

C

Consiglio Nazionale delle Ricerche

Formal models and analysis of secure
multicast in wired and wireless networks

RR.. GGoorrrriieerrii,, FF.. MMaarrttiinneellllii,, MM.. PPeettrroocccchhii

IIT TR-07/2006

Technical report

Giugno 2006

Iit

Istituto di Informatica e Telematica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Formal models and analysis of secure multicast

in wired and wireless networks⋆

Roberto Gorrieri
Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy and

Fabio Martinelli, Marinella Petrocchi
IIT - CNR, Pisa, Italy

Abstract. The spreading of multicast technology enables the develop-
ment of group communication and so, dealing with digital streams be-
comes more and more common over the Internet. Given the flourishing
of security threats, the distribution of streamed data must be equipped
with sufficient security guarantees. To this aim, some architectures have
been proposed in the last few years, to supply the distribution of the
stream with guarantees of, e.g., authenticity, integrity and confidentiality
of the digital contents. This paper shows a formal capability of captur-
ing some features of secure multicast protocols. In particular, both the
modeling and the analysis of some case studies are shown, starting from
basic schemes for signing digital streams, passing through protocols deal-
ing with packet loss and time-synchronization requirements, concluding
with a secure distribution of a secret key. A process-algebraic framework
will be exploited, equipped with schemata for analysing security proper-
ties and compositional principles for evaluating if a property is satisfied
over a system with more than two components.

Keywords. Formal security models and analysis, multicast communication.

1 Introduction

Multicast communication and security issues. With the wide use of In-
ternet, the popularity of multicast technology has grown considerably. Exam-
ples include live-broadcasts, digitized audio and video, news feeds, stock quotes,
multi-party video games, multi-party video conferences, data applets, software
updates.

Dealing with multicast communication means, in the terminology currently
present in the literature, dealing with digital streams, i.e., long (potentially
infinite) sequences of bits. The stream is typically sent from one sender to a set
of receivers.

⋆ This research was partly supported by the EU project FP6-IST-4-027748-IP
BIONETS (BIOlogically-inspired autonomic NETworks and Services) and by the
EU project FP6-IST-3-016004-IP-09 Sensoria (Software Engineering for Service-
Oriented Overlay Computers).

Given that network security threats have flourished as well, the increasing
trend to distribute streamed data over the Internet must be equipped with suf-
ficient security guarantees. In particular, the so called stream signature proto-

cols were born with the intent of efficiently solving the problem to sign digital
streams. This class of protocols, designed for open architectures, makes usually
use of hashing techniques and a thrifty use of standard digital signatures to
ensure the authenticity of the sender and the integrity of the stream.

In some cases, confidentiality requirements are also due, as in a pay per view

environment, where only a restricted group of authorized users must have the
ability to consume the stream.

Formal verification of secure multicast. Along with the develop-
ment of schemes for secure multicast, the use of formal techniques for their
analysis represents an interesting challenge because of the diversity of such pro-
tocols from standard cryptographic schemes. Indeed, two peculiarities are: i) a
sender broadcasts a continuous (and possibly unbounded) stream of messages to
a (possibly unbounded) set of receivers; ii) receivers use information retrieved
in earlier packets to legitimate later packets or vice-versa.

Thus, such a formal analysis have raised some interest among researchers.
Some proposals have been given in the past few years. In [1], Archer states
a formal analysis based on model checking techniques (i.e., checking all the
reachable states of a system with respect to the fulfillment of a certain property)
is not feasible. In her opinion, this is because “an infinite state system is required
to represent the inductive relationship between an arbitrary n-th packet and
the initial packet”. Instead, she exploits theorem proving techniques to analyze
the basic version of a well known stream authentication protocol, the TESLA
protocol, [22]. On the other hand, in [3] Broadfoot and Lowe show their successful
results derived applying model checking techniques on TESLA, motivating, even
though informally, several steps of the analysis. In particular, they have shown
how to build a finite model of TESLA, despite of the possibly unboundedness of
the stream of messages (and cryptographic keys) broadcasted by the sender.

Formal methods have been also exploited for analysing a multicast key man-
agement scheme, [26]. The authors model the scheme by a relational modeling
language and perform the analysis using the Alloy Analyzer, an automatic simu-
lation tool. The analysis highlights some flaws of the scheme previously unknown.

The analysis approach we are going to use throughout this paper is quite
different from what has been proposed in the literature so far and focuses its
attention on the verifiability of a system with an arbitrary number of components
(as in the case of stream signature protocols). In particular, some compositional
principles will be applied to the case studies we present. These principles will
allow us to safely compose processes, in such a way that the overall system
preserves the security property that each subsystem separately enjoys.

Goal of the paper. Goal of this paper is to show the formal capability of
capturing security features of multicast protocols, like sensor networks protocols

with real time requirements and secret communication within a multicast group.
Some case studies will be shown, modeled and analyzed by exploiting a process-
algebraic framework, equipped with schemata for analysing security properties
and compositional principles for evaluating if a property is satisfied over a system
with more than two components.

Process algebras. Process algebras represent an algebraic approach to the
study of concurrent processes. They are executable languages for the description
of distributed systems. They allow both the specification of the processes and
the formulation of statements about them, together with methodologies for the
verification of these statements.

To facilitate a comparison between processes, several notions of behavioral
equivalences have been defined within the algebras. We mainly deal with the
notion of weak bisimulation, [20], recalled in the appendix. Also, two extensions
of CCS (the Calculus of Communicating Systems, [20]), namely Crypto-CCS
and tCryptoSPA, will be used throughout the paper (their syntax is concisely
presented in Appendix A).

Compositional strategy and general schemata for security prop-

erties. A compositional principle gives sufficient conditions to conclude that the
composition of two (or more) processes satisfies the composition of two (or more)
properties, provided that the single processes satisfy the single properties. As an
example, such a principle could work as follows: in order to check if a compound
system P ||Q satisfies a formula f (where f says, e.g., that the system is correct),
it is enough to check whether both P and Q separately satisfy f . (Notation ||
represents the parallel composition of processes, see also the appendix.) The
existence of such a principle would be particularly appealing for the target of
our analysis. Indeed, the state-space of the system P ||Q is usually considerably
bigger than those of P and Q, separately. Above all, it would help in analyzing
systems with a possibly unbounded number of components. Indeed, consider the
parallel composition of n instances of process P :

n
︷ ︸︸ ︷

P || . . . ||P

To prove that the overall system enjoys f (for whatever n) it is sufficient to prove
that P enjoys f .

Compositional principles will be used to verify i) an integrity property, i.e., a
sort of robustness against packet modification, and ii) a secrecy property requir-
ing, informally, that the contents of the stream remains unknown to everybody
but the sender and the intended receivers.

Some of these principles were first introduced in [13] for the Generalized Non
Deducibility on Compositions scheme of properties, (GNDC for short), defined
in [6, 9, 8]. In turn, the scheme (reminded in Appendix B) is based on the seminal
notion of non-interference ([11]). We use these principles to verify an instance of
a stream signature protocol dealing with packet loss, see [23] and Subsection 2.2
of this paper. Also, Subsection 3.4 shows an application of compositionality to

analyze confidentiality in a multicast protocol that use group encryption tech-
niques [27].

A variant of this principle was introduced in [15, 13] within a formal frame-
work aimed at verifying timed security properties, i.e., security properties whose
fulfilment is based on timed conditions. In turn, the timed formal framework,
namely the timed-Generalized Non Deducibility on Compositions (tGNDC for
short) has been introduced in [13]. Part of Appendix B is devoted to recall the
tGNDC schema. The principle is applied in Subsection 3.3 to verify a protocol
for broadcast authentication of data in wireless sensor networks [24].

Case studies. The case studies considered throughout the paper are: 1)
the Gennaro-Rohatgi protocol [10], a pioneering protocol introduced in 1997 to
sign digital streams; 2) the Efficient Multi-chained Stream Signature protocol
(EMSS) proposed in [23]. This stream signature protocol implements a signifi-
cant improvement over the Gennaro-Rohatgi protocol, since EMSS guarantees
some robustness against packet loss; 3) the µTESLA (“micro” Timed Efficient
Stream Loss-tolerant Authentication, [24]), a protocol to provide authenticated
broadcast in wireless sensor networks environments; 4) finally, a protocol to dis-
tribute a secret key to a multicast group, [27].

Contributions. The main contributions of this paper are the following.

i) We formally model and analyze some relevant proposals for authenticating
data streams and for giving them data confidentiality. To the best of our knowl-
edge, this is the first attempt to prove some of the security properties of those
protocols (by means of compositional rules).

ii) Starting from modeling the basic scheme of Gennaro and Rohatgi, passing
through protocols dealing with packet loss, concluding with a time-dependent
security wireless protocol and with a secure distribution of a key, the proposed
analysis aims at allowing the modeling and formal validation of a spectrum of
secure multicast and wireless protocols.

iii) Contrary to previous work in the area, e.g., [1, 3], the proposed analysis
is able to check a specification with an unbounded number of components.

Summary. The paper is organized as follows. Section 2 presents the informal
description and the formal model of the case studies. Section 3 is dedicated to
the analysis of some security properties of the presented protocols. Finally, some
conclusions are given.

Even though our effort was to write down a self contained paper, the ap-
pendixes report more information regarding the theory behind the application.
In particular, they report the syntax of the formal languages used in the paper,
they recall the GNDC and tGNDC schemata and they present some proofs.

2 Modeling multicast communication

In this section, we present and formally model some security protocols aiming
at ensuring integrity and authenticity of the so called digital streams, while

section 3.4 proposes a formal model for distributing a secret key to a multicast
group, [27].

Typically, communication involves one sender and an arbitrary number of
receivers. We start to describe the Gennaro-Rohatgi protocol (in its off-line ver-
sion), [10], in order to introduce the reader to the architecture of a simple scheme
for signing streams, and to give basic concepts of our modeling.

2.1 The Gennaro-Rohatgi protocol

In [10], Gennaro and Rohatgi developed a mechanism to sign digital streams.
They aim at assuring a receiver that the information he received is exactly what
the sender has intended.

Applications that deal with streams are typically digitized audio and video,
data feeds, applets. This kind of applications requires the user to consume the
data it receives at almost the input rate, without excessive delay. For this reason,
signing digital streams represents a different problem compared with the signa-
ture of finite messages. Traditional digital signature schemes do not fit properly
because they require the receiver to process the entire message in order to verify
the signature.

The Gennaro-Rohatgi protocol should be considered paradigmatic, being es-
sentially, in its 1997 version, one of the first proposals to efficiently solve the
problem to sign digital streams. Efficient cryptographic solutions (i.e., fast to
be computed and verified, with respect to the time in which these authors made
the proposal) have been adopted in the protocol to allow the entities at stake to
minimize their communication and computation overhead.

The authors present two solutions to the problem, distinguishing two cases:
i) the off-line case: a finite stream which is entirely known to the sender (e.g., a
movie); ii) the on-line case: a potentially infinite stream not known in advance
to the sender (e.g., a live broadcast for news feed).

We model the off-line scheme below. For details about the on-line scheme,
the reader is referred to [10, 14].

The off-line scheme relies on the basic idea to divide the stream into blocks
and to add cryptographic information in each block such that receivers use in-
formation retrieved in earlier blocks to legitimate later blocks.

We first use an intuitive notation usually reported in literature. We consider
a set of agents able to receive messages. With the following notation,

label cj A → B : msg

we represent the transmission of message msg from a sender A to a receiver
B. cj is the j-th communication channel, label is the name of msg.

Thus, let {bi} ∈ Msgs be the set of meaningful payloads, i = 1 . . . l1. h(m) is
the digest of m after applying the hash function; {m}sk(S) is message m digitally
signed by the sender’s private key sk(S). Then, the protocol for the off-line case
is:

1 It is assumed that the sender’s private key sk(S) does not occur in the set {bi}

Block b
′

0 c0 S → R : {h(b
′

1)}sk(S)

Block b
′

i ci S → R : bi, h(b
′

i+1) i = 1..l − 1

Block b
′

l cl S → R : bl

It exploits the technique of embedding the hash of the following block in
the current block. Bootstrapping integrity of the digital stream is obtained by
applying a single traditional signature in combination with hash chaining.

The sender S first divides the stream into l blocks. Then, S generates block b
′

0,
i.e., the digital signature of the hash of the subsequent block b

′

1. After verification
of the signature the receiver knows what the hash of the first block should be and
then it starts receiving the full stream (blocks b

′

i). When the receiver receives the

first block b
′

1, it computes its hash and checks the hash against what the signature
was verified upon. The other blocks consist of an authentication chain, in which
each block contains the hash of the subsequent block. Note that embedding
the hash of the subsequent block implies that the sender knows the stream in
advance, hence the non feasibility of this construction for applications like live
broadcasts.

It is worth noticing that in the original paper [10], the first block contains
an encoding of the length of the stream. The structure of the first block is here
simplified (without however affecting the results of the analysis that will follow).
Furthermore, we assume the receiver knows in advance the number of blocks in
which the stream is divided. It is also worth noticing that to avoid replay attacks
when executing multiple runs of the protocol one can simply include nonces in
the digitally signed block.

Crypto-CCS specification of the Gennaro-Rohatgi protocol To formally
specify the protocol, the sender and the receiver are modelled as Crypto-CCS
processes, see App. A. The modelling of possible operations on messages is given
by an inference system, consisting of a set of rules r, e.g., . r = m1 . . . mn

m0
where {m1, . . . , mn} is a set of messages (called premises, possibly empty) and
m0 is the conclusion.

