1,077 research outputs found

    Interference Mitigation in Multi-Hop Wireless Networks with Advanced Physical-Layer Techniques

    Get PDF
    In my dissertation, we focus on the wireless network coexistence problem with advanced physical-layer techniques. For the first part, we study the problem of Wireless Body Area Networks (WBAN)s coexisting with cross-technology interference (CTI). WBANs face the RF cross-technology interference (CTI) from non-protocol-compliant wireless devices. Werst experimentally characterize the adverse effect on BAN caused by the CTI sources. Then we formulate a joint routing and power control (JRPC) problem, which aims at minimizing energy consumption while satisfying node reachability and delay constraints. We reformulate our problem into a mixed integer linear programing problem (MILP) and then derive the optimal results. A practical JRPC protocol is then proposed. For the second part, we study the coexistence of heterogeneous multi-hop networks with wireless MIMO. We propose a new paradigm, called cooperative interference mitigation (CIM), which makes it possible for disparate networks to cooperatively mitigate the interference to/from each other to enhance everyone\u27s performance. We establish two tractable models to characterize the CIM behaviors of both networks by using full IC (FIC) and receiver-side IC (RIC) only. We propose two bi-criteria optimization problems aiming at maximizing both networks\u27 throughput, while cooperatively canceling the interference between them based on our two models. In the third and fourth parts, we study the coexistence problem with MIMO from a different point of view: the incentive of cooperation. We propose a novel two-round game framework, based on which we derive two networks\u27 equilibrium strategies and the corresponding closed-form utilities. We then extend our game-theoretical analysis to a general multi-hop case, specifically the coexistence problem between primary network and multi-hop secondary network in the cognitive radio networks domain. In the final part, we study the benefits brought by reconfigurable antennas (RA). We systematically exploit the pattern diversity and fast reconfigurability of RAs to enhance the throughput of MWNs. Werst propose a novel link-layer model that captures the dynamic relations between antenna pattern, link coverage and interference. Based on our model, a throughput optimization framework is proposed by jointly considering pattern selection and link scheduling, which is formulated as a mixed integer non-linear programming problem

    Time to be responsive in the process industry: a literature-based analysis of trends of change, solutions and challenges

    Get PDF
    The current uncertain and volatile business context is challenging firms worldwide, leading to the need to be responsive at a competitive cost. This trend is so substantial that it even affects industries traditionally competing in rather stable contexts, such as the process industry. Although the process industry includes multiple sectors with different technologies and processes, these share several aspects that make the industry as a whole distinctive to the discrete manufacturing industry. Based on a literature review, this study identifies and describes trends leading the process industry to the need for responsiveness, corresponding solutions to accommodate the need, and related challenges hindering the industrialization and diffusion of solutions in this industry. This study shows that trends, such as the uncertainty and volatility of market requirements, are challenging the process industry to develop reconfigurability solutions across multiple production levels. The development of reconfigurability solutions is hindered by modularity, integrability, co-ordination and collaboration challenges

    Wavelength reconfigurability for next generation optical access networks

    Get PDF
    Next generation optical access networks should not only increase the capacity but also be able to redistribute the capacity on the fly in order to manage larger variations in traffic patterns. Wavelength reconfigurability is the instrument to enable such capability of network-wide bandwidth redistribution since it allows dynamic sharing of both wavelengths and timeslots in WDM-TDM optical access networks. However, reconfigurability typically requires tunable lasers and tunable filters at the user side, resulting in cost-prohibitive optical network units (ONU). In this dissertation, I propose a novel concept named cyclic-linked flexibility to address the cost-prohibitive problem. By using the cyclic-linked flexibility, the ONU needs to switch only within a subset of two pre-planned wavelengths, however, the cyclic-linked structure of wavelengths allows free bandwidth to be shifted to any wavelength by a rearrangement process. Rearrangement algorithm are developed to demonstrate that the cyclic-linked flexibility performs close to the fully flexible network in terms of blocking probability, packet delay, and packet loss. Furthermore, the evaluation shows that the rearrangement process has a minimum impact to in-service ONUs. To realize the cyclic-linked flexibility, a family of four physical architectures is proposed. PRO-Access architecture is suitable for new deployments and disruptive upgrades in which the network reach is not longer than 20 km. WCL-Access architecture is suitable for metro-access merger with the reach up to 100 km. PSB-Access architecture is suitable to implement directly on power-splitter-based PON deployments, which allows coexistence with current technologies. The cyclically-linked protection architecture can be used with current and future PON standards when network protection is required

