25 research outputs found

    Automated Synthesis of Enforcing Mechanisms for Security Properties in a Timed Setting

    Get PDF
    AbstractIn [Martinelli, F. and I. Matteucci, Modeling security automata with process algebras and related results (2006), presented at the 6th International Workshop on Issues in the Theory of Security (WITS '06) - Informal proceedings; Martinelli, F. and I. Matteucci, Through modeling to synthesis of security automata (2006), accepted to STM06. To appeare in ENTCS] we have presented an approach for enforcing security properties. It is based on the automatic synthesis of controller programs that are able to detect and eventually prevent possible wrong action performed by an external agent. Here, we extend this approach also to a timed setting. Under certain assumptions, we are also able to enforce several information flow properties. We show how to deal with parameterized systems

    Abstraction in real time process algebra

    Get PDF

    Discrete time process algebra

    Get PDF

    Formal models and analysis of secure multicast in wired and wireless networks

    Get PDF
    The spreading of multicast technology enables the development of group communication and so dealing with digital streams becomes more and more common over the Internet. Given the flourishing of security threats, the distribution of streamed data must be equipped with sufficient security guarantees. To this aim, some architectures have been proposed, to supply the distribution of the stream with guarantees of, e.g., authenticity, integrity, and confidentiality of the digital contents. This paper shows a formal capability of capturing some features of secure multicast protocols. In particular, both the modeling and the analysis of some case studies are shown, starting from basic schemes for signing digital streams, passing through proto- cols dealing with packet loss and time-synchronization requirements, concluding with a secure distribution of a secret key. A process-algebraic framework will be exploited, equipped with schemata for analysing security properties and compositional principles for evaluating if a property is satisfied over a system with more than two components

    A framework for automatic security controller generation

    Get PDF
    This paper concerns the study, the development and the synthesis of mechanisms for guaranteeing the security of complex systems, i.e., systems composed by several interactive components. A complex system under analysis is described as an open system, in which a certain component has an unspecified behavior (not fixed in advance). Regardless of the unspecified behavior, the system should work properly, e.g., should satisfy a certain property. Within this formal approach, we propose techniques to enforce properties and synthesize controller programs able to guarantee that, for all possible behaviors of the unspecified component, the overall system results secure. For performing this task, we use techniques able to provide us necessary and sufficient conditions on the behavior of this unspecified component to ensure the whole system is secure. Hence, we automatically synthesize the appropriate controller programs by exploiting satisfiability results for temporal logic. We contribute within the area of the enforcement of security properties by proposing a flexible and automated framework that goes beyond the definition of how a system should behave to work properly. Indeed, while the majority of related work focuses on the definition of monitoring mechanisms, we aid in the synthesis of enforcing techniques. Moreover, we present a tool for the synthesis of secure systems able to generate a controller program directly executable on real devices as smart phones

    Formal models and analysis of secure multicast in wired and wireless networks

    Get PDF
    The spreading of multicast technology enables the develop- ment of group communication and so, dealing with digital streams be- comes more and more common over the Internet. Given the flourishing of security threats, the distribution of streamed data must be equipped with sufficient security guarantees. To this aim, some architectures have been proposed in the last few years, to supply the distribution of the stream with guarantees of, e.g., authenticity, integrity and confidentiality of the digital contents. This paper shows a formal capability of captur- ing some features of secure multicast protocols. In particular, both the modeling and the analysis of some case studies are shown, starting from basic schemes for signing digital streams, passing through protocols deal- ing with packet loss and time-synchronization requirements, concluding with a secure distribution of a secret key. A process-algebraic framework will be exploited, equipped with schemata for analysing security proper- ties and compositional principles for evaluating if a property is satisfied over a system with more than two components
    corecore