In particular, a suitable inference system that is used to model the Gennaro-
Rohatgi protocol is shown in Fig. 1. Rule (pair) builds the pair of two messages
x and y; rules (fst) and (snd) return the components of a pair; rule (sign) allows
message x to be digitally signed by applying the secret key sk(y) of agent y; rule
(ver) allows a digital signature {x}sk(y) to be verified by applying the public key
of signer y, pk(y); rule (hash) allows an agent to apply a one-way hash function
to message x and obtain digest h(x).

In the following, the application of rule r to messages m0, . . . , mn and a
consequent behaviour of the process is denoted as [m0, . . . , mn ⊢r xm]A1; A2,
where A1 and A2 are Crypto-CCS processes too, and it represents the inference
construct. Each conclusion xm of an inference construct is a message variable
and it means “variable x should contain message m”. If, by applying rule r to
premises m0, . . . , mn a message m can be inferred, then the process behaves as

x y
Pair(x, y)

(pair)
Pair(x, y)

x (fst)
Pair(x, y)

y (snd)

x sk(y)
{x}sk(y)

(sign)
{x}sk(y) pk(y)

x (ver) x
h(x)

(hash)

Fig. 1. Inference system for the Gennaro-Rohatgi protocol.

A1, otherwise the process behaves as A2. When A2 is missing, if no message m

can be inferred, the process aborts. Notation c!m is message m sent on channel
c; notation c?x is some message variable x(m) received on channel c. Finally, 0
is the process that does nothing.

Example 1. A typical use of the Crypto-CCS inference construct may be as
follows, where a process receives a signed message x over channel c and tries
to verify the signature. If it succeeds, then the value is sent over channel out,
otherwise the process outputs an error message err.

c?x. receive x on channel c
[x pk ⊢ver y] verify signature
out!y.0; in the positive case. output y and stop
out!err.0 otherwise, output an error message and stop

It follows the specification of the Gennaro-Rohatgi protocol.

The sender process builds the initialization block b
′

0 (more precisely, he builds
a variable containing b

′

0) to bootstrap the chain: by means of inference rules hash

and sign in Fig. 1 the sender computes block b
′

0, sends it on communication
channel c0 and travels to the next state Sender1. The generic Senderi, 1 ≤ i < l

now sends payloads bi together with hashed blocks h(b
′

i+1) until the last state l

is reached.

Sender0
.
=

[b
′

1 ⊢hash x
h(b

′

1
)
] Compute hash of next block

[x
h(b

′

1
)

sk(S) ⊢sign x
b
′

0

] Sign computed hash

c0!xb
′

0

.Sender1 Output b
′

0 and go to next state

Senderi
.
= 1 ≤ i < l

[b
′

i+1 ⊢hash x
h(b

′

i+1
)
] Compute hash of next block

[bi x
h(b

′

i+1
)
⊢pair x

b
′

i

] Pair payload and hash next block

ci!xb
′

i

.Senderi+1 Output b
′

i and go to next state

Senderl
.
=

cl!bl.0 Output last block and stop

The receiver process is parameterized by the hashed blocks he receives from
the sender (more precisely, variables that should contain the hashed blocks).

Receiver0(null)
.
=

c0?xb
′

0

. Receive initial block

[x
b
′

0

pk(S) ⊢ver x
h(b

′

1
)
] V erify signature

Receiver1(xh(b
′

1
)
) Go to next state

Receiveri(xh(b
′

i
)
)

.
= 1 ≤ i < l

ci?xb
′

i

. Receive i − th block

[x
b
′

i

⊢hash x
h(b

′

MY i
)
] Compute my hash h(b

′

MY i)

[x
h(b

′

i
)
= x

h(b
′

MY i
)
] Compare hash

[x
b
′

i

⊢fst xbi
] Extract payload

couti
!xbi

. Send payload to application level
[x

b
′

i

⊢snd x
h(b

′

i+1
)
] Extract hash of next block and

Receiveri+1(xh(b
′

i+1
)
) go to next state

Receiverl(xh(b
′

l
)
)

.
=

cl?xb
′

l

. Receive last block

[x
b
′

l

⊢hash x
h(b

′

MY l
)
] Compute my hash h(b

′

MY l)

[x
h(b

′

l
)
= x

h(b
′

MY l
)
] Compare hash

coutl
!xbl

l
.0 Send block to application level and stop

In the initial state the receiver aims at verifying the digital signature (we assume
he has previously retrieved the public key pk(S) corresponding to the private key
of the supposed sender). Then, it travels to the next state Receiveri(xh(b

′

1
)), by

maintaining history of the (supposed) next hashed block h(b
′

1). Acceptance of the
subsequent blocks is conditioned to the successful outcome of the equality tests
between the hash it maintains as a parameter and the hash it computes from
what it has presently received, respectively x

h(b
′

i
) and x

h(b
′

MY i
). If the hashes

coincide, the receiver sends the meaningful payload contained in xbi
to the ap-

plication level to consume it. This sending operation is over channel couti
. The

receiver then extracts the supposed hash of the block to be received immedi-
ately later. This mechanism is repeated until the reception of the l-th block.
Whether the verification of the signature in the initial state or the equality tests
in subsequent states do not succeed the receiver should abort.

Extending the model to multiple receivers Extending the model to the
treatment of multicast and broadcast communication (i.e., , by allowing a poten-
tially unbounded number of receivers) is as follows: a new process MB is added,
that is responsible for potentially sending each block an unbounded number of
times in order to simulate a one-to-many (one-to-all) sending typical of a multi-
cast (broadcast) communication. The new process is parameterized by the block

the sender is to multicast (or broadcast).

MBi(xb
′

i

)
.
= ci!xb

′

i

.MBi(xb
′

i

)

Thus, in the light of this new process, the specification for the sender process
can be re-written as follows. P1||P2 denotes a parallel execution of two processes
(details in App. A).

Sender0
.
=

[b
′

1 ⊢hash x
h(b

′

1
)
]

[x
h(b

′

1
)

sk(S) ⊢sign x
b
′

0

]

(Sender1||MB0(xb
′

0

)) Output b
′

0 and go to next state

Senderi
.
= 1 ≤ i < l

[b
′

i+1 ⊢hash x
h(b

′

i+1
)
]

[bi x
h(b

′

i+1
)
⊢pair x

b
′

i

]

(Senderi+1||MBi(xb
′

i

)) Output b
′

i and go to next state

Senderl
.
= MBl(bl) Output bl and go to next state

2.2 The EMSS protocol

Digital streams are usually sent over UDP, the User Datagram Protocol, [25].
UDP is considered to be an unreliable transport protocol, i.e., when UDP sends
packets over a network, it just sends them and forgets about them. This does
not mean that UDP is ineffective, only that it does not handle reliability of the
communication. If a stream is received incomplete, we would still like to be able
to prove the integrity of all the packets that were not lost.

Along with the pioneering protocol modelled in the previous section, pro-
tocols dealing with the problem of securing streamed data over channels with
packet loss have been recently proposed, [23, 21, 12]. They all can be basically
considered as valuable extensions of the Gennaro-Rohatgi constructions.

In particular, in [23], Perrig et al. presented the Efficient Multi-chained
Stream Signature (EMSS) protocol to sign digital streams. EMSS exploits a
combination of hash functions and digital signatures and–contrary to previous
proposals [10]–achieves (some) robustness against packet loss.

The basic idea of EMSS is the following: a hash of packet Pi−1 is appended to
packet Pi, whose hash is in turn appended to packet Pi+1 and so on. A signature
packet, containing the hash of the final data packet along with a signature, is
sent at the end of the stream. To achieve robustness against packet loss (the
event of one or more packets loss would break the chain) each packet contains
multiple hashes of previous packets and the signature packet signs hashes of
multiple packets. [23] uses both deterministic and random distribution of hashes
per packet.

Here we focus on a specific instance of the EMSS, viz. the deterministic
(1,2) schema, where packet Pi contains hashes of packets i − 1, i − 2 and whose
hash is contained in packets i + 1, i + 2. After an initial phase, each packet Pi

contains a meaningful payload mi
2 together with the hashes h(Pi−1) and h(Pi−2)

of the previous two packets sent. Packets are sent over channels ci, 0 ≤ i ≤ last

from a sender S to a set of receivers {Rn | n ≥ 1}. The end of a stream is
indicated by a signature packet Psign over channel csign, containing the hashes
of the final two packets, along with a digital signature. The protocol can formally
be described as follows.

Packet P0 c0 S → {Rn} : m0, null, null

Packet P1 c1 S → {Rn} : m1, h(P0), null

Packet Pi ci S → {Rn} : mi, h(Pi−1), h(Pi−2) 2 ≤ i ≤ last

Let Plast be the last packet of the stream. Upon sending Plast a signature packet
is sent:

Sign-Pack Psign csign S → {Rn} : {h(Plast), h(Plast−1)}sk(S)

A packet Pi is said to be verifiable if there exists a path (in terms of hashes
contained in a chain of packets) from Pi to the signature packet. Given a set of
verifiable packets, we intend to prove the correctness of the construction in terms
of packet integrity, i.e., to assure a receiver that the information it received is
exactly what the sender has originally intended. For the analysis, see Section 3.1.

Crypto-CCS specifications of the (1,2) EMSS. We present the Crypto-
CCS specifications of the (1,2) scheme of the EMSS protocol.

We remind that the whole formalization, in particular the way a receiver pro-
cess acts, is based on implementative choices of the authors since some details
are not explicitly given in [23].

A suitable inference system that is used to model EMSS is shown in Fig. 2.
Rule (tuple) builds the tuple of three messages x, y and z; rules (1−st), (2−nd)
and (3 − rd) return, respectively, the first, second and third component of a
tuple; rules (sign), (ver) and (hash) are the same as in the inference system for
the Gennaro-Rohatgi protocol.

The sender process is parameterized by variables containing the hashes it
should insert in the following packet. As in the formalization of the Gennaro-
Rohatgi protocol, with notation xm we mean “variable x should contain message

2 We assume the sender’s private key sk(S) cannot be deduced from the set of messages
{mi}.

x y z
(x, y, z)

(tuple)
(x, y, z)

x (1 − st)
(x, y, z)

y (2 − nd)
(x, y, z)

z (3 − rd)

x sk(y)
{x}sk(y)

(sign)
{x}sk(y) pk(y)

x (ver) x
h(x)

(hash)

Fig. 2. Inference system for EMSS.

m”. Hereafter, state last + 1 coincides with state sign.

S0(null, null)
.
=

[m0 ⊢tuple xP0
] Create tuple P0

[xP0
⊢hash xh(P0)] Compute hash of P0

(S1(xh(P0), null)||MB0(xP0
)) Output P0 and go to next state

S1(xh(P0), null)
.
=

[m1 xh(P0) ⊢tuple xP1
] Create tuple P1

[xP1
⊢hash xh(P1)] Compute hash of P1

(S2(xh(P1), xh(P0))||MB1(xP1
)) Output P1 and go to next state

Si(xh(Pi−1), xh(Pi−2))
.
= 2 ≤ i ≤ last

[mi xh(Pi−1) xh(Pi−2) ⊢tuple xPi
] Create tuple Pi

[xPi
⊢hash xh(Pi)] Compute hash of current packet

(Si+1(xh(Pi), xh(Pi−1))||MBi(xPi
)) Output Pi and go to next state

Ssign(xh(Plast), xh(Plast−1))
.
=

[xh(Plast) xh(Plast−1) ⊢tuple xt] Create tuple of final hashes

[xt sk(S) ⊢sign xPsign
] Sign the tuple

MBsign(xPsign
) Output the signature packet

Again, the special process MB is responsible for potentially sending each
packet an unbounded number of times, in order to simulate a one-to-many (one-
to-all) sending. The process is parameterized by the packet the sender is to
multicast (or broadcast).

MBi(xPi
)

.
= ci!xPi

.MBi(xPi
) 0 ≤ i ≤ last

MBsign(xPsign
)

.
= csign!xPsign

.MBsign(xPi
)

Among the set of receivers, each process behaves in the same way. The generic
receiver process at step i is parameterized by: 1) the two last packets it received
(let them be Pj1 , Pj2) - over an ideal channel, without packet loss, we have
that Pj1 = Pi−1 and Pj2 = Pi−2; 2) a tuple tupi−1

{mj}
. tup{mj} consists of the

ordered sequence of payloads among {mj}j=0,1,...last whose corresponding pack-
ets’ hashes h(Pj) the receiver was able to check3. tupi−1

{mj}
is the tuple updated

3 For the sake of readability we assume the receiver may infer the sequence number
of a packet by simply observing the packet itself. Otherwise, we should arrange the

at step i, by inserting either xmi−2
or xmi−3

. The updated tuple could be either

(xmi−2
, tupi−2

{mj}
) or (xmi−3

, tupi−2
{mj}

). Also, it may remain unchanged, when both

mi−2 and mi−3 are lost. Similarly, tuplast
{mj}

may either be (xmlast
, tuplast−1

{mj}
) or

(xmlast−1
, tuplast−1

{mj}
) or, unchanged, tuplast

{mj}
.

The unreliability of the transmission over UDP is modeled by considering
that process Rec non deterministically chooses whether to receive a packet or
not. Finally, we assume that the signature packet Psign is always received (this
is likely since in the original protocol multiple copies of the signature packets
are sent). In the specification, 2 ≤ i ≤ last and last + 1 ≡ sign.

receiver with more parameters or arrange a “sequence number” field in the packet
structure and let the receiver retrieve it. This could introduce a too clumsy notation.

