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ABSTRACT

Interference Mitigation in Multi-hop Wireless Networks with

Advanced Physical-layer Techniques

by

Yantian Hou, Doctor of Philosophy

Utah State University, 2016

Major Professor: Ming Li, Ph.D.
Department: Computer Science

In my dissertation, we focus on the wireless network coexistence problem with advanced

physical-layer techniques. For the first part, we study the problem of Wireless Body Area

Networks (WBAN)s coexisting with cross-technology interference (CTI). WBANs face the

RF cross-technology interference (CTI) from non-protocol-compliant wireless devices. We

first experimentally characterize the adverse effect on BAN caused by the CTI sources.

Then we formulate a joint routing and power control (JRPC) problem, which aims at

minimizing energy consumption while satisfying node reachability and delay constraints.

We reformulate our problem into a mixed integer linear programing problem (MILP) and

then derive the optimal results. A practical JRPC protocol is then proposed. For the second

part, we study the coexistence of heterogeneous multi-hop networks with wireless MIMO.

We propose a new paradigm, called cooperative interference mitigation (CIM), which makes

it possible for disparate networks to cooperatively mitigate the interference to/from each

other to enhance everyone’s performance. We establish two tractable models to characterize

the CIM behaviors of both networks by using full IC (FIC) and receiver-side IC (RIC) only.

We propose two bi-criteria optimization problems aiming at maximizing both networks’

throughput, while cooperatively canceling the interference between them based on our two



iv

models. In the third and fourth parts, we study the coexistence problem with MIMO from

a different point of view: the incentive of cooperation. We propose a novel two-round

game framework, based on which we derive two networks’ equilibrium strategies and the

corresponding closed-form utilities. We then extend our game-theoretical analysis to a

general multi-hop case, specifically the coexistence problem between primary network and

multi-hop secondary network in the cognitive radio networks domain. In the final part, we

study the benefits brought by reconfigurable antennas (RA). We systematically exploit the

pattern diversity and fast reconfigurability of RAs to enhance the throughput of MWNs. We

first propose a novel link-layer model that captures the dynamic relations between antenna

pattern, link coverage and interference. Based on our model, a throughput optimization

framework is proposed by jointly considering pattern selection and link scheduling, which

is formulated as a mixed integer non-linear programming problem.

(138 pages)



v

PUBLIC ABSTRACT

Interference Mitigation in Multi-hop Wireless Networks with

Advanced Physical-layer Techniques

Yantian Hou

With the ever-growing number of wireless systems, the problem of spectrum scarcity is

becoming more important than ever. Many devices coexist in the same frequency band, e.g.,

IEEE 802.11 (WiFi), 802.15.4 (ZigBee), 802.16 (WiMax), and Bluetooth in the ISM bands.

Coexisting in the crowded spectrum bands inevitably leads to mutual interferences. For a

wireless network, the interference could be from external sources such as microwave oven and

cordless phone, or from internal nodes within multi-flow and multi-hop wireless networks.

All these interferences can be detrimental to the performance of co-locating networks if

they are not properly mitigated. In my dissertation, we try to improve the maximum

throughputs of coexisting multi-hop wireless networks by utilizing advanced physical-layer

techniques, such as wireless MIMO and reconfigurable antennas (RA). The advance of such

new physical-layer techniques provides new optimization freedoms and hasn’t been well

exploited by previous works.

My first work is about the interference mitigation in wireless body area networks. We

propose a joint routing and power control method to select the good-quality links that are

not severely affected by the external interference sources. Our scheme could guarantee the

quality of service while minimizing the overall energy consumption. My second work is about

the cooperative interference mitigation in multi-hop wireless networks, where we utilize the

emerging wireless MIMO by cooperatively mitigating internal interferences to enhance the

overall network throughputs. In my third and fourth work, I study the coexisting problem

using game-theoretical approach. Different from my previous work, we design a game-

theoretical framework to capture the competitive and selfish nature of coexisting networks.
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My last work is about throughput optimization using reconfigurable antennas, which is

another emerging physical-layer technique as wireless MIMO. Our results show that by

using reconfigurable antennas, we could improve the overall network throughput as well.
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CHAPTER 1

INTRODUCTION

From the local-area networks connecting our laptops and cellphones, to the on-body

wireless sensors monitoring our health status [1], wireless networks have been widely used

in our daily life. The free transmission of signals on air makes the message sharing among

people more convenient. The signals from different networks inevitably cause interference

to the coexisting devices. To avoid interference, the most common way is to divide frequen-

cies into multiple bands and each pair of transmitter and receiver within the same spatial

space is allocated with a unique band. However, with the ever-growing number of wire-

less systems, the problem of spectrum scarcity is becoming more important than ever. To

utilize the spectrum resources more thoroughly, we need highly efficient spectrum-sharing

technologies in wireless networks [2], in which the networks are heterogeneous in hardware

capabilities, wireless technologies, or protocol standards, and overlap with each other in

the same frequency and space domains. Using wireless body-area networks (WBAN) as ex-

ample, it is usually deployed in densely populated areas such as hospitals and apartments,

where numerous wireless devices coexist, such as cordless phone, baby monitor, microwave,

etc. All these devices work in the same industrial, scientific and medical (ISM) band from

2.4GHz to 2.5 GHz. Without carefully dealt with, these devices could severely degrade

the WBAN’s throughput. In addition, networks with different technologies (e.g., 802.11

and 802.15.4) could interfere with each other [3, 4], causing both networks’ throughputs

degraded.

Due to the spectrum scarcity problem, we need to utilize the limited frequency resources

more wisely. Routing and power control are two commonly used methods, in which we ac-

tively select optimal routing path and transmitting power for all links/nodes to mitigate

the impact of interference. This method could be effective in such scenarios that channel

qualities vary largely, e.g., in the WBAN scenario, some channels are severely affected by
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on-body fading, while some others are in good quality due to line-of-sight channels. In

addition, some advanced physical-layer techniques such as wireless MIMO and reconfig-

urable antennas (RA) provide high degree of spatial reusing. By applying these techniques

in physical layer, more sophisticated interference mitigation could be achieved to further

enhance network throughput. In my dissertation, I will study the joint routing and power

control on WBANs to guarantee end-to-end (E2E) reliability. In addition, I will focus on

utilizing wireless MIMO and RAs to optimally maximize network throughputs.

1.1 Making Wireless Body Area Networks Robust under Cross-Technology

Interference

Wireless Body Area Network is an emerging technology for future healthcare systems.

In WBAN, a patient’s physiological data are collected by a group of on-body sensors and

then transferred through wireless channel to a central controller unit (CU), which could

be smartphone or PDA. WBAN is a promising technology that makes remote medical

diagnosis more convenient and efficient, which leads to several promising applications such

as ubiquitous health monitoring and emergency medical response.

However, the WBAN’s transmission reliability is big concern due to the intrinsic open

characteristic of wireless channel [5]. Signals transmitted in wireless channel could be easily

influenced by noises. WBANs are normally deployed in densely populated areas such as

hospitals and apartments, where there could be numerous RF devices generating cross-

technology interference (CTI) in the same wireless band. For example, in the widely used

ISM band (from 2.4GHz to 2.5GHz), there could be microwave oven, cordless phones, baby

monitors, garage doors coexisting in the same spectrum, which makes WBAN in the same

band to be easily interfered. Among all the RF sources, the devices such as microwave

oven and cordless phone are less friendly due to their persistent, high-power and broadband

nature. For example, a microwave oven usually occupies at least 25MHz in the 2.4G band.

In addition, a cordless phone is usually turned on for conversation for several minutes, which

persistently emits electromagnetic signal at a transmission power of 1 Watt (or 30dBm),

equivalent to 1,000 times of the power limit of medical devices. All these devices could
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damage the data transmissions within WBANs, which has high requirement on E2E link

quality. Therefore, a reliable transmission scheme is needed which is robust against powerful

external CTI.

To deal with the CTI, one choice is to rely on spectrum licensing. However, the

spectrum is becoming increasingly scarcer which makes this harder. The Medical Implant

Communications Service (MICS) band spans 402-405 MHz but is dedicated for implanted

devices. Although recently, the FCC has allocated additional bandwidth (2360-2400 MHz)

for medical BAN services, only those in the 2390-2400 MHz band will be allowed to operate

wherever they wish and without coordination of spectrum [6]. As this is adjacent to the

ISM band, FCC cautioned that BANs will “need to consider the potential for adverse

interaction between their BAN, Wi-Fi and ISM resources” [6]. On the other hand, many

existing commercial-off-the-shelf (COTS) medical sensors [5, 7] have adopted one of the

wireless technologies under the ISM band. It can be predicted that in the near future

many BAN applications will still operate in the ISM band. Also we cannot ignore the

interference generated from possible malicious devices, e.g. a wireless jammer, whose goal

is to intentionally block the crucial data transmission on a WBAN. Therefore, it is necessary

to come up with a solution to make WBAN robust against co-channel CTIs. Our solution

is to use joint routing and power control method to select the good-quality links that are

not severely affected by CTIs. Meanwhile, we minimize the power level on each node as

long as the E2E node reachability requirement is satisfied.

1.2 Cooperative Interference Mitigation for Heterogeneous Multi-hop Wire-

less MIMO Networks Coexistence

The overlapping of disparate networks in the same spectrum band inevitably leads to

CTI. Some examples of existing and future radio devices/networks that create CTI include:

IEEE 802.11 (WiFi), 802.15.4 (ZigBee), 802.16 (WiMax), and Bluetooth in the ISM bands,

IEEE 802.22 (WRAN) and IEEE 802.11af (WLAN) in the TV white space, etc. The CTI

can be detrimental to the performance of co-locating networks if it is not properly mitigated

[8, 9]. However, the CTI is harder to handle than same-technology interference due to the
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differences in physical-layer technology, thus making the communication and coordination

among cross-technology devices infeasible. Therefore, it is practically infeasible to use

central administration or planning for the coexistence of such networks (unless we use some

multi-protocol devices as controller and coordinator, which inevitably exacerbates both

hardware and communication overhead). To enable spectrum sharing, current approaches

mostly follow the Interference Avoidance (IAV) paradigm, where different transmissions are

separated in frequency, time, or space domains to avoid collisions, rather than to reduce or

eliminate interference.

Recently, interference cancellation (IC) has emerged as a powerful physical-layer ap-

proach to mitigate interference [10]. IC is enabled by the use of smart antennas (MIMO),

which uses signal processing techniques to minimize or completely cancel the interference

from other links. MIMO is gaining popularity in commercial and future systems such as

802.11n, 802.16, and 802.11af. By using IC, we can successfully transmit multiple streams

concurrently, as long as the interferences generated are properly canceled at all receivers.

Interference alignment (IAL) [11,12] is a recent advance of IC, which aligns different inter-

ferences along the same directions, thus allowing the receiver to cancel all interferences with

fewer degree-of-freedom (DoF), By using IAL, the receiver could spend more DoFs on its

own transmission, instead of spending on IC. Recent advances in Technology-Independent

Multiple-Output (TIMO) [13] even enables the cancellation of the CTI to/from a interferer

with a completely different wireless technology. Intuitively, it is possible for two or more

multi-hop heterogeneous networks to cooperatively cancel/mitigate the interference to/from

each other as long as they (or as long as one of them) are equipped with MIMO, such that

everyone’s performance can be enhanced simultaneously. We call this the cooperative cross-

technology interference mitigation (CIM) paradigm.

Previous works have mostly focused on exploiting MIMO IC to enhance throughput

within standalone and homogeneous wireless networks [14–17]. However, to date, its poten-

tial for interference mitigation across two or more heterogeneous multi-hop networks has

not been well understood. There is a lack of study on both the feasibility and theoreti-
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cal performance limits of CIM. Recently IC has been adopted to fulfill the “transparent

coexistence” or underlay paradigm in cognitive radio networks [18], in that the secondary

networks should cancel their interferences to/from the primary networks to satisfy FCC

policy. However, in this paradigm the responsibility for IC is always assigned to the sec-

ondary network, which is only half of the story. This is suitable for a planned deployment

but not for unplanned ones (e.g., networks in the unlicensed bands), where there is no pre-

defined priority among networks, and each network has a competing interest which cannot

be solved by single-objective optimization. The work in [19] analyzes the throughput under

IAL, and compares it with the one using only traditional IC. However, it also only stud-

ied the throughput optimization within a single network without any competing interests.

Moreover, interference cancellation among multi-hop networks with heterogeneous wireless

technologies has not been systematically studied yet.

Our goal is to explore the theoretical performance limit for coexisting heterogeneous

multi-hop networks by using CIM paradigm, and compare it with the one by using tradi-

tional Interference Avoidance (IAV) paradigm. We consider an unplanned deployment set-

ting, where each network aims at maximizing its own throughput while adopting the CIM

paradigm to cooperatively cancel its interference to/from the other. To characterize the

performance bounds, the Pareto-optimal throughput curve should be found, which is the set

of all the points such that both networks cannot simultaneously increase their throughput.

The meaning of this Pareto-optimal throughput curve is two-fold: (1) It provides to net-

work designers the quantitative performance-enhancement analysis by using CIM paradigm

under arbitrary network settings, such as routing, protocols, and device DoFs. (2) It can

guide practical coexisting distributed-algorithm’s design, as our Pareto-optimal curve could

be used as the theoretical performance bound.

1.3 A Game Theoretical Approach to Coexistence of Heterogeneous MIMO

Wireless Networks with Interference Cancellation

With IC and SM, two wireless links can transmit multiple streams concurrently in the

same frequency, canceling the interference to and/or from each other. Much work has been
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done to increase throughput within standalone or multiple homogeneous/heterogeneous

coexisting MIMO networks [14, 15, 17, 20, 21]. A practical MAC protocol (802.11n+) lever-

aging IC and SM is proposed in [22]. However, these works assume that the coexisting

networks are cooperative, i.e., they will unconditionally follow the predefined MAC-layer

protocols/rules. On the other hand, several works use game theoretical approaches to study

the coexistence in MIMO wireless networks. However, they all assume the coexisting net-

works to be non-cooperative, so IC is not adopted to cancel the interference to others. Both

types of work study the coexistence problem based on a preinstalled assumption of the

cooperation incentives.

In this chapter, our goal is to challenge both “Cooperative” and “Non-cooperative” as-

sumptions in previous work, by studying the incentive of each network to comply with/violate

the underlying MAC-layer protocol (e.g. 802.11n+) itself. An example is shown in Fig. 4.1.

We propose a novel two-round game framework assuming each network is a rational en-

tity. In the second round (lower level), the game refers to the decision making process

at the MAC-layer, which includes the DoF allocation for IC and SM. In the first round

(upper level), the game refers to a higher-level decision-making function, which takes the

second-round game results in as inputs, and determines its best strategy: cooperation or

non-cooperation. The first-round strategy imposes restrictions on the second-round strat-

egy by specifying the nature of this round to be cooperative or non-cooperative. Meanwhile,

the first-round utilities depend on the second-round utilities. The benefits of modeling it

as two-round is that we can clearly analyze the incentives of cooperation for each network.

Based on our framework, we analyze each network’s utility and derive the Nash equi-

librium via the backward induction approach. For evaluation, we analyze and compare the

utilities under equilibrium using different network scenarios and parameters, such as the

number of available DoFs and interference ranges. Through numerical results, we found

that each network’s incentive of cooperation depends on the number of DoFs and the con-

flict graph. This provides insights and guidance for configuring MIMO wireless networks in

a spectrum-resource limited setting.
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1.4 Game Theoretical Analysis in MIMO Empowered Multi-hop Cognitive

Radio Networks

After introducing our game-theoretical analysis in the single-link wireless network case,

we extend it into the general multi-hop case. Specifically, we assume the secondary network

possesses multiple flows each with multiple hops. One practical example is the cognitive

radio networks, where the single-link primary network needs to coexist with the multi-hop

secondary networks.

The biggest challenge of the general multi-hop-case study is the intricacy of link schedul-

ing. In the single-link case, each secondary network only has one link, thus the strategy

space is small. In the multi-hop cases, each flow may have multiple links, each having

multiple spatial-multiplexing and interference cancellation strategies. These strategies are

not independent, i.e., they should be jointly considered to guarantee the solution’s feasibil-

ity. In order to solve this challenge, we designed an algorithm based on the solution of a

mixed-integer-linear-programming problem to derive the optimal link scheduling and DoF

allocation. Our algorithm could output the equilibriums of the coexisting game between

the primary network and a selfish multi-hop secondary network with MIMO capability. Our

simulation results show that we could improve the primary network’s utility by extending

its interference range, which could consume the secondary network’s DoF resources thus

turning it into a weaker interference source.

1.5 Throughput Optimization in Multi-hop Wireless Networks with Reconfig-

urable Antennas

In addition to the wireless MIMO technique, some other techniques such as reconfig-

urable antennas (RA) [23–26] could also be utilized to enhance multi-hop networks’ through-

puts. Traditional omni-directional antennas that radiate signals in all directions result in

high interference within a multi-hop wireless network (MWN), which prevents spatial reuse

and leads to poor capacity scaling laws (especially in dense deployments). Directional

antennas (DAs) focus their radiation energy in certain directions, thereby enhancing the

antenna gain (and channel quality) while reducing the interference in other directions, which
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can potentially improve the performance of a MWN [27–29]. However, legacy DAs have

fixed beam directions which cannot be changed on-the-fly, leading to reduced transmission

coverage and network connectivity, which may limit the overall throughput gain.

In recent years, RA has emerged as a promising technology to solve the above chal-

lenges. By changing its structure electronically, an RA can swiftly reconfigure itself in terms

of radiation pattern, polarization, and frequency, or combinations of them. There can be

a large number of antenna states available; for example, in a type of parasitic-layer based

RAs using p-i-n diodes as the switch [30], 10 switches can give 210 = 1024 different con-

figurations. In addition, the switching between different antenna states can be very fast;

for example, within microseconds which is negligible compared with a packet duration [23].

Thus, RAs bring forth two main advantages: antenna state diversity and fast reconfigura-

bility. For pattern-reconfigurable antennas, their radiation patterns are often directional,

which means they can cover any direction at a given time by selecting a directional pattern,

thus simultaneously maintaining connectivity while reducing the interference. Note that,

although smart antennas such as switched/steered beam antennas [31] can also change their

radiation patterns, their beam shapes remain the same in each direction and switching is

slow (in the order of 100µs [32]), resulting in very limited pattern diversity. Our goal here

is to exploit the antenna reconfigurability and state diversity of RAs to optimize the overall

network throughput in multi-hop wireless networks.

1.6 Roadmap

The organization of this dissertation is as follows.

In Chapter 2, we propose the joint routing and power control protocol in WBANs to

satisfy E2E-PDR and delay requirement while minimizing energy consumption. In section

2.2, we experimentally study the impact of CTI on WBANs. In section 2.3, we formulate the

JRPC problem as a MILP problem. In section 2.4, we propose our joint routing and power

control (JRPC) protocol. In section 2.5, we use experiment and simulations to validate the

effectiveness of our JRPC protocol. In section 2.6, we conclude this chapter and discuss

about the future work.
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In Chapter 3, we study the optimal throughput of coexisting-heterogeneous-wireless-

MIMO networks. In section 3.2, we give necessary background on MIMO and the moti-

vation. Section 3.3 describes our technology-independent interference cancellation (TIIC)

and its feasibility in multi-hop networks. In section 3.4, we present the models of the CIM

paradigms and the formulations of our two bi-criteria optimization problems. In section

3.5, we introduce our approach to efficiently derive the optimal-throughput curve by ex-

ploiting its stair-shape property. Section 3.6 presents the evaluation results, and section 3.7

concludes this chapter.

In Chapter 4, we propose a game-theoretical framework to study the cooperating incen-

tives of two single-link MIMO wireless networks. Section 4.2 introduces the system model.

In section 4.3, we propose the two-round game framework for the coexistence of two single-

link MIMO wireless networks. The numerical results are shown in section 4.4. Section 4.5

concludes the chapter.

In Chapter 5, we extend our game-theoretical approach to a more-general multi-hop

case. Section 5.2 introduces the system model. In section 5.3, we propose the frameworks for

analyzing the coexistence game between the primary network and the multi-hop secondary

network. The numerical results are shown in section 5.4. Section 5.5 concludes the chapter.

In Chapter 6, we propose a modeling of RAs in multi-hop wireless networks and study

its optimal throughput based on our model. In section 6.2, we illustrate the benefits of

reconfigurable antennas in MWNs using three simple examples. In section 6.3, we propose

the novel link-layer model for RAs in MWN, based on which we formulate the through-

put optimization with reconfigurable antennas (TORA) problem and reformulate it before

solving with CPLEX. In section 6.4, we theoretically prove that the reconfigurable anten-

nas can always outperform omni-directional antennas and directional antennas in multi-hop

wireless networks under certain conditions. The simulation results are presented in section

6.5, followed by the conclusion in section 6.6.

Chapter 7 presents the conclusion and future research directions of my work.
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CHAPTER 2

MAKING WIRELESS BODY AREA NETWORKS ROBUST UNDER

CROSS-TECHNOLOGY INTERFERENCE

2.1 Overview

In this chapter, we first study the heterogeneous impact of CTI on WBAN channels.

After that we propose and formulate the joint routing and power control problem aiming at

minimizing the total energy consumption while guaranteeing the E2E reliability. Then we

design a protocol which guarantees the E2E-transmission reliability and delay requirements

under the high-power and wide-band CTI. In addition, we reduce total energy consumption

as much as possible while satisfying the E2E reliability requirement. The basic idea is to

jointly control routing and transmitting power by selecting the good-quality links that are

not severely interfered by CTI and lowering the transmitting power level of each node.

2.2 Characterizing the Impact of CTI on a BAN

In this section, we first show through experiments that the high-power and broadband

CTIs can severely impact the link quality within a BAN. Then we demonstrate that the

interference effect on WBAN is heterogeneous, i.e. the interference power levels detected

at nodes are different.

2.2.1 Experimental Setup

In our experiments we use a Sunbeam SGG5702 microwave oven, and a Uniden EXI4560

2.4 Ghz cordless phone as interference sources1. Both devices are unfriendly to WBAN

as they always generate interference to nearby WBANs when they are working. We use

Crossbow Telos RevB sensors with a 802.15.4 compliant transceiver (CC2420) to establish

1According to [13], the microwave oven mainly occupies the 2.45 - 2.474 GHz spectrum. The cordless
phone in our experiment mainly occupies two 5Mhz channels (2.405-2.415 GHz).
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(a) Floor plan and test locations. � -
cordless phone, © - microwave oven.

(b) Sensor placement on the body.

Fig. 2.1. WBAN experiment setup

the BAN. The power range is from −24dbm to 0dbm. We fixed the nodes’ channel at

Channel 112, which overlaps with that of the cordless phone. The transmission rate is set

to 250kbps. The locations of the WBAN and interference sources are illustrated in Fig.

2.1(a). For the cordless phone, the handset and base are placed very close (5 cm apart from

each other).

For sensor placement (Fig. 2.1(b)), we put 8 sensor nodes at different places on a

human body. Five of them are placed on the front side of body, and two nodes are placed

on the back side. Another node is strapped to the left wrist to emulate the CU. In the

first experiment, we measure the received interference signal strengths at all nodes. In the

second experiment, we measure the packet delivery ratio (PDR) of each link to show the

interference’s impact on BAN. When experiments start, each node will broadcast a group

of 20 probe packets to all the other nodes in turn, using the lowest power level (-25dBm).

