing machines

which is undecidable, however, here we have the restriction that the Turing machine must operate with a polynomial space bound N , which makes
the problem PSPACE-complete

6Observe that after doing so the configuration-boolean b(v1, p1, c1) is true and at least one of b(v2, p2, true) or b(v2, p2, false) is also true.
This represents being in two tape-configurations at once, which we refer as super-position.



• Update space. If the current tape-configuration (v
1

, p
1

, c
1

) updates the tape cell at position p
1

from true to
false (resp., from false to true) before moving, then there is an if-statement that checks as the conditional that
the configuration-boolean variable b(v

1

, p
1

, c
1

) is true, all other configuration-booleans are false, and the tape-
boolean variable t

p1 is true (resp., false). If the conditional is true, then as its assignment it sets the tape-boolean
variable t

p1 to false (resp., true).

• Tape-configuration super-position. For the second step there are two if-statements. One (resp., the other)
if-statement checks as its conditional that the configuration-boolean variable b(v

1

, p
1

, c
1

) is true, all other
configuration-boolean variables are false (i.e., the current configuration is b(v

1

, p
1

, c
1

)), the tape-boolean vari-
able t

p1 has been updated, and the tape-boolean variable t
p2 is true (resp., false). If this is the case, then it sets

b(v
2

, p
2

, true) (resp., b(v
2

, p
2

, false)) to true.

• Resolve super-position. For the third step there are again two if-statements. One (resp., the other) if-statement
checks that the configuration-boolean variables b(v

1

, p
1

, c
1

) and b(v
2

, p
2

, true) (resp., b(v
2

, p
2

, false)) are true,
and all other configuration-boolean variables are false. That is, intuitively speaking, the current configuration is
the super position of (v

1

, p
1

, c
1

) with either (v
2

, p
2

, true) or (v
2

, p
2

, false). In that case it sets the configuration-
boolean variable b(v

1

, p
1

, c
1

) to false.

Besides the above if-statements, we also have some additional if-statements. They are as follows: If the current state
of the Turing machine is accepting, then set b

1

to true (formally: for each accepting state v and each p 2 {1, . . . , N}
and c 2 {true, false}, there is an if-statement that checks whether b(v, p, c) is true, and all other configuration-boolean
variables are false, and if so, then sets b

1

to true). Furthermore there are no if-statements for configurations (v
1

, p
1

, c
1

)

where p
1

2 {0, 1, . . . , N+1} or where v
1

is rejecting, ensuring that the execution ends in that case (and it is especially
not accepting). Note that the reduction is polynomial time since we use constantly many if-statements for every tape-
configuration.
Deterministic. We now argue that for the concurrent-if system we obtain in the reduction, the execution from the initial
setting is deterministic. The reasoning is as follows: (1) If there are at least three configuration-boolean variables that
are true, then no if-statement can be satisfied. (2) We now consider the case that two configuration-boolean variables,
(v

1

, p
1

, c
1

) and (v
2

, p
2

, c
2

), are true. Note that in this case the if-statements for update-space, and tape-configuration
super-positions cannot be satisfied. Now we consider if-statements for resolve super-position case, which checks
for the truth of two configuration-boolean variables, such that the tape-configurations can be consecutive. Since we
consider M3, at most one of the tape-configurations can immediately precede the other. Hence at most one if-statement
can be satisfied. (3) Finally, we consider when one configuration-boolean variable is true. In this case, precisely one
of an if-statement from update-space or tape-configuration super-position can be true, depending on the content of the
current and next position of the tape head. From the above case analysis, it follows that the concurrent-if system is
deterministic.

Lemma 13. The problem of deciding whether a concurrent-if system, that is deterministic, accepts is PSPACE-
complete.

Lemma 13 along with Lemma 11 and Lemma 12 gives us the following result.