Rec0(null, null, null)
.
=

Rec1(null, null, null) + Packet loss : go to next state, otherwise
(c0?xP0

. Receive initial packet
Rec1(xP0

, null, null)) Go to next state

Rec1(null, null, null)
.
=

Rec2(null, null, null) + Packet loss : go to next state, otherwise
(c1?xP1

. Receive packet P1

Rec2(xP1
, null, null)) Go to next state

Rec1(xP0
, null, null)

.
=

Rec2(null, xP0
, null)+ Packet loss : go to next state, otherwise

(c1?xP1
. Receive packet P1

[xP1
⊢2−nd xh(P0)] Extract hash of previous packet P0

[xP0
⊢hash xhMY (P0)] Compute my hash hMY (P0)

[xh(P0) = xhMY (P0)] Compare the hashes
([xP0

⊢1−st xm0
] IF equal : extract previous payload

Rec2(xP1
, xP0

, xm0
) Update parameters and go to next state

);0 ELSE abort
)
Reci(xPj1

, xPj2
, tupi−1

{mj}
)

.
=

Reci+1(xPj1
, xPj2

, tupi−1
{mj}

) + Packet loss : go to next state, otherwise

(ci?xPi
. Receive packet Pi

([j1 = i − 1] Was Pi−1 received?
Rec′i(xPi

, xPi−1
, tupi−1

{mj}
); Go to Rec′i; otherwise

([j2 = i − 2] Was Pi−2 received?
Rec′′i (xPi

, xPi−2
, tupi−1

{mj}
) Go to Rec′′i ; otherwise

)
); Reci+1(xPi

, xPj1
, tupi−1

{mj}
) Go to next state :

) P1−1 and Pi−2 were not received
Rec′i(xPi

, xPi−1
, tupi−1

{mj}
)

.
=

[xPi
⊢2−nd xh(Pi−1)] Extract h(Pi−1) from Pi

[xPi−1
⊢hash xhMY (Pi−1)] Compute my hash hMY (Pi−1)

[xhMY (Pi−1) = xh(Pi−1)] Compare the hashes
([xPi−1

⊢1−st xmi−1
] IF equal : extract mi−1 from Pi−1

Reci+1(xPi
, xPj1

, (xmi−1
, tupi−1

{mj}
)) Update parameters and go to next state

);0 ELSE : abort
Rec′′i (xPi

, xPi−2
, tupi−1

{mj}
)

.
=

[xPi
⊢3−rd xh(Pi−2)] Extract h(Pi−2) from Pi

[xPi−2
⊢hash xhMY (Pi−2)] Compute my hash hMY (Pi−2)

[xhMY (Pi−2) = xh(Pi−2)] Compare the hashes
([xPi−2

⊢1−st xmi−2
] IF equal : extract mi−2 from Pi−2

Reci+1(xPi
, xPj1

, (xmi−2
, tupi−1

{mj}
)) Update parameters and go to next state

);0 ELSE : abort

Recsign(xPj1
, xPj2

, tuplast
{mj}

)
.
=

csign?xPsign
. Receive signature packet

Rec∗sign(xPsign
, xPj1

, xPj2
, tuplast

{mj}
) Go to intermediate state Rec∗sign

Rec∗sign(xPsign
, xPj1

, xPj2
, tuplast

{mj}
)

.
=

[xPsign
pk(S) ⊢ver xver] V erify the signature

[j1 = last] Was Plast received?

Rec′sign(xver, xPlast
, tuplast

{mj}
); If so, go to Rec′sign; otherwise

([j2 = last − 1] Was Plast−1 received?

Rec′′sign(xver, xPlast−1
, tuplast

{mj}
); If so, go to Rec′′sign; otherwise

(capp!tuplast
{mj}

.0) Plast and Plast−1 were not received.

) Send the stream of verifiable payloads
to the application level

Rec′′sign(xver, xPlast−1
, tuplast

{mj}
)

.
=

[xver ⊢2−nd xh(Plast−1)] Extract h(Plast−1) from Psign

[xPlast−1
⊢hash xhMY (Plast−1)] Compute my hash hMY (Plast−1)

[xhMY (Plast−1) = xh(Plast−1)] Compare the hashes

[xPlast−1
⊢1−st xmlast−1

] IF equal : extract mlast−1 from Plast−1

capp!(xmlast−1
, tuplast

{mj}
).0; Send the stream of verifiable payloads

0 to the application level and stop; ELSE abort

Rec′sign(xver, xPlast
, tuplast

{mj}
)

.
=

[xver ⊢1−st xh(Plast)] Extract h(Plast) from Psign

[xPlast
⊢hash xhMY (Plast)] Compute my hash hMY (Plast)

[xhMY (Plast) = xh(Plast)] Compare the hashes
[xPlast

⊢1−st xmlast
] IF equal : extract mlast from Plast

capp!(xmlast
, tuplast

{mj}
).0; Send the stream of verifiable payloads

0 to the application level and stop;ELSE abort

In the final state Recsign (along with intermediate states Rec∗sign, Rec′sign, Rec′′sign) the
receiver aims at verifying the digital signature (we assume it has previously retrieved
the public key pk(S) corresponding to the private key of the supposed sender). The
correct verification of the signature implies the receiver to have guarantees on the
integrity of the verifiable payloads. It can now send the stream to the application level
to consume it. In our formalization, this is modeled by a scenario where the receiver
sends the content of its parameter tuple (the accepted stream) over channel capp. If
the verification of the signature in the final state or the equality tests in the previous
states do not succeed the receiver should abort.

2.3 The µTESLA protocol

In [24], Perrig et al. presented µTESLA (“micro” Timed Efficient Stream Loss-tolerant
Authentication), a protocol to provide authenticated broadcast in wireless sensor net-
works environments. [24] considers a scenario where sensors communicate with a base-
station connected to the external world. The base station may broadcast to all nodes

messages for routing updates, reprogramming, reset requests. The protocol is an ex-
tension of the TESLA stream authentication protocol developed in [22] and it was
intentionally developed for providing authenticated broadcast for the limited comput-
ing environments that are encountered in sensor networks.

In the original TESLA schema, a single sender broadcasts a continuous stream of
packets. Receivers may use information in later packets to authenticate earlier packets.
Each packet contains a message authentication code (MAC), i.e., a value computed
by applying a public algorithm and a secret encryption key to the packet itself. Given
a message m and an encryption key k, we call mac(m, k) the message authentication
code of m. The algorithm is known by all the receivers, while the encryption keys are
disclosed by the sender after a certain amount of time. When a receiver receives a key
Ki it can use it to compute the MAC from the related packet Pi and compare the
computed MAC with that previously received. If the two MACs match, the receiver
can consider the packet Pi authentic. To avoid the event that an intruder could use
a disclosed key Ki to fake the packet Pi a time synchronization protocol between the
sender and the receivers is needed. Then, each receiver will not accept the packet Pi if
the sender might have already disclosed the key Ki.

Bootstrapping authentication of the whole scheme is achieved in TESLA by sign-
ing the first packet with a regular digital signature scheme. Nevertheless, computation,
communication and storage overhead make the use of asymmetric cryptography un-
feasible for the net of sensors under investigation. Thus, µTESLA has been proposed
as an optimized extension for sensor networks. It just makes use of MACs. The base-
station randomly generates the last MAC key to be used, Klast, and derives a key chain
by repeatedly applying a publicly known one-way function F to that key, such that
Ki = F (Ki+1). Given the non-reversibility property (at least with high probability)
of function F, the disclosure of key Ki should not lead to any knowledge of Ki+1 and
subsequent keys.

Receivers’ requirements for correctly joining and executing the protocol are: i) they
are time synchronized with the base station; ii) they know the disclosure schedule of
the MAC keys; iii) they know at least one authenticated key of the key chain, serving
as a commitment to the entire chain. A protocol providing time synchronization and
one authenticated key has been proposed in [24]. Basically, the base-station shares with
each sensor a symmetric secret key KSM and establishes a secure channel over which
the exchange of a commitment to the key chain, K0, and a set of temporal parameters,
sett, takes place4. More formally, the initial step of µTESLA is the following:

Packet P0 c0 S → {Rn} : K0, sett, mac(K0, sett, KSM)

where c0 ∈ {ci}i∈N , i.e., the set of communication channels, S is the identifier of
the sender (i.e., the base station) and {Rn} is the set of receivers (i.e., the sensors)5.

µTESLA is parameterized by the schedule time at which MAC keys are disclosed.
For the description of further steps in the protocol we consider a basic formalization,
Fig. 3, where we suppose that the sender discloses a MAC key with a delay δ = 1,

4 There are as many symmetric keys as the number of sensors and the communication
over channel c0 is supposed to be a point to point communication. Nevertheless, to
simplify our formalization, we assume a unique key and a unique communication
channel. This means to implicitly assume that possible adversaries are not in the set
of receivers.

5 To assure freshness when executing multiple runs of the same sender, one can simply
insert nonces in the message authentication code of packet P0.

assumed to fall in the interval after that key has been used to compute the MAC. Fur-
ther, we suppose the sender sends one packet per time interval. Basically, in each time
slot a packet and a key packet will be sent, see Fig. 3. First of all, each receiver should
check the integrity of the received key, say Ki, by verifying it w.r.t. an authenticated
commitment (e.g., by checking K0 = F i(Ki)), then the verified key will be used to
verify the integrity of the packet received in the previous time slot.

-
Time

6 6

Pi−1

mi−1

mac(mi−1,
Ki−1)

Key Packet

Ki−2

Pi

mi

mac(mi,
Ki)

Key Packet

Ki−1

Pi+1

mi+1

mac(mi+1,
Ki+1)

Key Packet

Ki

F (Ki−2) = Ki−3 F (Ki−1) = Ki−2 F (Ki) = Ki−1

Fig. 3. A µTESLA instantiation.

Packet Pi ci S → {Rn} : mi, mac(mi, Ki) i ≥ 1

Packet Pi consists of a meaningful payload mi plus the message authentication code
computed on mi with key Ki. We assume that KSM cannot be deduced from the sets
{mi}, {Ki}.

Upon receiving the packet, the sensor stores the packet until its MAC can be
verified, i.e., until the sender broadcasts packet disclosing Ki:

Key-Packet KPi ci+1 S → {Rn} : Ki

The integrity of key Ki can be checked by verifying K0 = F i(Ki) (or, equivalently,
Ki−1 = F (Ki)). Packets may be lost in transit from the base station to the sensors.
In particular µTESLA is tolerant to packet loss in the sense that receivers may still
be able to authenticate all the received packets Pi even when the corresponding keys’
disclosure packets are lost. Suppose Kj is lost, then a receiver is not able to verify
MAC packet Pj . The following key the receiver recovers, let it be Kj+1, can be verified
w.r.t. a previous authenticated key (e.g., K0 = F j+1(Kj+1)) and is used to derive Kj ,
i.e. Kj = F (Kj+1).

The tCryptoSPA specifications of the µTESLA protocol Part of the
complexity in the construction of protocols like µTESLA consists of the temporal
constraints that are present, since, e.g., a time synchronization is needed among the
actors in the protocol.

Within a formal framework aimed at modeling timed constraints in protocols and
at verifying security properties whose fulfilment is based on timed conditions, we give
here the tCryptoSPA specification of the basic µTESLA presented in Fig. 3.

Indeed, the fundamental requirement of a time synchronization between the base
station and each sensor in µTESLA is naturally captured in tCryptoSPA (Subap-
pendix A.2) by its time modeling action tick, upon which sender and receivers’ pro-

cesses may synchronize (this allows us to avoid the explicit presence of sett in packet
P0).

A suitable inference system that is used to model µTESLA is shown in Fig. 4. Rule
(one−way) allows to apply a one-way hash function F to message m and obtain digest
F (m); rule mac computes the message authentication code (MAC) of a message with
a key; rules (pair), (fst) and (snd) are the same as in the inference system for the
Gennaro-Rohatgi protocol.

m m′

(m, m′)
(pair)

(m, m′)
m (fst)

(m, m′)
m′ (snd)

F m
F (m)

(one − way) m k
mac(m,k)

(mac)

Fig. 4. Inference system for µTESLA.

We consider a sender machine with ample resources. It can be parallelized or split
into n senders, each of them possibly sending different streams, {mj

i}i≥1,1≤j≤n. We first
present the generic sender process Sj , parameterized by an arbitrary but finite sequence
of MAC keys (tied together by means of a key chain)6. We assume the symmetric key
KSM , the keys belonging to the key chain and the streams of packets to be different
for each process Sj , 1 ≤ j ≤ n7.

Sj
0(K

j
SM , Kj

0 , Kj
1 , . . .)

.
=

[Kj
0 Kj

SM ⊢mac y] Compute MAC

[Kj
0 y ⊢pair P0] Create packet P0

Bj
0(P0) Start to broadcast P0

Sj
1(K

j
0 , Kj

1 , . . .)
.
=

[mj
1 Kj

1 ⊢mac x] Compute MAC

[mj
1 x ⊢pair P1] Create packet P1

Bj
1(P1) Start to broadcast P1

Sj
i (Kj

i−1, K
j
i , . . .)

.
=

[mj
i Kj

i ⊢mac x] Compute MAC

[mj
i x ⊢pair Pi] Create packet Pi

Bj
i (Pi, K

j
i−1) Start to broadcast Pi and disclose key Ki−1

6 Actually, we consider constants with an arbitrary number of parameters. We could
avoid this by considering, for modeling purposes, a special function fun, not available
to possible adversaries, that may be used to represent the keys as a sequence.

