97 research outputs found

    Cognition-inspired 5G cellular networks: a review and the road ahead

    Get PDF
    Despite the evolution of cellular networks, spectrum scarcity and the lack of intelligent and autonomous capabilities remain a cause for concern. These problems have resulted in low network capacity, high signaling overhead, inefficient data forwarding, and low scalability, which are expected to persist as the stumbling blocks to deploy, support and scale next-generation applications, including smart city and virtual reality. Fifth-generation (5G) cellular networking, along with its salient operational characteristics - including the cognitive and cooperative capabilities, network virtualization, and traffic offload - can address these limitations to cater to future scenarios characterized by highly heterogeneous, ultra-dense, and highly variable environments. Cognitive radio (CR) and cognition cycle (CC) are key enabling technologies for 5G. CR enables nodes to explore and use underutilized licensed channels; while CC has been embedded in CR nodes to learn new knowledge and adapt to network dynamics. CR and CC have brought advantages to a cognition-inspired 5G cellular network, including addressing the spectrum scarcity problem, promoting interoperation among heterogeneous entities, and providing intelligence and autonomous capabilities to support 5G core operations, such as smart beamforming. In this paper, we present the attributes of 5G and existing state of the art focusing on how CR and CC have been adopted in 5G to provide spectral efficiency, energy efficiency, improved quality of service and experience, and cost efficiency. This main contribution of this paper is to complement recent work by focusing on the networking aspect of CR and CC applied to 5G due to the urgent need to investigate, as well as to further enhance, CR and CC as core mechanisms to support 5G. This paper is aspired to establish a foundation and to spark new research interest in this topic. Open research opportunities and platform implementation are also presented to stimulate new research initiatives in this exciting area

    Techniques for Efficient Spectrum Usage for Next Generation Mobile Communication Networks. An LTE and LTE-A Case Study

    Get PDF

    Interference Management Techniques for Cellular Wireless Communication Systems

    Get PDF
    The growing demand for higher capacity wireless networks can be met by increasing the frequency bandwidth, spectral efficiency, and base station density. Flexible spectrum access, multiantenna, and multicarrier techniques are key enablers in satisfying the demand. In addition, automation of tasks related to network planning, optimization, interference management, and maintenance are needed in order to ensure cost-efficiency. Effective, dynamic, and automated interference management tailored for bursty and local data traffic plays a central role in the task. Adjacent channel interference (ACI) management is an enabler for flexible spectrum use and uncoordinated network deployments. In this thesis the impact of ACI in local area time division duplex (TDD) cellular systems is demonstrated. A method is proposed where the transmitters optimize their transmitted spectral shape on-line, such that constraints on ACI induced by power amplifier non-linearity are met. The proposed method increases the fairness among spectrum sharing transceivers when ACI is a limiting factor. A novel interference-aware scheduling technique is proposed and analyzed. The technique manages co-channel interference (CCI) in a decentralized