2.2.2 Impact of Cross-Technology Interference on BAN

We first show the RSS of interference at one node. We measured the interference

generated from cordless phone and microwave oven respectively. As is shown in Fig. 2.2(a),

the RSS from both CTI sources are much stronger compared with background noise (around

-93 dBm). For the cordless phone, the signal strength is about -55 dBm and remains

2This is because we assume that in reality the spectrum is crowded. All other channels may be simul-
taneously occupied by multiple CTI sources or other WBAN devices
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Fig. 2.2. Cross-technology interference (CTI)

constant. For the microwave oven, its power level appears a periodical “ON” and “OFF”

pattern over time, which has a roughly 10ms period.

Next we show the impact of CTI on all the 28 links of the BAN. In Fig. 2.2(b), we plot

the cumulative distribution function of PDR for each scenario with different interference

sources and locations as shown in Fig. 2.1(a). From this figure, we can find that the BAN

links are affected by CTIs differently in terms of packet delivering ratio in all scenarios. For

example, nearly 90 percent of links’ PDRs are nearly 1 when no interference is presented.

However, for the ‘cordless1’ scenario where the distance of interference source is only less

than 1 meter, we find that nearly 80 percent of links’ PDRs are nearly 0. This phenomenon

indicates that the high-power and wide-band cross-technology interference can have severe

impacts on BAN’s reliability. In addition, there is a correlation between the distance from

the BAN to the CTI source and the links’ PDR - the nearer the CTI source, the PDRs tend

to be smaller.

2.2.3 Making Use of Heterogeneous Link Qualities

We can also see from Fig. 2.2(b) that in each scenario, the links’ PDRs have a hetero-

geneous distribution. This implies that good-quality and bad-quality links simultaneously

exist in a BAN under interference. However, a closer look at the ‘cordless4’ scenario reveals
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that many direct links from sensor nodes to CU are severely affected by interference. The

interference causes three links’ PDRs to drop dramatically to 0 - links 3 → 1, 5 → 1 and

8→ 1. This is due to the larger body shadowing and longer distance of those direct links,

which causes a packet’s RSS to fall below that of the interference’s. On the opposite, some

other on-body links have better qualities due to their smaller path losses (nodes can be

closer to each other and in line-of-sight). Basically, according to the PDR-SNR relation of

sensor devices [33], a packet’s RSS needs to overpower that of interference’s to make the

packet delivered.

In order to enhance WBAN’s reliability, one straightforward method is to increase the

transmission power of nodes’ direct links to CU. However, there are two issues with this

approach: (1) Even when those direct links use the maximum possible power (0dBm), there

still exists a significant region where BAN communication is disrupted, as we will show in

Sec. 2.5. This is mainly due to the very high-power nature of interference. (2) It may not

be the most energy-efficient way. Thus, to enlarge the ‘reliability zone’ of a BAN under

interference and minimize energy consumption, we are motivated to simultaneously exploit

the remaining good-quality on-body links (for multi-hop transmission) and power control.

In the same scenario (Table 1), the PDR from node 3 to node 1 is 0, the PDR from node

3 to node 6 (= 1) and the PDR from node 6 to node 1 (= 1) are still high. Suppose node

3 needs to use 0dBm (assume node power: 20mW) to achieve a PDR of 1 while -25dBm

requires 8mW. Therefore, we can find a path 3 → 6 → 1 with high E2E PDR (= 1) with

power consumption of 8 + 8 = 16mW to transmit a packet for node 3 to 1. In contrast, if

we use 3→ 1, this will be 20mW .

2.3 Problem Formulation

In this section, we first present the models and assumptions, and then formulate the

JRPC problem. After that we introduce the main challenges in our problem.
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Table 2.1. Example PDR in scenario cordless4

from node 1 node 2 node 3 node 4 node 5 node 6 node 7 node 8

to node 1 / 1 0 0.9 0 1 1 0

to node 6 0.95 5 1 1 0 / 1 1

2.3.1 Models and Assumptions

Network and Traffic Model

As what we study in this chapter is the data collection in a BAN, thus we use a con-

vergecast model, where each on-body sensor generates a data packet to the CU periodically

at constant rate Rs (packets/second). We model the BAN topology as a directed graph

G(V,E) and N =| V |, where V is the set of all nodes and E is the set of all links. For each

link (i, j) we use λi,j to denote its PDR, which is the probability that a packet sent by i can

be directly received by j. Meanwhile, for each node i, we use λi to denote the probability

that a packet sent by i can be received by the CU (possibly through multi-hop), which is

called E2E PDR.

At the link layer, we turned off the CSMA mechanism and adopted a TDMA MAC

mechanism which yields bounded delay. For periodical data collection applications, it has

been shown that TDMA is better [34]. Time is divided into slots with equal length T - the

time needed to transmit one data packet. A “source cycle” TS = 1
Rs·T refers to the number

of slots between two consecutive packet generation events. We use “data cycle” TD =
∑

i τi

to represent the number of slots needed to transmit all source packets in one source cycle to

the CU, and packet retransmission is not considered. Note that, at each time slot, only one

link can transmit to avoid packet collision, because all nodes are considered to be within

one conflict graph. Obviously, TD ≤ TS is necessary to avoid any source congestion.

Interference Model

It is difficult to model the CTI exactly, as in practice the number and types of them

are uncertain. Instead, we will model the impact of the CTI on link quality later, by only
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Table 2.2. Notations

λi,j link PDR from node i to j

λi node E2E PDR from node i to CU

Ts length of a source cycle in terms of number of slots, time delay threshold

Td length of a data cycle in terms of number of slots

Tbig length of a big slot, containing multiple source cycles

T length of unit slot, used to transmit one data packet

Λth node E2E-PDR requirement

τi number of slots T needed to transmit one packet from node i to CU

li transmitting power level at node i

ptx() mapping from power level to transmitting power

Iij CTI on link (i, j)

gi,j,Iij () mapping from power level to link PDR, under CTI on link (i, j)

zi,j link (i, j) ’s selection status

Ptx,k transmitting power at level k

Gi,j,k,Iij link (i, j)’s PDR at level k, under CTI on link (i, j)

αji, βjki, δji intermediate variables in linear reformulation

assuming that within a time period Tbig the RSS of the aggregated CTI I sensed by a

node could be denoted as a stationary random process. Though we focus on non-protocol-

compliant CTI, this model is applicable to general interference.

Energy Model

We consider each sensor node to have K different transmit power levels {P1, P2, ..., PK}

(for a TelosB sensor K = 8). We denote the transmit power level on each node as li.

Assuming the circuit power Pcir is a constant, then we can obtain the power consumed by

the transmitter/receiver on each node:

ptx(li) = Pcir + pA(li) (2.1)

Prx = Pcir (2.2)

where pA(li) is the additional circuit power for li. Note that this model has also been

adopted by previous work [35].
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2.3.2 Design Objectives

To deal with cross-technology interference in BAN, we aim at ensuring a certain relia-

bility requirement for each sensor node communicating with the CU, while using a minimum

overall energy consumption.

(1) Energy consumption minimization: The overall energy consumption accounts for

the transmission and reception of all the packets by all nodes. It is proportional to that in

one source cycle length, as a feasible source rate requires that TD =
∑

i τi ≤ TS .

(2) Reliability requirement : For each node i in a BAN, we require its E2E PDR to the

CU λi should be above a predefined threshold Λth ∈ [0, 1]. The PDR constraint can ensure

that all packets are received successfully with a high-enough probability to perform error

correction coding if necessary.

(3) Time delay constraint : We aim at confining E2E delay which is an important

concern in many BAN applications. In our convergecast model, decreasing the time delay

could further enhance E2E data throughput. Note that to satisfy the delay constraint, the

retransmission is disabled. However, we can rely on the error-correction coding to guarantee

all packets are successfully received.

Given the objectives mentioned above, we formulate our problem aiming at minimizing

energy consumption while satisfying the reliability and time-delay constraints.

2.3.3 Formulation of Joint Routing and Power Control

The formulation of our JRPC problem is shown in Fig. 2.3, Eqs. (2.3) - (2.10). The

variables are li, τi, λi, λi,j , zi,j , in which li and zi,j are binary variables, λi, λi,j are continuous

within range [0, 1], and τi is integer within [0, N ]. Here N is the total number of nodes. Our

goal is to find a convergecast routing tree G′ = (V,E′), and link power level li assignments

satisfying the constraints. Eq.(2.3) is the overall energy consumption in one source cycle.

Eq.(2.4) is the E2E PDR constraint, where λi is node i’s E2E reachability to the gateway

node. In Eq.(2.5), gi,j,Iij () is the mapping function from the transmit power level to link

PDR for each link, under the external CTI. This will be derived at the beginning of each big

slot by our link PDR estimation algorithm. How to derive this function gi,j,Iij () in practice
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minimize
∑
i

((ptx(li) · τi + Prx · (τi − 1)) (2.3)

subject to λi > Λth (2.4)

λi,j = gi,j,Iij (li), ∀(i, j) ∈ E (2.5)

λi =
∑
j

λi,j · zi,j · λj , ∀i 6= 0 (2.6)

∑
j

zi,j = 1, ∀i 6= 0 (2.7)

τi = (
∑
j

τj · zj,i) + 1, ∀i (2.8)

∑
i

τi 6 Ts (2.9)

λ1 = 1 (2.10)

Fig. 2.3. The MINLP formulation of JRPC

is a challenge and will be introduced in detail in the next section. Eq.(2.6) is the definition

of λi in induction form. Eq.(2.7) is each node’s output degree constraint which means that

each node only has one parent node; Constraint (2.7) and (2.8) together guarantee that our

routing is a convergecast tree. Eq.(2.9) is the node delay constraint, which is equivalent to

the flow-balance constraint. τi denotes the time delay brought by node i.

The objective function (2.3) and constraints (2.5), (2.6), (2.8) are all non-linear (gi,j,Iij (),

ptx() are non-linear functions of li [36]). Therefore, our problem is a mixed integer non-linear

programming (MINLP) problem, which is known as NP-hard in general.

2.3.4 Problem Reformulation

To efficiently solve our JRPC problem, we reformulate it into a linear one. First we

remove the non-linear function gi,j,Iij () and ptx() by discretizing them at each power level.

Then we use Reformulation-Linearization Technique (RLT) [37–39] to transform the non-

linear product into linear term.

Specifically, for the non-linear function ptx(li) in Eq.(2.3), as the valid values for li are

discrete within the range [1,K], we transform the function into an equivalent linear form:

ptx(li) =
∑
k

Ptx,k · li,k (2.11)
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∑
k

li,k = 1,∀i/1 (2.12)

In Eq.(2.11), li,k is a binary variable which denotes whether the power level k is selected

at node i. Eq.(2.12) means only one power level could be used for each node i. Ptx,k is

a parameter which denotes the transmitting power at level k. The discrete variable li

is transformed into binary variable li,k. By removing the non-linear function ptx(li), the

objective function is transformed into:

∑
i

((
∑
k

Ptx,k · li,k) · τi + Prx · (τi − 1)) (2.13)

A similar process could be applied on constraint (2.5) to remove non-linear function

gi,j,Iij (li). Thus constraint (2.5) is transformed into:

λi,j =
∑
k

Gi,j,k,Iij · li,k,∀(i, j) ∈ E (2.14)

Next we use RLT to remove the non-linear terms by introducing new variables. In

objective function, we define new variable θik = τi ·lik. Thus our objective function becomes:

∑
i

((
∑
k

Ptx,k · θik) + Prx · (τi − 1)) (2.15)

The objective function in (2.15) is now linear. By introducing new variable θik, a

cluster of several new constraints is needed:

θik > 0; N · lik − θik > 0; τi − θik > 0; N − τi −N · lik + θik > 0 (2.16)

For the constraints, we remove constraint (2.5) by taking it into constraint (2.6) and

then we use similar technique by introducing new variables. We first set αji = λi · zji and

then set βjki = αji · ljk. For constraint (2.8), we set δji = τj · zji. Therefore, constraints
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(2.6) and (2.8) become:

λi =
∑
j

∑
k

Gi,j,k,Iij · βi,k,j (2.17)

τi = (
∑
j

δji) + 1 (2.18)

Again, several new constraints are introduced along with the new variables:

αji > 0; zji − αji > 0; λi − αji > 0; 1− λi − zji + αji > 0 (2.19)

βjki > 0; ljk − βjki > 0; αji − βjki > 0; 1− αji − ljk + βjki > 0 (2.20)

δji > 0; τj − δji > 0; N · zji − δji > 0; N −N · zji − τj + δji > 0 (2.21)

minimize Overall energy consumption per round(2.15) (2.22)

subject to Node reacheability threshold constraint(2.4) (2.23)

Node reachability definition(2.17) (2.24)

Node output degree(2.7) (2.25)

Power level selection(2.12) (2.26)

Node delay definition(2.18) (2.27)

Overall delay(2.9) (2.28)

New variable constraints(2.16), (2.19), (2.20), (2.21) (2.29)

Gateway node reachability(2.10) (2.30)

Fig. 2.4. The MILP formulation of JRPC
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2.3.5 Optimization Problem Complexity Analysis

By applying these reformulation techniques, our JRPC problem is reformulated into a

mixed integer linear programing (MILP) problem. MILP problem is NP-hard in general.

We will show that by choosing the parameters, a special case of our problem is a non-

linear Knapsack problem, which is the general form of the famous NP-complete Knapsack

problem.

Assuming for all of the N nodes, only these links have non-zero PDR: (N − 1, N − 2),

(N − 2, N − 3), ...... (1, 0). Therefore, the routing is fixed, which is a (N-1)-hop path from

node N − 1 to node 0. In addition, assume the delay constraint is loose thus it is always

satisfied. Now our original problem is simplified as: selecting power level for each node, such

that the overall power is minimum, while satisfying λ(N−1,N−2) ·λ(N−2,N−3) · .... ·λ(2,1) > λth.

In addition, assuming for each power level li, we have pi = li and λi,i−1 = Ai · li where Ai

is the a fixed coefficient. This problem is formulated in Fig. 2.5.

minimize

N−1∑
i=1

pi · (N − i) (2.31)

subject to

N−1∏
i=1

λi,i−1 > λth (2.32)

Fig. 2.5. The special-case problem formulation.

By assuming pi = li, λi,i−1 = Ai · li and taking the logarithm on Eq. 2.32, we can

rewrite the formulation of the problem in Fig. 2.5 in another form, which is shown in Fig.

2.6:

minimize

N−1∑
i=1

li · (N − i) (2.33)

subject to

N−1∑
i=1

log(li) > log(λth)−
N−1∑
i=1

log(Ai) (2.34)

Fig. 2.6. The transformed-special-case problem formulation.
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The problem shown in Fig.2.6 is a non-linear Knapsack problem, a general form of the

famous Knapsack problem that has been proven as a NP-complete problem. Through the

complexity analysis of this special-case problem, we can conclude that it is hard to find a

solution of our general-form JRPC problem in polynomial time.

However, there exists tools such as IBM’s CPLEX, which could efficiently solve our

problem using Branch and Bound approach. In our case where the network’s size is small

(N = 8), the running time of our problem is only about 1 − 2 seconds in average. The

optimal solutions could be used as comparison to accurately evaluate the effectiveness of

our low-complexity heuristic algorithm, which will be introduced in the next section.

2.3.6 Practical Challenges

There are two main practical challenges remaining. First, how to obtain the power-

PDR mapping function gi,j,Iij () (or its equivalent linear form Gi,j,k,Iij )? To do this we need

to know each link’s signal-to-interference-plus-noise ratio (SINR) under all transmitting

powers. However, it is inaccurate to apply channel propagation models to estimate the

received packet RSS due to the channel dynamics and CTI. Link PDRs are traditionally

estimated by actively sending probe packets [40–42]. However, it is impossible to send probe

packets using every power level as it brings large time overhead.

Second, though we could obtain optimal solutions by using tools such as CPLEX, it

is too computationally demanding. Due to the restricting nature of power and processing

ability on sensors, we need a low-complexity algorithm to solve our JRPC problem, as the

commercial tools such as CPLEX are not scalable due to their intrinsic complexity.

2.4 Our Solution: the JRPC Protocol

In this section, we introduce our practical JRPC protocol. Our protocol addresses

the two practical challenges successfully. We first present our link-PDR estimation and

prediction approach which could obtain the power-PDR mapping function gi,j,Iij (). Second

we introduce our low-complexity heuristic algorithm to solve the JRPC problem, along with

its complexity analysis.
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2.4.1 Protocol Overview

To tackle the first challenge, we exploit SINR estimation to derive the links’ PDRs

under all power levels, which is taken as input to our optimization problem. To solve the

second one, we propose an effective and efficient heuristic algorithm (JRPC).

Our protocol consists of two phases. Time is divided into big slots of duration Tbig

consisting of multiple source cycles TS . First, at the end of each big slot, every BAN node

passively calculates its incoming links’ PDRs (λi,j) in the current big slot based on the

received data packets and sensed interference signals, which are measured during gaps of

data-packets transmissions. Specifically, each node estimates the mappings gi,j,Iij () from li

to λi,j at all transmit power levels k ∈ [1, ...,K]. After estimation, the mapping information

is sent to the CU, who predicts the links’ PDRs λi,j for the next big slot under all power

levels.

In the second phase, using the predicted gi,j,Iij for the next big slot as input, the JRPC

algorithm is ran at the CU to establish the routing tree and assign each node its new power

level and route to minimize the power consumption while guaranteeing the node reachability

and delay constraint. Our heuristic JRPC algorithm has performance guarantee in terms

of E2E reachability. The rationale of our JRPC algorithm is to first guarantee the E2E

PDR by establishing a max E2E-PDR tree. We use a variant of Dijkstra’s algorithm to

build a maximum E2E-PDR tree to maximize the reachability of the BAN in the presence

of external CTI. In this way, our algorithm can always guarantee the E2E PDR requirement

whenever the optimal solution does. Second, we decrease the transmitting power levels of

all the nodes as much as possible while satisfying the E2E PDR constraints. In addition,

the lower-level nodes are lifted to upper levels while satisfying the E2E-PDR constraint to

decrease time delay in case the delay constraint is not satisfied. The derived route and

power level for each node is then distributed to all nodes by sending a notification packet.

To evaluate the effectiveness of JRPC algorithm, we will compare it with the optimal

solution derived by CPLEX in Sec. 2.5, which is also assumed to be running at the CU.

The protocol framework is illustrated in Fig.2.7.
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Fig. 2.7. The framework of JRPC protocol

2.4.2 Link PDR Estimation and Prediction under CTI

To assure the reliability under external CTI in our optimization framework, a key issue

is to accurately estimate the links’ qualities with minimum overhead. The essential question

is: for every link (i, j), which transmission power level yields the desired PDR? Previous

link power control approaches [43] did not consider CTI, which makes it easier to determine

the desired transmit power as the interference is mainly generated from background, which

is stable. However, external CTIs’ types are usually unknown to BANs and their influence

on links’ PDR are very different. New modeling techniques must be developed to deal with

different CTIs. Thus our solution estimates the dynamic relation between link PDR and

transmitting power on the fly. First, at the end of each big slot, each node will estimate

the PDR of all incoming links under all power levels based on passive measurements of

data packets and CTI. Second, we will exploit prediction to estimate the mapping from

transmitting power to link PDR for the next big slot, based on previous records.

Estimating Link PDR-Transmit Power Relation

As we know, the probability of successful packet reception is a function of that packet’s

SINR (signal-to-interference-and-noise-ratio). However, under CTI, the SINR is dynamic

(due to the uncertainty of CTI sources and the channel fading). Thus, link PDR estimation

boils down to computing the packet’s SINR distribution, and mapping that to a PDR.

First, we determine the relationship of packet receiving probability (PRP) w.r.t. SINR:

PRP (γi,j) where γi,j is the SINR. For sensors, the transition interval from 0 PRP to 1 is
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Fig. 2.8. Link PDR estimation under CTI.

usually small, which is close to a step function [33]. Our experiments also verify this result

(Fig. 2.8(a)). Theoretically, under interference signal I and a fixed transmit power, the

link PDR is a mean value:

λi,j =

∞∫
−∞

PRP (γi,j)h(γi,j)dγi,j , (2.35)

where h(γi,j) is the probability density of γi,j . The difficulty here is how to accurately

compute λi,j efficiently in reality because it is non-trivial to derive h(γi,j). Thus we approx-

imate λi,j by exploiting the property of stationary random process - the ensemble mean

equals the temporal mean. The basic idea is using a sliding window and deriving PRP

using the minimum SINR within the window, which is illustrated in Fig. 2.9. Assuming the

beginning of a packet distributes randomly over time and the packet RSS RSSpkt,k remains

constant, based on a sequence of M consecutive interference RSS samples, we obtain an

estimation of PDR when transmit power is Pk:

λi,j,k =
1

M

M∑
m=1

PRP (γi,j,k(m)), (2.36)

where γi,j,k(m) = min{RSSpkt,k − RSSI(m), · · · , RSSpkt,k − RSSI(m+∆)}. This is because

that one packet transmission duration spans several (∆) interference RSS samples, while
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whenever one part of the packet is corrupted the whole packet cannot be received correctly

(error correction code is not implemented in 802.15.4). As the channel fading is usually not

significant in a big slot, we set RSSpkt,k as the average packet RSS to average out the effect

of fading. In addition, since the wireless channel can be regarded as a linear system, for

any transmit power level Pk (dBm) we have:

RSSpkt,k = RSSpkt,measure + Pk − Pmeasure, (2.37)

where Pmeasure is the transmitting power chosen for link measurement at any specific big

slot. Combining the above, we can derive the mapping gi,j,Iij : li → λi,j for all power levels

k using passive measurements under only one power level.

We design an experiment to validate the effectiveness of our link PDR estimation

approach. We place two nodes on different locations of the body, and let one of them

transmit 40 probe packets to the other for 8 rounds, each round using a different power

(from -25dBm to 0dBm). We record the actual PDRs in each round, and the average

packet’s and interference samples’ RSSes only in the first round (using minimum power

-25dBm). Then we run the estimation approach to compare the estimated PDRs with real

ones for the other 7 rounds. We use ∆ = 8 for a 1.6ms long packet, since the interference

sample interval is 0.2ms; We choose M = 100 which is large enough to characterize CTI.

Results are shown in Fig. 2.8(b). It can be seen that the estimated and real PDR match

very well.

Link Parameter Collection and Synchronization

After estimating link PDRs at all power levels through link measurement, each node

then sends the estimated link-PDR list to the CU, which runs our JRPC algorithm to make

centralized decision. In the protocol bootstrapping, the link-PDR lists are sent by each

node using maximum transmitting power and broadcasting. Each broadcasting packet is

relayed by all other nodes before an ACK packet from CU is received. After bootstrapping,

each node sends the link-PDR list using normal data packets within one TDMA cycle at
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Fig. 2.9. Estimate link PDR by using a sliding window

the end of each big slot. As our JRPC protocol runs in a TDMA manner, at the beginning

of each big slot, all nodes are synchronized by the notifying packet from CU and then send

data packets to the CU in order. Though our network is multi-hop, the synchronization is

precise: given the 40-ppm clock requirement of Zigbee, the accumulated error is less than

48µs for a 1.2s big slot (as shown in Sec. 2.5), which is negligible compared to each of the

2ms-long packet.

Predicting links’ PDRs under Various Power Levels

For each of the past Tbig period, each node j obtains a list of PDR estimations under

all power levels: {λi,j,k}i 6=j,1≤k≤K and sends to the CU. Based on these historical data,

the CU can predict the link quality under every power level for the next big slot using

autoregression (AR). The AR model is a tool for predicting a time series of data [44].

Formally AR(p) is defined as: zl = c +
∑p

i=1 φizl−i + εl, where c is a constant, p is order,

φi is AR coefficient, and εl the zero-mean Gaussian white noise error. This model can be

updated continuously to adaptively enhance predicting accuracy. A concrete model can be

found in [45,46]. Intuitively, the AR exploits the correlation inside the time series.