7 We remind the reader that the whole formalization we are going to give is based
on personal choices since some details are not explicitly given in [24]. In particular,
the mechanism through which a receiver possibly identifies each sender process (and
consequently each stream) is not defined in [24], since the original construction is
described with a single sender.

Bj
i (Pi)

.
= ciPi.B

j
i (Pi) + tick.Sj

i+1(K
j
i , . . .) i = 0, 1

Bj
i (Pi, K

j
i−1)

.
= ciPi.ciK

j
i−1.B

j
i (Pi, K

j
i−1) + tick.Sj

i+1(K
j
i , . . .) i ≥ 2

Construct Bj
i (. . .) is responsible for potentially sending packets (and keys) an un-

bounded number of times, in order to simulate multicast sessions. Sender Sj remains
in the same state repeatedly sending messages unless the non-deterministic choice is
resolved by choosing the derivative of the second summand in Bj

i ; this causes a time
unit to pass (a tick action is performed). The construction models the behaviour of a
wireless antenna making signals available only in a particular time interval. The pres-
ence of a non-deterministic choice in the construct makes it possible the passage to the
following time interval without performing any number of, possibly zero, communica-
tion. This may implicitly model the unreliability of the wireless transmission and the
occurrence of packet loss.

Among the receivers’ set, each process behaves in the same way. The generic receiver
process at step i is parameterized by a commitment to the key chain (let it be Kj

0) and
by the packets it should still authenticate. We assume the receiver’s set is divided into
subgroups, each of them sharing a particular KSM with one sender process. Sender
Sj and receivers belonging to subgroup number j share Kj

SM . Kj
SM may denote a

particular service each element in subgroup j is devoted to. Let us consider pay per
view-based applications: among the receivers’ set, the subgroup knowing Kj

SM may
consist of all the paying spectators for movie number j. For environments closer to those
depicted for µTESLA, let us consider a scenario in which sensors are used to periodically
transmit readings regarding heating and air conditioning control in a building (and
consequently receive broadcasted messages for routing updates or reprogramming):
sensors in subgroup j may be all the sensors devoted to carry out the service for room
number j. (Sj being the base station responsible for room number j.).

Below, we refer to Rj,q
i to indicate the q-th receiver process belonging to subgroup

j and acting at step i.

Rj,q
0 (null)

.
=

c0(x). Receive first packet
[x ⊢fst xK0

] Extract commitment to the key chain

[xK0
Kj

SM ⊢mac z] Compute MAC
[x ⊢snd xmac] Extract MAC
[z = xmac] Verify MAC : if verified :

tick.Rj,q
1 (xK0

); Allow a time unit to pass and go to next state;

Rj,q
0 (null) Otherwise, wait for the correct key

Upon receiving a value x on channel c0, the receiver verifies the correctness of the
commitment to the key chain, xK0

: he computes mac(xK0
, Kj

SM) and he compares it
with the message authentication code in the received packet. If the two MACs match, a
time unit passes and the receiver goes to the next state, otherwise the receiver remains
in the same state waiting for the right key Kj

SM .
Throughout the formalization, null means an empty field.

Rj,q
1 (xK0

)
.
=

(c1(y). Receive packet and

tick.Rj,q
2 (y, xK0

) Allow a time unit to pass and go to next state

) + tick.Rj,q
2 (null, xK0

) Or : go to next state after a time unit

Rj,q
1 is willing to accept any arbitrary packet, because it cannot perform any verification

yet. If nothing is received before the end of a time unit, a transition takes place to next
state Rj,q

2 .

Rj,q
i (pi−1, xK0

)
.
=

ci(pi).R
′j,q
i (pi, pi−1, xK0

) Receive i − th packet ; go to intermediate state R′j ,q
i

+tick.Rj,q
i+1(null, xK0

) Or : go to next state after a time unit

Rj,q
i is willing to accept packet Pi and travels to an intermediate state R′j,q

i . If
nothing is received before the end of a time unit, a transition takes place to the next
state.

R′j,q
i (pi, pi−1, xK0

)
.
=

ci(xKi−1
). Receive key packet

[xK0
= F i−1(xKi−1

)] Verify the key w .r .t . the commitment
[pi−1 ⊢fst ypay] Extract payload

([ypay xKi−1
⊢mac z] If xKi−1

= K j

i−1 then : Compute MAC
[pi−1 ⊢snd ymac] Extract MAC
[z = ymac] Verify MAC

appypay. Send m j
1 to application level

tick.Rj,q
i+1(pi, xK0

) Allow a time unit to pass and go to next state;

); R′j,q
i (pi, pi−1, xK0

) Otherwise, wait for the correct key

In intermediate state R′j,q
i receives a key packet and verifies the correctness of the key

w.r.t. the authenticated commitment xK0
= Kj

0 . Given the collision-free property of
one-way functions, if the verification does not succeed it means xKi−1

6= Kj
i−1 and R′j,q

i

simply stays in the same state waiting for the right subgroup key. If the verification
succeeds, the correctness of Pi−1 is verified by checking that the enclosed MAC is
authentic. The successful outcome is here modeled by a scenario where the receiver
sends the payload of the accepted packet over channel app8.

Suppose packet Pi−1 was correctly received, suppose also packet disclosing Kj
i−1

is lost. At step i the receiver still cannot authenticate packet Pi−1. The key chain
mechanism of the original protocol takes into account such a possibility: in interval
i + 1 the base station broadcasts key Kj

i , which the receiver authenticates by verifying
Kj

0 = F i(Kj
i). The receiver can authenticate Pi and derives Kj

i−1 = F (Kj
i), so it

can also authenticate Pi−1. Actually, our formalization does not take into account
recovering lost keys. For the sake of simplicity, we prefer to suppose that the key
packet related to subgroup j is received (state R′j,q

i).

We report below the formalization at step i, with i ≥ 2, when a packet was not
received at step i − 1.

Rj,q
i (null, xK0

)
.
=

ci(pi).tick.Rj,q
i+1(pi, xK0

) Receive i − th packet ; go to next state

+tick.Rj,q
i+1(null, xK0

) Or : go to next state after a time unit

8 We omitted to insert an idling behavior when a deduction construct fails to be
executed and in our formalization the system simply stops without letting time
pass. This is not realistic, but it has no consequences since we use trace semantics
for the analysis and makes it simpler.

2.4 The N Root/Leaf pairwise keys protocol

Secrecy in multicast groups means that only the group members (and all of them)
should be able to decipher transmitted data ([4]).

To achieve secrecy, the approach presented in [27] is a “brute force method to
provide a common multicast group key to the group participants”.

The N Root/Leaf pairwise keys protocol assumes the existence of a multicast session
with an initiator that controls the multicast group. Each of the N members of the
multicast group is called a leaf. The initiator is the root of the group. In a preliminary
phase, the initiator generates a pairwise key with each of the leaves in the multicast
group (e.g., using some standard public key exchange technique).

Then, it generates the group key K and, in order to distribute it to the leaves,
the initiator encrypts K with the pairwise keys shared with them. This distribution
can happen through a transmission to the whole group via multicast (Packet 1). On
receiving Packet 1, each leaf can retrieve K from the appropriate segment of the message
using its own secret pairwise key.

Once the group key has been distributed, it can be used to multicast to the group
ciphered messages m (Packet 2).

Packet 1 c1 I → {Ln} : {K}KIL1
|{K}KIL2

| . . . |{K}KILN

Packet 2 c2 I → {Ln} : {m}K

In the above notation, I is the initiator of the multicast group. {Ln} is the set of
the N leaves. | stands for concatenation. KILi

is the pairwise key shared between the
initiator and the i-th leaf. K is the group key.

The Crypto-CCS specification of the protocol is the following. The initiator process
is parameterized by the group key and by the message to convey to the group.

I1(k, m)
.
=

[k kIL1 ⊢enc {k}kIL1
] Encrypt group key

. . . Repeat encryption N times
[{k}kIL1

. . . {k}kILN
⊢tuple xP1

] Create tuple

I2(k, m)||MB1(xP1
) Output P1 and go to next state

I2(k, m)
.
=

[m k ⊢enc xkm] Encrypt message
MB1(xkm) Output xkm

Process MB simulates a one-to-many sending and it is specified as follows.

MBi(x)
.
= ci!x.MBi(x) i = 1, 2

The specification of the n-th receiver process is Ln
1 (KILn):

Ln
1 (KILn)

.
= 1 ≤ n ≤ N

c1?x. Receive concatenation
[x ⊢nth z] Retrieve encryption
[z KILn ⊢dec xK]Ln

2 (KILn,xK
) Decrypt and go to next state

Ln
2 (KILn , xK)

.
=

c2?x. Receive encrypted message
[x xK ⊢dec xm].0 Retrieve m

3 Analysis

In this section, we perform a security analysis of the protocols presented in the previous
sections. In particular, we consider two integrity properties, one in an untimed version
and one in a timed version, for what concerns, respectively, the EMSS protocol and
the µTESLA protocol, while a secrecy property will be took into account for a study
on the N Root/Leaf pairwise protocol. As far as the analysis of an integrity property
of the Gennaro-Rohatgi protocol is concerned, here we will limit ourselves to recall the
guidelines of the procedure, since it is very similar to what has be done for EMSS.

For details about the analysis methodology, the reader is referred to the appendixes,
as well as to several references cited throughout the paper. However, aiming at pro-
ducing, as much as possible, a self contained paper, we recall here the general flavor of
the methodology (in the untimed version only).

The foundation of the analysis is the seminal idea of non interference, [11] for inves-
tigating the unauthorized information flow in multilevel systems, e.g., from a high level
to a lower one. By starting from there, a general schema for the definition of security
properties has been formulated, [6, 9, 8], in order to encompass in a uniform way a vari-
ety of properties. The schema, namely Generalized Non Deducibility on Compositions,
GNDC for short, basically compares what it is expected to be the correct behaviour
of a system with a modified behaviour due to the fact that the system is not running
in isolation, but it is running together with a malicious process, the so called intruder,
trying to interfere with the normal execution of the system. If the two behaviors appear
to be the same, then it means that the intruder has not sufficient means to significantly
interfere with the honest system and that the investigated property is guaranteed.

More formally, a system P satisfies property GNDCα
� if the behavior of P , despite

the presence of a hostile environment X that can interact with P only through a fixed
set of channels C, appears to be same (w.r.t. a behavioral relation � of observational
equivalence) to the behavior of a modified version α of P that represents the expected
(correct) behavior of P . As behavioral relation between processes we consider hereafter
the trace inclusion relation ≤trace (App. A).

The formula expressing the GNDC schema is as follows:

Definition 1. Given a behavioral relation � between processes, � : P → P, a function
α between processes, α : P → P, and a set EφX

C of all the admissible hostile processes,

(App. B), we say that a process P ∈ GNDCα
� ⇐⇒ ∀X ∈ EφX

C : (P ||X) \ C � α(P).

Basically, what we are going to do in the following subsections is, for each protocol:
1) first, to define, as a Crypto-CCS process, the correct behaviour that the system P
should have with respect to the security property to be investigated (e.g., in the next
subsection, αint will denote the correct behaviour of EMSS with respect to integrity);
2) then, to verify that the behaviour of system P , when considering just one sender
plus the intruder and one receiver plus the intruder, is included in the defined correct
behaviour (this is done accordingly to the GNDC theory); 3) finally, to exploit com-
positional principles in order to assert the validity of the property within the whole
system.

A compositional principle (in its untimed version) is the following:

Definition 2. Stability of a process. We say that a process P is stable w.r.t. φX

if, whenever (P ||XφX
) \ C

γ
=⇒ (P ′||X ′

φ′

X
) \ C, then D(φX) = D(φ′

X).

This was introduced in [13]. We denote the set of messages initially known by
process X as φX . D(φ′

X) is a set of messages representing what can be inferred by X
at the end of a certain computation γ run in parallel with process P , while D(φX)
represents what can be inferred with φX solely. Basically, process P is stable when X
does not increase significantly φX during the execution of P .

When two (or more) processes are stable with respect to a certain knowledge φX ,
and they enjoy a certain GNDC property, the following compositionality proposition
holds ([13]).

Proposition 1. Given φX and a set of public channels C, assume processes Pr ∈
GNDC

αr(Pr)
≤trace

with 1 ≤ r ≤ n and Pr stable w.r.t. φX . It follows that (P1|| . . . ||Pn) is

stable w.r.t. φX and (P1|| . . . ||Pn) ∈ GNDC
α1(P1)||...||αn(Pn)
≤trace

.

Also, a timed version of GNDC, namely tGNDC, a timed version of the stability
principle, [15, 13], and a timed version of the proposition of compositionality of a GNDC
property exist, [13]. They will be used in the analysis of µTESLA.

3.1 An analysis of the EMSS protocol: integrity

The specification of the (1,2) EMSS has been given in Subsection 2.2. Here, we perform
a protocol analysis for verifying the integrity of the packets received by the receiver
process.

Integrity for EMSS is defined within the GNDC schema as the ability to accept only
the message mi by a receiver as the i− th message sent by the sender (assuming mi is
not lost). Let us assume that a receiver signals the acceptance of a stream of messages
as a legitimate one, by issuing it, as a unique list of messages, on a special channel
capp. Thus, let αint be the Crypto-CCS process Specsign =

∑

s∈streams
capp!s.0, where

streams is the set of all the possible ordered sub streams of m0 . . . mlast.

Definition 3. A system P , consisting of a sender of a stream of messages {mi} and
a receiver, enjoys the integrity property whenever P ∈ GNDCαint

≤trace
.

Basically, integrity holds when the receiver accepts exactly a subset of the messages
mi in the correct order even in presence of an adversary. The key point is that the
intruder will never acquire the private key of the sender to successfully sign the final
packet of the stream.