Lemma 14. For the general I&R model with resident reproduction and LBF, the following assertions hold: (1) The
qualitative decision problem is PSPACE-hard; and (2) given the promise that the fixation probability is close to either 0
or 1, deciding which is the case is PSPACE-hard.

The previous lemma and Lemma 9 gives Theorem 15 which summarizes the result of this section.

Theorem 15. For the general I&R model with resident reproduction and LBF, the following assertions hold: (1) The
qualitative decision problem is PSPACE-complete; and (2) the quantitative approximation problem can be solved in
polynomial space, and even given the promise that the fixation probability is close to either 0 or 1, deciding which is
the case is PSPACE-hard (hence the quantitative approximation problem is PSPACE-hard).



6 Complexity Results for the Exponential Fitness Function ExF

In this section we consider the case where the fitness of an individual at a vertex is an exponential function of the
payoff, i.e., the fitness of an individual at vertex v is

f(v) = exp

✓P
u2EI(v)

pay(v, u)

|E
I

(v)|

◆
,

and we do not have density constraint. We first present the results, and describe how to obtain them.

1. Result 1. The qualitative problem can be solved in polynomial time.

2. Result 2. For the no resident reproduction case (i.e., when the fitness of a resident is set to 0), the quantitative
approximation problem can be solved in polynomial time.

3. Result 3. For the resident reproduction case, we have the same complexity bounds as in the case where we have
the LBF.

Result 1. Since the fitness is an exponential function and always positive, the fixation probability is positive if the
replacement graph is connected, and otherwise the fixation probability is 0. Since whether a graph is connected or not
can be checked in polynomial time, it follows that the qualitative problem can be solved in polynomial time.
Result 2. In case the resident does not reproduce, and the fitness of the mutant is always positive due to an exponential
function of the payoff, then for every vertex a mutant at the vertex reproduces to turn all its successor in the replacement
graph as mutants. Hence given a vertex v, if the mutant arises at v, then all vertices that are reachable from v in the
replacement graph become mutants with probability 1. Given a vertex v, we say that v 2 All, iff all vertices in the
graph are reachable from v in the replacement graph. Then the fixation probability is |All|/|V |, i.e., the probability
that the mutant arises initially in any one of the vertices in All. Since reachability can be computed in polynomial time,
it follows that the exact fixation probability (and hence also the approximation) can be computed in polynomial time.

Theorem 16. For the general I&R model with the fitness function is exponential function of the payoff, the following
assertions hold:

1. The qualitative problem can be solved in polynomial time.

2. For no resident reproduction, the exact fixation probability (hence also the quantitative approximation problem)
can be computed in polynomial time.

Result 3. Given Theorem 16 the only remaining problem is to consider the problem of quantitative approximation for
the model with resident reproduction. We prove that the complexity results of Section 5 also hold when the fitness is
an exponential function of the fitness.
The PSPACE upper bound. The same argument for the PSPACE upper bound of Section 5.1 also holds when the
entries of the payoff matrix are polynomial in the input, as an exponential size Markov chain can be constructed (the
probabilities are obtained using the exponential fitness function), and hence we obtain the PSPACE upper bound.
The PSPACE lower bound. The rest of the section is devoted to show how to modify the PSPACE lower bound of
Section 5.2 to show that the lower bound is also applicable to the case where the fitness is exponential of the payoff
(and there is no density constraint). Note that Remark 1 shows that density constraints can be encoded in LBF, but it
does not show how to encode density constraint in ExF. In the sequel, we use “with high probability” to refer to that
the probability is at least 1� 1

poly(n)

, where n is the size of input, and poly is a polynomial function.

The key idea. The key idea is as follows:

1. First step: First, we consider the problem with constant payoff along with density constraints and argue that the
PSPACE hardness result holds even in the case where either mutants or residents fixate within an exponential
number of steps with high probability.