fashion, relying on beacon messages sent by data receivers. It is demonstrated that the proposed technique is an enabler for fair spectrum sharing among operators, independent adaptation of uplink/downlink switching points in TDD networks, and it provides overall more fair and spectrally efficient wireless access. Especially, the technique is able to improve the cell-edge throughput tremendously. New services are emerging that generate local traffic among the users in addition to the data traffic between the users and the network. Such device-to-device (D2D) traffic is effectively served by direct transmissions. The thesis demonstrates the possibilities for allowing such direct D2D transmissions on a shared band together with the cellular communication. It is shown that interference management is needed in order to facilitate reliable and efficient shared band operation. For this purpose, three methods are proposed that provide interference aware power control, interference aware multiuser and multiband resource allocation, and interference avoiding spatial precoding. It is shown that enabling direct transmission itself provides most of the gains in system capacity, while the interference management schemes are more important in promoting fairness and reliability.Langattomien tietoliikenneverkkojen käyttö kasvaa erittäin nopeasti mobiilien internet-palvelujen ja älykkäiden päätelaitteiden suosion myötä. Järjestelmien tiedonsiirtokapasiteettiä voidaan lisätä kasvattamalla kaistanleveyttä, spektritehokkuutta ja tukiasemaverkon tiheyttä. Kehityksen mahdollistaa mm. joustava taajuuksien käyttö ja moniantenni- ja monikantoaaltotekniikat. Lisäksi radioverkkojen suunnitteluun, optimointiin, ylläpitoon ja interferenssinhallintaan liittyvien tehtävien automatisoinnilla voidaan pienentää verkko-operaattoreiden kustannuksia. Tässä hetkellisen ja paikallisen tietoliikenteen tehokas, dynaaminen ja automatisoitu interferenssinhallinta on keskeisessä asemassa. Viereisen kanavan interferenssin hallinta mahdollistaa osaltaan joustavan spektrinkäytön ja koordinoimattoman verkkojen asennuksen. Väitöskirjassa on analysoitu viereisen kanavan interferenssin vaikutusta aikajakoiseen dupleksilähetykseen perustuvien paikallisten radioverkkojen toimintaan. Lisäksi väitöskirjassa on kehitetty menetelmä, jolla voidaan hallita interferenssiä reaaliaikaisesti. Menetelmä maksimoi lähetetyn signaalin spektritehokkuuden siten, että tehovahvistimen epälineaarisuuden aiheuttama viereisen kanavan interferenssi on rajoitettu. Väitöskirjassa on kehitetty ja analysoitu uudenlainen interferenssitietoinen lähetysten ajoitustekniikka. Tekniikka hallitsee reaaliaikaisesti ja hajautetusti saman kanavan interferenssiä vastaanottimien lähettämien majakkasignaalien avulla. Esitetyt simulaatiot osoittavat, että tämä mahdollistaa operaattoreiden välisen taajuuskaistojen jaon, ja alas- ja yloslinkkien aikajaon joustavan säädön. Tämän lisäksi on mahdollista saavuttaa korkeampi yleinen spektritehokkuus. Erityisesti tiedonsiirtonopeus solujen reunoille kasvaa esitetyn tekniikan avulla huomattavasti. Uudenlaiset tietoliikennepalvelut lisäävät laitteidenvälisen paikallisen tietoliikenteen määrää. Spektrinkäytön kannalta tämä liikenne on tehokkainta lähettää suoraan laitteesta toiseen. Väitöskirjassa on tutkittu joustavaa spektrinkäyttöä suorien laitteidenvälisten lähetysten ja soluverkon välillä. Interferenssin hallinta takaa luotettavan ja tehokkaan spektrin yhteiskäytön. Tätä varten väitöskirjassa on kehitetty kolme menetelmää, jotka perustuvat tehonsäätöön, lähetysten ajoitukseen ja moniantennilähetykseen