In a multi-receiver setting with one sender, a protocol guarantees integrity whenever
each receiver accepts only the stream of messages that the sender wishes to deliver.
In our case, the specification for n receivers is simply the parallel composition of αint

n-times.

The first part of the analysis consist of verifying the stability of the involved sender
and receiver processes. S0, Rec0 are stable w.r.t. the following initial knowledge φX :

φX = {P0} ∪ {P1} ∪ {Pi | i = 2, . . . , last} ∪ {pk(S), Psign}

This can be proved by looking at the specifications of S0 and Rec0 given in Sub-
section 2.2.

The initial knowledge φX includes indeed all the messages an adversary would
be able to add to its knowledge by eavesdropping on a run of the protocol (in other
words, X does not increase its knowledge when S0 and Rec0 run). This implies that
the considered intruder has the most powerful means to act since the beginning of
the computation. One may comment that this is not correct, since it does not follow
the reality. On the other hand, this is only a trick in the model, and, if the protocol
satisfies the integrity property in this very hostile environment, then it means that it
will satisfy this property in a less powerful one. This may be formally justified, [9].
Here, we prefer to give an informal discussion of the matter: let us suppose that there
exists a sequence of actions, leading to an attack w.r.t. a procedure, performed by an
intruder whose initial knowledge is φ. Then, let us suppose that the intruder knows
φ′, with φ ∈ φ′. Again, there will be at least the attack found starting from φ. On the
other hand, if no attack exists with φ′, one may reasonably conclude that no attack
will exist by starting from a subset φ of φ′.

Now, we check if the specifications of the sender and the receiver, separately, satisfy
the integrity property. We can prove that S0 enjoys GNDC0

≤trace
and Rec0 enjoys

GNDCαint

≤trace
, that is to say that, for all X ∈ EφX

C , we have (S0||X)\C ≤trace 0 and
(Rec0||X)\C ≤trace αint. This may be done by finding a suitable weak simulation
relation between (S0||X) \ C and 0, and between (Rec0||X) \ C and Specsign (∀X ∈
EφX

C), respectively. (The easier way is to prove the same with one check, by simply
considering the top element TopC

φ).

Let C = {csign}∪{ci | 0 ≤ i ≤ last} be the set of channels over which each element
of set EφX

C is able to communicate.

The candidate weak simulation relation we consider for dealing with the sender
specifications is the following:

RS = (((Si(...)||X)\C, 0) | X ∈ EφX

C , 0 ≤ i ≤ last)

∪(((Ssign(...)||X)\C, 0) | X ∈ EφX

C)

The candidate weak simulation relation we consider for dealing with the receiver
specifications is the following:

RR = (((Rec0(null, null, null)||X)\C, Specsign) | X ∈ EφX

C)

∪(((Rec1(null, null, null)||X)\C, Specsign) | X ∈ EφX

C)

∪(((Rec1(xP0
, null, null)||X)\C, Specsign) | X ∈ EφX

C)

∪(((Reci(xPj1
, xPj2

, tupi−1
{mj}

)||X)\C, Specsign) | X ∈ EφX

C , 2 ≤ i ≤ last)

∪(((Rec′i(xPi
, xPi−1

, tupi−1
{mj}

)||X)\C, Specsign) | X ∈ EφX

C , 2 ≤ i ≤ last)

∪(((Rec′′i (xPi
, xPi−2

, tupi−1
{mj}

)||X)\C, Specsign) | X ∈ EφX

C , 2 ≤ i ≤ last)

∪(((Recsign(xPj1
, xPj2

, tuplast
{mj}

)||X)\C, Specsign) | X ∈ EφX

C)

∪(((Rec∗sign(xPsign
, xPj1

, xPj2
, tuplast

{mj}
)||X)\C, Specsign) | X ∈ EφX

C)

∪(((Rec′sign(xver, xPlast
, tuplast

{mj}
)||X)\C, Specsign) | X ∈ EφX

C)

∪(((Rec′′sign(xver, xPlast−1
, tuplast

{mj}
)||X)\C, Specsign) | X ∈ EφX

C)

tupi−1
{mj}

, tuplast
{mj}

are lists of meaningful payloads (also updated). By inspection of the

possible cases we may show that RS and RR are weak simulations. We omitted to
explicitly put in RS and RR the pairs in which the first process performs deduction
constructs.

We give a sketch of the proof dealing with the receiver specification. When the first
process performs inference (or match) constructs and it gets stuck because an inference
rule does not apply, or it simply travels to the next state, it can be weakly simulated
by whatever process, in particular Specsign. When Rec0 performs a receiving action,
the process on the left may perform a τ action and it can be weakly simulated by
whatever process, in particular Specsign. The significant case is when the first process
outputs a tuple of messages tup{mj} over channel capp /∈ C. In this case, it must be
{xver}sk(S) = Psign and, assuming that digital signatures and hash functions cannot
be forged, all the messages in tup{mj} must be replaced with one of all the possible
ordered sub streams of m0 . . . mlast. This can be weakly simulated by Specsign that has
been defined as the process sending all the possible ordered sub streams of m0 . . . mlast.

Each resulting pair consisting of the derivatives still belong to RR.

Proposition 2. S0 ∈ GNDC0

≤trace and Rec0 ∈ GNDCαint

≤trace.

The following proposition follows by the fact that S0, Rec0 are stable w.r.t. φX , by
Proposition 1 and Proposition 2.

Proposition 3. S0||Rec0 ∈ GNDCαint

≤trace.

Then, the following statement holds because Proposition 1 is applicable once again.

Proposition 4. The (1,2) EMSS Protocol enjoys integrity for whatever number of
receivers.

To check a system with an arbitrary number of components, what we do is simply
consider the components separately. The result follows by Proposition 1 where index r
is not fixed a priori and P1 = S0 and Pr, 2 ≤ r ≤ n is Rec0.

3.2 Hints to an analysis of the Gennaro-Rohatgi protocol: integrity

In [14], the stability principle of Def. 2 and the compositionality proposition Prop. 1
have been applied also to the Gennaro-Rohatgi scheme. The steps of the analysis are
very similar to those presented for the EMSS case study.

The correct behaviour of the system was specified to be αint = Spec1 where Speci =
couti

!bi.Speci+1 with 1 ≤ i ≤ l − 1, and Specl = coutl
!bl.0.

Sender0 and Receiver0, specified in Subsection 2.1, are stable with respect to the
following initial knowledge φ:

φ = {pk(S), b′0} ∪ {b′i, bi, h(b′i) | i = 1, . . . , l − 1} ∪ {b′l, bl}

Then, it is possible to find suitable weak simulation relations between (Sender0||X)\
C and 0 and between (Receiver0||X) \ C and Spec1, respectively.

Finally, one can apply Proposition 1 to prove integrity on whatever number of
receivers.

3.3 An analysis of the µTESLA protocol: timed integrity

The specification of the µTESLA protocol has been given in Subsection 2.3. Here, we
perform an analysis of the protocol concerning one of its timed security properties. To
do this, we use the timed version of the GNDC scheme, namely tGNDC, App. B. The
definition of tGNDC is similar to Def. 1, provided that one could consider a timed
behavioral relation between processes, timed functions between processes expressing
the expected correct behaviour and a set of timed admissible hostile processes.

So called timed integrity belongs to a new class of security properties defined in [13].
A stream signature protocol guarantees timed integrity on a set of messages {mi} if,
whenever the generic receiver accepts an item in a time interval i, let us say item x,
then x = mi−δ, i − δ being the time interval in which x has been received. (δ = 1 in
the formalization of µTESLA given in Subsection 2.3).

In µTESLA, let us assume that a receiver signals the acceptance of a payload as a
legitimate one, by issuing it on a special channel app.

Let P q .
= Sj

0 ||R
j,q
0 be the system consisting of a single sender and the q-th receiver

in subgroup j, sharing Kj
SM . Thus, we define the correct behaviour of the system P q

to be the tCryptoSPA process αtInt(P
q)

.
= tSpec0, where

tSpec0
.
= tick.tSpec1

tSpec1
.
= tick.tSpec2

tSpeci
.
= tick.tSpeci+1 + app(mj

i−1).tick.tSpeci+1 i ≥ 2

In the first two steps, αtInt(P
q) simply let time pass, while in further steps it may

either let time pass (denoting packet loss) or let a verified payload to be sent on the
special channel app and then let time pass. The set of all messages sent on channel app
is the set of all the possible ordered substreams of {mj

i}i≥1. Let function αj
tInt(P

j)
.
=

Π1≤q≤nj
αtInt(P

q), nj being the cardinality of the receivers in subgroup j.

Definition 4. The system P j .
= Sj

0 ||R
j,1
0 ||Rj,2

0 || . . . ||R
j,nj

0 , consisting of a sender of
streamed data {mj

i} and the receivers in subgroup j enjoys the timed integrity property

whenever P j ∈ tGNDC
α

j

tInt
(P j)

≤ttrace
.

Basically, it means that each receiver accepts exactly the messages belonging to
{mj

i} in the correct order and within the time interval following the one in which the
sender actually sent the messages, even in presence of an intruder (unless packets Pi

are lost). The key point is that the intruder will never acquire the shared key Kj
SM to

establish a secure channel over which the commitment to the key chain is exchanged9.

For the analysis of timed security properties, we use a refined notion of stability,
called time-dependent stability ([15, 13]).

We let γ be a sequence of actions (possibly empty) ranging over Act\{τ}. Let
#tick(γ) be the number of occurrences of tick actions in the sequence γ.

Definition 5. We say that a process P is time-dependent stable w.r.t. the sequence of
knowledges {φi}i≥0 if, whenever (P ||Xφ0

)\C
γ

=⇒ (P ′||X ′
φ′)\C and #tick(γ) = i, then

D(φ′) = D(φi).

9 We remind the reader that Km
SM 6= Kn

SM if m 6= n and Km
i 6= Kn

l if m 6= n or i 6= l.

The concept of time-dependent stability is similar to the one of stability introduced in
Section 3. Basically, a process P is time-dependent stable if process X cannot increase
significantly its knowledge when P runs in the space of a time slot.

When two (or more) processes are t. d. stable with respect to a certain sequence
of knowledges {φi}i≥0, and they enjoy a certain tGNDC property (Appendix B), the
following compositionality proposition holds (proofs in [13]).

Proposition 5. Given a sequence {φi}i≥0 and a set of public channels C, assume

Pr ∈ tGNDC
αr(Pr)
≤ttrace

with 1 ≤ r ≤ n. Assume also Pr t. d. stable w.r.t. {φi}i≥0. It

follows that (P1||P2|| . . . ||Pn) ∈ tGNDC
α1(P1)||α2(P2)||...||αn(Pn)
≤ttrace

and
(P1||P2|| . . . ||Pn) is t. d. stable w.r.t. {φi}i≥0.

Sj
0 and Rj,q

0 (Subsection 2.3) are t.d. stable w.r.t. the sequence {φi} = φ0, φ1, φ2, . . .
defined as follows:

φ0 = {Kj
0 , mac(Kj

0 , Kj
SM) | 1 ≤ j ≤ n}

φ1 = φ0 ∪ {mj
1, mac(mj

1, K
j
1) | 1 ≤ j ≤ n}

φ2 = φ1 ∪ {mj
2, mac(mj

2, K
j
2), Kj

1 | 1 ≤ j ≤ n}
. . .

φi = φi−1 ∪ {mj
i , mac(mj

i , K
j
i), Kj

i−1 | 1 ≤ j ≤ n}
. . .

where n is the number of senders. This can be verified by inspection of the specifications
in Subsection 2.3.

φi is equal to φi−1 plus the set of all the messages an intruder would be able
to add to its knowledge by eavesdropping on a run of the protocol during the whole
time interval i (of course including those messages coming from all the other senders
processes). The same considerations about the power of the intruder hold as in the
previous section. Actually, the intruder has more powerful means to act since the
beginning of each time interval.

Now we check if Sj
0 and Rj,q

0 , specified in Subsection 2.3, separately satisfy the
properties of interest. Let 0′ be the process that simply let time pass, 0′ = tick.0′.

Then, Sj
0 enjoys tGNDC0

′

≤ttrace
and Rj,q

0 enjoys tGNDC
αtInt(P

q)
≤ttrace

, that is to say for all

X ∈ tEφ0

C we have (Sj
0 ||X)\C ≤ttrace 0′ and (Rj,q

0 ||X)\C ≤ttrace αtInt(P
q). This may

be proved by finding a suitable weak simulation relation between (Sj
0||Xφ0

) \ C and
0′ and between (Rj,q

0 ||Xφ0
) \ C and tSpec0, respectively. The set C of channels over

which an intruder is able to communicate is C = {ci | i ≥ 0}.

Lemma 1. Sj
0 and Rj,q

0 are t. d. stable w.r.t. {φi}.

Lemma 2. Sj
0 ∈ tGNDC0

′

≤ttrace
and Rj,q

0 ∈ tGNDC
αtInt(P

q)
≤ttrace

.

The proof of Lemma 2 is in the Appendix.

The following proposition follows by Lemmas 1 and 2 and by Proposition 5, where
r = 1, 2, P1 = Sj

0 , P2 = Rj,q
0 .

Proposition 6. P q ∈ tGNDC
αtInt(P

q)
≤ttrace

10.

10 Note that 0′||αtInt(P
q) ≤ttrace αtInt(P

q).

The correctness of the multiple receivers version (considering all the receivers belonging
to subgroup j), can be also proved using results of Lemmas 1 and 2 and Proposition
5, where index r is not fixed a priori and P1 = Sj

0 and Pr = Rj,q
0 with 1 ≤ q ≤ nj .