2. Second step: In the hardness proof in the model with density constraints we require that a vertex can reproduce
iff all its successors are of the opposite type. In the model with fitness exponential of payoff, there is always
a positive probability to reproduce. Thus even if a vertex has all its successors of the opposite type, it can
still reproduce, and we refer to such reproductions as “undesired reproductions” (for the hardness proof). We
show that a payoff matrix (with exponential payoff and no density constraints) can encode that if a vertex does
not have all its successes of the other type, then the probability to reproduce is exponentially small (i.e., the
undesired reproduction probability is exponentially small). Since in the hardness result of the previous item,
the fixation happens within exponentially many steps, using union bounds it is easy to argue that the probability
that an undesired reproduction happens before fixation is negligible. Hence the PSPACE hardness result for the
model with density constraints can be translated also to the model with fitness exponential of the payoff and no
density constraints. Also in the hardness result we only need to consider that the entries of the payoff matrix are
polynomial in the input.

Achieving the first step. Achieving the first step is done using the following: (a) first, modify the concurrent-if problem;
and (b) then modify our reduction from concurrent-if problem to evolutionary games on graphs.
The modified concurrent-if problem. We consider a modification of the concurrent-if problem, where given a
concurrent-system, we accept an execution if b

1

is set to true, and we reject an execution if b
2

is set to true. We
consider concurrent-systems that are deterministic, along with the promise, that within an exponential number of steps
either b

1

is set to true or b
2

is set to true. We refer to a system of the above form as modified concurrent-if system.
The decision problem, given a modified concurrent-if system whether it accepts or rejects, is PSPACE-complete. The
argument for the lower bound is as follows: in our original PSPACE-hardness reduction in Section 5.2, we consider
a space-bounded Turing machine M , with input I , and space bound N which is polynomial. Instead of M we can
consider another Turing machine M 0 that simulates M , and keeps in a counter the number of steps of M that have
been executed. If the number of steps exceeds exponential, then M loops, and thus M 0 can reject (which is modeled in
the concurrent-if system by setting b

2

to true). Also M 0 can reject if the space bound N is exceeded, again modeled by
setting b

2

to true. The Turing machine M 0 can be reduced to a modified concurrent-if problem similar to the reduction
of Section 5.2. Hence in our reduction we now consider the modified concurrent-if problem, which either accepts or
rejects within exponentially many steps.
Properties to be ensured by the reduction. We will now consider a modified concurrent-if system, and then construct
an evolutionary game on graph with the following properties: (a) if a vertex has all its successors in E

I

of the opposite
type, then it has a constant fitness (say, a constant c > 0); (b) if a vertex has at least one successor in E

I

of the same
type, then it cannot reproduce; (c) if the modified concurrent-if system accepts (resp., rejects), then in the evolutionary
graph the mutants (resp., residents) fixate within an exponential number of steps with high probability. Note that the
first two properties reiterate that we are considering the model with constant fitness and density constraints. This is the
main idea to achieve the first item of the key idea. We now describe the key changes to the reduction of Section 5.2.
Changes to the setup phase. The main change in the setup phase is to construct a copy of v

s

. Recall that since the size
of S is much larger than the rest of the graph, we only need to consider that the first mutant starts in a vertex in S. In
our reduction in Section 5.2, the vertex v

s

played two different roles, which are as follows: (i) first, after a vertex in
S, it becomes the second vertex to be a mutant, and is responsible for starting the process of reproducing mutants; and
(ii) second, given v

s

is a mutant, to ensure that a vertex v can reproduce only if it is a resident, we made v
s

a successor
of v in E

I

. In this reduction we create a new vertex v0
s

, such that v
s

achieves the first role, whereas v0
s

plays the second
role. The modification is as follows: (i) for all vertices v such that v

s

is a successor of v in E
I

in the reduction of
Section 5.2, then v has v0

s

as successor in E
I

instead of v
s

; (ii) v0
s

is a successor of v
s

in E
R

. Finally, bv
1

has v0
s

as a
successor in E

I

, ensuring that it becomes a mutant in the first part of setup.
Changes to the fixation phase. We first consider how to ensure fixation for residents if b