    Optimisation de la gestion des interférences inter-cellulaires et de l'attachement des mobiles dans les réseaux cellulaires LTE

    Get PDF
    Driven by an exponential growth in mobile broadband-enabled devices and a continue dincrease in individual data consumption, mobile data traffic has grown 4000-fold over the past 10 years and almost 400-million-fold over the past 15 years. Homogeneouscellular networks have been facing limitations to handle soaring mobile data traffic and to meet the growing end-user demand for more bandwidth and betterquality of experience. These limitations are mainly related to the available spectrumand the capacity of the network. Telecommunication industry has to address these challenges and meet exploding demand. At the same time, it has to guarantee a healthy economic model to reduce the carbon footprint which is caused by mobile communications.Heterogeneous Networks (HetNets), composed of macro base stations and low powerbase stations of different types, are seen as the key solution to improve spectral efficiency per unit area and to eliminate coverage holes. In such networks, intelligent user association and interference management schemes are needed to achieve gains in performance. Due to the large imbalance in transmission power between macroand small cells, user association based on strongest signal received is not adapted inHetNets as only few users would attach to low power nodes. A technique based onCell Individual Offset (CIO) is therefore required to perform load balancing and to favor some Small Cell (SC) attraction against Macro Cell (MC). This offset is addedto users’ Reference Signal Received Power (RSRP) measurements and hence inducing handover towards different eNodeBs. As Long Term Evolution (LTE) cellular networks use the same frequency sub-bands, mobile users may experience strong inter-cellxv interference, especially at cell edge. Therefore, there is a need to coordinate resource allocation among the cells and minimize inter-cell interference. To mitigate stronginter-cell interference, the resource, in time, frequency and power domain, should be allocated efficiently. A pattern for each dimension is computed to permit especially for cell edge users to benefit of higher throughput and quality of experience. The optimization of all these parameters can also offer gain in energy use. In this thesis,we propose a concrete versatile dynamic solution performing an optimization of user association and resource allocation in LTE cellular networks maximizing a certainnet work utility function that can be adequately chosen. Our solution, based on gametheory, permits to compute Cell Individual Offset and a pattern of power transmission over frequency and time domain for each cell. We present numerical simulations toillustrate the important performance gain brought by this optimization. We obtain significant benefits in the average throughput and also cell edge user through put of40% and 55% gains respectively. Furthermore, we also obtain a meaningful improvement in energy efficiency. This work addresses industrial research challenges and assuch, a prototype acting on emulated HetNets traffic has been implemented.Conduit par une croissance exponentielle dans les appareils mobiles et une augmentation continue de la consommation individuelle des données, le trafic de données mobiles a augmenté de 4000 fois au cours des 10 dernières années et près de 400millions fois au cours des 15 dernières années. Les réseaux cellulaires homogènes rencontrent de plus en plus de difficultés à gérer l’énorme trafic de données mobiles et à assurer un débit plus élevé et une meilleure qualité d’expérience pour les utilisateurs.Ces difficultés sont essentiellement liées au spectre disponible et à la capacité du réseau.L’industrie de télécommunication doit relever ces défis et en même temps doit garantir un modèle économique pour les opérateurs qui leur permettra de continuer à investir pour répondre à la demande croissante et réduire l’empreinte carbone due aux communications mobiles. Les réseaux cellulaires hétérogènes (HetNets), composés de stations de base macro et de différentes stations de base de faible puissance,sont considérés comme la solution clé pour améliorer l’efficacité spectrale par unité de surface et pour éliminer les trous de couverture. Dans de tels réseaux, il est primordial d’attacher intelligemment les utilisateurs aux stations de base et de bien gérer les interférences afin de gagner en performance. Comme la différence de puissance d’émission est importante entre les grandes et petites cellules, l’association habituelle des mobiles aux stations de bases en se basant sur le signal le plus fort, n’est plus adaptée dans les HetNets. Une technique basée sur des offsets individuelles par cellule Offset(CIO) est donc nécessaire afin d’équilibrer la charge entre les cellules et d’augmenter l’attraction des petites cellules (SC) par rapport aux cellules macro (MC). Cette offset est ajoutée à la valeur moyenne de la puissance reçue du signal de référence(RSRP) mesurée par le mobile et peut donc induire à un changement d’attachement vers différents eNodeB. Comme les stations de bases dans les réseaux cellulaires LTE utilisent les mêmes sous-bandes de fréquences, les mobiles peuvent connaître une forte interférence intercellulaire, en particulier en bordure de cellules. Par conséquent, il est primordial de coordonner l’allocation des ressources entre les cellules et de minimiser l’interférence entre les cellules. Pour atténuer la forte interférence intercellulaire, les ressources, en termes de temps, fréquence et puissance d’émission, devraient être alloués efficacement. Un modèle pour chaque dimension est calculé pour permettre en particulier aux utilisateurs en bordure de cellule de bénéficier d’un débit plus élevé et d’une meilleure qualité de l’expérience. L’optimisation de tous ces paramètres peut également offrir un gain en consommation d’énergie. Dans cette thèse, nous proposons une solution dynamique polyvalente effectuant une optimisation de l’attachement des mobiles aux stations de base et de l’allocation des ressources dans les réseaux cellulaires LTE maximisant une fonction d’utilité du réseau qui peut être choisie de manière adéquate.Notre solution, basée sur la théorie des jeux, permet de calculer les meilleures valeurs pour l’offset individuelle par cellule (CIO) et pour les niveaux de puissance à appliquer au niveau temporel et fréquentiel pour chaque cellule. Nous présentons des résultats des simulations effectuées pour illustrer le gain de performance important apporté par cette optimisation. Nous obtenons une significative hausse dans le débit moyen et le débit des utilisateurs en bordure de cellule avec 40 % et 55 % de gains respectivement. En outre, on obtient un gain important en énergie. Ce travail aborde des défis pour l’industrie des télécoms et en tant que tel, un prototype de l’optimiseur a été implémenté en se basant sur un trafic HetNets émulé

    Design of static intercell interference coordination schemes for realistic lte-based cellular networks