Proposition 7. System P j (in Definition 4) ∈ tGNDC
α

j

tInt
(P j)

≤ttrace
.

We get into the issue of considering a multiple senders/receivers environment. Let us
consider Γ = Π1≤j≤nP j and αtInt(Γ) = Π1≤j≤nαj

tInt(P
j), where n is the cardinality

of the senders processes.

Proposition 8. System Γ ∈ tGNDC
αtInt(Γ)
≤ttrace

.

The result follows by application of Propositions 5 and 7.

We note that, in order to have timed integrity on the messages mi, µTESLA must
ensure timed secrecy on the keys Ki. Indeed, we could also check explicitly timed
secrecy on the keys with the same machinery.

3.4 An analysis of the N Root/Leaf pairwise keys protocol: secrecy

A secrecy analysis on the protocol presented in Section 2.4, with respect to an intruder
that tries to discover m, is achieved by exploiting the principle on the persistent stability
of the parallel composition of stable processes, introduced as part of Prop. []. For the
sake of clarity, we report this result as a stand-alone lemma.

Lemma 3. Given an intruder’s initial knowledge φX , assume that P1 and P2 are stable
processes w.r.t. φX ; then P1||P2 is stable w.r.t. φX .

We informally motivate the guidelines of the analysis, before showing its steps. The
intruder is provided with an initial knowledge φX , that can be increased to the set φ′

X

during the execution of the protocol by the messages the intruder process receives.
Accordingly, the intruder’s knowledge becomes at most D(φ′

X).

Thus, to carry out an analysis on the secrecy of messages, one can act in the
following way. We must analyze how the knowledge of the intruder is altered in the
course of the protocol execution. If, by increasing its knowledge, message m happens
to be in that knowledge, this does mean that the intruder has discovered m. In other
words, there is a secrecy attack on the protocol.

Thus, let φX be the set {{K}KIL1
|{K}KIL2

| . . . |{K}KILN
} ∪ {{m}K}.

One can easily check that I1(k, m) is stable w.r.t. φX and each Ln
1 (KILn), with

1 ≤ n ≤ N , is stable w.r.t. φX . Let C be the set {c1, c2}.

During its computation, the initiator process performs only two output actions,
whose corresponding messages exactly correspond to φX . On the other hand, each leaf
in the set of the receivers does not perform any output action, thus not contributing
to augmenting the initial knowledge φX .

By applying Lemma 3, one can conclude that process P (K, m)
.
= I1(k, m)||Ln

1 (KILn)
is stable w.r.t. φX , meaning that the knowledge of the intruder does not significantly
evolve during the computation of the protocol. In particular, this means that the pro-
tocol preserves the secrecy of message m (given of course the initial confidentiality of
m and the correct choice and delivery of {KILn} and K).

4 Conclusions

Multicast and wireless security are a fertile field for computer science and engineering
researchers and developers. In this paper an attention was focused on methodologies
for certifying the correctness of some architectures for authenticating digital streams
and giving them data confidentiality.

The modeling and the verification approaches have been presented through some
case studies. In particular, the protocols’ models have been given by exploiting a
process-algebraic framework dealing with cryptographic and timed primitives. Also,
the framework is rich enough to describe wireless communications (at the level of
details useful for our goals). The verification has been performed using appropriate
methods derived from usual process-algebras techniques, such as simulation checking.
A key feature is the application of compositional analysis techniques that allowed us
to check systems even with an unbounded number of participants.

The choice of the case studies involving the signature of digital streams has not
been random. Indeed, the first is considered a pioneering protocol in the field. However,
it suffers from the problem of packet loss, in the sense that, if a packet is missing, the
authentication chain is broken and the integrity of the subsequent packets cannot be
verified. Several protocols were born with the intent of fighting against this problem.
In particular, we have chosen EMSS, in order to model also packet loss. We achieve it
through a non-deterministic choice performed at the receiver’s side. Finally, also timed
issues in wireless environments have been considered. To this aim, a process algebra
enriched with timed primitives has been used, able to model the passing of time.

An analysis has been also conducted in order to prove that the multicast data are
not modified en-route, i.e., in their traveling from one sender to the set of receivers.
To analyze this sort of robustness against packet modification, also called integrity of
packets, a compositional analysis has been applied. The methodology can work both
in a timed and in an untimed setting and, for some protocols, it has the advantage of
carrying out the analysis over an unbounded number of components.

In the timed case study, the fulfillment of the property of timed integrity is a
consequence of the fulfillment of the property of timed secrecy over the keys that are
going to be disclosed. We could also have checked explicitly timed secrecy over those
keys, with the same proposed machinery. On the contrary, what has been proposed here
is a case study dealing with secure group communication. Whereas the modeling of the
protocol has been done within the same process-algebraic framework, another principle
has been used for the analysis. The aim of the analysis was checking the fulfillment of
the secrecy of data exchanged within the group’s members. To this aim, the property
of secrecy has been mapped into a property over the intruder’s knowledge, by checking
how it changes during the computation. A possible extension to this kind of analysis
could be enlarging the scenario to protocols guaranteeing forward and backward secrecy
in dynamic groups, see, e.g., [28].

To sum up, the number of protocols, the different scenarios and the properties we
were able to deal with suggest the feasibility of our verification approach. By starting
from these results, we are also going to develop techniques to automatize the proofs
as well as a more precise modeling of wireless communication. This could allow us to
deal with other relevant properties such as denial of service, location-based security
properties (as privacy location) and similar issues.

References

1. M. Archer. Proving correctness of the basic TESLA multicast stream authentica-
tion protocol with TAME. In Proc. WITS’02, 2002. Informal proceedings.

2. B. Bell and L. La Padula. Secure computer systems—unified exposition and multics
interpretation. Technical Report Tech. Rep. ESD-TR-75-306, MITRE MTR-2997,
1976.

3. P. Broadfoot and G. Lowe. Analysing a stream authentication protocol using model
checking. In Proc. ESORICS’02, volume LNCS 2502, pages 146–161. Springer,
2002.

4. R. Canetti, J.A. Garay, G. Itkis, D. Micciancio, M. Naor, and B.Pinkas. Multicast
security: A taxonomy and some efficient constructions. In Proc. of INFOCOM
1999, pages 708–716. IEEE, 1999.

5. R. Focardi and R. Gorrieri. A taxonomy of security properties for process algebras.
Journal of Computer Security, 3(1):5–34, 1995.

6. R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis of
cryptographic protocols. In Proc. ICALP’00, volume LNCS 1853, pages 354–372.
Springer, 2000.

7. R. Focardi, R. Gorrieri, and F. Martinelli. Secrecy in security protocols as non
interference. In ENTCS 32, 2000.

8. R. Focardi, R. Gorrieri, and F. Martinelli. Classification of security properties—
part II: Network security. In Proc. FOSAD 2001/2002—Tutorial Lectures, volume
LNCS 2946, pages 139–185. Springer, 2004.

9. R. Focardi and F. Martinelli. A uniform approach for the definition of security
properties. In Proc. FM’99, volume LNCS 1708, pages 794–813. Springer, 1999.

10. R. Gennaro and P. Rohatgi. How to sign digital streams. Information and Com-
putation, 165(1):100–116, 2001.

11. J.A. Goguen and J. Meseguer. Security policy and security models. In
Proc. S&P’82, pages 11–20. IEEE, 1982.

12. P. Golle and N. Modadugu. Authenticating streamed data in the presence of
random packet loss. In Proc. NDSS’01. The Internet Society, 2001.

13. R. Gorrieri and F. Martinelli. A simple framework for real-time cryptographic
protocol analysis with compositional proof rules. Sci. Comput. Program., 50(1-
3):23–49, 2004.

14. R. Gorrieri, F. Martinelli, M. Petrocchi, and A. Vaccarelli. Compositional verifi-
cation of integrity for digital stream signature protocols. In Proc. ACSD’03, pages
142–149. IEEE, 2003.

15. R. Gorrieri, F. Martinelli, M. Petrocchi, and A. Vaccarelli. Formal analysis of some
timed security properties in wireless protocols. In Proc. FMOODS’03, volume
LNCS 2884, pages 139–154. Springer, 2003.

16. M. Hennessy and T. Regan. A temporal process algebra. Information and Com-
putation, 117:222–239, 1995.

17. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Proc. TACAS’96, volume LNCS 1055, pages 147–166. Springer, 1996.

18. F. Martinelli. Analysis of security protocols as open systems. Theoretical Computer
Science, 290(1):1057–1106, 2003.

19. F. Martinelli, M. Petrocchi, and A. Vaccarelli. Compositional verification of secure
streamed data: a case study with EMSS. In Proc. ICTCS’03, LNCS 2841, pages
383–396. Springer, 2003.

20. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

21. J. M. Park, E. K. P. Chong, and H. J. Siegel. Efficient multicast packet authen-
tication using signature amortization. In Proc. S&P’02, pages 227–240. IEEE,
2002.

22. A. Perrig, R. Canetti, D. X. Song, and D. Tygar. Efficient and secure source
authentication for multicast. In Proc. NDSS’01. The Internet Society, 2001.

23. A. Perrig, R. Canetti, D. Tygar, and D. X. Song. Efficient authentication and
signing of multicast streams over lossy channels. In Proc. S&P’00, pages 56–73.
IEEE, 2000.

24. A. Perrig, R. Szewczyk, D. Tygar, V. Wen, and D. E. Culler. SPINS: security
protocols for sensor networks. Wireless Networks Journal, 8:521–534, 2002.

25. J. Postel. The User Datagram Protocol - RFC 768, 1980.
26. M. Taghdiri and D. Jackson. A lightweight formal analysis of a multicast key

management scheme. In Proc. of FORTE 2003, volume LNCS 2767, pages 240–
256. Springer, 2003.

27. D. Wallner, E. Harder, and R. Agee. RFC 2627: Key management for multicast:
issues and architectures, 1999.

28. C. K. Wong, M. G. Gouda, and S. S. Lam. Secure group communications using
key graphs. IEEE/ACM Trans. Netw., 8(1):16–30, 2000.

APPENDIX

A Crypto-CCS and tCryptoSPA

This appendix presents a concise description of the Crypto-CCS and the tCryptoSPA
syntax and semantics. Some constructs of the languages are here omitted, since they
are not of direct interest for the investigated topics. For a complete description, the
interested reader is invited to see [18, 13], respectively.

A.1 Crypto-CCS

The model of the language consists of sequential agents able to communicate by ex-
changing messages.

The data handling part of the language consists of messages and inference systems.
Messages are the data manipulated by agents, they form a set Msgs of terms possibly
containing variables. The set Msgs is defined by the grammar:

m ::= x | b | F 1(m1, . . . , mk1
) | . . . | F l(m1, . . . , mkl

)

where F i (for 1 ≤ i ≤ l) are the constructors for messages, x ∈ V is a countable set of
variables, b ∈ B is a collection of basic messages and ki, for 1 ≤ i ≤ l, gives the number
of arguments of the constructor F i. Messages without variables are closed messages.

Inference systems model the possible operations on messages. They consist of a set
of rules r, e.g., :

r =
m1 . . . mn

m0

where {m1, . . . , mn} is a set of premises (possibly empty) and m0 is the conclu-
sion. An instance of the application of rule r to closed messages mi is denoted as
m1 . . . mn ⊢r m0. Given an inference system, a deduction function D is defined
such that, if φ is a finite set of closed messages, then D(φ) is the set of closed mes-
sages that can be deduced starting from φ by applying instances of the rules in the
system. The syntax and semantics of Crypto-CCS are parametric with respect to a
given inference system.

The control part of the language consists of compound systems, i.e., sequential
agents running in parallel. The language syntax is as follows:

Compound systems: S ::= (S1||S2) | S \ C | Aφ

Sequential agents: A ::= 0 | p.A | A1 + A2 | [m1 . . . mn ⊢r x]A1; A2

| [m = m′]A1; A2 | E(m1, . . . , mn)
Prefix constructs: p ::= c!m | c?x

where m, m′, m1, . . . , mn are closed messages or variables, x is a variable, c ∈ Ch (a
finite set of channels) φ is a finite set of closed messages, C is a subset of Ch.

0 is the process that does nothing.
p.A is the process that can perform an action according to the particular prefix

construct p and then behaves as A. In particular,

– c!m denotes a message m sent on channel c;
– c?x denotes the receiving of a message m on channel c. The received message

replaces the variable x.

(!)
(c!m.A)φ

c!m
−→ (A)φ

(?)
m ∈ Msgs

(c?x.A)φ
c?m
−→ (A[m/x])φ∪{m}

(D)
m1 . . . mn ⊢r m (A[m/x])φ∪{m}

a
−→ (A′)φ′

([m1 . . . mn ⊢r x]A; A1)φ
a

−→ (A′)φ′

(||1)
S

a
−→ S′

S||S1
a

−→ S′||S1

(||2)
S

c!m
−→ S′ S1

c?m
−→ S′

1

S||S1
τ

−→ S′||S′
1

(\1)
S

c!m
−→ S′ c /∈ L

S \ L
c!m
−→ S′ \ L

(+2)
S

a
−→ S′

S + S1
a

−→ S′

(D1)
6 ∃m s.t. m1 . . . mn ⊢r m (A1)φ

a
−→ (A′

1)φ′

([m1 . . . mn ⊢r x]A;A1)φ
a

−→ (A′
1)φ′

(=)
m = m′ (A)φ

a
−→ (A′)φ′

([m = m′]A; A1)φ
a

−→ (A′)φ′

(=1)
m 6= m′ (A1)φ

a
−→ (A′

1)φ′

([m = m′]A; A1)φ
a

−→ (A′
1)φ′

(Const)
E(x1, . . . , xn) =def A A[m1/x1, . . . , mn/xn]

a
−→ A1

E(m1, . . . , mn)
a

−→ A1

Fig. 5. Operational semantics of Crypto-CCS.