2.4.3 Algorithm Design

In our JRPC problem, our goal is to minimize the power consumption. To solve this

problem, we first show that when the links’ PDRs are binary variables, we can find a simple

polynomial-time algorithm. Then we explore the general case in which the links’ PDRs are
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Algorithm 1 Building maximum E2E PDR tree
input: graph G(V,E), links’ PDRs {λi,j,K}(i,j)∈E
output: maximum E2E-PDR tree Ttree

1: Insert CU node 1 into tree Ttree; λ1 ← 1.
2: Put all other nodes into set S
3: while S 6= ∅ do

Select the node d with maximum λd from Ttree.
4: if there are ties among any set of nodes then
5: Select the node that brings the minimum ∆E.
6: end if

Insert d into Ttree, delete d from S. Update λj ← max∀i∈Ttree{λi · λj,i,K} for all j /∈ Ttree.
7: end while

continuous and then propose an effective heuristic algorithm.

Binary Link-PDR Model

When dealing with some stable CTI, i.e., the interference signal’s RSSI does not change

frequently, the detected PDRs under such CTI are normally either 1 or 0. This is because

of the step-shape PRP-SINR function as shown in Fig. 2.8(a).

In this case, due to the monotonicity of the function between link PDR and power level,

we can find the minimum power pi,j,kmin
= ptx(li,j,kmin

) + Prx of each link that guarantees

λi,j = 1, where li,j,kmin
denotes the minimum power level on link (i, j) that guarantees

λi,j = 1. If we set pi,j,kmin
as the weight of each link, the Dijkstra’s algorithm can be

adopted directly to find the “shortest” path from each source node to the sink. The path’s

‘distance’ denotes the energy consumed per time unit for each source node. The minimum-

overall energy consumption (Eq. (2.3)) could be easily derived by adding the ‘distances’ for

all source nodes and then multiplying the length of each time slot.

Continuous Link-PDR Model

In the general case where the links’ PDRs are continuous, our proposed JRPC algorithm

consists of two steps.

Step 1 Our primary goal is to ensure BAN’s reliability under the presence of interfer-

ence. Therefore, we first build a maximum reliability tree to guarantee that we can always

find a feasible solution of our JRPC problem whenever it exists. The idea is to first set the
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power level for each node to be maximum, because the E2E PDR for each node is a non-

decreasing function of any link’s transmitting power. Then we use a variant of Dijkstra’s

algorithm, in which we use each link’s PDR as its weight. And we search the ‘max-E2E

PDR’, which has similar deriving logic as that of ‘shortest path’. Specifically, in each step

of the algorithm, we always insert the node i which yields the maximum E2E PDR λi into

the tree. To resolve ties, we insert the node which brings the minimum additional energy

consumption (∆E, which equals the tx/rx power sum of all the links from it to the root)

to the existing tree. By doing so, in the resulting tree every node’s E2E PDR achieves its

maximum. The algorithm is described in Alg. 1.

Step 2 In this step we decrease the transmitting power level of each node and the overall

time delay based on the derived max-E2E PDR tree. Our objective is to minimize the overall

energy consumption and decrease delay while satisfying the E2E PDR requirement λi ≥ Λth

for all nodes. The essential question is: which order should we follow to decrease nodes’

transmit powers?

We propose a greedy strategy, in which the transmitting powers of the nodes at higher

levels of the tree are decreased first. The intuition is, the higher a node’s level is, the more

transmitting opportunity (traffic load) it has, thus decreasing its power level first is more

effective for the overall energy reduction. E.g., assuming node a has M child nodes, it thus

needs to transmit M + 1 (including its own) sets of data to its parent node in each round

while the parent node needs to send M + 2 sets of data at least in the same round. This

is the intrinsic property of the convergecast tree: the higher level nodes always have higher

workloads thus these nodes run out of energy faster in practice. Care should be taken as

changing one node i’s transmitting power may affect all the nodes lower than i in the tree.

Thus, for each node i from top to the bottom level (except the CU), we continue to decrease

its transmitting power level until for any node j in i’s subtree, we have λj < Λth (including

i itself). This algorithm is depicted in Alg. 2. In addition, we also decrease the overall

time delay by moving low-level nodes to upper levels if the time-delay constraint is not

satisfied. This is because the higher a node’s level is, the fewer intermediate relaying nodes
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are needed, thus less slots are consumed.

2.4.4 Protocol Summary

In each big slot, every on-body node j first measures and records the RSSes of the

received data packets from each node i 6= j sent using a power level kmeasure derived from

previous big slot. After all nodes finish transmitting, each node will record M consecutive

samples of the CTI’s RSS. Then each j will estimate λi,j,k,∀i 6= j under all power levels

li 6= kmeasure using Eqs. (2.36) and (2.37): {λi,j,k}k∈[1,...,K],∀i 6= j. Next, each node sends

the list of λi,j,k to the CU at the end of the current big slot using the current power and

routing scheme. Based on the historical data, the CU first predicts the links’ PDRs for the

next big slot {λ̂i,j,k}k∈[1,...,K], ∀i 6= j, runs our JRPC algorithm using these as input, and

then broadcasts the new power and routing scheme to all nodes: {i, li, ni}i∈V , where li and

ni are the power level and the next-hop node of i, respectively.

2.4.5 Complexity Analysis

The complexity of step 1 in our heuristic algorithm is the same as Dijkstra’s algorithm’s,

which runs in O((N +M) logN) time in average and O(N2 logN) in the worst case (N =|

V |,M =| E |). In step 2, we decrease every node’s power level from the top to bottom.

For the d-th node in the ordered set, the lower-level nodes in its subtree should not be more

than N − 1 − d (except the root), thus we need to check N − 1 − d nodes’ E2E PDRs at

most. For the whole tree, in the worst case we need to compute node E2E PDRs O(N2)

times, as there are N − 1 nodes. For each node, we have to check for all L power levels at

most. As L is a constant, the complexity for this step is still O(N2).

2.5 Performance Evaluation

We use both experiment and simulation to validate the performance of our JRPC

protocol. First, we implement our link-quality measurement, estimation and prediction

modules on real Crossbow Telos RevB sensor motes. The data rate is 250kb/s as in previous

experiments. 8 power levels are used in total, ranging from −25dbm to 0dbm. We show the
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Algorithm 2 Decreasing Nodes’ Transmitting Powers and Delay
input: tree Ttree, links’ PDRs {λi,j,k}(i,j)∈E,1≤k≤K

output: transmitting power levels li, ∀i ∈ Ttree\1; adjusted tree Ttree

1: Sort all nodes in Ttree\1 in the order of their tree level (top to bottom).
2: for all nodes i in the sorted order do

li ← the minimum power level s.t. λj ≥ Λth, ∀j ∈ Ttree with level lower than node i, including i
itself.

3: end for
4: while delay constraint violated do
5: lift the bottom nodes j if λj ≥ Λth after adjusting.
6: end while

PDR prediction results in both static and dynamic scenarios. The result of PDR estimation

at different transmitting power levels are also presented, based on which the transmitting

power levels will be adaptively adjusted. This serves as a primitive operation in each big

slot in our protocol. Second, we attach 8 sensors to a human body to emulate the BAN

(Fig. 2.1(b)), from which the link parameters: {power level, link PDR} of every link in

each big slot are obtained. We put these link parameters into our JRPC algorithm and

optimization solver, which is solved with Matlab and CPLEX respectively.

For other parameter settings, we choose each big slot to contain 40 TDMA cycles,

and each TDMA cycle includes TD TDMA slots. For delay constraint, we set TD 6 15.

Transmitting one 29-byte packet with 250kbps rate needs about 2ms in ZigBee, thus a big

slot is usually smaller than 1.2s. In each big slot, we choose the number of interference

samples as M = 100.

2.5.1 Accuracy of Link Quality Prediction under CTI

We designed two experiments to validate the effectiveness of our link quality prediction

method. Our single-link experiments successfully validate the effectiveness of our prediction

approach, as both channel fading and the CTI’s dynamic characteristics are taken into

account.

First, we test the prediction accuracy under a single transmitting power (the minimum

level). We implement the autoregressive algorithm in [45] using orders p = 1, 2. The

transmitter and receiver are placed on the right knee and left wrist, respectively. To emulate

a real BAN, the former periodically sends 40 data packets (29 byte payload) with 30ms
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Fig. 2.10. Comparison between predicted PDR and real PDR with AR prediction order as
1. (a) the result in scenario 1 with static body while periodically turning on and off the
microwave. (b) the result in scenario 2 with dynamic body movement while microwave is
turned on all the time.
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Fig. 2.11. Comparison between predicted PDR and real PDR with AR prediction order as
2. (a) the result in scenario 1 with static body while periodically turning on and off the
microwave. (b) the result in scenario 2 with dynamic body movement while microwave is
turned on all the time.

interval. We use a microwave oven as the CTI source, which locates 0.5m − 1.5m away

from the body. In scenario 1, the person sits in a chair. The microwave oven is periodically

turned on and off every 10 seconds. In scenario 2, the person periodically walks towards

and away from the microwave oven every 10 seconds while the latter is turned on all the

time. The predicted results of using different orders are shown in Fig. 2.10 and 2.11. The
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(b) Scenario 2

Fig. 2.12. PDR estimation at different power levels. (a) the result in scenario 1 with static
body while periodically turning on and off the microwave. (b) the result in scenario 2 with
dynamic body movement while microwave is turned on all the time.
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Fig. 2.13. Link PDR with transmitting-power-level control, in the environment with dy-
namic body movement while microwave is turned on all the time.

results show that by using AR we could predict the link PDR with considerable accuracy.

Especially when using order 2, the predicted PDRs are mostly close to the real ones.

The second experiment evaluates the effectiveness of link PDR - transmit power esti-

mation and prediction via power control. The experiment setting is unchanged and the AR

order is 2. In each big slot, the receiver first estimates the PDR under each power level,

and then predicts the link PDR under each power level for the next big slot based on the

estimated PDR sequences under all power levels in the past. After the estimation and pre-
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(c) Λth = 0.98

Fig. 2.14. Power consumption in one cycle in the presence of cordless phone interference
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Fig. 2.15. Power consumption in one cycle in the presence of microwave oven interference

diction, it chooses the minimum power level satisfying the PDR threshold and notifies the

transmitter to use this level in the next big slot. The estimated PDR sequence are shown

in Fig. 2.12, in which the sequences under power level 1, 2, 3 are shown. After obtaining

the feedback from receiver, the transmitter will adjust its power. In Fig. 2.13, we collect

the real PDR sequence under the adjusted power level to test whether this power level can

guarantee the PDR threshold on a single link. We set two link PDR thresholds: 0.85 and

0.95. From Fig. 2.13, one can see that the predicted power level can guarantee link PDR

for most of the time. The above results imply that, as long as our JRPC algorithm outputs

a feasible link power assignment and routing scheme, our protocol can ensure the PDR

requirement for each node in practice.

2.5.2 Robustness and Effectiveness of JRPC

We now evaluate the robustness and effectiveness of our JRPC algorithm, which ran

on the CU in practice. Our experimental scenarios include two CTI sources (cordless phone

and microwave oven) placed at different locations. Using the collected link qualities as

input, we compare the overall energy consumption output by our JRPC algorithm with the
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optimal results derived by CPLEX, and two other strategies including a star topology with

only-power-control method, and a previous opportunity based topology control (OBTC)

approach [47]. We choose different E2E reliability requirements and evaluate their influences

on the energy consumption.

Figs. 2.14 and 2.15 show the energy consumption in one TDMA cycle under the

presence of CTI from the cordless phone and microwave oven, respectively. The meaning

of energy consumption in one cycle is to show the overall energy consumed by all nodes

to transmit one unit of data each. The locations are sorted by increasing distance to the

body (see Fig. 2.1(a) for floor plan). We compare our optimal result and heuristic-approach

result with two other approaches, the straight-forward star topology with power control,

and the OBTC [47] approach. The reason we choose OBTC for comparison is that we

both use similar PDR-based link model. As the problem in [47] is not exactly the same

as ours, we make some modifications on OBTC to make our works comparable: First, in

their work they didn’t consider time delay, thus we add our time-delay step after the tree

establishment to guarantee the delay requirement. Second, we add a simple power control

by choosing the minimal and same power level for all nodes. In Fig. 2.14, the star-topology

based power control fails to guarantee the E2E PDR requirement when the cordless phone

is at locations 1, 2, and 3, even with the highest transmit power level. The reason is that

the links from nodes 1 − 7 to node 0 (the gateway) are in poor link qualities due to high-

level interferences, thus they cannot satisfy the E2E-PDR constraints of 0.85, 0.95, 0.98. In

contrast, remarkably, our JRPC algorithm can always guarantee the E2E PDR (up to 0.98)

in the presence of the strong CTI, even when the cordless phone is closest to the body (held

beside the head and making a phone call). Similar cases with microwave CTI can be seen

in Fig. 2.15. Our protocol outperforms the traditional star-topology based method as it

adaptively utilizes the high-PDR links instead of the ones severely affected by the CTI. Note

that, in our protocol the control packets are treated the same way as data packets, thus

their reliability is ensured as well. Meanwhile, the OBTC approach could also guarantee the

reliability constraint in all scenarios just as our JRPC approach. The reason is that both
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approaches are based on Dijkstra’s algorithm in maximizing E2E reliability of all nodes.

However, our JRPC approach always outperforms the OBTC approach in terms of energy

efficiency due to our delicate power control on each node. We could also note that with

the distance between WBAN and interference source becoming smaller, the performance

gap of energy efficiency between JRPC and OBTC is larger. The reason is that smaller

distance brings larger and more complex interferences, which leads to heterogenous link

PDRs. Thus we need more delicate power control to separately adjust each node’s power

level as in JRPC. Moreover, by comparing the energy consumptions under different E2E-

PDR constraints, we find that the energy consumption increases with the increasing of E2E-

PDR constraint, but only slightly in average. The reason could be explained by Fig. 2.8(a):

the link PDR experiences a step change with the increasing of SINR. The consequence is

that a slight increase in transmitting power could enhance link PDR remarkably. Therefore,

with our delicate power control, we could continuously satisfy the increasing link-reliability

requirements in an energy-efficient way.

Meanwhile, the results also show that our algorithm is very energy-efficient by compar-

ing with the optimal solutions. In most scenarios for cordless phone, our algorithm achieves

the same energy consumptions as the optimal solutions. Only in a few scenarios, such as

positions 1 and 2 for microwave oven, the energy-consumption difference is noticeable be-

tween JRPC algorithm and the optimal solution. These results indicate the effectiveness of

our heuristic algorithm.

In addition, our algorithm yields low end-to-end delay for each source packet. As we

can see from Tables. 2.3 and 2.4, assuming each TDMA slot is T = 2ms, the end-to-end

delay values are very small even with the strictest E2E PDR requirement (Λth = 0.98).

As comparison, the star topology could always result in the lowest time delay, which is

14ms in our 8-sensor scenarios. However, this delay is meaningful only when the E2E PDR

constraint is satisfied first. In locations 1, 2, 3, 4 in Table. 2.3 and locations 1, 2, 3 in Table.

2.4, the E2E PDR constraint is violated by using star topology. For the other two thresholds

(0.85 and 0.95), the delay is almost the same, thus is not shown here.
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Table 2.3. End-to-end delay by using JRPC algorithm in the presence of microwave oven
CTI at different locations

Locations 1 2 3 4 5 6 7

Λth = 0.98, JRPC 20 ms 20 ms 16 ms 16 ms 14 ms 14 ms 14 ms

Λth = 0.98, Star - - - - 14 ms 14 ms 14 ms

Table 2.4. End-to-end delay by using JRPC algorithm in the presence of cordless phone
CTI at different locations

Location 1 2 3 4 5 6 7

Λth = 0.98, JRPC 30 ms 22 ms 20 ms 14 ms 14 ms 14 ms 14 ms

Λth = 0.98, Star - - - 14 ms 14 ms 14 ms 14 ms

We also simulate and test the impact of inaccurate link-PDR estimation. We assume

the measurement of link SINR has an uniformly distributed and zero-mean error, which

leads to inaccurate link PDRs. Given these link PDRs, we run our JRPC protocol to get

the overall energy consumption and calculate the differences. The SNR error variance is

set as 10 and the results are shown in Tab. 2.5. The SNR-variance error is large enough

according to our calculation: given Fig 2.8(a), the SNR-PDR curve is approximately a linear

function between 4dB to 7dB segment. From our experiment shown in Fig. 2.8(b), we can

derive the PDR-error variance as 0.07. Given the linear model, we derive the SNR-error

variance as less than 1. By adding such a noise, the final energy consumption is hardly

noticeable. We further relax the SNR-error variance ten-times larger, and the enlarged

energy-consumption error is shown in Tab. 2.5. Given this result, we find that the average

energy difference is about 3.7%, meaning that overall energy consumption is not obviously

affected by a relatively large link-PDR-estimation error.

2.5.3 Protocol Overhead

Our protocol has minimal traffic overhead, as in the link-PDR measurement and pre-

diction phase the data packets are used instead of specialized-probing packets, which are

only needed for one big slot duration initially to bootstrap the protocol. For the same

reason, the time overhead is also minimal as we do not need to allocate additional slots

to measure the links’ quality. In each big slot, only two extra TDMA cycles are needed
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Table 2.5. WBAN overall energy consumption differences given inaccurate link-PDR esti-
mation with JRPC algorithm.

Cordless phone locations 1 2 3 4 5 6 7

Energy consumption difference 4.6 % 1.7 % 12.4 % 0.6 % 7.4 % 0.7 % 0.9 %

Microwave oven locations 1 2 3 4 5 6 7

Energy consumption difference 8.7 % 2.1 % 1.9 % 0.5 % 0.3 % 0.3 % 1.7 %

separately for the nodes to report their incoming link’s PDR estimations to the CU, and for

the CU to broadcast the derived power assignments and routing decisions. These control

packets are transmitted using the same power and routing scheme as that of normal data

packets. In our implementation a big slot contains 40 TDMA cycles, thus the overhead

in terms of communication, delay, and energy is merely 5%. Note that, although our cur-

rent algorithm is centralized, as a BAN has a small physical span, it is not an overkill. A

distributed algorithm may lead to lower overhead, but will also be less optimal.

2.6 Summary

In this chapter, for the first time we study the problem of reliability assurance under

external CTI in a BAN, especially those from non-protocol-compliant sources that are much

harder to mitigate than the CTI from 802.x devices. We formulate a joint routing and power

control problem aiming at overcoming the impact of such strong CTI in a BAN, while using

minimal overall energy consumption. The optimal results are derived by using CPLEX after

reformulated into linear form. We then propose a practical JRPC protocol which exploits

passive measurement and prediction to model the uncertain impact of CTI on link qualities

and a heuristic algorithm to efficiently solve our JRPC problem. Remarkably, evaluation

results show that our JRPC protocol can effectively enlarge the “reliability zone” of the

BAN, even when the CTI source is closest to the body. Our protocol also achieves high

efficiency, low-energy consumption and overhead.
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CHAPTER 3

COOPERATIVE INTERFERENCE CANCELLATION IN COEXISTING

HETEROGENEOUS MULTI-HOP WIRELESS MIMO NETWORKS

3.1 Overview

In the previous chapter, we studied the detrimental impact of non-protocol-compliant

CTI on body area networks. In our daily life, the protocol-compliant interference is also

hard to deal with. E.g., the networks applying 802.11 and 802.15.4 could not coordinate,

thus they could only apply the interference avoidance strategy to mitigate the interfer-

ence. The recent advance of IC could achieve interference mitigation between transmitter

and receiver nodes through measuring the channel. However, for networks running dif-

ferent protocols, this is hard as the coexisting nodes could not communicate with each

other. In this chapter, we first explore the feasibility of cooperative interference mitigation

(CIM) among heterogeneous multi-hop networks by exploiting only partial CSI (or chan-

nel ratio information, CRI). Specifically, we show that compared with full CSI, such CRI

does not affect the satisfiability of DoF constraints (or computability of transmit/receive

vectors) in each network. We discuss practical methods to measure CRI and achieve co-

operative technology-independent interference cancellation (TIIC). Then we propose two

tractable models for CIM that accurately capture both networks bilateral cooperative IC

decisions, link scheduling, and various forms of system heterogeneity, based on recent ad-

vances in MIMO link-layer modeling. One of our models captures full IC (CIM- FIC) which

considers both transmitter-side and receiver-side IC, while the other model only captures

traditional receiver-side cancellation (CIM-RIC). Furthermore, for our CIM-FIC model, we

theoretically analyze its ability to support interference alignment and use an example to

prove it. Based on our CIM models, we formulate two bi-criteria optimization problems,

in which both coexisting networks maximize their own respective throughput. As both
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of our problems are mixed integer linear programming (MILP) problems, we rely on the

Reformulation-Linearization Technique (RLT) to reformulate them. In order to find the

Pareto-optimal curve efficiently, we exploit the inherent stair-shape property determined by

our model, thus reducing the number of MILP problems needed to be solved, which is ex-

tremely time-consuming in practice. The derived curve under our model could be regarded

as a lower bound to the outer bound of the capacity region of two multi-hop heterogeneous

networks in the DoF sense.

3.2 Background and Motivation

MIMO Background. There are two key techniques enabled by MIMO communi-

cation: spatial multiplexing (SM) and interference cancellation (IC). The DoF [10] at a

node represent the available number of interference-free signaling dimensions. SM refers to

transmitting multiple streams simultaneously on a single MIMO link using multiple DoFs,

which is upper limited by min(At, Ar) where At and Ar are the antenna numbers at the

transmitter and receiver sides, respectively. IC refers to a node’s capability to cancel unin-

tended interference using some of its DoFs, which can be done either by a transmitter or

receiver. Assume transmitter t’s link carries st streams and another receiver r’s link carries

sr streams. For transmitter-side IC, the number of DoF required at t is equal to sr (i.e., t

can cancel its interference at r iff. At − st ≥ sr). For receiver-side IC, the number of DoFs

required at a receiver is equal to st (i.e., r can cancel t’s signal iff. Ar − sr ≥ st). As an

advance of IC, the IAL is built upon receiver-side IC, which aligns the interferences from

different transmitters along the same directions in the receiver’s nulling space. As a result,

the receiver could deal with multiple aligned interfering streams as if dealing with fewer

streams. To achieve SM and IC, antenna weights are assigned to transmitters and receivers

such that the signals received will be combined in the desired way.

IC depends on full channel state information (CSI) at each node which is usually

estimated via training symbols in an orthogonal frequency-division multiplexing (OFDM)

packet. However, with the CTI from a different wireless technology, the full CSI may not

be obtained (or very costly to obtain) due to the generally unknown signal structure. If the
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other wireless network also uses OFDM at the physical layer and its preamble is known,

then we can assume full CSI is available. But in reality this requires prior knowledge

of the protocol standard of various coexisting networks, which incurs significant overhead

and cannot handle new systems. Fortunately, Gollakota et al. [13] proposed Technology-

Independent Multiple-Output (TIMO), which enables an 802.11 MIMO link to completely

cancel the high power and wide-bandwidth interference to/from a non-802.11 device (e.g.,

a ZigBee sensor and microwave oven), by only measuring the channel ratio information.

TIMO is agnostic to the interferer’s technology, making it possible to enhance coexistence

among heterogeneous networks.

Motivation. The advancement of both MIMO and TIMO makes it possible for two

or more coexisting networks to cooperatively enhance everyone’s throughput. Fig. 3.1

illustrates this idea using a simple two-interfering-link setting. Link 1 is equipped with

two antennas at both transmitter and receiver sides, while link 2 only has one antenna.