2

is set to true, and then
describe the changes to ensure fixation for mutants if b

1

is set to true. We introduce additional nodes, v3
e

, v4
e

, v5
e

, v6
e

,
v3
M

, v4
M

and v5
M

(note that there are no vertices v1
M

, v2
M

or v3
M

, but the naming scheme is used since vi
M

is associated
with vi

e

).
The subtle issue about the fixation. Our goal is to ensure that if b

2

(resp., b
1

) is set to true, then the residents (resp.,
mutants) fixate. However, we must ensure in the evolutionary graph, that once b

2

(resp., b
1

) is set to true, then the



fixation of mutants (resp., residents) does not happen. The fixation of mutants (resp., residents) is triggered by the
boolean-value-gadget for b

1

(resp., b
2

) being set to true by making vb1tv (resp., vb2tv ) a mutant.
Vertex v3

e

for fixation of residents. We consider the case when the concurrent-if system has rejected by making vb2tv
a mutant. Then vertex v3

e

plays a crucial role in ensuring fixation for the residents. The vertex v3
e

has the vertex v0
s

and v3
M

= vb2tv as successors in E
I

; the edge to v0
s

ensures that v3
e

is a resident before v3
e

reproduces, and the other
edge ensures that the concurrent-if systems has rejected before v3

e

reproduces. The successors of v3
e

under E
R

are as
follows: (1) the vertices of S; (2) the vertex v

s

; (3) all the vertices of the boolean-value-gadgets s
1

and s
2

together
with bv

1

and bv
2

; and (4) the setter vertices of all other boolean-value-gadgets. We now argue that once v3
M

is a mutant,
then within polynomially many steps, all successors of v3

e

under E
R

become residents with high probability. The
vertices in (1) (i.e., S) are the only ones that can make vertices in (2) (i.e., v

s

) mutants, and in general for 2  i  4,
vertices described above in (i) can be made mutants by the vertices in (i� 1), except for the vertices in (3) (which can
be made mutants by the constant number of vertices of either (2) or (3)). Thus since there is a probability of one over
a polynomial that v3

e

makes a given successor a resident in one step (when it can reproduce), it follows that within a
polynomial number of steps all vertices which are successor of v3

e

under E
R

are residents with high probability.
Checking that v3

e

is done with reproduction. The other vertices and edges are as follows:

• The successors of vertex v3
M

in E
I

are the the successors of v3
e

in E
R

; this ensures that v3
M

can only reproduce
after v3

e

has made all its successors residents. The successor of v3
M

under E
R

is v4
M

; this ensures that once v3
e

has made all its successors under E
R

residents, then v4
M

becomes a mutant.

• The vertex v4
e

has v4
M

as successor in E
I

; and all value vertices of the boolean-value-gadgets, the vertex v0
s

, and
the vertex v3

M

as successors in E
R

. Thus when v3
e

and v4
e

has reproduced to make all their successors under E
R

residents, then only the vertex v4
M

can be a mutant.

• The vertex v4
M

has all other vertices as successors in E
I

and v5
M

as successor in E
R

. This ensures that v4
M

can
only reproduce when all other vertices are residents.

• The vertex v5
e

has v4
M

and v5
M

as successors in E
I

; and v4
M

as successor in E
R

. Thus the vertex v5
e

can only
reproduce when v4

M

has turned v5
M

to a mutant.

• The vertex v6
e

has v5
M

as the only successor in both E
I

and E
R

. This ensures that v6
e

can only reproduce once
v5
M

has become a mutant.