A1 + A2 represents the non deterministic choice between A and A1.

[m1 . . . mn ⊢r x]A1; A2 is the inference construct. If, by applying an instance of rule
r, with premises m1 . . . mn, a message m can be inferred, then the process behaves as
A1 (where m replaces x), otherwise it behaves as A2.

[m = m′]A1; A2 is the match construct, to check message equality. If m = m′ then
the system behaves as A1, otherwise it behaves as A2.

A compound system S1||S2 denotes the parallel execution of S1 and S2. S1||S2

performs an action p if one of its sub-components performs p. A synchronization, or
internal action, denoted by τ , may take place whenever S1 and S2 are able to perform
two complementary actions, i.e., send-receive actions on the same channel.

A compound system S \C allows only visible actions whose channels are not in C.
(Internal action τ being the invisible action).

The term Aφ is a single sequential agent whose knowledge, i.e., the set of messages
which occur in its term, is described by φ. The knowledge of an agent increases either
when it receives messages (see rule (?) in Fig. 5) or it infers new messages from the
messages it knows (see rule D in Fig. 5). For every sequential agent Aφ, it is required
that all the closed messages that appear in Aφ belong to its knowledge φ.

The activities of the agents are described by the actions that they can perform.
The set Act of actions which may be performed by a compound system ranges over by

a and it is defined as: Act = {c?m, c!m, τ | c ∈ C, m ∈ Msgs,m closed}. P is the set of
all the Crypto-CCS closed terms (i.e., with no free variables). sort(P) is the set of all
the channels that syntactically occur in the term P.

The operational semantics of a Crypto-CCS term is described by means of the
labeled transition system (lts, for short) 〈P ,Act, {

a
−→}a∈Act〉, where {

a
−→}a∈Act is the

least relation between Crypto-CCS processes induced by the axioms and inference rules
of Fig. 5 (in that figure the symmetric rules for ||1, ||2, \1, +2 are omitted).

The expression S
a

−→ S′ means that the system can move from the state S to the
state S′ through the action a. The expression S =⇒ S′ denotes that S and S′ belong to
the reflexive and transitive closure of

τ
−→; let γ = a1 . . . an ∈ (Act\{τ})∗ be a sequence

of actions. Then, S
γ

=⇒ S′ if S =⇒
a1−→=⇒ . . . =⇒

an
−→ =⇒ S′.

As behavioral relations among Crypto-CCS terms, we are interested in trace inclu-
sion (equivalence) and (weak) simulation.

Definition 6. We say that the traces of P are included in the traces of Q (P ≤trace Q)

whenever, if P
γ

=⇒ P1 then Q
γ

=⇒ Q1. We write that P=traceQ iff P ≤trace Q and
Q ≤trace P .

Definition 7. We say that a relation R among processes is a weak simulation, if for
every (P, Q) ∈ R we have:

– If P
a

−→ P ′, a 6= τ , then there exists Q′ s.t. Q
a

=⇒ Q′ and (P ′, Q′) ∈ R.

– If P
τ

−→ P ′ then there exists Q′ s.t. Q =⇒ Q′ and (P ′, Q′) ∈ R.

The union of all weak simulations is a weak simulation and it is denoted by ≺. As
usual, it holds that if P ≺ Q then P ≤trace Q.

A.2 tCryptoSPA

The real-time extension of the Cryptographic Security Process Algebra (for short, CryptoSPA)
of [9, 6] has been proposed in [13]. The new language, timedCryptoSPA (tCryptoSPA
for short), is adopted for describing cryptographic protocols where information about
the concrete timing of events is necessary. We remind the reader of the syntax, the
operational semantics of the language and some auxiliary notions. The description is
not exhaustive, since some constructs are not of direct interest for the investigated
topics. Furthermore, some terms of the language are the same as in the Crypto-CCS
language. Finally, the interested reader is referred to [13] for a more complete discussion
of tCryptoSPA.

The set L of tCryptoSPA processes is defined as:

P ::= 0| c(x).P | cm.P | τ.P | tick.P | P1 + P2 | P1||P2 | P\L |

A(m1, . . . , mn) | [〈m1, . . . , mr〉 ⊢rule x]P1; P2

We omit to describe terms whose meaning has been already explained in the pre-
vious part of the appendix, subsection A.1. To this aim, note that the tCryptoSPA
sequential construct ce.P is syntactically and semantically equivalent to the Crypto-
CCS sequential construct c!m.P . Thus, cm.P is the process that can send m on channel
c, then behaving like P .

m,m1, . . . , mr, mn are messages or variables and L is a set of channels. Both the
operators c(x).P and [〈m1 . . . mr〉 ⊢rule x]P1; P2 bind the variable x in P and P1,
respectively.

Let Def : Const −→ L be a set of defining equations of the form A(x1, . . . , xn)
.
= P , where P may contain no free variables except x1, . . . , xn, which must be distinct.
Constants permit us to define recursive processes. A term P is closed with respect to
Def if all the constants occurring in P are defined in Def (and, recursively, for their
defining terms). A term P is guarded w.r.t. Def if all the constants occurring in P
(and, recursively, for their defining terms) occur in a prefix context [20].

The set Act of actions which may be performed by a system is defined as: Act =
{c(m), cm, τ, tick, | c ∈ I, c ∈ O, m ∈ M, m closed}. τ is the internal, invisible action.
tick is the special action used to model time elapsing. We let l range over Act\{tick}.
We call L the set of all the tCryptoSPA closed terms (i.e., with no free variables) that
are closed and guarded w.r.t. Def . We define sort(P) to be the set of all the channels
syntactically occurring in the term P .

τ.P is the process that executes the internal action τ and then behaves like P ;
tick.P is a process willing to let one time unit pass and then behaving as P ;
P1 + P2 (choice) represents the nondeterministic choice between the two processes

P1 and P2; with respect to tick actions, time passes when both P1 and P2 are able to
perform a tick action – and in such a case by performing tick a configuration where
both the derivatives of the summands can still be chosen is reached. When only one of
the two processes can perform tick, say P1, it could be either that P1 performs tick –
and in such a case P2 is discarded – or P2 performs its normal activity – and in such a
case P1 is discarded; moreover, τ prefixed summands have priority over tick prefixed
summands;

P1||P2 (parallel) is the parallel composition of processes that can proceed in an
asynchronous way but they must synchronize on complementary actions to make a
communication, represented by a τ . Both components must agree on performing a tick
action, and this can be done even if a communication is possible.

P\L allows only visible actions whose channels are not in L;
A(m1, . . . , mn) behaves like the respective defining term P where all the variables

x1, . . . , xn are replaced by the messages m1, . . . , mn.

The time model adopted in the language is known as the fictitious clock approach
of, e.g., [16]. A global clock is supposed to be updated whenever all the processes agree
on this, by globally synchronizing on the special action tick, representing the passing
of a time unit. All the other actions are assumed to take no time.

itted).

The expression P
a
⇒ P ′ is a shorthand for P (

τ
−→)∗P1

a
−→ P2(

τ
−→)∗P ′, a 6= τ , where

(
τ

−→)∗ denotes a (possibly empty) sequence of transitions labeled τ . The expression

P ⇒ P ′ is a shorthand for P (
τ

−→)∗P ′. Let γ = a1, . . . , an ∈ (Act\{τ})∗ be a sequence

of actions; then P
γ
⇒ P ′ iff there exist P1, . . . , Pn−1 ∈ P such that P

a1⇒ P1
a2⇒

, . . . , Pn−1
an
⇒ P ′. Let 0′ .

= tick.0′.
For timed behavioural relations among tCryptoSPA processes, we will be mainly

interested in timed trace inclusions.

Definition 8. For any P ∈ L the set T (P) of timed traces associated with P is defined

as follows T (P) = {γ ∈ (Act\{τ})∗ | ∃P ′.P
γ
⇒ P ′ }. The timed trace pre-order, denoted

by ≤ttrace, is defined as follows: P ≤ttrace Q iff T (P) ⊆ T (Q). P and Q are timed
trace equivalent, denoted by P =ttrace Q, if T (P) = T (Q).

We define the concept of weak simulation as usual.

Definition 9. We say that a relation R among processes is a weak simulation, if for
every (P, Q) ∈ R we have:

(tick)
tick.P

tick
−→ P

(||1)
P1

l
−→ P ′

1

P1||P2
l

−→ P ′
1||P2

(||2)
P1

c(x)
−→ P ′

1 P2
cm
−→ P ′

2

P1||P2
τ

−→ P ′
1||P

′
2

(||3)
P1

tick
−→ P ′

1 P2
tick
−→ P ′

2

P1||P2
tick
−→ P ′

1||P
′
2

(+1)
P1

l
−→ P ′

1

P1 + P2
l

−→ P ′
1

(+2)
P1

tick
−→ P ′

1 P2
tick
−→ P ′

2

P1 + P2
tick
−→ P ′

1 + P ′
2

(+3)
P1

tick
−→ P ′

1 P2 6
tick
−→ P2 6

τ
−→

P1 + P2
tick
−→ P ′

1

Fig. 6. Semantics of tCryptoSPA involving action tick.

– If P
a

−→ P ′, a 6= τ , then there exists Q′ s.t. Q
a

=⇒ Q′ and (P ′, Q′) ∈ R.

– If P
τ

−→ P ′ then there exists Q′ s.t. Q =⇒ Q′ and (P ′, Q′) ∈ R.

Let ≺ the union of all weak simulations among processes. Then, we have ≺⊆≤ttrace.

B GNDC and tGNDC

In this appendix, we present the general schema Generalized Non Deducibility on Com-
positions (GNDC), for the definition of security properties given in [6, 9, 8], and its
timed extension tGNDC given in [13].

In the literature, several efforts have been made to prevent the unauthorized in-
formation flow in multilevel computer systems [2], i.e. systems where processes and
objects are bound to a specific security level. An example from military jargon is the
fact that documents are generally hierarchized from unclassified to top secret. The
seminal idea of non interference proposed in [11] aims at assuring that information
can only flow from low levels to higher ones. The first taxonomy of non-interference-
like properties has been uniformly defined and compared in [5] in the context of a
CCS-like process algebra. In particular, processes in the algebra were divided into high
and low processes, according to the level of actions that they can perform. To detect
whether an incorrect information flow (i.e. from high to low) has occurred, a particu-
lar non-interference-like property has been defined, the so-called Non Deducibility on
Compositions (NDC). NDC essentially says that a process is secure with respect to
wrong information flows if its low behaviour in isolation appears to be the same as its
low behaviour when interacting with any high-level process. NDC can be reformulated
from the world of multilevel systems to the one of network security. See [9, 7], where the
low-level process becomes a specification of a cryptographic communication protocol
and the behaviour of the protocol running in isolation is compared with that of the
protocol running in parallel with any possible adversary.

As a further step, a Generalized NDC (GNDC) has been formulated in [9], in order
to encompass in a uniform way many security properties. The main idea of GNDC is
the following: a system P satisfies property GNDCα

� if the behavior of P , despite the
presence of a hostile environment X that can interact with P only through a fixed
set of channels C, appears to be same (w.r.t. a behavioral relation � of observational
equivalence) to the behavior of a modified version α(P) of P that represents the expected
(correct) behavior of P .

The analysis of cryptographic protocols involves specifying a set of messages known
by the adversary at the beginning of the computation. This static (initial) knowledge
of the hostile environment must be bound to a specific set of messages. This limitation
is needed to avoid a too strong hostile environment that would be able to corrupt
any secret (as it would know all cryptographic keys, etc.). Given an adversary X,
we call ID(X) the set of closed messages that syntactically appear in X. This set,
intuitively, contains all the messages that are initially known by X. Let φX be a set
of messages representing the static, initial knowledge that we would like to give to X.
We want ID(X) to be consistent with φX . This can be obtained by requiring that all
the messages in ID(X) are deducible from φX by means of the deduction function D.

The set EφX

C of processes that can communicate on a subset of public channels C
and have an initial knowledge bound by φX can be therefore defined as follows:

EφX

C = {X ∈ P | sort(X) ⊆ C and ID(X) ⊆ D(φX)}

We consider as hostile processes only the ones belonging to EφX

C .
We define the property GNDCα

� as follows:

Definition 10. A process P is GNDCα
� ⇐⇒ ∀X ∈ EφX

C : (P ||X) \ C � α(P) where
� : P → P is a behavioral relation between processes and α : P → P is a function
between processes.

For the sake of completeness, it is worth noticing that a slightly extended GNDC
schema has been recently defined in [8], incorporating the fact that the set of bad
behaviours of P may depend on P itself and on the property under scrutiny.

For the analysis of safety properties it is enough to consider the trace inclusion
relation ≤trace as behavioral relation among the terms of the algebra. When the ≤trace

relation is considered, there exists a sufficient criterion for the static characterization,
i.e., not involving the universal predicate ∀, of GNDCα

� properties. In the following,
we give hints to the definition of GNDC without the need of the universal predicate,
since some notions will be useful in the rest of the paper. For further details about
this static characterization, the interested reader can see [6, 9], where the following
statements were first declared and proved.