Assume we divide time into multiple slots, and define each link’s throughput to be the

average number of streams transmitted (or DoF for SM) over all time slots. Fig. 3.1

(b) shows their optimal throughput curve, which is derived from the convex hull of all

the possible base-rate combinations: (2, 0), (1, 1), (1, 0), (0, 1), (0, 0). Suppose we want to

achieve proportional fairness, and let the throughput ratio of two links to be the same as

that of their maximum throughput without interference (i.e., 2:1, equaling to the ratio of

their antenna numbers). Under the interference avoidance paradigm, the Pareto-optimal

fair throughput pair is (1, 0.5). In contrast, under CIM (link 1 uses both transmitter- and

receiver-side IC), the new pair is (4
3 ,

2
3), which is achieved by sending (1, 1), (1, 1), (2, 0)

streams during three consecutive slots for each link. Note that this also requires link 2

to cooperate by not transmitting during the third slot. This example clearly shows the

potential by using CIM.

To enable such cooperation among heterogeneous multi-hop networks, information in-

cluding active sessions and the interference graph in each network needs to be shared with

others. This can be difficult in unplanned deployments, as there lacks a common commu-
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Fig. 3.1. Overall throughput with Cooperative MIMO interference mitigation

nication channel (CCC) between networks with different protocol standards. However, it is

possible to obtain such information without a CCC. For example, Zhang and Shin [48] pro-

posed GapSense, a lightweight protocol to coordinate among heterogeneous wireless devices

based on energy sensing. It can be regarded as a side channel using implicit communication.

In reality, we can assume each network has a central controller or base station, and these

controllers can exchange necessary information for CIM using implicit communications. The

performance bounds for each network form a Pareto-optimal curve. In reality, to choose

from one feasible point on the curve, two networks can make agreements based on certain

criteria like fairness (max-min or proportional) or max total rate. This can be achieved

because we assume that the networks are cooperative. In the case that both networks are

selfish and may deviate from cooperation, a game-theoretic approach is needed, which will

be left for our future work.

Key Challenges. There involves a unique set of challenges to realize CIM in a multi-

hop network setting. (1) How to cancel the interference from/to nodes in another multi-hop

network running different wireless technology without having the full CSI? So far TIMO

has only been applied to the single-link and non-cooperative setting, but its feasibility in

multi-hop networks is unexplored. In a multi-hop network, there can be multiple simulta-

neous active links in each network generating interference to a link of the other network.

Then, how to design the transmit/receive vectors to satisfy all nodes’ DoF constraints?
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(2) To theoretically model and quantify the performance limit of CIM among heteroge-

neous MIMO networks, the intrinsic complexity involves both networks’ cooperative link

scheduling, MIMO DoF allocation for spatial multiplexing (SM), IC for both intra- and

inter-network. The model must capture network heterogeneity: different PHY technolo-

gies, number of antennas, transmit power, data rates, etc. (3) Networks have competing

interests such that each wants to maximize its own throughput. One may think of ex-

tending the capacity-region concept to derive the Pareto-optimal throughput curve of the

“combined network”. Previously, Toumpis and Goldsmith studied the capacity region of

SISO multi-hop wireless networks [49], which showed the region can be derived from the

convex hull of a set of base-rate points via arbitrary time-sharing. However, it remains open

for MIMO ad hoc networks due to the intractability of SNR model. Even if we adopt a DoF

model, the deriving of base-rate pairs is still non-trivial as we need to enumerate not only

the link scheduling but also DoF allocation on each link. To the best of our knowledge, this

problem also remains open to date.

3.3 Feasibility of Cooperative TIIC among Multi-hop Networks

In this section, we study the feasibility of realizing cooperative TIIC across heteroge-

neous multi-hop networks, which is the essence in our CIM paradigms. Specifically, con-

sidering the basic scenario of two coexisting networks, is it possible to schedule the links’

transmissions in both networks such that all the interference from/to each other can be

canceled (subject to the DoF constraints at each node)? In the case of a single MIMO

network, [14–18,50] show it is feasible that links can cancel all the interference in the same

network by allocating their transmission DoFs for SM and IC. However, the previous results

are derived under the assumption of full CSI. To deal with cross-technology interference,

only partial CSI can be obtained (such as channel ratio in TIMO [13]). Thus the natu-

ral question is, is it possible to make MIMO and TIMO work together in heterogeneous

multi-hop networks (use the former for intra-network IC and the latter for inter-network

IC)?

TIIC Based on Channel Ratio Information (CRI). We first give a theoretical
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treatment of TIIC based on CRI. We adopt the matrix representation of MIMO IC based on

the Zero-Forcing beamforming (ZFBF) [51], which is used by previous works [50]. W.l.o.g.,

consider the cross-technology interference from the transmitter Tx(l) of a link l to receiver

Rx(k), where node i has Ai antennas. For each active link l, denote zl as the number of data

streams and sli the signal of stream i (1 ≤ i ≤ zl). Denote H(l,k) the ATx(l)×ARx(k) channel

gain matrix between nodes Tx(l) and Rx(k) which is full-rank (assuming a rich scattering

environment). Let transmitter Tx(l)’s transmitting-weight vectors be uli, 1 ≤ i ≤ zl, and

receiver Rx(k)’s receiving-weight vectors be vkj , 1 ≤ j ≤ zk. The interference to data

stream j on link k is:

( zl∑
i=1

ulisli

)T
H(l,k)vkj =

zl∑
i=1

((uli)
TH(l,k)vkj) · sli.

To cancel this interference, the following constraints should be satisfied:

(uli)
TH(l,k)vkj = 0, (1 ≤ i ≤ zl, 1 ≤ j ≤ zk). (3.1)

However, the complete matrix H(l,k) is unknown due to different technology. In the special

case where link l has only one antenna, we have zl = 1 and uli equals to a constant while

H(l,k) is an ARx(k) dimensional vector h(l,k). Then we get
∑ARx(k)

d=1 h(l,k)(d) · vkj(d) = 0.

Since h(l,k)(1) 6= 0 w.h.p., if we divide h(l,k)(1) on both left and right sides, we obtain

h(l,k) · vkj = vkj(1) +

ARx(k)∑
d=2

βl,k(d)vkj(d) = 0, (1 ≤ j ≤ zk), (3.2)

where the “channel ratio” between link l’s transmitter and link k’s receiver is defined as:

βl,k(d) =
h(l,k)(d)

h(l,k)(1) , 2 ≤ d ≤ ARx(k). Note that, Eq. (3.2) is equivalent to Eq. (3.1) thus it

does not change the rank of the coefficient matrix of vkj . This means the DoF consumed

by all constraints in Eq. (3.2) is unchanged. It has been shown in TIMO that we are able

to solve Eq. (3.2), i.e. to find vkj such that the interference from node l is canceled, as

long as we can get βl,k(d), which can be easily realized by broadcasting the vector uli in
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probing packet before data transmission. The deriving of channel ratio information βl,k(d)

in multi-hop networks will be introduced later. Note that, under channel-reciprocity model,

similar results can be derived for transmitter-side IC.

When the CTI links have multiple antennas, we need to define “extended channel ratio”

β′. Observe that in Eq. (3.1), (uli)
TH(l,k) = h′(l,k) which is an ARx(k) dimensional vector,

where h′(l,k)(d) =
∑ATx(l)

j′=1 uli(j
′) · h(l,k)(j

′, d) , where h′(l,k)(1) 6= 0 with high probability.

Then,

β′l,k(d) =
h′(l,k)(d)

h′(l,k)(1)
, (2 ≤ d ≤ ARx(k)). (3.3)

By replacing h(l,k) with h′(l,k) and βl,k(d) with β′l,k(d) in Eq.(3.2), we can use the same

methodology as that in TIMO to derive vkj in the multi-antenna CTI case.

Hereafter, we use channel ratio information (CRI) to refer to the union of channel ratio

and extended channel ratio.

DoF Criterion. Next we analyze the DoF consumption in our multi-hop networks.

First, we consider the coexisting of two single-link networks. Assume link 1 and link 2

are transmitting s1 and s2 streams respectively. W.l.o.g., we assume link Rx(1) tries to

cancel the interference from link Tx(2). Because in a CRI-based TIIC scheme, every IC-

constraint equation is equivalent to the original one by a constant factor (e.g. (3.1) and

(3.2)), the number of consumed DoF of a node due to a set of linear constraints is unchanged

compared with the one with full CSI. Therefore, the consumed DoF will be s2 at Rx(1) , as

each interfering stream generates one equation, thus consume one DoF. Then, we assume

link 2 tries to cancel its interference towards Rx(1) . In this case, the DoF consumed will

be s1 at Tx(2) .

Now we explore the feasibility of TIIC in general for two multi-hop networks. Assume

there is a global “node ordering” π among the nodes in the “combined network”; denote

πTx(l) and πRx(k) as the positions of nodes Tx(l) and Rx(k) in the node-ordering list,

respectively. Based on Lemma 5 in [50], we have the following lemma:

Lemma 1. Consider the cross-technology interference from Tx(l)’s zl streams to Rx(k)’s

zk streams. Based on only CRI, from the IC constraints in Eq. (3.1), we have (i) if
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πTx(l) > πRx(k), then the number of DoFs consumed by IC are zk and 0 at Tx(l) and Rx(k),

respectively. If ATx(l) = 1 and zk ≥ 1, then zl = 0 at Tx(l). (ii) If πTx(l) < πRx(k), then the

number of DoFs consumed by IC are 0 and zl at Tx(l) and Rx(k), respectively.

The proof is straightforward. Such a node ordering is both sufficient and necessary to

ensure the feasibility of transmit/receive vector allocation on each link, thus showing that

the CRI-based TIIC can be used in multi-hop networks along with standard IC with full

CSI.

Measuring the Channel Ratio Information in Multi-hop Networks. In order

to obtain the CRI, TIMO can be used to measure the channel ratio for single-antenna

interference sources. Its current implementation is limited to single concurrent and co-

channel interferer. Extending to multiple interferers is possible but the IC algorithm will

be more complex. Therefore, we propose an alternative, cooperative approach to suit the

CIM paradigm.

Our idea is to ensure only one of the interferers’ signals is present at a time such

that the channel ratios can be measured directly. We assume time is slotted (e.g., TDMA

is used), which is necessary for optimized transmission scheduling. Each interferer sends

a short probing packet (PP) at different times sequentially. Suppose there are M active

nodes in total within one slot according to link scheduling, each of them can broadcast a

PP within a non-overlapping mini-slot (M in total). Upon each probing, the channel ratios

on each interfered node are obtained by taking the ratio of the received symbols on each

antenna. After all the probings, the signal-of-interest and interference signals may transmit

concurrently.

The extended channel ratio can be obtained in a similar way as the channel ratio. An

active node on link l sends a weighted probing signal uT
li · sp during each mini-slot i(1 ≤ i ≤

zl) where sp is the probe packet, and zl is the intended number of streams to transmit on l.

The received signal vector on all the antennas of Rx(k) is (uli)
TH(l,k)sp = h′(l,k)sp. Then,

dividing the signal on the dth antenna by that of the 1st antenna yields β′l,k(d).

The above describes the use of receiver-side IC, which means the CTI transmitter Tx(l)
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determines its transmit vectors uli first, and the receiver Rx(k) decides its receive vectors

vkj afterwards. The same approach can be easily extended to transmitter-side IC (Tx(k)

cancels its CTI to Rx(l)), for which the receiver Rx(l) transmits a probing signal, and then

Tx(k) can estimate the CRI based on channel reciprocity [13].

The probing order is determined by the node order π. This is because that the order

π must be followed when determining vector u, v [50], and the probing behavior logically

plays a ‘vector-notifying ’ role in practice.

Feasibility of IAL. After elaborating the importance of node-ordering in our CIM

paradigm. Next, we show that node-ordering is an effective mechanism to achieve IAL in

practice.

In Fig. 3.2, assume each node’s order is the same as its index number, i.e. node i’s

order is also i. Assume each node has 2 antennas. The dash lines denotes the interference

relations. At an arbitrary time point, assuming node 1 transmits one stream to node 2.

By using our CIM, it will broadcast a probing packet using its transmitting vector u1 to

all other nodes. Note that as node 1 has highest priority in the global order π, its vector

u1 could be arbitrarily chosen. Based on the channel ratio information β measured on all

its antennas, node 4 will compute its receiving vector v4 satisfying uT
1 H1,4v4 = 0, then

broadcast a probing packet using the receiving vector v4. Next the nodes 5, 7 will use the

same methodology to derive u5/7, such that uT
5/7H5/7,4v4 = 0. In this way, we can see that

node 5 and 7 align their interfering streams u5, u7 along the direction of u1.

The example in Fig. 3.2 is a special case where IAL is achieved by using our ordering

mechanism. However, we do not claim that our ordering mechanism could achieve IAL

in all cases. E.g., in Fig. 3.3, assuming all settings are the same as in Fig. 3.2, except

that node 4 has three antennas. In this case, all interfering streams from node 1, 5, 7 are

casted into node 4’s nulling space, which is a two-dimensional plane. In general, we have

the following theorem:

Theorem 1. Under any feasible ordering π, the interference alignment is supported by our

CIM-FIC model, i.e., given a node ordering π, any feasible DoF allocation using IAL could
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be equivalently derived using CIM-FIC.

The basic idea of this theorem is that the IAL is feasible under our CIM model as long

as it is feasible given any ordering π. Note that our CIM paradigm supports IAL only under

full-IC (FIC) model, as IAL is feasible only if transmitter-side IC is feasible.

Discussion. Here we discuss the overhead of our CRI-based cooperative TIIC scheme.

First, the exchange of network flow information and interference graph (input to the op-

timization problem) is done at the beginning, which is a one-time overhead and can be

amortized. Second, regarding probing signals, the number of mini-slots needed in the worst

case is (A1·N1+A2·N2), where Ai is the number of DoFs for each node in the ith network. In

reality it can be much smaller because not all active nodes are involved in cross-technology

interference. Besides, the probing frequency depends on the channel coherence time, which

is typically hundreds of milliseconds in static indoor environments [52]. In that case, the

overhead can be amortized over multiple data slots. Third, time synchronization among

networks is only required in our analytical optimization framework, which can be relaxed

in practice. For example, if a CSMA-like MAC protocol is used in both networks, neither

probing nor synchronization is needed. CRI measurement can be done by opportunistically

exploiting the overheard non-interfered signals from RTS/CTS/Data/ACK packets.

3.4 Modeling and Formulation

In this and the next section, we systematically study the performance bounds of two

(or more) heterogeneous multi-hop MIMO wireless networks under the CIM paradigm. Due

to the absence of central administration, we consider each network aiming at maximizing its

own throughput, assuming they cooperatively cancel/mitigate the interference to/from each

other. However, the networks’ objectives conflict with each other because of their mutual

interference. Thus, we will develop a bi-criteria optimization framework, and characterize

the Pareto-optimal throughput curve rather than a single optimal point. In order to be

tractable, we adopt a recent DoF model from [50], and assume that time is slotted and finite

instead of continuous assumed in capacity region research. Since arbitrary time sharing is
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Fig. 3.2. Example 1 of interference alignment by using our CIM paradigm. 1 stream on
node 1,3,5,7. The streams transmitted by node 1,5,7 are aligned along the same direction.

Fig. 3.3. Example 2 of interference alignment by using our CIM paradigm. 1 stream on
node 1,3,5,7. The streams transmitted by node 1,5,7 are casted into the nulling space of
node 4.

not supported by a finite number of slots T , our result can be regarded as a lower bound

to the case when T →∞.

3.4.1 Mathematical Modeling

System Model. Consider two unplanned multi-hop wireless networks N1 = (V1, E1)

and N2 = (V2, E2) with heterogeneous technologies that interfere with each other, and

N1 = ‖V1‖ and N2 = ‖V2‖. Assume the nodes in at least one network possesses MIMO

capability (e.g., an 802.11n ad hoc network v.s. WiMax, or ZigBee with SISO links). The

MIMO nodes also use our cooperative TIIC scheme to cancel the CTI from/to another

disparate network using different technology1. The networks operate in the same band, and

we consider T time slots are available to both networks2. Let Fi represent the set of multi-

hop sessions in network i, and r(f) denotes the rate of session f ∈ Fi. Assume routing is

1We assume that the networks’ technologies are unknown to each other, thus complete CSI across
networks is not obtainable.

2This reflects that spectrum is crowded. We can also extend this to model an additional set of channel
resources.
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given and denote Li the set of active links in network i. Let zl(t) be the number of data

streams transmitted over link l ∈ Li during slot t. If a network is SISO, then zl(t) = 1

when link l is active during slot t, otherwise zl(t) = 0. Each network’s goal is to maximize

its own utility (function of session rates:
∑

f∈Fi

h[r(f)]) while using CIM.

Modeling the CIM Paradigm with Full IC. In the full-IC model, we assume

both transmitter and receiver have the ability to perform interference cancellation. We

describe the general case where both networks are MIMO. To model channel access, we

consider half-duplex transceivers for both networks. Denote binary variables xi(t) and yi(t)

(i ∈ V1 ∪ V2, 1 ≤ t ≤ T ) as if node i transmits or receives at slot t. We have:

xi(t) + yi(t) ≤ 1 (i ∈ V1 ∪ V2, 1 ≤ t ≤ T ) (3.4)

To realize CIM, both networks should use some of their resources to mitigate the

interference with each other. For a MIMO network, each node can use MIMO IC to cancel

the interference either to/from other nodes within the same network, or to/from nodes in

the other network. While for a SISO network, it is not able to carry out any IC. Thus its

cooperative behavior can be regarded as refraining from transmitting on a subset of its links

that will interfere with the MIMO network during each slot, through link scheduling. The

main complexity of the problem is due to the lack of predefined order/priority between any

two networks so the responsibility of cooperation is in both networks in general. There are

numerous combinations as to how the nodes should cancel the interference to/from links

in its own network, and to/from the other network, and scheduling its transmission to not

interfere with another network in case of SISO.

To this end, we adopt a recent MIMO link-layer model [50], which introduces an order-

ing among the nodes for DoF allocation to ensure the feasibility of IC and avoid unnecessary

duplication of IC. By inserting a formulation of the ordering relationship into a specific op-

timization problem, an optimal ordering can be found. In our case, a global order of nodes

in both networks needs to be established in each time slot. Denote 1 ≤ πi(t) ≤ N = N1 +N2

as the global ordering of node i in slot t, and θji(t) as the relative order between nodes j
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and i (θji(t) = 1 if j is before i and 0 otherwise). Then we have the following relationship:

πi(t) −N · θji(t) + 1 ≤ πj(t) ≤ πi(t) −N · θji(t) + N − 1, (i, j ∈ V1 ∪ V2, 1 ≤ t ≤ T )

(3.5)

Next we describe the constraints for DoF consumption at each node, which include

DoFs spent on spatial multiplexing (SM), intra- and inter-network IC. With the above

MIMO link model, a transmitter i needs only to cancel the interference to the set of neigh-

boring nodes Ii ⊂ V1∪V2 (within its interference range) that are before itself in the ordered

list, and the DoF spent is equal to the number of streams received by those interfered

nodes. A similar rule is used for a receiver. If node i is transmitting/receiving, its DoF

consumptions cannot exceed the total number of DoFs of itself. Denote Li,out and Li,in as

the set of outgoing and incoming links from node i, respectively. The transmitter-side DoF

constraints are:

xi(t) ≤
∑

l∈Li,out

zl(t)+[
∑
j∈Ii

(θj,i(t)

Tx(k)6=i∑
k∈Lj,in

zk(t))]xi(t) ≤ Aixi(t), (i ∈ V1∪V2, 1 ≤ t ≤ T )

(3.6)

The receiver-side’s DoF constraints are similar:

yi(t) ≤
∑

l∈Li,in

zl(t) + [
∑
j∈Ii

(θj,i(t)

Rx(k)6=i∑
k∈Lj,out

zk(t))]yi(t) ≤ Aiyi(t), (i ∈ V1 ∪ V2, 1 ≤ t ≤ T )

(3.7)

By analyzing the constraint (3.7), we can clearly see that the IAL is supported intrin-

sically by our model. In the component [
∑
j∈Ii

(θj,i(t)
Rx(k)6=i∑
k∈Lj,out

zk(t))], it can be seen that only

the interferences from transmitting nodes j that are prior to node i in the ordering list π are

canceled by i using receiver-side IC. The streams from nodes j that are behind i in ordering

list π are not canceled and thus will not consume any DoF at node i. As a result, these

non-interfering streams must be casted into the nulling space of node i, in which aligning
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along one direction is a special case.

Note that the constraints (3.6) and (3.7) are also satisfied under SISO (Ai = 1). This

is because a SISO node either transmits/receives or keeps silent (for latter case, either

xi =
∑

l∈Li,out
zl(t) = 0, or yi =

∑
l∈Li,in

zl(t) = 0).

For the link-capacity model, to reflect heterogeneous data rates, we multiply with a

different constant weight wn for each network:

cl = wn ·
1

T

T∑
t=1

zl(t), (∀l ∈ Ln, n ∈ {1, 2}, 1 ≤ t ≤ T ) (3.8)

Then we have the flow-rate constraints for each session of our two coexisting networks:

r(f) 6 cl (∀l ∈ f, f ∈ F1), r(g) 6 cl (∀l ∈ g, g ∈ F2) (3.9)

Modeling the CIM Paradigm with Receiver-side IC. The model of CIM with

only receiver-side IC is different than the one using full IC in terms of receiver-side’s DoF

constraint. In the previous model, multiple streams from different transmitters could be

casted into the receiver’s nulling space. However, in the receiver-side-IC model, all inter-

fering streams are handled by receiver, thus each interfering stream will consume one DoF

at the receiver. To eliminate transmitter-side IC, we just need to modify the receiver-side

IC constraint by assuming all incoming-interfering streams should be canceled by every

receiver i. Based on the analysis in [19], we modify the receiver’s DoF constraint:

yi(t) ≤ [
∑

l∈Li,in

zl(t) +
∑

j∈Ii,in

αji(t)] · yi(t) ≤ Aiyi(t), (i ∈ V1 ∪ V2, 1 ≤ t ≤ T ) (3.10)

in which the variant αij(t) denotes the number of interfering streams from transmitter

i to receiver j. The definition of αij(t) is given as follows:

αij(t) = yj(t) ·
Rx(l) 6=j∑
l∈Li,out

zl(t), (j ∈ Ii, 1 6 i 6 N, 1 6 t 6 T ) (3.11)
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Reformulation. In order to convert the non-linear constraints into linear ones, we

reformulate Eqs. (3.6) and (3.7) into the following. First, by imposing an upper bound

(large constant) B =
∑
j∈Ii

Tx(k)6=i∑
k∈Lj,in

Ak, and B′ =
∑
j∈Ii

Tx(k) 6=i∑
k∈Lj,out

Ak, where Ii is the interference

node set of link i, Eq. (3.6) can be converted into Eq. (3.12), and Eq. (3.7) can be converted

into Eq. (3.13).