The construction ensures that after v4
M

is the only mutant, then it makes v5
M

a mutant, and then both v5
e

and v6
e

can
reproduce. If v6

e

does so first, then we are back to the case when v4
M

is the only mutant. Otherwise, we have that
v5
e

reproduces and then v6
e

reproduces to turn all the remaining vertices to residents, and thus we obtain fixation for
residents.
Changes for fixation of mutants. To ensure that fixation of the mutant phase cannot trigger the fixation of the resident
phase, we divide the fixation of mutants into three parts, using a boolean-value-gadget to describe when each part
is over. We present informally the construction (as the construction is similar to the setup phase of the original
construction of Section 5.2). We consider the case when the concurrent-if system has accepted by making vb1tv a
mutant.

• In the first part we make the vertices v3
e

and v6
e

mutants. Observe that v3
e

being mutant does not matter, since
all its successors in E

R

are already mutants. The vertex v6
e

will make v5
M

into a mutant, but since only v5
e

and
v6
e

have v5
M

as a successor in E
I

and v5
e

will not reproduce since v4
M

is a resident, this does not trigger fixation
of residents. Note that no vertex (other than the boolean-value-gadget for this part) has v3

e

or v6
e

as a successor
under E

I

.

• The second phase makes v4
e

a mutant, which will cause all the value vertices of the boolean-value-gadgets to
become mutants, but cannot trigger fixation of the residents anymore, since v3

e

is already a mutant.

• The last part is like the fixation of the mutant as in the original construction of Section 5.2, except that it also
makes the vertices used in the boolean-value-gadgets for the parts of mutant fixation, the vertex v5

e

, the vertex



v3
M

, the vertex v4
M

, and the vertex v5
M

into mutants. Observe that if v5
e

or v4
M

were mutants earlier than v4
e

, then
v4
e

could conceivably have triggered fixation of residents.

In the above reduction, it is easy to see that setup and fixation each takes a polynomial number of steps in expectation,
and the execution of the concurrent-if system takes at most exponential steps in expectation. Let T 0 be the expected
number of steps for fixation, and T 0 is exponential. Hence using Markov inequality, there exists T � T 0 such that T
is also exponential, and the fixation happens within T reproductions with high probability.
The hardness result. The above reduction achieves the following. Given evolutionary games on graphs with the
following properties (a) if a vertex has all its successors in E

I

of the opposite type, then it has a constant fitness (say,
a constant c > 0); (b) if a vertex has at least one successor in E

I

of the same type, then it cannot reproduce; (c) either
the mutants or residents fixate within an exponential number T of steps with high probability; and the promise that the
mutants fixate with probability close to either 0 or 1, decide which is the case is PSPACE-complete.
Reduction to fitness as exponential of payoff. We now show how the above reduction is modified to obtain the same
PSPACE hardness result, when the fitness is exponential of the payoff and there is no density constraint. There is no
modification in the graph, and we only define the payoff matrix
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for some x, such that p = T ·N · exp(1� x/N) is small (to make p exponentially small the number x only needs to
be polynomially small), where N is the number of vertices. Recall that T is such that in the previous model we have
fixation within T steps with high probability and T is exponential. The idea is that if the payoff of a vertex is negative,
then it is at most 1� x

N

. Consider a given step in the evolutionary graph such that some vertex has non-negative payoff,
and fix a vertex v that has negative payoff. The probability to pick v in this step to reproduce is at most exp(1� x/N).
Hence by union bound, the probability of an undesired reproduction in a given step is at most N · exp(1� x/N). On
the other hand, by picking vertices with non-negative payoffs, the fixation happens with high probability (say p0) in
T steps (see property c above). Thus we have the following: (i) the conditional probability of fixation within the first
T steps, given that there are no undesired reproduction in first T steps, is at least p0; and (ii) the probability that there
are no undesired reproduction within the first T steps is at least 1 � p. Hence the probability of fixation without any
undesired reproductions within the first T steps is at least p0 · (1� p), which is close to 1, since p is small. Hence the
fixation probability in the model with the above matrix where the fitness is exponential of the payoff is close to the
fixation probability of the previous model. The hardness result follows. The following theorem summarizes the result.