    Get PDF
    Today, 3.5 and 4G systems including Long Term Evolution (LTE) and LTE-Advanced (LTE-A) support packet-based services and provide mobile broadband access for bandwidth-hungry applications. In this context of fast evolution, new and challenging technical issues must be e ectively addressed. The nal target is to achieve a signi cant step forward toward the improvement of the Quality of Experience (QoE). To that end, interference management has been recognized by the industry as a key enabler for cellular technologies based on OFDMA. Indeed, with a low frequency reuse factor, intercell interference (ICI) becomes a major concern since the Quality of Service (QoS) is not uniformly delivered across the network, it remarkably depends on user position. Hence, cell edge performance is an important issue in LTE and LTE-A. Intercell Interference Coordination (ICIC) encompasses strategies whose goal is to keep ICI at cell edges as low as possible. This alleviates the aforementioned situation. For this reason, the novelties presented in this Ph.D. thesis include not only developments of static ICIC mechanisms for data and control channels, but also e orts towards further improvements of the energy e ciency perspective. Based on a comprehensive review of the state of the art, a set of research opportunities were identi ed. To be precise, the need for exible performance evaluation methods and optimization frameworks for static ICIC strategies. These mechanisms are grouped in two families: the schemes that de ne constraints on the frequency domain and the ones that propose adjustments on the power levels. Thus, Soft- and Fractional Frequency Reuse (SFR and FFR, respectively) are identi ed as the base of the vast majority of static ICIC proposals. Consequently, during the rst part of this Ph.D. thesis, interesting insights into the operation of SFR and FFR were identi ed beyond well-known facts. These studies allow for the development of a novel statistical framework to evaluate the performance of these schemes in realistic deployments. As a result of the analysis, the poor performance of classic con gurations of SFR and FFR in real-world contexts is shown, and hence, the need for optimization is established. In addition, the importance of the interworking between static ICIC schemes and other network functionalities such as CSI feedback has also been identi ed. Therefore, novel CSI feedback schemes, suitable to operate in conjunction with SFR and FFR, have been developed. These mechanisms exploit the resource allocation pattern of these static ICIC techniques in order to improve the accuracy of the CSI feedback process. The second part is focused on the optimization of SFR and FFR. The use of multiobjective techniques is investigated as a tool to achieve e ective network-speci c optimization. The approach o ers interesting advantages. On the one hand, it allows for simultaneous optimization of several con icting criteria. On the other hand, the multiobjective nature results in outputs composed of several high quality (Pareto e cient) network con gurations, all of them featuring a near-optimal tradeo between the performance criteria. Multiobjective evolutionary algorithms allow employing complex mathematical structures without the need for relaxation, thus capturing accurately the system behavior in terms of ICI. The multiobjective optimization formulation of the problem aims at achieving e ective adjustment of the operational parameters of SFR and FFR both at cell level and network-wide. Moreover, the research was successfully extended to the control channels, both the PDCCH and ePDCCH. Finally, in an e ort to further improve the network energy e ciency (an aspect always considered throughout the thesis), the framework of Cell Switch O (CSO), having close connections with ICIC, is also introduced. By means of the proposed method, signi cant improvements with respect to traditional approaches, baseline con gurations, and previous proposals can be achieved. The gains are obtained in terms of energy consumption, network capacity, and cell edge performance.Actualmente los sistemas 3.5 y 4G tales como Long Term Evolution (LTE) y LTE-Advanced (LTE-A) soportan servicios basados en paquetes y proporcionan acceso de banda ancha m ovil para aplicaciones que requieren elevadas tasas de transmisi on. En este contexto de r apida evoluci on, aparecen nuevos retos t ecnicos que deben ser resueltos e cientemente. El objetivo ultimo es conseguir un salto cualitativo importante en la experiencia de usuario (QoE). Con tal n, un factor clave que ha sido reconocido en las redes celulares basadas en Orthogonal Frequency- Division Multiple Access (OFDMA) es la gesti on de interferencias. De hecho, la utilizaci on de un factor de reuso bajo permite una elevada e ciencia espectral pero a costa de una distribuci on de la calidad de servicio (QoS) que no es uniforme en la red, depende de la posici on del usuario. Por lo