∑
l∈Li,out

zl(t) + [
∑
j∈Ii

(θj,i(t)

Tx(k)6=i∑
k∈Lj,in

zk(t))] ≤ xi(t) ·Ai + (1−xi(t))B, (i ∈ V1 ∪V2, 1 ≤ t ≤ T )

(3.12)

∑
l∈Li,in

zl(t) + [
∑
j∈Ii

(θj,i(t)

Rx(k) 6=i∑
k∈Lj,out

zk(t))] ≤ yi(t) ·Ai + (1− yi(t))B′, (i ∈ V1 ∪V2, 1 ≤ t ≤ T )

(3.13)

Then, we apply the Reformulation-Linearization Technique (RLT) [37] to transform

the above to linear constraints. Specifically, define λj,i(t) = θj,i(t)
Tx(k)6=i∑
k∈Lj,in

zk(t), Eq. (3.12)

to be rewritten as:

∑
l∈Li,out

zl(t) +
∑
j∈Ii

λj,i(t) ≤ xi(t) ·Ai + (1− xi(t))B, (i ∈ V1 ∪ V2, 1 ≤ t ≤ T ) (3.14)

Because we also have θj,i(t) ≥ 0, 1−θj,i(t) ≥ 0,
Tx(k)6=i∑
k∈Lj,in

zk(t) ≥ 0 and Aj−
Tx(k) 6=i∑
k∈Lj,in

zk(t) ≥

0, we can obtain the following linear constraints by multiplying them together:
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λj,i(t) ≥ 0, (3.15)

λj,i(t) ≤ Aj · θj,i(t), (3.16)

λj,i(t) ≤
Tx(k)6=i∑
k∈Lj,in

zk(t), (3.17)

λj,i(t) ≥ Aj · θj,i(t)−Aj +

Tx(k)6=i∑
k∈Lj,in

zk(t), (3.18)

for all i ∈ V1 ∪ V2, j ∈ Ii, 1 ≤ t ≤ T . Eqs. (3.14)-(3.18) are equivalent with Eq. (3.12).

Similarly, define µj,i(t) = θj,i(t)
Rx(k) 6=i∑
k∈Lj,out

zk(t), Eq. (3.13) can be replaced by:

∑
l∈Li,in

zl(t) +
∑
j∈Ii

µj,i(t) ≤ yi(t) ·Ai + (1− yi(t))B′, (i ∈ V1 ∪ V2, 1 ≤ t ≤ T ) (3.19)

µj,i(t) ≥ 0, (3.20)

µj,i(t) ≤ Aj · θj,i(t), (3.21)

µj,i(t) ≤
Rx(k)6=i∑
k∈Lj,out

zk(t), (3.22)

µj,i(t) ≥ Aj · θj,i(t)−Aj +

Rx(k)6=i∑
k∈Lj,out

zk(t), (3.23)

where i ∈ V1 ∪ V2, j ∈ Ii, 1 ≤ t ≤ T .

The constraint in (3.11) is also nonlinear. Again, by choosing a large constant B > Ai,

we use RLT to transform it into two equivalent linear constraints:

0 6
Rx(l)6=j∑
Li,out

zl(t)− αij(t) 6 (1− yj(t)) ·B, (j ∈ Ii, 1 6 i 6 N, 1 6 t 6 T ) (3.24)
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0 6 αij(t) 6 yj(t) ·B, (j ∈ Ii, 1 6 i 6 N, 1 6 t 6 T ) (3.25)

3.4.2 Formulation

The mathematical formulations of the throughput maximization problems with FIC

and RIC are shown in Fig. 3.4 and Fig. 3.5 respectively, which are bi-criteria mixed-integer

linear programing (MILP) problems. In the objective function, h(·) denotes network utility

function.

As shown in the formulation, the objective is to maximize both networks’ utilities

simultaneously while satisfying all constraints. The optimization variables include: network

1 and 2’s session rates r(f) and r(g), πi(t), θji(t), zl(t), xi(t), yi(t), and additional variables

λji(t), µj,i(t) in the reformulated problem. The challenge is that even the single-objective

version of the general MILP problem is NP-hard. We will show that this can be converted

into multiple (a small number of) single-objective MILP problems, where there exists highly

efficient optimal and approximation algorithms such as branch-and-bound with cutting

planes [53], or heuristic algorithms such as sequential fixing algorithms [18] to solve it. We

use the off-the-shelf solver CPLEX to solve the MILP problems in our case.

3.5 Pareto-Optimal Throughput Curve

In this section, we explore a novel approach to find the optimal throughput curve of two

heterogeneous multi-hop MIMO networks. We consider the linear case3 where h[r(f)] =

d1 ·r(f) and h[r(g)] = d2 ·r(g), such that
∑

f∈F1

h[r(f)] and
∑

g∈F2

h[r(g)] represent the weighted

throughput of each network, respectively. Here d1, d2 are two constants.

We want to find all the Pareto-optimal throughput pairs (u1, u2) where there does not

exists another solution (u′1, u
′
2) such that u′1 ≥ u1 and u′2 ≥ u2. By fixing one objective

(u1 = u∗1) and finding the optimal value of the other (u2), we will solve a single optimization

3Non-linear throughput functions will be our future work.
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max U1 =
∑
f∈F1

h[r(f)]

max U2 =
∑
g∈F2

h[r(g)]

s.t. (for both networks)

Half duplex constraints:(3.4);

Node ordering constraints:(3.5);

Tx/Rx DoF constraints:(3.14)− (3.18), (3.19)− (3.23);

Flow rate ≤ link capacity:(3.9);

Link capacity model:(3.8)

Fig. 3.4. Original bi-criteria optimization formulation with FIC (BOPT-FIC).

max U1 =
∑
f∈F1

h[r(f)]

max U2 =
∑
g∈F2

h[r(g)]

s.t. (for both networks)

Half duplex constraints:(3.4);

Node ordering constraints:(3.5);

Tx DoF constraints:(3.14)− (3.18);

Rx DoF constraints:(3.10);

Interference degree:(3.24, 3.25);

Flow rate ≤ link capacity:(3.9);

Link capacity model:(3.8)

Fig. 3.5. Original bi-criteria optimization formulation with RIC (BOPT-RIC).

problem:

OPT (u1) : max u2, (3.26)

s.t. u1 = u∗1, and all constraints in BOPT-FIC/BOPT-RIC

One can obtain a one-to-one mapping u2 = f(u1) which defines an optimal throughput

curve containing all the weakly Pareto-optimal points. A weakly Pareto-optimal point is

a throughput pair (u1, u2) where there does not exist another solution (u′1, u
′
2) such that

u′1 > u1 and u′2 > u2. A Pareto-optimal point is also weakly Pareto-optimal, but not vice
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versa.

Since u1 and u2 are continuous, a naive approach to approximate the curve is to

discretize [0, u1,max] into a large number of equal intervals, solve OPT (u1) for each discrete

u1, and connect the corresponding optimal values u2 via line segments. However, each

instance is an MILP problem (NP-hard in general), thus this method incurs high complexity

and does not give any performance guarantee.

Instead of brute-force or trying approximation approaches, through exploiting the prop-

erty of the curve itself we find that the exact curve can be obtained (under our formulation).

Firstly, it is easy to see the curve is non-increasing with u1, because when u1 increases the

interference to network 2 also increases. Interestingly, we have the following Theorem which

gives the basis of our method:

Theorem 2. When T is finite, the optimal throughput curve u2 = f(u1) is a stair-shape

non-continuous function, and the minimum unit stair width is d1 · w1/T .

This theorem means that we only need to compute the points on the curve where

u1 = d1w1k/T, 0 ≤ k ≤ kmax, and connect them using stair-shape line segments. Each

computation corresponds to solving one OPT (u1) instance. But the following theorem

shows it is not necessary to cover all 0 ≤ k ≤ kmax:

Theorem 3. There exists two special Pareto-optimal points (u1s, u2s), (u
′
1s, u

′
2s) on the

optimal throughput curve that u2s = u2,max and u′1s = u′1,max.

Given theorem 3, we can further reduce computation complexity by first identifying

two Pareto-optimal points on the curve (which can be obtained by only two instances of

OPT (max{u1}) and OPT (max{u2})), then focusing on finding the curve points between

them. Our method can also be extended to more than two networks, where the curve

becomes multi-dimensional.
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Fig. 3.6. Flow setting and throughput curve. (a) Active flow sessions in two heterogeneous
networks (blue: Net 1, red: Net 2). (b) The optimal throughput curve for the two networks
under CIM and IAV.

3.6 Evaluation

In this section, we use numerical results to show the throughput gain by using our CIM

with full IC and receiver-side IC. We compare our CIM paradigm with the interference-

avoidance paradigm, where each network only cancels/mitigates the interference within

itself but not to/from another network. We also examine the impacts of various types of

interference scenarios and network heterogeneity.

3.6.1 A Case Study

We use a case study to show the gain brought by CIM paradigm. Consider two multi-

hop networks (topology and sessions shown in Fig. 3.6 (a)) with 30 nodes each, deployed

in a 100 × 100 area. Networks 1 and 2 both have two active sessions (8 active nodes in

total) and min-hop routing is used. We assume both networks have two antennas for each

node. For simplicity, assume w1 = w2 = 1 and d1 = d2 = 1. All nodes’ transmission and

interference ranges are 30 and 50, respectively. All networks coexist in one frequency band.

Time is divided into 8 slots. We use CPLEX to solve for the exact solution of each OPT (u1)

instance. The results are generated by an Intel 4 core i5-2400 with a 3.1GHz CPU and 8GB

RAM.

The derived stair-shape curve is shown in Fig. 3.6 (b). The blue line denotes the
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curve when using CIM with FIC, and the red line denotes the one using CIM with RIC.

The throughput curve derived by IAV is drawn in green line. It can be seen that the

minimum unit step is 1/8. Obviously, one can find that every point on the IAV’s curve is

Pareto-dominated by two points on CIM-FIC’s and CIM-RIC’s curves respectively, which

verifies the large throughput gain from IAV. Besides, the throughput curve of CIM-FIC

also dominates the one of CIM-RIC, which shows the performance enhancement brought

by transmitter-side IC. All computations for the curve finished within a reasonable amount

of time.

To verify the networks’ cooperative behavior under CIM, we randomly pick a set of

points from the curve with network 1’s throughput equaling to 1.25.

In Table 3.1, we list the stream allocation during all the slots for all the links. In this

table, ‘x’ denotes that no stream is allocated in the corresponding time slot. First, we can

verify that all interferences are canceled. For example, in slot 2, links 37 → 41, 13 → 25

are active in CIM-RIC. Both nodes use 1 out of their 2 total DoFs for SM. By analyzing

the node ordering θ41,13 and θ37,25, we found that node 41 cancels the interference from

node 13 while node 37 canceling its interference to node 25. We can see that no alignment

is applied here. For CIM-FIC, using slot 2 as well, links 57 → 31, 37 → 41, 13 → 25 are

active, with one stream transmitting on each link. We can see that the IAL is applied in

this slot as node 31 receives one stream while dealing with the interferences from node 13

and 37 simultaneously. This is only possible when the two interfering streams are aligned

in one direction, otherwise node 31 cannot handle three streams concurrently (1 receiving

stream and 2 interfering streams) with only two antennas.

Various special points can be identified on this curve. For max-min fairness (MMF),

the optimal throughput-pair obtained is (1.5, 1.5) when using CIM-FIC, compared with

(1, 1) by using IAV. For proportional fairness, the optimal throughput-pair is also (1.5, 1.5)

due to the symmetric antenna numbers in our example (both networks have 2 antennas for

each node).
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3.6.2 Impact of Different Interference Degrees

We further compare CIM’s performance with that of IAV’s, by changing the extent

to which both networks interfere with each other. For example, we change the distance

between the two networks to study the interference’s impact on throughputs.

In Fig. 3.7, we choose two scenarios containing one session in each network, while

Fig. 3.8 illustrates two scenarios containing 2 sessions in each network. In Fig. 3.7 (a),

the two sessions are far apart so as to not interfere with each other, while in Fig. 3.7 (b)

they are near enough to severely interfere with each other. In Fig. 3.8 (a), the interference

degree is approximately equal to that of Fig. 3.8 (b). We can observe in Fig. 3.7 (a), the

curves derived by CIM and IAV are exactly the same. In contrast, the throughput ranges

derived by CIM-FIC and CIM-RIC are larger than the one by IAV shown in Fig. 3.7 (b).

The gaps between CIM and IAV are nearly the same in Fig. 3.8 (a) and Fig. 3.8 (b),

though the CIM-RIC brings more benefits in (b) due to its slightly more-crowded network

setting. These two sets of results successfully verified that FIC and RIC could enhance both

networks’ throughputs which coexist in the same space and frequency domain.

We randomly generate 50 scenarios to show the better performances brought by our

CIM paradigms compared with the one using IAV in an average sense. We calculate the

maximum overall throughput of both networks. Network 1 and Network 2 are equipped

with 1 and 4 antennas respectively to reflect heterogeneity. All sessions are randomly

generated within the range shown in Fig. 3.6 (a). The results are presented in Table.

3.2. It can be seen that the maximum overall throughputs under CIM paradigms are

significantly larger than the ones under IAV in some cases. By using FIC and RIC, the

overall throughput are never lower than the ones using IAV. Similar results can be obtained

under other throughput-allocation criteria such as max-min or proportional fairness, which

are not elaborated in this chapter.

3.6.3 Impact of Network Heterogeneity

We test our CIM paradigms in several other heterogeneous aspects, such as different

transmit power/range and data rates. This heterogeneity exists in practical coexisting
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Table 3.1. Link stream allocation in each slot

Sessions Path Link FIC Time Slot FIC DoF of SM Rate RIC Time Slot RIC DoF of SM Rate

Session1-1 57 → 31

0 1

0.75

0 2

0.25

2 1 x x
4 1 x x
5 1 x x
6 1 x x
7 1 x x

Session1-2 37 → 41

1 1

1

1 1

0.5

2 1 2 1
3 1 4 1
4 1 5 1
5 1 x x
6 1 x x
7 1 x x
8 1 x x

Session2-1 7 → 16

0 1

0.625

3 2

0.375
1 1 6 1
3 1 x x
4 1 x x
5 1 x x

Session2-2 13 → 25

1 1

0.625

1 1

0.875

2 1 2 1
3 1 4 1
6 1 5 1
7 1 6 1
x x 7 2
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Fig. 3.7. Throughput curves. (a) Network 1 has 1 session: 45 → 38 →52. Network 2 has 1
session: 26 → 0 → 20. (b) Network 1 has 1 session: 50 → 30. Network 2 has 1 session: 21
→ 2 → 13 → 5.

environment, such as the coexisting of 802.11 with 802.15.4 networks.

In Fig. 3.9 (a), we set the transmission ranges for networks 1 and 2 as 20 and 40, and

the interference ranges as 30 and 60, respectively. In Fig. 3.9 (b), we increase network 1’s

transmission range to 33, interference range to 50. One can see that both the throughput

region and the gap between CIM and IAV enlarge in Fig. 3.9 (b). There are two insights:

(1) Larger transmission range decreases hop count, thus increases one’s own throughput;
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Fig. 3.8. Throughput curves. (a) Network 1 has 2 sessions:35 → 53 → 47, 37 → 32 → 36.
Network 2 has 2 sessions: 10 → 5 → 18, 12 → 1 → 25. (b) Network 1 has 2 sessions: 41 →
30 → 55, 48 → 34 → 56. Network 2 has 2 sessions: 8 → 10 → 4, 5 → 7 → 23.
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Fig. 3.9. Throughput curves. (a) Network 1 has 2 sessions:39 → 51 → 41, 55 → 50 → 59
→ 42. Network 2 has 2 sessions: 28 → 0 → 27, 10 → 5 → 18. In (b) Network 1 has 2
sessions:39 → 41, 55 → 31 → 42. Network 2 has 2 sessions: 28 → 0 → 27, 10 → 5 → 18.
(a) the transmission ranges: (20,40), the interference ranges: (30,60). (b) the transmission
ranges: (33,40), the interference ranges: (50,60).
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Fig. 3.10. Throughput curves. (a) Network 1 has 2 sessions:35 → 53 → 47, 37 → 32 → 36.
Network 2 has 2 sessions: 10 → 5 → 18, 12 → 1 → 25. (b) Network 1 has 2 sessions: 41 →
30 → 55, 48 → 34 → 56. Network 2 has 2 sessions: 8 → 10 → 4, 5 → 7 → 23.

(2) When the mutual interference degree is higher, more gains could be obtained by using

CIM paradigms, thus making the coexisting networks more willing to cooperatively mitigate
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Table 3.2. Max. total throughput comparison between CIM and IAV

Scenarios CIM-FIC CIM-RIC IAV Scenarios CIM-FIC CIM-RIC IAV

0 3.25 2.5 2.5 25 4.25 4.25 4.25

1 4 4 4 26 4.25 4.25 4

2 6 6 6 27 4 4 4

3 5 5 5 28 4.5 4.5 4.5

4 4 4 4 29 2.5 2.5 2.5

5 2.75 2.5 2.5 30 4 4 4

6 9 9 9 31 6.5 6 6

7 4 4 4 32 2 2 2

8 4.25 4.25 4.25 33 5.25 5.25 5.25

9 8 8 8 34 3.5 3 3

10 2 2 2 35 4 4 4

11 4 4 4 36 5 5 5

12 6 6 6 37 2.5 2 2

13 3 2.625 2.5 38 4 4 4

14 4 4 4 39 2 2 2

15 5 5 5 40 3 3 3

16 4.25 4.25 4.25 41 4 4 4

17 2.25 2 2 42 4 4 4

18 5 5 5 43 4 4 4

19 6 6 6 44 4 4 4

20 4 4 4 45 5 5 5

21 2.125 2 1.875 46 4.5 4.5 4.5

22 4.25 4.25 4.25 47 5 5 5

23 2.125 2.125 2 48 8 8 8

24 5.25 5.25 5.25 49 2.5 2.5 2.5

the interference. For different data rates, suppose w2 = 4w1 (such as 1Mbps in WiFi and

250kbps in ZigBee) instead of w2 = w1. The results are shown in Fig. 3.10. Compared

with Fig. 3.8, the throughput curve scales by a factor of 4 in the y-axis.

3.7 Summary

This chapter offered a thorough study of the cooperative cross-technology interference

mitigation (CIM) paradigm for heterogeneous multi-hop networks in unplanned settings.

The main technical challenges are due to the lack of a predefined network priority in un-

planned deployments, and various forms of network heterogeneity. We first show that gen-

eral technology-independent interference cancellation (TIIC) is feasible for heterogeneous
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multi-hop networks with different protocol standards, and then introduce our two CIM

models with different interference cancellation (IC) techniques. We characterize the perfor-

mance bounds of CIM via deriving the Pareto-optimal throughput curve. Through extensive

simulation results we show that the CIM paradigms with full IC and receiver-side IC can

both offer significant performance gains in throughput to the coexisting networks compared

with the traditional interference-avoidance (IAV) paradigm. The models and results in this

chapter will guide practical CIM protocol design, and pave the way to ultimately change the

coexistence paradigm for unplanned heterogeneous networks in unlicensed bands and TV

white spaces. In the following chapters, we will investigate the incentives of cooperation for

multiple independent networks, and study the coexisting problem with a game-theoretical

approach.
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CHAPTER 4

A GAME THEORETICAL APPROACH TO COEXISTENCE OF HETEROGENEOUS

MIMO WIRELESS NETWORKS WITH INTERFERENCE CANCELLATION

4.1 Overview

In the previous chapter, we perform centralized optimization on the multi-hop networks

coexistence problem. Our work assumes all coexisting entities are cooperative, i.e., they

will follow the decisions made by our central controller. In fact, all previous algorithms

and protocol design (e.g., 802.11 n+) have similar assumptions by considering all entities

will follow the predefined algorithms or protocols unconditionally. However, the incentive

of complying with such algorithm/protocols has never been studied, which is what we

will conduct in this chapter. Our goal in this chapter is to adopt a new perspective to

study the coexistence of heterogeneous wireless MIMO networks, by investigating each

network’s incentive to comply with/violate the underlying MAC protocols. To this end,

we establish a new two-round game framework, which incorporates both the high-level

cooperation strategy and the MAC-layer transmission strategies. We analytically derive

the utility functions and the Nash equilibrium for both networks, based on a common DoF

model. From numerical results, we gain several insights which are helpful in future wireless

network design.

4.2 System Model

In this chapter, we consider a simple model with two single-link networks N1(V, E) and

N2(V, E). Each network is considered as a player, and its nodes are coordinated by a central

controller which can determine the strategy to adopt. Time is divided into slots and the

interference graph is assumed to be known by both networks.

In our single-link coexistence problem, we assume each network first chooses whether
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to be cooperative or non-cooperative. After that, both networks compete for the channel at

each time slot and the winner could access the channel first with probability pi. This network

will act as leader to determine its low-level strategy first (in terms of DoF allocation). The

other network j that accesses channel secondly must determine its low-level strategy as

response based on network i’s strategy which has already been made. Both networks are

assumed to be non-malicious, i.e. each network will not intentionally generate interference

to the other one.

4.3 Game Formulation

In this section, we propose the game formulation for our single-link coexistence problem.

We assume each network has knowledge of both networks’ DoF and interference-range

information. We will derive both networks’ optimal strategies and the Nash equilibrium.

4.3.1 Game Framework

As the ‘cooperative/non-cooperative strategy’ and ‘DoF allocation’ are logically in two

different levels, we need to split them in our game framework. We model our problem

as a 2-level game played in 2 rounds separately. In the first round, the strategy space is

{‘Cooperative’,‘Non-cooperative’}. The strategy in this round corresponds to the decision

made on top of MAC-layer protocols. In the second round, the strategy space is DoF

allocation for SM and IC. The second round strategy corresponds to the decisions made at

the MAC layer. The second-round’s strategy space is split into four sub-spaces by using

the first-round strategies as constraints. Our two-round game is illustrated in Figs. 4.2.

4.3.2 First-round Game

Strategy Space

The first-round game is modeled as a static game. The strategy space of the first-round

game is {‘Cooperative’,‘Non-cooperative’}. In this round, each network determines whether

to comply with the underlying MAC protocol. By choosing ‘Cooperative’ strategy, it will
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(a) (b)

Fig. 4.1. Throughput comparison with cooperative and non-cooperative coexisting net-
works. (a) network 1 (nodes A, B) accesses channel first, and network 2 complies with the
802.11n+ protocol. (b) network 1 accesses channel first, and network 2 selfishly violates the
802.11 n+ protocol.

Fig. 4.2. Detail formulation of the first and second round games

transmit its own streams without generating interference to the other network which accesses

the channel before it. By choosing ‘Non-cooperative’, it maximizes its own throughput

without considering its interference to the other network.

Utility

In this round, the utility Ui(X,Y ) is the expected throughput of network i under a

certain first-round strategy pair (X,Y ), in which X and Y are network 1 and 2’s first-

round strategies respectively. As in the first round, the strategy space has two elements:

cooperative, non-cooperative. So in the second-round game, it has 2 ∗ 2 = 4 possible

constraints. Each element is explained in Eq. (4.1).

Ui(C,C) = pi · UiL(C,C) + pj · UiF (C,C)

Ui(NC,C) = pi · UiL(NC,C) + pj · UiF (NC,C)

Ui(C,NC) = pi · UiL(C,NC) + pj · UiF (C,NC)

Ui(NC,NC) = pi · UiL(NC,NC) + pj · UiF (NC,NC)

(4.1)
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In Eq. (4.1), pi denotes the probability that network i accesses channel first. UiL(X,Y ),

UiF (X,Y ) denote network i’s throughputs when it acts as leader or follower under the

constraints of first-round strategy (X,Y ).

4.3.3 Second-round Game

The second-round game is modeled as a Stackelberg Game. At any time slot, both

networks compete and then one of them wins the priority to access the channel. Therefore,

it will act as the leader to determine its strategy first. Meanwhile, the other network will

choose its strategy as a follower. Each network tries to maximize its own utility.

Strategy Space

The strategy space includes the selection of DoFs used for SM with the remaining used

for IC. The selection of the second-round strategy should be under the constraint of the

first-round strategy. Specifically, the DoFs used in SM and IC should be subjected to the

‘cooperative/non-cooperative’ strategy chosen in the first-round game.

Utility

The utility of the second-round game is the successfully received number of streams.