    Multi-agent framework based on smart sensors/actuators for machine tools control and monitoring

    Get PDF
    Throughout the history, the evolutions of the requirements for manufacturing equipments have depended on the changes in the customers' demands. Among the present trends in the requirements for new manufacturing equipments, there are more flexible and more reactive machines. In order to satisfy those requirements, this paper proposes a control and monitoring framework for machine tools based on smart sensor, on smart actuator and on agent concepts. The proposed control and monitoring framework achieves machine monitoring, process monitoring and adapting functions that are not usually provided by machine tool control systems. The proposed control and monitoring framework has been evaluated by the means of a simulated operative part of a machine tool. The communication between the agents is achieved thanks to an Ethernet network and CORBA protocol. The experiments (with and without cooperation between agents for accommodating) give encouraging results for implementing the proposed control framework to operational machines. Also, the cooperation between the agents of control and monitoring framework contributes to the improvement of reactivity by adapting cutting parameters to the machine and process states and to increase productivity

    Reconfigurable pixel antennas for communications

    Get PDF
    The explosive growth of wireless communications has brought new requirements in terms of compactness, mobility and multi-functionality that pushes antenna research. In this context, recon gurable antennas have gained a lot of attention due to their ability to adjust dynamically their frequency and radiation properties, providing multiple functionalities and being able to adapt themselves to a changing environment. A pixel antenna is a particular type of recon gurable antenna composed of a grid of metallic patches interconnected by RF-switches which can dynamically reshape its active surface. This capability provides pixel antennas with a recon guration level much higher than in other recon gurable architectures. Despite the outstanding recon guration capabilities of pixel antennas, there are important practical issues related to the performance-complexity balance that must be addressed before they can be implemented in commercial systems. This doctoral work focuses on the minimization of the pixel antenna complexity while maximizing its recon guration capabilities, contributing to the development of pixel antennas from a conceptual structure towards a practical recon gurable antenna architecture. First, the conceptualization of novel pixel geometries is addressed. It is shown that antenna complexity can be signi cantly reduced by using multiple-sized pixels. This multi-size technique allows to design pixel antennas with a number of switches one order of magnitude lower than in common pixel structures, while preserving high multiparameter recon gurability. A new conceptual architecture where the pixel surface acts as a parasitic layer is also proposed. The parasitic nature of the pixel layer leads to important advantages regarding the switch biasing and integration possibilities. Secondly, new pixel recon guration technologies are explored. After investigating the capabilities of semiconductors and RF-MEMS switches, micro uidic technology is proposed as a new technology to create and remove liquid metal pixels rather than interconnecting them. Thirdly, the full multi-parameter recon guration capabilities of pixel antennas is explored, which contrasts with the partial explorations available in the literature. The maximum achievable recon guration ranges (frequency range, beam-steering angular range and polarization modes) as well as the linkage between the di erent parameter under recon guration are studied. Finally, the performance of recon gurable antennas in beam-steering applications is analyzed. Figures-of-merit are derived to quantify radiation pattern recon gurability, enabling the evaluation of the performance of recon gurable antennas, pixel antennas and recon guration algorithms