tanto, el rendimiento en los l mites de la celda se ve muy penalizado y es un problema importante a resolver en LTE y LTE-A. La coordinaci on de interferencias entre celdas (ICIC, del ingl es Intercell Interfe- rence Coordination) engloba las estrategias cuyo objetivo es mantener la interferencia intercelular (ICI) lo m as baja posible en los bordes de celda. Esto permite aliviar la situaci on antes mencionada. La contribuci on presentada en esta tesis doctoral incluye el dise~no de nuevos mecanismos de ICIC est atica para los canales de datos y control, as como tambi en mejoras desde el punto de vista de e ciencia energ etica. A partir de una revisi on completa del estado del arte, se identi caron una serie de retos abiertos que requer an esfuerzos de investigaci on. En concreto, la necesidad de m etodos de evaluaci on exibles y marcos de optimizaci on de las estrategias de ICIC est aticas. Estos mecanismos se agrupan en dos familias: los esquemas que de nen restricciones sobre el dominio de la frecuencia y los que proponen ajustes en los niveles de potencia. Es decir, la base de la gran mayor a de propuestas ICIC est aticas son la reutilizaci on de frecuencias de tipo soft y fraccional (SFR y FFR, respectivamente). De este modo, durante la primera parte de esta tesis doctoral, se han estudiado los aspectos m as importantes del funcionamiento de SFR y FFR, haciendo especial enfasis en las conclusiones que van m as all a de las bien conocidas. Ello ha permitido introducir un nuevo marco estad stico para evaluar el funcionamiento de estos sistemas en condiciones de despliegue reales. Como resultado de estos an alisis, se muestra el pobre desempe~no de SFR y FFR en despliegues reales cuando funcionan con sus con guraciones cl asicas y se establece la necesidad de optimizaci on. Tambi en se pone de mani esto la importancia del funcionamiento conjunto entre esquemas ICIC est aticos y otras funcionalidades de la red radio, tales como la informaci on que env an los usuarios sobre el estado de su canal downlink (feedback del CSI, del ingl es Channel State Information). De este modo, se han propuesto diferentes esquemas de feedback apropiados para trabajar conjuntamente con SFR y FFR. Estos mecanismos explotan el patr on de asignaci on de recursos que se utiliza en ICIC est atico para mejorar la precisi on del proceso. La segunda parte se centra en la optimizaci on de SFR y FFR. Se ha investigado el uso de t ecnicas multiobjetivo como herramienta para lograr una optimizaci on e caz, que es espec ca para cada red. El enfoque ofrece ventajas interesantes, por un lado, se permite la optimizaci on simult anea de varios criterios contradictorios. Por otro lado, la naturaleza multiobjetivo implica obtener como resultado con guraciones de red de elevada calidad (Pareto e cientes), todas ellas con un equilibrio casi- optimo entre las diferentes m etricas de rendimiento. Los algoritmos evolucionarios multiobjetivo permiten la utilizaci on de estructuras matem aticas complejas sin necesidad de relajar el problema, de este modo capturan adecuadamente su comportamiento en t erminos de ICI. La formulaci on multiobjetivo consigue un ajuste efectivo de los par ametros operacionales de SFR y FFR, tanto a nivel de celda como a nivel de red. Adem as, la investigaci on se extiende con resultados satisfactorios a los canales de control, PDCCH y ePDCCH. Finalmente, en un esfuerzo por mejorar la e ciencia energ etica de la red (un aspecto siempre considerado a lo largo de la tesis), se introduce en el an alisis global el apagado inteligente de celdas, estrategia con estrechos v nculos con ICIC. A trav es del m etodo propuesto, se obtienen mejoras signi cativas con respecto a los enfoques tradicionales y propuestas previas. Las ganancias se obtienen en t erminos de consumo energ etico, capacidad de la red, y rendimiento en el l mite de las celdas.Actualment els sistemes 3.5 i 4G tals com Long Term Evolution (LTE) i LTE- Advanced (LTE-A) suporten serveis basats en paquets i proporcionen acc es de banda ampla m obil per a aplicacions que requereixen elevades taxes de transmissi o. En aquest context de r apida evoluci o, apareixen nous reptes t ecnics que han de ser resolts e cientment. L'objectiu ultim es aconseguir un salt qualitatiu important en l'experi encia d'usuari (QoE). Amb tal , un factor clau que ha estat reconegut a les xarxes cel lulars basades en Orthogonal Frequency-Division Multiple Access (OFDMA) es la gesti o d'interfer encies. De fet, la utilizaci o d'un factor de re us baix permet una elevada e ci encia espectral per o a costa d'una distribuci o de la qualitat de servei (QoS) que no es uniforme a la xarxa, dep en de la posici o de l'usuari. Per tant, el rendiment en els l mits de la cel la es veu molt penalitzat i es un problema important a resoldre en LTE i LTE-A. La coordinaci o d'interfer encies entre cel les (ICIC, de l'angl es Intercell Interfe- rence Coordination) engloba les estrat egies que tenen com