E.g. assume network i firstly sends M streams. It could receive M streams iff M 6 B

(B denotes the DoF number of network i’s receiver) while coexisting with a cooperative

follower, or M +N 6 B with a non-cooperative follower, where N is the number of streams

transmitted by the other network j. In the above cases, we have UiL = M . Otherwise,

UiL = 0.

4.3.4 Equilibrium

Next we analyze the equilibrium of our two-round game. We will show that in each

round there is an equilibrium. The derivation of final equilibrium is by using backward-

induction, as the equilibrium of the first-round game depends on the equilibrium of the



68

second-round game. Therefore, first we will analyze the equilibrium of the second-round

game.

Second-round Game’s Equilibrium

Assume that network 1 has A and B antennas at transmitter and receiver, and network

2 has C and D at transmitter and receiver. Without losing generality, we assume network

1 is leader and network 2 is follower. First we define the interference function r(ti, rj).

r(ti, rj) =


1 if rj is in ti’s interference range

0 if rj is out of ti’s interference range

(4.2)

As defined in Eq. (4.2), we use r(ti, rj) to denote the interference impact from trans-

mitter ti to receiver rj .

Follower Cooperative Case: First assume the follower network 2 is cooperative. We

use SiL(X,Y ) and SiF (X,Y ) to denote network i’s number of transmitted streams being

as leader/follower respectively. Then it is easy to see that the leader network 1 will choose

S1L(C/NC,C) = min(A,B) to maximize its utility. Here C/NC denotes that network 1’s

first-round strategy could be either cooperative or non-cooperative. Meanwhile, network 2

will try to cancel its interference to network 1’s receiver by using IC. Assuming network

1 chooses its optimal strategy S∗1L(C/NC,C) = min(A,B), then the network 2’s optimal

strategy could be derived as S∗2F (S∗1L(C/NC,C), C/NC,C) = max[0,min(D−min(A,B) ·

r(t1, r2), C − min(A,B) · r(t2, r1))]. These optimal strategies for networks 1 and 2 are

equilibriums in the cooperative follower case.

Follower Non-cooperative Case: Second we consider the non-cooperative follower

case. This case is more complex than the cooperative case because the non-cooperative

follower will ignore its interference to the leader’s receiver, thus the leader’s utility is af-

fected by the follower’s response. For simplicity, in this subsection we use S1L to denote

S1L(C/NC,NC), and S2F to denote S2F (S1L(C/NC,NC), C/NC,NC). First we could

derive the follower network’s best response function.
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Lemma 2. The best response of the non-cooperative follower network 2 is S∗2F (S1L) =

max(0,min(D − S1L · r(t1, r2), C)).

The proof is omitted. As the follower is considered to be non-malicious, so its utility

equals its strategy in terms of quantity, i.e. U2F = S∗2F (S1L).

We also derive the leader’s utility function given the follower’s arbitrary response:

Lemma 3. The leader network 1’s utility function in the presence of the non-cooperative

follower network 2 is U1L(C/NC,NC) = S1L · f(B − S1L − S2F (S1L) · r(t2, r1)),

f(x) =


1 if x > 0

0 if x < 0

If we substitute the follower’s optimal response shown in Lemma 2 into 3, we could

derive the leader’s utility under the follower’s optimal response:

U1L(C/NC,NC) =S1L · f(B − S1L −max(0,

min(D − S1L · r(t1, r2), C)) · r(t2, r1))

(4.3)

From this utility function in Eq. (4.3), we could derive the optimal leader’s strategies

in different interference-range cases:

Lemma 4. Assuming both networks are in a single collision domain, i.e. r(t1, r2) =

1, r(t2, r1) = 1. The optimal leader strategy S∗1L of network 1 is:

S∗1L =


min(A,B) if B > D

max(0, B − C) if B < D

(4.4)
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By now we have derived the equilibriums in both cooperative-follower and non-cooperative-

follower cases. The utilities of both networks under second-round equilibrium in the single-

collision-domain scenario are shown in Eq. (4.5).

U1L(C/NC,C) = min(A,B)

U2F (C/NC,C) = max[0,min(D −min(A,B), C −min(A,B))]

U2L(C,C/NC) = min(C,D)

U1F (C,C/NC) = max[0,min(A−min(C,D), B −min(C,D))]

U1L(C/NC,NC) = f(B,D) ·min(A,B) + (1− f(B,D))

·max(0, B − C)

U2F (C/NC,NC) = max[0,min(D − [f(B,D) ·min(A,B)

+ (1− f(B,D)) ·max(0, B − C)], C)]

U2L(NC,C/NC) = f(D,B) ·min(C,D) + (1− f(D,B))

·max(0, D −A)

U1F (NC,C/NC) = max[0,min(B − [f(D,B) ·min(C,D)

+ (1− f(D,B)) ·max(0, D −A)], A)]

(4.5)

Using similar analysis approaches, we could derive the second-round equilibrium under

other conflict-graph scenarios, in which r(ti, rj) = 1 or 0, for ∀i, j. Due to space limitations,

these analyses are omitted in this section.

Theorem 4. (S∗1L, S
∗
2F (S∗1L)) is the equilibrium of the second-round game in non-cooperative

follower case, where S∗1L and S∗2F (S1L) are defined in Lemma. 4 and 2 respectively.

First-round Game Equilibrium

Theorem 5. For the outer level game, (NC,NC) is always an equilibrium.

Subgame Perfect Nash Equilibrium

A subgame of a game is a sub-tree which begins at an information set containing only

one decision node. All decision nodes following the initial node belong to the subgame.
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The Subgame Perfect Nash Equilibrium denotes a set of strategies which forms a Nash

Equilibrium in every subgame. For our two-round game, we can prove that there exists a

Subgame Perfect Nash Equilibrium (SPNE). The SPNE is shown in Theorem 6.

Theorem 6. The SPNE of our game is (NC S∗1L(X,Y )), NC S∗2F (S1L(X,Y ), X, Y )),

in which (X,Y ) denotes network 1 and 2’s first-round strategy.

Based on our utility and equilibrium analysis, we could infer each network’s incentive

of cooperation.

Corollary 1. 1) Assuming network 1 has A and B antennas on transmitter and receiver,

and network 2 has C and D antennas. If B > min(C,D) + min(A,B), then network 1

always has the incentive to behave non-cooperatively.

4.4 Numerical Results

4.4.1 Overview

In this section, we first use two examples to study the leader’s utilities under follower’s

optimal response in the second round. Then we study the first-round equilibriums under

different network settings.

4.4.2 Second-round Equilibrium Numerical Results

In Fig. 4.3, we show both networks’ utilities under leader’s different strategies, while

assuming the follower network uses its optimal response. Based on our analysis (e.g.

Lemma 4), the optimal leader’s strategy is S∗1L(C/NC,C) = 3 for cooperative follower

and S∗1L(C/NC,NC) = 1 for non-cooperative follower in the subfigure (a)’s setting, and

S∗1L(C/NC,C) = 3 for cooperative follower and S∗1L(C/NC,NC) = 0 for non-cooperative

follower in the subfigure (b)’s setting. From the results, we can see that the leader achieves

its maximum utility by choosing the optimal strategy derived from our theoretical analysis.
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Fig. 4.3. The leader network 1’s second-round utilities by choosing different strategies.
(a) A = 3, B = 4, C = 3, D = 5, r(t1, r2) = r(t2, r1) = 1. (b) A = B = C = D = 3,
r(t1, r2) = 0, r(t2, r1) = 1.

4.4.3 Cooperation Incentives

We choose different numbers of antennas, and different conflict graphs to evaluate each

network’s cooperation incentives under different settings.

Unbalanced DoF Scenario

We analyzed the unbalanced DoF scenario. In this scenario, the antenna numbers of

the two networks are unbalanced. From the results in Table 4.1, 4.2, 4.3, we can see that

the network with more receiving antennas (network 2 in Table 4.2 and network 1 in Table

4.3) has incentive to be non-cooperative, while the network with less receiving antennas has

no incentive to be non-cooperative.

Table 4.1. The utilities in equilibrium of second-round game in unbalanced DoF scenario

A=2;B=2;C=3;D=3;
r(t1, r2) = 1; r(t2, r1) = 1;

A=2;B=5;C=3;D=3;
r(t1, r2) = 1; r(t2, r1) = 1

U1L(C/NC,C) 2 2

U2F (C/NC,C) 1 1

U2L(C,C/NC) 3 3

U1F (C,C/NC) 0 0

U1L(C/NC,NC) 0 2

U2F (C/NC,NC) 3 1

U2L(NC,C/NC) 3 1

U1F (NC,C/NC) 0 2
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Table 4.2. The utilities in equilibrium of first-round game in unbalanced DoF scenario with
A = B = 2, C = D = 3, r(t1, r2) = 1, r(t2, r1) = 1

Net 2, Cooperate Net 2, Non-cooperate
Net 1, Cooperate (1, 2) (0, 3)

Net 1, Non-cooperate (1, 2) (0, 3)

Table 4.3. The utilities in equilibrium of first-round game in unbalanced DoF scenario with
A = 2, B = 5, C = D = 3, r(t1, r2) = 1, r(t2, r1) = 1

Net 2, Cooperate Net 2, Non-cooperate
Net 1, Cooperate (1, 2) (1, 2)

Net 1, Non-cooperate (2, 1) (2, 1)

Unbalanced Interference Scenario

The second scenario is the unbalanced-interference scenario. The results are shown in

Tables. 4.4 ,4.5, 4.6. In this case, we place network 1’s receiver far away from network 2’s

transmitter. Therefore, network 1 is not interfered by network 2’s transmission. From the

results, we can see that network 1 always has incentive to be non-cooperative. Especially,

for the A = B = C = D = 1 case, it corresponds to the traditional single-antenna case.

Table 4.4. The utilities in equilibrium of second-round game in unbalanced interference
scenario

A=2;B=2;C=2;D=2;
r(t1, r2) = 1; r(t2, r1) = 0

A=1;B=1;C=1;D=1;
r(t1, r2) = 1; r(t2, r1) = 0

U1L(C/NC,C) 2 1

U2F (C/NC,C) 0 0

U2L(C,C/NC) 2 1

U1F (C,C/NC) 0 0

U1L(C/NC,NC) 2 1

U2F (C/NC,NC) 0 0

U2L(NC,C/NC) 0 0

U1F (NC,C/NC) 2 1

Several insights can be found from the results. We can see that more receiving antennas

gives a network the incentive to be non-cooperative as it can make the network less likely

to be affected by the other network. Also, the network whose receiver is beyond the other
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Table 4.5. The utilities in equilibrium of first-round game in unbalanced interference sce-
nario with A = B = C = D = 2, r(t1, r2) = 1, r(t2, r1) = 0

Net 2, Cooperate Net 2, Non-cooperate
Net 1, Cooperate (1, 1) (1, 1)

Net 1, Non-cooperate (2, 0) (2, 0)

Table 4.6. The utilities in equilibrium of first-round game in unbalanced interference sce-
nario with A = B = C = D = 1, r(t1, r2) = 1, r(t2, r1) = 0

Net 2, Cooperate Net 2, Non-cooperate
Net 1, Cooperate (0.5, 0.5) (0.5, 0.5)

Net 1, Non-cooperate (1, 0) (1, 0)

transmitter’s interference range has the incentive to be non-cooperative as it will not be

affected by the other network. More results can be found in our technical report [54].

4.5 Summary

In this chapter, we study the coexistence problem of MIMO wireless networks. Different

from previous works, we focus on this problem from a new point of view at a higher level:

the incentive of complying with/violating the underlying MAC protocols. We establish a

new multi-level game framework which incorporates both the high-level cooperative/non-

cooperative strategies, and the low-level DoF allocation strategies. The game is played in

two rounds, in which the first round is modeled as a static game and the second round

is modeled as a Stackelberg game. Both the utilities and strategies in equilibrium are

analyzed and derived in this chapter. By studying the equilibriums in different scenarios,

we have insights of the cooperation incentives in the coexistence of single-link MIMO wireless

networks. In the following chapter, we will study the coexistence game in the multi-hop

network case.
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CHAPTER 5

GAME THEORETICAL ANALYSIS OF COEXISTENCE IN MIMO-EMPOWERED

COGNITIVE RADIO NETWORKS

5.1 Overview

In this chapter, we will study the coexistence problem in MIMO empowered multi-hop

cognitive radio networks (CRNs) using game theoretical approach. We will analyze both

the primary and secondary networks’ optimal strategies in the coexistence game. We study

two types of secondary networks categorized by their cooperative behaviors: 1) type-1 sec-

ondary network, which is selfish-compliant in following the spectrum-accessing rules with-

out generating interferences to the primary network; 2) type-2 secondary network, which

is selfish-non-compliant meaning that it non-compliantly maximizes its own throughput

without controlling its interference to the primary network. We derive the equilibriums of

both primary and each of the two types of secondary networks respectively. Our numerical

results imply that the multi-hop secondary networks always have incentive to play type-2.

Through analyzing its strategy by decomposing our algorithms, we unveil some insights in

dealing with such type of multi-hop secondary networks.

Fig. 5.1. Coexistence example: a single-link primary network coexists with a multi-hop and
multi-flow secondary network
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5.2 System Model

We assume a single-link primary network Np(Vp, Ep) coexists with a general multi-hop

secondary network Ns(Vs, Es) with multiple flows. Each network has MIMO capability [22],

using which each device could perform IC to mitigate interference from/to any other device

and SM to transmit multiple streams concurrently. Each network is considered as a player,

and its nodes are coordinated by a central controller which determines what strategy to

adopt. Both controllers have the complete information about their own network topologies

respectively. In addition, the primary network’s controller also has the complete selfish-

type, topology and flow information of the secondary network. The interference graph is

assumed known by both networks. Both networks coexist within a single frequency band.

We assume the primary and secondary networks could arbitrarily select their strategies

in terms of the number of spatial-multiplexing DoFs and interference-cancellation DoFs.

As multi-hop network is considered, we divide time into a number of discrete time slots

t ∈ {1, 2..T}. However, the primary network is not as agile as the secondary network, i.e.,

it is not capable of swiftly changing its strategy in each time slot.

We assume that the primary network always accesses the spectrum first by freely se-

lecting its accessing strategy, and the secondary network determines its spectrum access

responsive strategy afterwards. Two types of secondary networks are studied, which are

1) type-1: selfish-compliant network meaning that the secondary network aims at max-

imizing its throughput without generating interference to the primary network, and 2)

type-2: selfish-non-compliant network meaning that the secondary network maximizes its

own throughput regardless of its interference to the primary network. We assume each

network’s device could have arbitrary number of antennas.

5.3 Game Theoretical Analysis

In CRNs, the primary network always has the priority in spectrum access. There-

fore, our game is formulated as a Stackelberg game, in which the primary network makes

spectrum access decision first, and the secondary network makes its decision afterwards.

Each network tries to maximize its throughput. We will study a general multi-hop case,
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Table 5.1. Major Notations

sp, ss strategy of primary and secondary network

θi,j(t), πi(t) relative and global cancellation ordering on nodes i, j

zl(t) number of streams sent on link l in time slot t

up, us primary and secondary network’s utility

in which the primary network coexists with the secondary network, in the type of either

selfish-compliant or selfish-non-compliant.

The multi-hop secondary-network case is more complicated than the single-link case.

This is mainly due to the intricacy of link scheduling in multi-hop networks. We will

show that though we cannot express the optimal response strategy in closed-form, we can

still derive the optimal response strategy of the secondary network through solving a mixed

integer linear programming (MILP) problem. Based on the optimal response, we can further

derive the optimal leading strategy of the primary network through an algorithm, in which

we calculate the interference degree generated by the secondary network and then check

each primary network strategy’s feasibility.

5.3.1 Strategy Space

For the single-link primary network, the strategy sp = zlp denotes the number of

DoFs spent on transmitting streams concurrently on link lp, which should be bounded

by its antenna number min(Apt , Apr). We assume the primary network’s receiver uses

the remaining DoFs for receiver-side IC to mitigate the possible interferences back from

secondary network.

For the secondary network, the strategy ss = [zl0 ...zlL ], where zlk = [zlk(0), ...zlk(T )],

k ∈ {0, ...L} denotes the number of streams transmitted in each time slot t ∈ {0, ...T} on

each link lk. The remaining DoFs are used for performing interference cancellation at both

the transmitter and receiver sides. Similarly, the secondary network’s strategy should also

be bounded by the antenna number on each of its devices. In addition, it should also satisfy

several intra-network constraints [50] including half-duplex, node ordering, transmitter-side
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and receiver-side IC constraints to guarantee the strategy’s feasibility:

xi(t) + yi(t) ≤ 1 (i ∈ Vs, 1 ≤ t ≤ T ) (5.1)

πi(t)−N · θj,i(t) + 1 ≤ πj(t) ≤ πi(t)−N · θj,i(t) +N − 1,

(i, j ∈ Vs, 1 ≤ t ≤ T ) (5.2)

xi(t) ≤
∑

l∈Li,out

zl(t) + [
∑
j∈Ii,

(θj,i(t)

Tx(k)6=i∑
k∈Lj,in

zk(t))]xi(t)

≤ Aixi(t), (i ∈ Vs, 1 ≤ t ≤ T ) (5.3)

yi(t) ≤
∑

l∈Li,in

zl(t) + [
∑
j∈Ii

(θj,i(t)

Rx(k)6=i∑
k∈Lj,out

zk(t))]yi(t)

≤ Aiyi(t), (i ∈ Vs, 1 ≤ t ≤ T ) (5.4)

The variables xi(t), yi(t) denote whether node i sends or receives at time slot t. zl(t)

denotes the number of streams sent on link l. θi,j denotes the cancellation order between

node i and j. πi(t) denotes the global cancellation order of node i. Ai is the antenna number

parameter at node i. Ii denotes the interference set of node i. Li,in and Li,out denote node

i’s inward and outward link sets. The constraint (5.1) requires each node to be half-duplex

thus can not send and receive simultaneously. The node ordering constraint in (5.2) is

used to establish a cancellation order for each pair of nodes, which ensures the feasibility

of the stream transmitting strategy ss. Constraints (5.3)(5.4) guarantee that the overall

number of DoFs used for spatial multiplexing and interference cancellation at each node
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should be bounded by its antenna number. Through these constraints, we can guarantee

the secondary network stream-transmitting strategy’s feasibility inside its network.

5.3.2 Utility

The utility up and us is the total number of streams successfully transmitted on all

flows in all time slots for the primary and secondary networks respectively. When calculating

the utilities, we should take the other network’s strategies into account, as these strategies

could generate external interferences. For the secondary network, as it could have multiple

flows f ∈ Fs each with multi-hops where Fs denotes the set of flows in secondary network,

its utility is defined as the summation of all flows’ rates r(f) which is the time-average

throughput of this flow. We denote its utility as us =
∑

f∈Fs

r(f). We will show how to derive

its utility under the interferences from primary network in next subsection. For the leading

primary network, its utility is defined as:

up(ss, sp) =


sp if sp + µrp(ss) < Arp

0 if sp + µrp(ss) > Arp

(5.5)

where µrp(ss) denotes the maximum total number of interference received back from

the secondary network. (5.5) denotes that the primary network’s utility is 0 if it is interfered

with by the secondary network. This is because we assume primary network’s QoS should

be always guaranteed.

5.3.3 Equilibrium

We will first analyze the optimal response strategy of the secondary network. After

that we will derive the optimal leading strategy of the primary network and finally the

equilibrium.

Type-1 Multi-hop Secondary Network

When dealing with the type-1 secondary network, the primary network’s optimal strat-

egy is shown in lemma 5.
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Lemma 5. s∗p = min(Atp , Arp)

Proof. The proof is very straightforward, as the primary network knows the complete in-

formation of the secondary network’s compliant behaviors, it should choose to transmit as

many streams as it could.

For the optimal response, given any primary network’s strategy, the secondary network

will choose its strategy without generating interference to the primary network. Different

from the single-link case, it is more difficult to derive the closed-form expression of the

optimal response. However, we show that the optimal response could be derived through

solving a MILP problem (ORT1), which is very similar to that in [55]. To use their opti-

mization model, we need to set zlp(t) = s∗p,∀t . The optimization solution and result are

the secondary network’s optimal response and utility respectively against primary network’s

optimal strategy.

Lemma 6. The solution of problem ORT1 is the optimal response of type-1 secondary

network s∗s(s
∗
p) against primary network’s optimal strategy s∗p.

Proof. According to the model in [55], the secondary network takes the primary network’s

transmitted streams into its transmitter-side constraint, thus the primary network is not

interfered with.

Theorem 7. (s∗p, s
∗
s(s
∗
p)) is the equilibrium of the type-1 secondary-network follower case,

where s∗p and s∗s(s
∗
p) are defined in Lemma. 5 and Lemma. 6 respectively.

Type-2 Multi-hop Secondary Network

The type-2 secondary network follows no predefined rule, thus it does not manage its

interference towards the primary network. We first need to establish the model of our

coexistence problem. The first one is primary network’s strategy. Similar as defined in the

type-1 case, we use zlp to denote the number of streams sent on primary link lp:

zlp(t) = sp, ∀t (5.6)
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The second one is the canceling order constraint, in which we let all nodes in secondary

network Ns to cancel the interferences from primary network’s transmitter pt.

θpt,i = 1, ∀i ∈ Ns (5.7)

The secondary network also needs to satisfy all the constraints in (5.1) (5.2) (5.3) to

guarantee the solution feasibility. In addition, the secondary network needs to cancel the

interference generated by primary network’s strategy sp by adding it into its receiver-side

constraint:

yi(t) ≤
∑

l∈Li,in

zl(t) + [
∑
j∈Ii

(θj,i(t)

Rx(k)6=i∑
k∈Lj,out

zk(t))+

θpt,i(t)zlp(t)]yi(t) ≤ Aiyi(t), (i ∈ Vs, 1 ≤ t ≤ T ) (5.8)

Note that we do not change the transmitter-side constraint in (5.3) as the secondary

network is selfish-non-compliant thus it does not control its interference to the primary

network. We have link capacity constraint (5.9) and flow-rate constraint (5.10) to calculate

the secondary network’s throughput utility. cl denotes link l’s capacity. r(f) denotes rate

on flow f .

cl =
1

T

T∑
t=1

zl(t), (∀l ∈ Ls, 1 ≤ t ≤ T ) (5.9)

r(f) 6 cl (∀l ∈ f, f ∈ Fs) (5.10)

To derive the equilibrium, we start from secondary network’s optimal-response strategy.

The definition of the ORS2 problem is shown in Fig. 5.2.

Lemma 7. Solution of problem ORS2(sp) is the type-2 secondary network’s optimal re-

sponse strategy s∗s(sp) under arbitrary primary network’s strategy sp. The objective value is
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max us =
∑
f∈Fs

r(f)

s.t.

Primary network strategy constraint(5.6)

Cancelling ordring constraint(5.7)

Half duplex constraint(5.1)

Node ordering constraints(5.2)

Tx DoF constraints: no IC to primary netwok(5.3)

Rx DoF constraints (5.8)

Link capacity model(5.9)

Flow rate ≤ link capacity(5.10)

Fig. 5.2. Optimal response of the secondary network (ORS2(sp)) given primary network’s
strategy

the secondary network’s maximum utility u∗s under s∗s(sp).

Proof. The canceling-order constraint (5.7) and transmitter-side constraint (5.3) guarantees

the secondary network does not take the primary network’s receiver into account when

performing transmitter-side IC. Therefore, the response is selfish-non-compliant.

We have shown that the optimal response of the secondary network could be derived

through solving a mixed-integer-nonlinear-programming (MINLP) problem shown in Fig.