    Power and area efficient reconfigurable delta sigma ADCs

    Get PDF

    Modeling and Analysis of Space Based Transceivers

    Get PDF
    This paper presents the tool chain, methodology, and initial results of a study to provide a thorough, objective, and quantitative analysis of the design alternatives for space Software Defined Radio (SDR) transceivers. The approach taken was to develop a set of models and tools for describing communications requirements, the algorithm resource requirements, the available hardware, and the alternative software architectures, and generate analysis data necessary to compare alternative designs. The Space Transceiver Analysis Tool (STAT) was developed to help users identify and select representative designs, calculate the analysis data, and perform a comparative analysis of the representative designs. The tool allows the design space to be searched quickly while permitting incremental refinement in regions of higher payoff

    Study and Design of Reconfigurable Intelligent Surfaces

    Full text link
    In this thesis, we introduce the fundamental equations behind the estimation of the link budget in a communications channel, highlighting the key limitations of conventional systems. Furthermore, we investigate the use of reconfigurable intelligent surfaces as a modern method of overcoming obstruction losses, while making use of numerical methods and computational electromagnetics to understand its physical mechanism and probe its theory of operation. Additionally, a preprint on computational geometry is presented, applicable to the field of computational electromagnetics, enabling the simulation of systems such as reconfigurable intelligent surfaces using open-source tools. Lastly, we provide a tool for the physical optimization of radio-frequency networks, based on mathematical programming. Such a tool may be used for the optimization of reconfigurable intelligent surfaces, ultimately improving the communication channel between a transmitter and receiver.Comment: 76 pages, 26 figures. arXiv admin note: text overlap with arXiv:2209.1026

    EFFICIENCY OF FLEXIBLE FIXTURES: DESIGN AND CONTROL

    Get PDF
    The manufacturing industries have been using flexible production technologies to meet the demand for customisation. As a part of production, fixtures have remained limited to dedicated technologies, even though numerous flexible fixtures have been studied and proposed by both academia and industry. The integration of flexible fixtures has shown that such efforts did not yield the anticipated performance and resulted in inefficiencies of cost and time. The fundamental formulation of this thesis addresses this issue and aims to increase the efficiency of flexible fixtures.To realise this aim, the research in this thesis poses three research questions. The first research question investigates the efficiency description of flexible fixtures in terms of the criteria. Relative to this, the second research question investigates the use of efficiency metrics to integrate efficiency criteria into a design procedure. Once the efficiency and design aspects have been established, the third research question investigates the active control of flexible fixtures to increase their efficiency. The results of this thesis derive from the outcome of seven studies investigating the automotive and aerospace industries. The results that answer the first research question use five criteria to establish the efficiency of flexible fixtures. These are: fundamental, flexibility, cost, time and quality. By incorporating design characteristics in respect of production system paradigms, each criterion is elaborated upon using relevant sub-criteria and metrics. Moreover, a comparative design procedure is presented for the second research question and comprising four stages (including mechanical, control and software aspects). Initially, the design procedure proposes conceptual design and verification stages to determine the most promising flexible fixture for a target production system. By executing detailed design and verification, the design procedure enables a fixture designer to finalise the flexible fixture and determine its efficiency. Furthermore, a novel parallel kinematics machine is presented to demonstrate the applicability of the design procedure’s analytical steps and illustrate how appropriate kinematic structures can facilitate the efficiency-orientated design of flexible fixtures.Based on the correlation established by the controller software’s design procedure, the active control of flexible fixtures directly affects the quality criterion of flexible fixture efficiency. This provides the answer to the third research question, on general control strategies for active control of flexible fixtures. The introduction of a system model and manipulator dynamics proposes force and position control strategies. It is shown that any flexible fixture using a kinematic class can be controlled, to regulate the force and position of a workpiece and ensure that process nominals are preserved. Moreover, using both direct and indirect force control strategies, a flexible fixture’s role in active control can be expanded into a system of actively controlled fixtures that are useful in various processes. Finally, a position controller is presented which has the capacity to regulate both periodic and non-periodic signals. This controller uses an additional feedforward scheme (based on the Hilbert transform) in parallel with a feedback mechanism. Thus, the position controller enables flexible fixtures to regulate the position of a workpiece in respect of any kind of disturbance
    • …
    corecore