Theorem 17. For the general I&R model with the fitness function is exponential function of the payoff, where each
payoff of the matrix is polynomial in the size of the graph, the following assertion holds: the quantitative approximation
problem can be solved in polynomial space, and even given the promise that the fixation probability is close to either 0
or 1, deciding which is the case is PSPACE-hard (hence the quantitative approximation problem is PSPACE-hard).

7 Solutions in Polynomial Time

The molecular clock problem. We consider the problem of molecular clock of neutral evolution. It was shown in [1]
that the molecular clock can be accelerated or slowed due to spatial structure, which is represented as a graph. The
problem is as follows: given a graph that represents a population structure, over time, the population acquies neutral
genetic substituitions due random drift. Reproductions happen asexually, might depend on the precise vertex of the
graph. For each vertex, there is a given probability that a neutral mutation arises. The molecular clock, denoted as K,
is the average number of fixations of the mutations per generation. The basic computation question is to compute the
value of K.
The molecular clock solution. The solution of the molecular clock problem is as follows: the fixation probabilities in
the neutral case can be obtained as a unique solution to a set of linear equalities. A system of linear equalities can
be solved in polynomial-time, for example, using Gaussian elimination (which is cubic time) [4]. The value of the



molecular clock K is characterized by a simple linear expression in the fixation probabilities [1]. Given the fixation
probabilities, the linear expression can be evaluated in polynomial time.
Evolutionary games on well-mixed population. We consider the problem of evolutionary games on well-mixed popu-
lation, i.e., both the interaction and replacement graphs are complete graphs. The basic computational problem is to
compute the fixation probability. The problem we consider is actually a special case of the computational problems
we have considered, and the special case is that the graphs are complete.
Well-mixed population solution. We show that the fixation probability can be computed in polynomial time for both
LBF and ExF. Note that in a given generation, with a given number of mutants, the probability of the following events
are defined, independent of the precise locations of the mutants and the generation number: the number of mutants
(i) increase by 1; (ii) decrease by 1; (iii) remains the same; for the next generation. In other words, the distribution of
the number of mutants in the next generation, depends only on the number of mutants of the present generation and
the payoff matrix (in both the LBF and ExF model for fitness). Hence, we can construct a linear Markov chain, where
each vertex is a single number i, which corresponds to having i mutants and n� i residents, where there are n vertices.
For each 0  i  n, the transition probabilities from i to i itself, i� 1 and i+ 1 can be computed in polynomial time
given the payoff matrix. The fixation probability, is the probability to eventually reach vertex n starting at vertex 1.
Since the eventual reachability probability in Markov chains can be computed in polynomial time (again solving a
set of linear equalities [4]), it follows that the fixation probabilities for well-mixed population can be computed in
polynomial time.

8 Conclusion and Open Problems
In this work we studied the complexity of basic computation questions for related to ecology and evolution on graphs.
We established many lower and upper bounds for complexity, and our most interesting and significant results are
the lower bounds. We have established NP-hardness, #P-hardness, and PSPACE-hardness for several problems, and
it implies that polynomial-time algorithms for any of the problems would imply P is equal to NP, solving a long-
standing open problem. Moreover, under the widely believed conjecture that P is different from NP, it follows that
for the problems for which we establish lower bounds, there exists no efficient algorithm. A simple equation based
solution implies an efficient algorithm. The significance of our result is that it shows that for several fundamental
problems in ecology and evolutionary games on graphs, in general there is no simple equation based solution for the
fixation probability (in other words, a simple equation based solution would imply that P=NP).

There are several interesting open problems. First, is the problem of evolutionary games on graphs with constant
fitness function, which is a special case of the general problem. In this case, the qualitative problem can be solved
in polynomial time, and while the quantitative problem can be solved in PSPACE, a non-trivial lower bound for the
problem is an open question. Second, another interesting direction would be to explore the computational question in
the regime of weak selection.
Acknowledgments. We thank Erez Lieberman and Michal Koucky for insightful discussions and sharing their thoughts
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