5.2. Through comparing the formulations of ORS2 and ORS1, we could find that in ORS2,

the strategy space is loosened as no transmitter-side IC is considered towards the primary

network. We reformulate our problem into a mixed-integer-linear-programming (MILP)

problem, which is NP-hard in general. To solve this problem, we choose IBM’s CPLEX

solver, which is based on branch and bound technique. We will leave the more-efficient

approximation approach in future work. The remaining problem is how to derive the optimal

primary network’s strategy. To derive primary network’s optimal strategy, we first need to

know the primary network’s utility under secondary network’s interference in return, which

could be derived by Alg. 3. Using Alg. 3 as a building block, we derive the optimal leader’s

strategy through Alg. 4.
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Algorithm 3 Calculating primary network’s utility under secondary network’s strategy
input: Network topology G, secondary network’s strategy ss; primary network’s strategy sp
output: Primary network’s utility up

1: for t = 1 : T do
2: µrp,t = 0 , µ denotes the interferences received by a node
3: for all i ∈ Irp do µrp,t+ = zlk:tx=i(t), I denotes the link sets that cause interference
4: end for
5: end for
6: µrp(ss) = maxt{µrp,t}
7: if sp + µrp(ss) 6 Arp then up(ss, sp) = sp
8: else up(ss, sp) = 0
9: end if

Algorithm 4 Finding primary network’s optimal strategy
input: Network topology G
output: Primary network’s optimal strategy s∗p, and corresponding optimal utility u∗p

1: for sp = 1 : min(Atp , Arp) do
2: Solve problem ORS2(sp), record solution s∗s(sp)
3: Run Alg.3 with input s∗s(sp) , sp
4: Collect up(s∗s(sp), sp)
5: end for
6: s∗p : s.t.u∗p = maxsp{up(ss

∗(sp), sp)}

Lemma 8. The output of Alg. 4 is the primary network’s optimal strategy s∗p when coex-

isting with a type-2 multi-hop secondary network.

Proof. In Alg. 4, each primary-network strategy’s corresponding utility is traversed and

calculated according to our utility definition by calling Alg. 3, thus the output is the

maximum.

Theorem 8. (s∗p, s
∗
s(s
∗
p)) is the equilibrium of the type-2 secondary-network follower case,

where s∗p and ss
∗(s∗p) are defined in Lemma. 8 and 7 respectively.

Theorem 9. By playing type-2, the secondary network can guarantee it ends up with an

equilibrium with higher or at least equal utility.

Proof. To prove this theorem, we only need to prove three facts: 1) under any primary

network’s strategy sp, the secondary network could gain more utility by playing type-2

(u∗s2(sp) )than type-1 (u∗s1(sp)). This is because the type-2 secondary network does not

need to consider its interference towards to primary network, while the type-1 secondary

network needs to do so. Therefore, the strategy space of the type-2’s problem ORS2 is larger
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than that of type-1’s problem ORS1; 2) with the increasing of primary network’s stream

number sp, the secondary network’s maximum utility u∗s1/s2(sp) decreases. This is also

due to the size of strategy space: enlarging primary network’s sending-stream number will

compress the secondary network’s strategy space. 3) in equilibrium, the primary network

always transmits larger or at least equal number of streams when coexisting with type-1

than type-2 network. This is obvious as the primary network always chooses to send its

maximum number of streams when coexisting with type-1 secondary network. Assuming

s∗p1 and s∗p2 are the primary network’s optimal strategies when dealing with type-1 and

type-2 secondary networks respectively, then we have s∗p1 > s∗p2, thus u∗s1(s∗p1) 6 u∗s1(s∗p2).

As we have u∗s1(s∗p2) 6 u∗s2(s∗p2) , thus we can have u∗s1(s∗p1) 6 u∗s2(s∗p2).

One straightforward insight from this theorem is that the secondary network has the

incentive to violate the spectrum access rule. In the next section, we will use two case

studies to verify this incentive and then explore the methodology to deal with such selfish

secondary networks.

5.4 Numerical Results

5.4.1 Overview

With our equilibrium analysis algorithms in Sec. 5.3, the primary network could es-

timate the equilibriums and the corresponding utilities. In this section, we will run our

algorithms to show several results that provide insights of the coexisting game between

primary and secondary networks. We choose 4 and 2 as the antenna numbers for primary

network and secondary networks respectively. We use two case studies in which the single-

link primary network coexists with 2-flow and 3-flow multi-hop networks respectively. We

will calculate and analyze both primary and secondary network’s optimal strategies and

the interference generated by secondary network’s optimal response strategy. We will first

show that the general multi-flow secondary networks always have incentives to play self-

ishly and non-compliantly, i.e., playing type-2, which is bad news for the primary networks.
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Second, to deal with such selfish networks, we decompose our algorithms and analyze the

intermediate status. Our analysis implies that by aggressively extending primary network’s

interfering range, we could enhance its own utility in the equilibrium.

5.4.2 Selfish Incentives of Secondary Networks

We will show that in general cases, the secondary networks always have the incentives

to be selfish, i.e., playing type-2 rather than type-1.

To analyze the secondary network’s selfish incentives, we compare its utilities by playing

type-1 and type-2 respectively. We select a scenario (scenario 1 in Fig. 5.3 (a)) with a single-

link primary-network flow and two single/multi-hop secondary-network flows. We run our

algorithms and derive the equilibriums and the corresponding utilities. Specifically, when

coexisting with type-1 secondary networks, the utilities of primary and secondary networks

under equilibriums are (4, 0). Meanwhile, the utilities are (2, 1) when the primary network

coexists with the type-2 secondary networks. To get more insights of the results, we insert

breakpoints in line 2 and 4 of our Alg. 4 to observe the utilities under each of the primary

network’s stream-transmitting strategies. The results are shown in Fig. 5.4. From the

results we can observe that 1) the primary network could always achieve higher utilities

when dealing with type-1 secondary network (as shown in Fig. 5.4 (a)) and the primary

network’s equilibriums are transmitting 4 and 2 streams when coexisting with the two types

of secondary networks respectively; 2) however, the secondary network could always obtain

higher or at least equal utilities by playing type-2, i.e., being selfish and non-compliant.

Similar results could be derived from another case-study (scenario 2) results shown in Fig.

5.5.

5.4.3 Countering Selfish Secondary Networks

As we have shown the secondary networks always have the incentives to behave selfishly,

it is necessary for the primary network to protect its transmission against selfish secondary

networks’ interferences. However, the interference from secondary networks is complex as

it is implicitly affected by primary network’s strategies. Using our MILP problems for-
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(a) (b)

Fig. 5.3. Simulation settings. (a) single-link primary network with 2-flow multi-hop sec-
ondary network. (b) single-link primary network with 3-flow multi-hop secondary network
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Fig. 5.4. Primary-network (a) and secondary-network (b) utilities under primary network’s
stream-transmitting strategies.
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Fig. 5.5. Primary-network (a) and secondary-network (b) utilities under primary network’s
stream-transmitting strategies.

mulation, we could precisely quantify the interferences from secondary networks through

intermediate status analysis of our Alg. 4. Our intuition is that the larger degree of inter-

ferences generated by primary networks (in our system model, the interference is controlled
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by the primary network’s TX range and its transmitting strategies), the less interference it

receives from the secondary networks in return. We validate our conjectures using our two

case studies shown in Fig. 5.6.

In Fig. 5.6, we can observe that by transmitting more streams, the primary network

endures less interference back from the secondary network. However, in practice the number

of transmitted streams is capped by the number of antennas of the primary network thus

we cannot increase the transmitting-stream number arbitrarily. Another observation is that

by using long transmitting range, the primary network could also reduce the interferences

generated by the secondary network through a chain of interferences out to and back from

it. Though we show only two cases with two different network settings, such a phenomenon

could be observed in general cases. This is because longer transmission range means larger

interference degree generated on the secondary networks, thus more DoFs are consumed

to perform IC at the secondary network, which otherwise could be used to transmit more

streams in the secondary network. Therefore, less interferences could be fed back to the

primary network in return as the interference is the result of stream transmissions. The

longer transmitting range could finally enhance the utilities of the primary network in

the game equilibriums, which is validated in Fig. 5.7. Note that this transmitting-range-

extending approach is different from the ‘tit-for-tat’ approach in repeated game, as we do

not force the secondary network to change into the compliant type. Instead, by using

this approach, we aim at improving the primary network’s utility in the equilibrium when

coexisting with the non-compliant secondary network.

5.5 Summary

In this chapter, we studied the coexistence problem in cognitive radio networks with

MIMO capability using game-theoretical approach. We formulate the game between the

single-link primary network and the multi-hop secondary network as a Stackelberg game. To

derive the equilibrium, we designed an algorithm based on the solution of a mixed-integer-

linear-programming problem. Our results show that the multi-hop secondary network al-

ways has the incentive to play selfishly. The results also imply that we could enhance the
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Fig. 5.6. Interference towards primary network under its stream-transmitting strategies
with different primary network’s TX-interference ranges. (a) scenario 1. (b) scenario 2.
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Fig. 5.7. Primary network’s utilities under its stream-transmitting strategies with different
primary network’s TX-interference ranges. (a) scenario 1. (b) scenario 2.

primary network’s utility by enlarging its transmitter’s interference range.
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CHAPTER 6

THROUGHPUT OPTIMIZATION IN MULTI-HOP WIRELESS NETWORKS WITH

RECONFIGURABLE ANTENNAS

6.1 Overview

In previous chapters, we have shown that wireless MIMO could enhance network

throughput by performing IC and SM. In fact, there are other advanced physical-layer

techniques that we can leverage. RA could provide the ability of swift pattern changing,

thus dynamically control the transmission and interference range. Intuitively, we could

control the RAs to decrease the interference degree in the network by carefully selecting

the patterns. However, a tractable modeling is still missing. In this chapter, we propose

the two-layer pattern-selecting and link-scheduling model. Our model successfully captures

the relation between pattern selection and link-coverage/interference areas. In addition, to

fully characterize the reconfigurability of antennas, we have no assumption about the shape

of the pattern. Based on our model, we formulate the throughput optimization with recon-

figurable antennas (TORA) problem into a mixed integer non-linear programming problem.

After reformulating it into a mixed integer linear programming (MILP) problem using re-

formulation linearization technique (RLT), we can solve it using off-the-shelf tools such as

IBMs CPLEX, which is based on the branch and bound technique. We theoretically prove

the advantages brought by reconfigurable antennas using conflict-graph based approach.

Through extensive evaluation results, the benefits of using reconfigurable antennas over

traditional omni-directional antennas and directional antennas are validated.

6.2 Motivating Examples

As we mentioned, RA’s main advantages are state diversity and fast reconfigurabil-

ity, while they can also enjoy the directivity gain of directional antennas. For pattern-
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reconfigurable antennas, they can achieve all-directional pattern coverage as omni-directional

antennas by dynamical antenna pattern switching, meanwhile generating low-degree of in-

terference to the unintended directions like a DA. This creates many new opportunities to

optimize the performance of MWNs in link layer or network layer, which are illustrated

through three simple examples in Fig. 6.1.

Fig. 6.1. Motivating examples: Throughput benefits brought by RAs in MWNs due to
antenna-directivity gain, fast reconfigurability, and state diversity

In Fig. 6.1 (a), we show a single-flow case. Using omni-directional antenna, one path

is possible which gives an end-to-end (E2E) throughput of 0.5 under the optimal schedule

(assuming per-link capacity is 1). While using pattern-reconfigurable RAs (or DA), the

link capacities are doubled due to antenna-directivity gain, which yields a twofold E2E

throughput gain. In Fig. 6.1 (b), a two-flow case is shown to illustrate the benefit of fast

state reconfigurability. Using legacy DAs with a fixed beam, there is one flow (1→ 2→ 4)

and the DA beam at node 1 is selected to point toward node 2. The overall throughput

under optimal schedule is 0.5 flow per time slot. While using RAs, node 1’s transmit state

can be quickly adjusted such that node 1 could fully utilize time resources to transmit one

more stream, which enhances total E2E throughput (and also fairness between two flows).

In Fig. 6.1 (c), a two-flow case shows the benefit of state diversity. In the left subfigure,

node 2 uses the default state which interferes with the 1→3 link. Thus nodes 1 and 2 have

to transmit at separate time slots. In the right subfigure, optimal state selection is used by

adopting another state at node 2 (e.g., a different pattern) such that now 1→3 and 2→4

can transmit simultaneously in slot 1, which yields a higher throughput. Note that, the

above scenarios are only an exemplary subset; in general, there are many ways that RAs
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can enhance the E2E performance, including throughput, delay, and energy-efficiency. In

this chapter we focus on throughput optimization.

6.3 Modeling and Formulation

6.3.1 Antenna Model

In this work, we consider three types of antennas: OAs, DAs, and RAs. OAs (a.k.a.

isotropic antennas) transmit and receive signals equally in all directions. DAs can radiate

signals in a certain direction. We assume the directional antenna is able to choose any of its

signal direction from all candidates, but cannot swiftly change the direction [28,31,56–59].

Compared with DAs, RAs can swiftly reconfigure antenna states in terms of frequency,

polarization, and radiation pattern. In our work we focus on the reconfigurability of pattern,

where each node’s antenna has multiple candidate radiation patterns, which in general can

be in any shape. We assume the patterns can be overlapped with each other. RAs can

perform very fast pattern switching choosing from all candidate patterns within negligible

time [23]. In this work, the pattern selection is considered only at the transmitter side.

We adopt the protocol model [60] due to its simplicity and mathematical tractability,

which has been widely used previously [18, 28, 61, 62]. We assume at each time slot the

transmitter selects a pattern k associating with a geographical area Ti,k, within which the

receivers are reachable by this transmitter. (The area of this pattern could be derived using

path-loss model or experimental method, which is out of the scope of this work.) We also

use Ii,k to denote the interference area, within which the transmitted signal’s power is too

large to be treated as background noise for all unintended devices. It is easy to see that

normally we have Ti,k ⊆ Ii,k. However, to make our model more general, such a relation is

not considered necessary. We consider multiple flows with predefined routes in our MWNs.

6.3.2 Link-Layer Model of RAs in Multi-hop Networks

1) Overview: Next we present our basic idea of link-layer modeling of RAs in MWNs.

As we mentioned, such modeling is challenging due to dynamic antenna pattern selection
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across time, which affects both network topology (whether a link is established in the graph

at time t) and interference (whether two established links interfere with each other at time

t). In addition, one link can be covered by multiple overlapping antenna patterns due to

pattern diversity.

To capture the above characteristics, our model conceptually consists of two modules.

Module one is antenna pattern selection, in which the radiation pattern is chosen by each

node. The choices of patterns determine the link-coverage and interference relations. The

second module is link scheduling, which determines the set of links that are active during

each time slot, while considering interference constraints. Logically these two modules are

hierarchical: link scheduling is performed after antenna pattern selecting, because no link

can be established unless one of the covering patterns is chosen first. Based on the link-layer

model, we can maximize the throughput by optimally selecting antenna patterns and the

interference-free link sets in each slot.

2) Modeling Details: We model the MWN as a directed graph G(V, E), where each node

is equipped with a single RA. We assume that T time slots are available to the network

under a single frequency (alternatively one can model it using multiple frequency bands).

We do not consider power control in this work. Let Ω represent the set of multi-hop flows in

the network, and rf denote the rate of flow f ∈ Ω. In case that routing scheme is given, we

denote L the set of links in the flows. Let zl(t) denote whether link l is actively transmitting

in slot t. All variables and parameters are shown in Table. 6.1.

We use xi(t) and yi(t) to denote whether node i transmits or receives in time slot

t. Assuming half-duplex operation on each transceiver, we have the following link-rate

constraint:

xi(t) + yi(t) 6 1 (∀i ∈ N ) (6.1)

Given the ability of fast antenna reconfiguration, at each time slot t, node i selects a

transmit antenna pattern k, which can be different across time slots. In addition, since we

assume a general antenna model, the patterns can be of any shape and multiple patterns

can be arbitrarily overlapped. However, each node can only select one pattern from its set
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Table 6.1. Major Notations

xi(t), yi(t) whether node i transmits/receives at time slot t

pi,k(t) whether node i selects pattern k at slot t

L,N ,Ω the selected link set, node set and flow set

αi,j(t) whether link (i, j) is in node i’s transmitting area at slot t

βi,j(t) whether link (i, j) is in node i’s interference area at slot t

θi,j(t) the link (i, j)’s capacity at slot t

Ai,j,k
transmission area parameter, denotes whether link (i, j) is in
node i’s transmitting area under pattern k

Bi,j,k
interference area parameter, denotes whether link (i, j) is in
node i’s interference area under pattern k

Θi,j,k
link capacity parameter, denotes link (i, j)’s capacity
under node i’s pattern k

zi,j(t) whether link (i, j) is active at slot t

ci,j overall capacity of link (i, j)

ri,j,f rate of link (i, j) on flow f

rf rate of flow f

ai,j(t), bi,j(t),
intermediate variables for linearization reformulationmi,j(t), φi,j(t),

ψi,j(t), wi,j(t)

of candidate patterns Ki in each time slot, and we introduce a binary variable pi,k(t) = 1

to denote such a selection:

∑
k∈Ki

pi,k(t) = xi(t) (∀i ∈ N ) (6.2)

To capture the hierarchical relation between pattern selection and link scheduling, we

use the variable αi,j(t) to denote whether link (i, j) is covered by any pattern selected

by node i in slot t (i.e., whether link (i, j) is in Gr(Vr,t, Er,t), which denotes the dynamic

topology due to pattern reconfigurability in time slot t). An example is shown in Fig. 6.2,

where the link (1, 2) is available at that time slot as it is covered by the pattern selected,

thus we have α1,2(t) = 1. Note that it does not mean link (1, 2) is active, but only makes

it an available candidate ready for scheduling. To denote whether link (i, j) is covered in

Gr under the transmitting node’s pattern k, we use Ai,j,k, a binary link-pattern parameter.

By selecting a pattern pi,k(t) in slot t, αi,j(t) is determined by:

αi,j(t) =
∑
k∈Ki

pi,k(t) ·Ai,j,k, (∀(i, j) ∈ L) (6.3)
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We use θi,j(t) to denote the link capacity in time slot t. Θi,j,k refers to the link-capacity

parameter, which denotes link (i, j)’s capacity under its transmitter’s antenna pattern k.

In reality, the capacity is a function of transmitting power, antenna gain, channel gain, etc.

This parameter can be derived based on either experimental measurements (e.g., data rate

multiplies packet deliver probability), or channel capacity model. In Sec. 6.5, we adopt

an existing channel-capacity model Θi,j = W ∗ log2(1 + Pt · Ga · Gij/PN ) [63] to calculate

link capacity. This is Shannon capacity which only considers SNR instead of SINR, since

we adopt a protocol model. However, we can use reality check technique [63] to make sure

the scheduling solution is feasible when considering the aggregated interference from all the

transmitters, which is orthogonal to our work. Similar to constraint (6.3), by selecting a

pattern pi,k(t), link (i, j)’s capacity is computed as:

θi,j(t) =
∑
k∈Ki

pi,k(t) ·Θi,j,k, (∀(i, j) ∈ L) (6.4)

The selection of patterns affects the interference relation in the network. We use βi,j(t)

to denote whether the transmission of node i can interfere with another node j when j is

receiving data from another source. An example is shown in Fig. 6.2, in which link (1, 2)

and (1, 3) are interfering links, thus β1,2(t) = β1,3(t) = 1. Bi,j,k is the link-interference

parameter, which denotes whether node j is in the interference area under the transmitting

node i’s antenna pattern k. Similarly, once the pattern is selected, the interference relation

is determined as:

βi,j(t) =
∑
k∈Ki

pi,k(t) ·Bi,j,k, (∀(i, j) ∈ L) (6.5)

In our model, we assume that each transceiver can only transmit to/receive from one

link concurrently. Thus we use primary interference to denote the transmission conflicts of

all the links sharing a transmitter/receiver. The binary variables xi(t) and yi(t) stipulate

that only one link/stream is active at each node i in each slot:

xi(t) =
∑

(i,j)∈Li,out

zi,j(t), (∀i ∈ N ) (6.6)
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Fig. 6.2. An illustration of link-coverage and interference area. α1,2(t) = 1. β1,2(t) =
β1,3(t) = 1.

yi(t) =
∑

(j,i)∈Li,in

zj,i(t), (∀i ∈ N ) (6.7)

Only if the link (i, j) is covered in time slot t, can it then be activated. In other words,

if link (i, j) is active in slot t, i.e. zi,j(t) = 1, then we must have αi,j(t) = 1:

∑
(i,j)∈L

zi,j(t) · (1− αi,j(t)) = 0 (6.8)

ci,j denotes the link capacity averaged over all slots when this link is active:

ci,j = 1/T ·
T∑
t

zi,j(t) · θi,j(t), (∀(i, j) ∈ L) (6.9)

We define secondary interference as the transmission conflicts among different interfering-

links without common nodes. The secondary interference at receiver side must be taken into

account to avoid conflict. If node i is receiving, i.e yi(t) = 1, then any potential interfering

source must not transmit in the same slot unless it is transmitting to node i:

yi(t) ·
∑

(j,i)∈Li,in

βj,i(t) · (1− zj,i(t)) · xj(t) = 0 (6.10)

Let ri,j denote the link rate. For intermediate nodes, the overall input rate equals the

output rate. For source and receiving nodes, the output/input rates equal the flow rate:

∑
(j,i)∈Li,in

rj,i,f =
∑

(i,g,f)∈Li,out

ri,g,f , (∀i ∈ N ,∀f ∈ Ω) (6.11)
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∑
(j,i)∈Li,in

rj,i,f = rf , (∀i ∈ N , ∀f ∈ Ω) (6.12)

∑
(i,j)∈Li,out

ri,j,f = rf , (∀i ∈ N ,∀f ∈ Ω) (6.13)

The achievable link rate should always be upper-bounded by its capacity, thus we have

the following link-rate constraint:

∑
f

ri,j,f 6 ci,j (∀(i, j) ∈ L) (6.14)

From a high level, a feasible solution satisfying the above constraints essentially finds

non-interfering concurrent transmitting links along with their antenna patterns from the

network at every time slot t.

6.3.3 Optimization Formulation

Based on the link-layer model, we formulate the throughput optimization with recon-

figurable antennas (TORA) problem, where we aim at maximizing the overall through-

put of one or multiple multi-hop flows, while satisfying all the constraints above. The

TORA problem is shown in Fig. 6.3. h(·) denotes a general linear weighted function, e.g.,

u = η1r(f1) + η2r(f2). For simplicity, in our evaluation, we assume ηi = 1 for all flows.

TORA is a mixed non-linear integer programming problem, which is generally NP-hard.

In the above, xi(t), yi(t), αi,j(t), βi,j(t), zi,j(t), pi,k(t) are all binary variables, ci,j , θi,j(t), ri,j,f , rf

are continuous. Currently, TORA only considers transmitter-side pattern reconfigurabil-

ity. But it can be easily extended to support polarization/frequency reconfigurability by

introducing another antenna state variable at the receiver side, which will be our future

work.