a objectiu mantenir la interfer encia intercel lular (ICI) el m es baixa possible en les vores de la cel la. Aix o permet alleujar la situaci o abans esmentada. La contribuci o presentada en aquesta tesi doctoral inclou el disseny de nous mecanismes de ICIC est atica per als canals de dades i control, aix com tamb e millores des del punt de vista d'e ci encia energ etica. A partir d'una revisi o completa de l'estat de l'art, es van identi car una s erie de reptes oberts que requerien esfor cos de recerca. En concret, la necessitat de m etodes d'avaluaci o exibles i marcs d'optimitzaci o de les estrat egies de ICIC est atiques. Aquests mecanismes s'agrupen en dues fam lies: els esquemes que de neixen restriccions sobre el domini de la freq u encia i els que proposen ajustos en els nivells de pot encia. Es a dir, la base de la gran majoria de propostes ICIC est atiques s on la reutilitzaci o de freq u encies de tipus soft i fraccional (SFR i FFR, respectivament). D'aquesta manera, durant la primera part d'aquesta tesi doctoral, s'han estudiat els aspectes m es importants del funcionament de SFR i FFR, fent especial emfasi en les conclusions que van m es enll a de les ben conegudes. Aix o ha perm es introduir un nou marc estad stic per avaluar el funcionament d'aquests sistemes en condicions de desplegament reals. Com a resultat d'aquestes an alisis, es mostra el pobre acompliment de SFR i FFR en desplegaments reals quan funcionen amb les seves con guracions cl assiques i s'estableix la necessitat d'optimitzaci o. Tamb e es posa de manifest la import ancia del funcionament conjunt entre esquemes ICIC est atics i altres funcionalitats de la xarxa radio, tals com la informaci o que envien els usuaris sobre l'estat del seu canal downlink (feedback del CSI, de l'angl es Channel State Information). D'aquesta manera, s'han proposat diferents esquemes de feedback apropiats per treballar conjuntament amb SFR i FFR. Aquests mecanismes exploten el patr o d'assignaci o de recursos que s'utilitza en ICIC est atic per millorar la precisi o del proc es. La segona part se centra en l'optimitzaci o de SFR i FFR. S'ha investigat l' us de t ecniques multiobjectiu com a eina per aconseguir una optimitzaci o e ca c, que es espec ca per a cada xarxa. L'enfocament ofereix avantatges interessants, d'una banda, es permet l'optimitzaci o simult ania de diversos criteris contradictoris. D'altra banda, la naturalesa multiobjectiu implica obtenir com resultat con guracions de xarxa d'elevada qualitat (Pareto e cients), totes elles amb un equilibri gaireb e optim entre les diferents m etriques de rendiment. Els algorismes evolucionaris multiobjectiu permeten la utilitzaci o d'estructures matem atiques complexes sense necessitat de relaxar el problema, d'aquesta manera capturen adequadament el seu comportament en termes de ICI. La formulaci o multiobjectiu aconsegueix un ajust efectiu dels par ametres operacionals de SFR i FFR, tant a nivell de cel la com a nivell de xarxa. A m es, la recerca s'est en amb resultats satisfactoris als canals de control, PDCCH i ePDCCH. Finalment, en un esfor c per millorar l'e ci encia energ etica de la xarxa (un aspecte sempre considerat al llarg de la tesi), s'introdueix en l'an alisi global l'apagat intel ligent de cel les, estrat egia amb estrets vincles amb ICIC. Mitjan cant el m etode proposat, s'obtenen millores signi catives pel que fa als enfocaments tradicionals i propostes pr evies. Els guanys s'obtenen en termes de consum energ etic, capacitat de la xarxa, i rendiment en el l mit de les cel les

    A distributed power-saving framework for LTE HetNets exploiting Almost Blank Subframes

    Get PDF
    Almost Blank Subframes (ABSs) have been defined in LTE as a means to coordinate transmissions in heterogeneous networks (HetNets), composed of macro and micro eNodeBs: the macro issues ABS periods, and refrains from transmitting during ABSs, thus creating interference-free subframes for the micros. Micros report their capacity demands to the macro via the X2 interface, and the latter provisions the ABS period accordingly. Existing algorithms for ABS provisioning usually share resources proportionally among HetNet nodes in a long-term perspective (e.g., based on traffic forecast). We argue instead that this mechanism can be exploited to save power in the HetNet: in fact, dur-ing ABSs, the macro consumes less power, since it only transmits pilot signals. Dually, the micros may inhibit data transmission themselves in some subframes, and optimally decide when to do this based on knowledge of the ABS period. This allows us to define a power saving framework that works in the short term, mod-ifying the ABS pattern at the fastest possible pace, serving the HetNet traffic at reduced power cost. Our framework is designed using only standard signaling. Simulations show that the algorithm consumes less power than its competitors, especially at low loads, and improves the UE QoS
    • …
    corecore