Reformulation: In our formulation, several constraints are non-linear. Therefore, we

use RLT to linearize these constraints. We first set zi,j(t) ·αi,j(t) = ai,j(t). Then constraint
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max u =
∑
f∈Ω

h(r(f))

s.t. Half duplex constraints:(6.1);

Pattern selection constraint:(6.2);

Link coverage constraint(6.3);

Link capacity constraint:(6.4);

Link interference constraint:(6.5);

Transmitter conflict constraint:(6.6);

Receiver conflict constraint:(6.7);

Link coverage and link active constraint:(6.8);

Link capacity constraint:(6.9);

Receiver interference constraint:(6.10);

Route balance constraints:(6.11− 6.13);

Link rate constraint:(6.14);

Fig. 6.3. Throughput optimization problem in multi-hop networks with reconfigurable an-
tennas (TORA)

(6.8) is reformulated into:

∑
zi,j(t)−

∑
ai,j(t) = 0 (6.15)

In addition, several new constraints are needed after we introduce the new variable:

ai,j(t) > 0; zi,j(t)− ai,j(t) > 0; αi,j(t)− ai,j(t) > 0;

1− αi,j(t)− zi,j(t) + ai,j(t) > 0 (6.16)

In (6.9), we set mi,j(t) = zi,j(t) · θi,j(t), and constraint (6.9) becomes:

ci,j = 1/T ·
T∑
t

mi,j(t), (6.17)

and several new constraints are added after introducing new variable mi,j(t):

mi,j(t) > 0; zi,j(t)−mi,j(t) > 0; θi,j(t)−mi,j(t) > 0;

1− θi,j(t)− zi,j(t) +mi,j(t) > 0 (6.18)
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In constraint (6.10), we first set yi(t)·xj(t) = wi,j(t), then we set βj,i(t)·wi,j(t) = φi,j(t),

zi,j(t) · βi,j(t) = bi,j(t), and bj,i(t) · wi,j(t) = ψi,j(t). Then we have:

∑
φi,j(t)−

∑
ψi,j(t) = 0; (6.19)

Again, by introducing the new variables, we have the constraints:

bi,j(t) > 0; zi,j(t)− bi,j(t) > 0; βi,j(t)− bi,j(t) > 0;

1− βi,j(t)− zi,j(t) + bi,j(t) > 0 (6.20)

wi,j(t) > 0; xj(t)− wi,j(t) > 0; yi(t)− wi,j(t) > 0;

1− xj(t)− yi(t) + wi,j(t) > 0 (6.21)

φi,j(t) > 0; βj,i(t)− φi,j(t) > 0; wi,j(t)− φi,j(t) > 0;

1− βj,i(t)− wi,j(t) + φi,j(t) > 0 (6.22)

ψi,j(t) > 0; bj,i(t)− ψi,j(t) > 0; wi,j(t)− ψi,j(t) > 0;

1− bj,i(t)− wi,j(t) + ψi,j(t) > 0 (6.23)

So far, all the constraints have been linearized through reformulation, thus TORA can

be solved using the branch and bound technique. Note that some equations (e.g., Eq.6.16)

could be further simplified after the formal reformulating, which however do not change the

optimization results. We use IBM’s off-the-shelf tool CPLEX to solve our problem.
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6.3.4 Variations of TORA using Traditional Antennas

We use OAs and DAs as comparisons in our work. For DAs, we assume they can

select any pattern, which is then fixed across all slots. We show that the same throughput-

optimization problem using omni-directional antennas (TOOA) and directional antennas

(TODA) are special cases of our problem (TORA).

For omni-directional antennas, since there is only one antenna pattern, we can simplify

the constraints (6.3)-(6.5) as:

αi,j(t) = Ao
i,j , θi,j(t) = Θo

i,j , βi,j(t) = Bo
i,j (∀(i, j) ∈ L) (6.24)

By removing (6.2), we obtain the TOOA problem. We can reduce it to TORA by intro-

ducing the pattern variable pi and constraint (6.2) and set Ar
i,j,k = Ao

i,j , B
r
i,j,k = Bo

i,j ,Θ
r
i,j,k =

Θo
i,j ,∀k. We can see that the reduced form of TOOA is just a special case of TORA in

which all the transmission area, interference area, and link capacity parameters are the

same under all patterns.

Formulation of the TODA problem is similar by simply replacing Ao
i,j , B

o
i,j ,Θ

o
i,j with

Ad
i,j , B

d
i,j ,Θ

d
i,j in (6.24), where the antenna directions (patterns) are arbitrary and prede-

termined. As the link-coverage and interference areas are static, the models with omni-

directional and directional antennas are simpler and the two corresponding problems are

easier to solve.

6.4 Theoretical Throughput Gain Analysis of RAs

In this section, we study the gain brought by reconfigurable antennas in MWNs. We

can prove the superiority of RAs in terms of overall network throughput compared with

OAs and DAs in certain conditions.

Theorem 10. Given a network G(V, E) equipped with omni-directional antennas or re-

configurable antennas respectively, if ∀i, Ti,OA ⊆
⋃
k

Ti,k,RA, and
⋃
k

Ii,k,RA ⊆ Ii,OA, for the

overall maximum throughput in TORA and TOOA problems, we always have uRA > uOA.
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In Theorem 10, the rationale is that RAs can maintain/improve network connectivity

degree while reducing the interference degree. This can be formally proved using conflict-

graph based methodology [60]. For detailed proof, please refer to our technical report [64].

Theorem 10 can be extended to the general form:

Theorem 11. Given a network G(V, E) equipped with two general types of reconfigurable

antennas RA1 and RA2, if ∀i, k2,∃K, s.t.Ti,k2,RA2 ⊆
⋃

k1∈K
Ti,k1,RA1 and

⋃
k1∈K

Ii,k1,RA1 ⊆

Ii,k2,RA2, then we have uRA1 > uRA2.

For comparison with DAs, we can prove RA’s superiority using similar approach.

6.5 Evaluation

In this section, we will evaluate the network throughput of MWNs with RAs through

simulations. We solve our TORA problem using CPLEX in Virtual C++ environment and

compare the results with TOOA and TODA problems. We first use some simple case studies

to show the advantage of RAs through inspecting the link scheduling in details. Then we

randomly generate multiple flows to validate the superiority of RAs in the average cases.

6.5.1 Simulation Setting

We place 60 nodes randomly distributed in a 100×100 square area. Time is divided into

T = 8 slots. We assume each node has K candidate patterns to choose from. Each pattern

covers a fan-shape area with 2π/K angle (note that the pattern could be of any shape in

our general model, but here we use fan-shape to simplify the simulation). By using RAs,

each node can swiftly change its pattern between any two adjacent time slots, resulting in

different transmission and interference areas. By using DAs, the patterns are fixed a priori

as DAs cannot perform swift pattern switching. Note that when K = 1, it is equivalent

to the case of using OAs. In subsection B and first part of subsection C, we explore the

throughput gain brought by RAs due to pattern diversity and fast reconfigurability. To

eliminate the uncertain influence brought by antenna-directivity gain, we assume antenna

gain is fixed when using RAs and DAs, thus the transmission and interference ranges are
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not extended. (This could be implemented in practice by performing power control but is

out of the scope of this work.) In addition, when increasing K, we satisfy the conditions in

Theorem 11. In the second part of subsection C, we test the influence of antenna-directivity

gain by considering it variable.

Table 6.2. Link scheduling details for case study 1

Flows Path Link RA Slots Rate OA Slots Rate

Flow 1
18 → 6 6,7 0.25 6 0.125
6 → 10 3,4 0.25 4 0.125

Flow 2
5 → 6 0,1 0.25 1 0.125
6 → 36 2,5 0.25 7 0.125

Flow 3
5 → 13 2,3,4,6 0.5 0,3,5 0.375
13 → 27 0,1,5,7 0.5 2,4,7 0.375

Table 6.3. Link scheduling details for case study 2

Flows Path Link RA Slots Rate RA-OL Slots Rate

Flow 1
44 → 25 0,4 0.25 3,4,5,6 0.5
25 → 13 1,7 0.25 0,1,2,7 0.5
13 → 5 3,5 0.25 3,4,5,6 0.5

6.5.2 Case Study

First, we use two examples to show the benefits brought by using RAs. Given fixed

antenna gain, transmission and interference ranges are set as (30, 50). To better illustrate

the benefits of pattern reconfigurability and diversity, we temporarily simplify the link-

capacity model by normalizing link capacity as 1 for all links covered by the transmission

range of node i, ∀i ∈ N . Case 1 is shown in Fig. 6.4(a) where we can transmit three

flows using RAs. The details of scheduling are shown in Table 6.2. Among these flows, the

normalized throughput is 0.25 for each of flows 1 and 2, and 0.5 for flow 3, thus the overall

network throughput is 1. To achieve this, swift pattern switching is performed. Node 5

chooses pattern 3 to transmit to node 6 on slots 1, 2 and chooses pattern 8 to transmit to

node 13 in slots 2, 3, 4, and 6. Node 6 chooses pattern 3 to transmit to node 36 in slots 2, 5

and chooses pattern 5 to transmit to node 10 in slots 3, 4. Now assuming we use DAs instead
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(a) (b)

Fig. 6.4. Examples of fast reconfigurability (a) and pattern diversity (b). (a) three flows
coexist by utilizing pattern-switching capability of RAs. Flow 1: 18 → 6 → 10. Flow 2: 5
→ 6 → 36. Flow 3: 5 → 13 → 27. (b) Flow: 44 → 25 → 13 → 5 by using 50% pattern
overlapping (OL).

of RAs, it is not difficult to see that the maximum throughput can never be larger than 0.5

by using any pre-fixed antenna pattern (the best case is only transmitting one flow, e.g.,

flow 3, which achieves the normalized overall throughput as 0.5). The reason is the lack of

ability to perform fast pattern selection when using traditional DAs. In this case, nodes 5

and 6 cannot fully utilize the transmitting opportunities in different directions, which leads

to a lower overall network throughput.

On the other hand, by using OAs, the throughput of flows 1, 2, and 3 is 0.125, 0.125,

and 0.375, respectively, which is also lower than the throughput using RAs. This is due

to the enlarged interference degree brought by OAs. In this case, each node needs to

avoid generating interference to the nodes locating in a broader region, thus limiting its

opportunity to transmit.

Table 6.4. Reconfigurability Benefits: RA vs. OA

1 pattern (OA) 2 patterns 4 patterns 8 patterns

1 flow 100 % 116.3 % 122.6 % 122.8 %

2 flows 100 % 129.2 % 146.5 % 155.2 %

In case 2, we continue exploring the benefits brought by RAs. In Fig. 6.4 (b), we show

that the network throughput can be enhanced by exploiting pattern diversity and the details
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Fig. 6.5. The average network throughputs (in bps/Hz) comparison by using RAs, OAs,
and DAs. Pattern number 1 denotes the OAs case. (a) single flow scenarios; (b) two
concurrent-flow scenarios.
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Fig. 6.6. The average network throughputs (in bps/Hz) comparison by using RAs, RA-OL,
and OAs under different hop numbers for each flow. Total pattern beam width γ is set as π/2
for RAs and RA-OL(50% overlapping). (a) single flow scenarios; (b) two concurrent-flow
scenarios.

Table 6.5. Pattern Diversity Benefits: RA, RA-OL vs. OA

1 hop 2 hops 3 hops 4 hops

1 flow RA 100 % 100 % 185.1 % 199.2 %

1 flow RA-OL 100 % 100 % 187 % 199.2 %

2 flow RA 126.1 % 133.4 % 197.3 % 220.7 %

2 flow RA-OL 127.4 % 138.8 % 218.1 % 242.7 %

of scheduling are shown in Table 6.3. In case 1, each link is exclusively covered by only

one pattern, that is, no pattern overlaps with others. Intuitively, larger pattern diversity

provides more pattern-selection choices for each node, maintaining the network connectivity

degree while further decreasing the interference degree. Therefore, the network throughput

can be further improved. In Fig. 6.4(b), when considering no pattern overlapping (OL),
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link 13→ 5 is covered by only one pattern that inevitably generates interference to node 25.

Therefore, nodes 13 and 44 cannot transmit concurrently and the total network throughput

is 0.25. When considering pattern overlapping (which brings pattern diversity), link 13→ 5

can be covered by another pattern that does not generate interference to node 25. By

selecting this pattern at some slot t, link 13 → 5 is covered (i.e., α13,5(t) = 1), meanwhile

the link 13→ 25 is not interfering (i.e., β13,25(t) = 0). As the interference degree is reduced,

more links can transmit concurrently in one slot, leading to a higher network throughput

of 0.5. This example also shows the distinctiveness of our work compared with previous

research on steerable beam antennas such as [65], which determines the antenna direction

simply based on antenna-directivity gain, instead of joint optimization of pattern selection

and link scheduling.

6.5.3 Average Throughput Result

We test the average throughput gain of RAs compared with traditional DAs and OAs.

In each simulation we repeatedly carry out 50 independent tests. The parameters are chosen

as: transmission power Pt = 20dBm, noise level PN = −93dBm, [9] transmitting frequency

f = 2.4GHz and W is normalized as 1. We adopt the free-space path-loss model to calculate

channel gain Gij . We first test the fixed antenna-gain case by setting the antenna gain as

1. The transmission and interference ranges are set as (30, 50). We take all parameters into

our link-capacity model to calculate the link capacity. The average throughputs are shown

in Fig. 6.5. We can observe that with the increase of pattern number, the throughput

decreases by using DAs while it always increases by using RAs. The reason is that DAs

degrade the network connectivity while RAs maintain the connectivity degree and decrease

the interference degree. Note that when the pattern number is 1 (i.e., K = 1), it is equivalent

to the case of OAs. The throughput benefits of RAs vs. OAs in percentages are shown in

Table 6.4. The larger number of candidate patterns we have, higher the throughput benefit

is due to reconfigurability.

In addition to showing the gain brought by pattern reconfigurability, we perform an-

other simulation to test the throughput gain brought by pattern diversity through pattern
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Fig. 6.7. The average network throughputs (in bps/Hz) comparison with variable antenna-
directivity gain by using RAs, OAs, and DAs. Note that when pattern number is 1, it is
equivalent to the OAs case. (a) single flow scenarios; (b) two concurrent-flow scenarios.

Table 6.6. Reconfigurability Benefits: RA vs. OA (with variable antenna-directivity gain)

1 pattern (OA) 2 patterns 4 patterns 8 patterns

1 flow 100 % 117.4 % 125.2 % 143.7 %

2 flows 100 % 125.8 % 156.2 % 194.1 %
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Fig. 6.8. The average network throughputs (in bps/Hz) comparison with variable antenna-
directivity gain by using RAs, RA-OL, and OAs under different hop numbers for each flow.
Total pattern beam width γ is set as π/2 for RAs and RA-OL(50% overlapping). (a) single
flow scenarios; (b) two concurrent-flow scenarios.

Table 6.7. Pattern Diversity Benefits: RA, RA-OL vs. OA (with variable antenna-
directivity gain)

1 hop 2 hops 3 hops 4 hops

1 flow RA 117.5 % 120.5% 154.3 % 137.0 %

1 flow RA-OL 117.5 % 120.5 % 181.2 % 144.4 %

2 flow RA 144.5 % 165.5 % 179.8 % 166.5 %

2 flow RA-OL 155.3 % 190.1 % 215.7 % 196.0 %
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overlapping. The results are shown in Fig. 6.6. From this figure, we can find that: 1) by in-

creasing the pattern diversity, the network throughput can always be enhanced. The reason

is that increasing pattern diversity can also decrease interference degree while maintaining

the connectivity degree. 2) With the increase of hop count, the throughput decreases. The

reason is straightforward as more hops brings more competitions within the network (due

to interference and half-duplex) thus cutting down the network throughput in each flow.

The results also validate our theoretical analysis in Sec.6.4.

The simulation results above illustrate the throughput gains brought by pattern recon-

figurability and diversity. When considering variable antenna-directivity gain, it becomes

more complicated and the overall throughput gain/loss will be uncertain. The reason is that

by focusing the transmitting power towards a fixed direction, the transmission range as well

as interference range in this direction are enlarged. While enlarged antenna gain increases

link capacity and transmission range, it can also increase the interference degree which can

degrade overall network throughput. The transmission and interference ranges of OAs are

set as (40, 60). We derive the RAs and DAs antenna-directivity gain as 2/(1 − cos(γ/2))

based on the power-density-analysis approach [66] where γ is the pattern’s beam width.

From the results shown in Fig. 6.7 and 6.8, we can find: 1) the overall throughput by

using RAs is higher than the one by using DA. 2) With the increase of pattern number,

the network throughput increases in general but in some cases (e.g., with 4-hop RAs from

2 patterns to 4 patterns in Fig. 6.7. (b)) the throughput decreases due to the enlarged

interference degree brought by antenna-directivity gain. To solve this issue, some solutions

such as precise power control can be employed, which however is beyond the scope of this

dissertation and will be studied in our future work.

6.6 Summary

In this chapter, we studied the throughput gain brought by reconfigurable antennas

(RAs) in multi-hop wireless networks (MWNs). We proposed a novel tractable link-layer

model which successfully captures the dynamic antenna pattern-link relations. Based on

our model, the throughput optimization problem with RAs (TORA) was proposed. We
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formulated our problem as an MINLP problem and then reformulated it into an MILP

problem using RLT technique before solving it with CPLEX. We theoretically proved the

superiority of RAs to traditional omni-directional and directional antennas using a conflict-

graph based methodology. The benefits of RAs are validated by several case studies and

extensive simulations. Our optimization results provide a performance bound in terms of

overall throughput for any future link-layer-distributed-protocol design with RAs in MWNs.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

In this chapter, we summarize our contributions in this dissertation and draw conclu-

sions. Then we will outline several future directions of interference mitigation in wireless

networks.

In the coexistence of wireless networks, most previous works are limited to the tra-

ditional omni-directional antennas. Recent advances in wireless MIMO and reconfigurable

antennas have been proven to remarkably enhance the coexistence performance of wire-

less networks. However, these works focus on the physical-layer design. In my work, we

study the coexistence problem at the network level. Specifically, we use global optimiza-

tion approaches to derive the performance upper bounds of multi-hop networks’ coexistence

problem. For the practical-distributed approach, we use game-theoretical method to study

the coexistence problem of wireless networks.

In Chapter 2, we study the coexistence problem of a multi-hop BAN against the ex-

ternal CTI, especially those from non-protocol-compliant sources that are much harder to

mitigate than the CTI from 802.x devices. We formulate a joint routing and power control

problem aiming at overcoming the impact of such strong CTI in a BAN, while using min-

imal overall energy consumption. The optimal results are derived by using CPLEX after

reformulated into linear form. We then propose a practical JRPC protocol which exploits

passive measurement and prediction to model the uncertain impact of CTI on link qualities,

and then propose a heuristic algorithm to efficiently solve our JRPC problem. Remarkably,

evaluation results show that our JRPC protocol can effectively enlarge the “reliability zone”

of the BAN, even when the CTI source is closest to the body. Our protocol also achieves

high efficiency, low-energy consumption and overhead. Future work will focus on distributed
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algorithms.

In Chapter 3, we performed a study of the cooperative cross-technology interference

mitigation (CIM) paradigm for heterogeneous multi-hop networks in unplanned settings.

The main technical challenges are due to the lack of a predefined network priority in un-

planned deployments, and to various forms of network heterogeneity. We first show that

general technology-independent interference cancellation (TIIC) is feasible for heteroge-

neous multi-hop networks with different protocol standards, and then introduce our two

CIM models with different interference cancellation (IC) techniques. We characterize the

performance bounds of CIM via deriving the Pareto-optimal throughput curve. Through

extensive simulation results we show that the CIM paradigms with full IC and receiver-side

IC can both offer significant performance gains in throughput to the coexisting networks

compared with the traditional interference-avoidance (IAV) paradigm. The models and re-

sults will guide practical CIM protocol design, and pave the way to ultimately change the

coexistence paradigm for unplanned heterogeneous networks in unlicensed bands and TV

white spaces.

In Chapter 4, we study the coexistence problem of MIMO wireless networks. Different

from previous works, we focus on this problem from a new point of view at a higher level:

the incentive of complying with/violating the underlying MAC protocols. We establish a

new multi-level game framework which incorporates both the high-level cooperative/non-

cooperative strategies, and the low-level DoF allocation strategies. The game is played in

two rounds, in which the first round is modeled as a static game and the second round

is modeled as a Stackelberg game. Both the utilities and strategies in equilibrium are

analyzed and derived in this chapter. By studying the equilibriums in different scenarios,

we have insights of the cooperation incentives in the coexistence of single-link MIMO wireless

networks, which could be used as guidance in network design in spectrum-scarce scenarios.

In Chapter 5, we extend our game-theoretical approach to the multi-hop cases, specifi-

cally in the domain of cognitive radio networks. We analyze both the primary and secondary

networks’ optimal strategies in the coexistence game. We study two different types of sec-
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ondary networks, categorized by their selfish behaviors. The first type is selfish-compliant

in following the spectrum access rules and does not generate any interference to the primary

network. The secondary type is selfish-non-compliant secondary network, which maximizes

its own throughput without caring its interference to the primary network. We derive the

equilibriums of both primary networks and each of the two types of secondary networks

respectively. Our results imply that the secondary networks always have the incentive to

play selfishly, as doing so could enhance its average throughput. To defend against the

selfish secondary networks, we could enlarge the interference areas of the primary network’s

transmitter, which could enhance its throughput in the equilibrium through an implicit

interference chain between the primary network and the secondary network.

In Chapter 6, we study the throughput gain brought by reconfigurable antennas (RAs)

in multi-hop wireless networks (MWNs). We propose a novel tractable link-layer model

which successfully captures the dynamic antenna pattern-link relations. Based on our

model, the throughput optimization problem with RAs (TORA) was proposed. We for-

mulate our problem as a MINLP problem and then reformulate it into a MILP problem

using RLT technique before solving it with CPLEX. We theoretically prove the superior-

ity of RAs to traditional omni-directional and directional antennas using a conflict-graph

based methodology. The benefits of RAs are validated by several case studies and exten-

sive simulations. Our optimization results provide a performance bound in terms of overall

throughput for any future link-layer-distributed-protocol design with RAs in MWNs.

7.2 Future Research Directions

In the area of body area networks coexisting with cross-technology interferences, the

major future direction is to develop a distributed algorithm, instead of our centralized

optimization/heuristic algorithm. A distributed scheme could reduce the computational

overhead at the central controller, though this is not an overkill in a small-size body area

network. Another direction is to improve our link-PDR estimation and prediction algo-

rithm to make it robust against fast-changing and unpredictable interferences. In addition,

defending against malicious interfering signals is also worth of studying. Theoretically, the
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attacker could perform smart jamming only at the data-transmitting phase, but keep silent

at the link-measuring phase. In this case, the interference degree will be underestimated by

the BANs.

In the area of cooperative interference mitigation of heterogeneous wireless MIMO

networks, One future direction is a more precise modeling. Our current model is based on a

global node-cancellation order. However, this ordering is sufficient but not necessary. The

sufficient and also necessary modeling is still an open problem. Our goal is to design another

model to further enhance the overall-throughput-performance bounds. Another direction is

the distributed algorithm design. While our work derives the upper bound of the coexisting

networks’ throughputs, a distributed algorithm run on each network/node is more practical

in reality. Ideally, such algorithms should not rely on the global topology/interference

information, thus incurring less communication overhead within the networks.

In the area of a game-theoretical approach to study the coexistence of MIMO wireless

networks, the major future direction is the analysis of multiple multi-hop networks’ coex-

istence. However, this is a challenge as the strategy space is large due to the intricacy of

link scheduling. We need an efficient algorithm to determine the leader network’s optimal

strategy. In addition, as our results show that the secondary networks always have the in-

centive to play selfishly, we need to design a scheme to enforce cooperation by the secondary

network, which is necessary for primary network’s reliable transmission.

In the area of throughput optimization in wireless networks with reconfigurable anten-

nas, one future direction is to study the coexistence problem of multiple wireless networks

with reconfigurable antennas, just like our work in Chapter 3. Ideally, the throughput region

could be improved by cooperatively using reconfigurable antennas to reduce the interfer-

ence degree. Another direction is modeling of frequency and polarization reconfigurability.

Currently we only model the pattern reconfigurability. By considering the other two types

of reconfigurability, we could further improve the overall throughput performance.
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