Informally, the so called most powerful intruder in the trace setting ((TopC
trace)φ,

hereafter, for short TopC
φ) is that intruder whose knowledge is φ, that can communicate

only over channels in C, that can receive every message passing over these channels
(increasing in such a way its knowledge) and, finally, that can send over these channels
every message that it can deduce starting from φ.

More formally, TopC
φ is defined as follows in [9]:

Definition 11.

TopC
φ =

∑

c∈C

c(x).T opC
φ∪{x} +

∑

c∈C,m∈D(φ)

cm.TopC
φ

It has been proved ([6, 9]) that the general way in which Topφ
C is specified implies

that its behaviour includes that of any X belonging to the set EφX

C of admissible hostile
processes.

Corollary 1. For every function α : P → P, a process P is GNDCα
≤trace

⇐⇒

(P ||TopC
φ) \ C ≤trace α(P).

The corollary implies that, for the analysis of safety properties in the trace setting,
to check if a specification enjoys GNDC w.r.t. all the admissible hostile environments,
it is sufficient to check if the same specification enjoys GNDC with respect to the most
powerful intruder Topφ

C.

By varying the parameter α, the GNDC schema can be used to define and ver-
ify many security properties—among which secrecy, integrity, and entity authentica-
tion [5–7, 9, 14, 19]. As an example, we remind here how the secrecy and the entity
authentication properties have been formalized in [6] (relation � for specifying these
properties is trace inclusion ≤trace).

The requirements for a secrecy property to be satisfied are quite intuitive: a certain
message M, declared to be secret, should not be learnt by unauthorized users. Thus,
let us consider the event learnt(M), signaling that M has been learnt by the hostile
environment. Then, αS(P (m)) “is the set of processes where the event learnt(M) can
never occur”. For more details, the interested reader can see [7].

On the other hand, entity authentication “should allow the verification of an en-
tity’s claimed identity, by another entity” [6]. To formalize this action, the followed
approach is the one proposed in [17] and based on a so called correspondence between
actions. Let us consider two users A and B, participating through a protocol. To assure
the property, one would like that, whenever A concludes the protocol apparently with
B, B has indeed executed the protocol. This can be tested with the introduction of two
events, commit(A,B) and run(B,A), representing the fact that A has indeed terminated
the protocol apparently with B, (action commit), and B has indeed started communi-
cating with A, (action run). To fulfill entity authentication means to require that event
commit(A,B) is always preceded by event run(B,A). In the GNDC definition, αEA(P)
is the process where commit(A,B) is always preceded by run(B,A).

Along with GNDC, a general schema for the definition of timed security properties,
called timed Generalized Non Deducibility on Compositions (tGNDC for short) has
been proposed in [13].

Property tGNDC rephrases the analogue GNDC, but in a timed setting. A system
S is tGNDCα

� ⇐⇒ for every enemy X the composition of the system with X satisfies
the timed specification α(S). Basically, tGNDC guarantees that the timed property α
is satisfied, with respect to the � timed behavioral relation, even when the system is
composed with any possible adversary X.

We give here the set of admissible hostile environments for our timed setting. For a
certain enemy X, we call ID(X) the set of closed messages that syntactically appears
in X, all the messages initially known by X. Let φ0 be the initial knowledge we would
like to give to the enemy at the beginning of the computation. We require that all the
messages in ID(X) are deducible from φ0. We consider as hostile processes only the
ones belonging to the set tEφ0

C
11. They can communicate on a subset of public channels

C and have an initial knowledge bound by φ0:

tEφ0

C = {X ∈ L | sort(X) ⊆ C and ID(X) ⊆ D(φ0)}

The property tGNDCα
� is defined as follows:

11 Actually, there is another constraint that imposes that the enemy must eventually
let time pass. This is however not useful for safety properties we are going to study
in this paper and so it has been omitted for the sake of simplicity.

Definition 12. S is tGNDCα
� ⇐⇒ ∀X ∈ tEφ0

C : (S||X)\C �α(S) where � : L → L
is a timed behavioral relation between processes and α : L → L is a function between
processes defining the property specification for S as the process α(S).

As for the case of GNDC, it has been shown that ([13]), for the analysis of safety
properties in the timed-trace setting, it is possible to prove the existence of a most gen-
eral intruder (tT opC

ttrace)φ, acting as its companion in the non timed setting. Moreover,
(tT opC

ttrace)φ can let time pass, by performing tick actions. Again, the timed traces of
(tT opC

ttrace)φ include those of any X belonging to the set tEφ0

C , [13].
Thus, the following corollary holds:

Corollary 2. For every function α : L → L, a process S is tGNDCα
≤ttrace

⇐⇒

(S||(tT opC
ttrace) \ C ≤ttrace α(S).

C Proofs

Lemma A.5. Sj
0 ∈ tGNDC0

′

≤ttrace
and Rj,q

0 ∈ tGNDC
αtInt(P

q)
≤ttrace

This may be proved by finding a suitable weak simulation relation between (Sj
0 ||Xφ0

)\
C and 0′ and between (Rj,q

0 ||Xφ0
) \ C and tSpec0, respectively. The set C of channels

over which an intruder is able to communicate is C = {ci | i ≥ 0}.
The weak simulation relation for the sender specifications is the following:

RS = (((Sj
i (...)||Xφi

)\C, 0′) | ∀i, Xφi
∈ tEφi

C)

∪(((Bj
i (...)||Xφi

)\C,0′) | ∀i, Xφi
∈ tEφi

C)

∪(((ciK
j
i−1.B

j
i (. . .)||Xφi

)\C,0′) | i > 1, Xφi
∈ tEφi

C)

The weak simulation relation we consider for dealing with the receiver specifications is
the following (superscript q is omitted for simplicity):

R = (((Rj
0(null)||Xφ0

)\C, tSpec0) | Xφ0
∈ tEφ0

C)

∪((tick.(Rj
1(K

j
0)||Xφ0

)\C, tSpec0) | Xφ0
∈ tEφ0

C)

∪(((Rj
1(K

j
0)||Xφ1

)\C, tSpec1) | Xφ1
∈ tEφ1

C)

∪(((Rj
i (null, Kj

0)||Xφi
)\C, tSpeci) | i ≥ 2, Xφi

∈ tEφi

C)

∪((tick.(Rj
i (pi−1, K

j
0)||Xφi−1

)\C, tSpeci−1) | i ≥ 2, Xφi−1
∈ tE

φi−1

C)

∪(((Rj
i (pi−1, K

j
0)||Xφi

)\C, tSpeci) | i ≥ 2, Xφi
∈ tEφi

C)

∪(((Rj′

i (pi∗, pi−1, K
j
0)||Xφi

)\C, tSpeci) | i ≥ 2, Xφi
∈ tEφi

C)

∪(((Rj
i (xi−1, K

j
0)||Xφi

)\C, tSpeci) | fst(xi−1) 6= mj
i−1, i ≥ 2, Xφi

∈ tEφi

C)

∪((tick.(Rj
i (xi−1, K

j
0)||Xφi−1

)\C, tSpeci−1) | fst(xi−1) 6= mj
i−1, i ≥ 2,

Xφi−1
∈ tE

φi−1

C)

∪((tick.(Rj
i (pi−1∗, K

j
0)||Xφi−1

)\C, tick.tSpeci) | i ≥ 2, Xφi−1
∈ tE

φi−1

C)

where p1, pi−1, pi∗, pi−1∗ and xi−1 are not empty fields. pi∗, pi−1∗ are shortcuts to
denote either authentic packets sent by the sender or others. We omitted to explicitly
put in RS and R the pairs in which the first process performs deduction constructs.

Proof. Throughout the proof, we omit to consider the cases in which the sender and
the receiver by themselves perform internal actions.

– Sj
0 ∈ tGNDC0

′

≤ttrace
. Let us consider relation RS . RS is a weak simulation:

• ((Sj
i ||Xφi

)\C, 0′). Sj
i may

∗ either perform a tick action: in this case the whole system on the left

performs tick and (Sj
i ||Xφi

)\C
tick
−→ (Sj

i+1||Xφi+1
)\C. 0′ is able to simulate

it and
((Sj

i+1||Xφi+1
)\C,0′) ∈ RS .

∗ or go to intermediate state Bj
i . 0′ is able to simulate it and

((Bj
i ||Xφi

)\C,0′) ∈ RS .
• ((Bj

i ||Xφi
)\C,0′). Bj

i may perform a sending action, whereas Xφi
synchronizes

on that action: the whole system performs τ . It may happen:
∗ (Bj

i ||Xφi
)\C

τ
−→ (Bj

i ||Xφi
)\C, i = 0, 1. 0′ is able to simulate it and

((Bj
i ||Xφi

)\C,0′) ∈ RS .

∗ (Bj
i ||Xφi

)\C
τ

−→ (ciK
j
i−1.B

j
i ||Xφi

)\C, i ≥ 1. 0′ is able to simulate it and

((ciK
j
i−1.B

j
i ||Xφi

)\C,0′) ∈ RS .

• ((ciK
j
i−1.Bi(. . .)||Xφi

)\C,0′). The process on the left may perform a τ action,

i.e. (ciK
j
i−1.B

j
i (. . .)||Xφi

)\C
τ

−→ (Bj
i (. . .)||Xφi

)\C. Similar to the previous
item.

– Rj,q
0 ∈ tGNDC

αtInt(P
q)

≤ttrace
. Let us consider relation R. R is a weak simulation:

• ((Rj
0(null)||Xφ0

)\C, tSpec0). Suppose Rj
0(null) performs a receiving action

and Xφ0
the corresponding sending action. Xφ0

could have sent any mes-
sage ∈ D(φ0) whereas the only message Rj

0(null) will accept will be the MAC
computed with key Kj

SM . In this case

(Rj
0(null)||Xφ0

)\C
τ

−→ tick.(Rj
1(K

j
0)||Xφ0

)\C and tSpec0 is able to simulate τ
and (tick.(Rj

1(K
j
0)||Xφ0

)\C, tSpec0) ∈ R. When the received message contains
a MAC not computed with Kj

SM the system maintains the same configuration
and tSpec0 is able to simulate it.

• (tick.(Rj
1(K

j
0)||Xφ0

)\C, tSpec0). The first process may only perform tick by

reaching the configuration (Rj
1(K

j
0)||Xφ1

)\C. Note that also tSpec0
tick
−→ tSpec1

and ((Rj
1(K

j
0)||Xφ1

)\C, tSpec1) ∈ R.
• ((Rj

1(K
j
0)||Xφ1

)\C, tSpec1).
∗ The first process may perform tick and go to (Rj

2(null, Kj
0)||Xφ2

)\C. Note

that also tSpec1
tick
−→ tSpec2 and

((Rj
2(null, Kj

0)||Xφ2
)\C, tSpec2) ∈ R.

∗ If Rj
1(K

j
0) performs a receiving action and Xφ1

the corresponding sending
action (by sending messages ∈ D(φ1)), then

((Rj
1(K

j
0)||Xφ1

)\C
τ

−→ (tick.Rj
2(p1∗, K

j
0)||Xφ1

), where p1∗ could be either
the authentic packet send by the sender p1 or another one x1. Note that
((tick.Rj

2(p1∗, K
j
0)||Xφ1

), tSpec1) ∈ R.
• (tick.(Rj

2(p1, K
j
0)||Xφ1

)\C, tSpec1). The first process may only perform a tick

action reaching the configuration (Rj
2(p1, K

j
0)||Xφ2

)\C. Note that also tSpec1
tick
−→

tSpec2 and ((Rj
2(p1, K

j
0)||Xφ2

)\C, tSpec2) ∈ R.
• ((Rj

i (pi−1, K
j
0)||Xφi

)\C, tSpeci).
∗ The first process may perform tick by reaching

{(Rj
i+1(null, Kj

0)||Xφi+1
)\C. Note that also tSpeci

tick
−→ tSpeci+1 and

((Rj
i+1(null, Kj

0)||Xφi+1
)\C, tSpeci+1) ∈ R.

∗ If Rj
i (pi−1, K

j
0) performs a receiving action then

((Rj
i (pi−1, K

j
0)||Xφi

)\C
τ

−→ (Rj′

i (pi∗, pi−1, K
j
0)||Xφi

)\C.

Note that ((Rj′

i (pi∗, pi−1, K
j
0)||Xφi

)\C, tSpeci) ∈ R.

• ((Rj′

i (pi∗, pi−1, K
j
0)||Xφi

)\C, tSpeci). If Rj′

i outputs a message over channel
app, it must be z = ymac, pi−1 = snd(ymac), xKi−1

= Kj
i−1 and fst(pi−1) must

be replaced with mj
i−1. Rj′

i (pi∗, pi−1, K
j
0)||Xφi

)\C
appm

j

i−1

−→ tick.Rj
i+1(pi∗, K

j
0)||Xφi

)\C

and tSpeci

appm
j

i−1

−→ tick.tSpeci+1. Both the derivatives ∈ R.
• ((tick.Rj

i+1(pi∗, K
j
0)||Xφi

)\C, tick.tSpeci+1). Both the processes may perform
tick and the derivatives ∈ R.

• ((Rj
i (null, Kj

0)||Xφi
)\C, tSpeci).

∗ If Rj
i (null, Kj

0) performs a receiving action and Xφi
the corresponding

sending action, then ((Rj
i (null, Kj

0)||Xφi
)\C

τ
−→

(tick.Rj
i+1(pi∗, K

j
0)||Xφi

). Note that

((tick.Rj
i+1(pi∗, K

j
0)||Xφi

), tSpeci) ∈ R.
∗ If the first process performs tick, it reaches the configuration

(Rj
i+1(null, Kj

0)||Xφi+1
)\C. Note that also tSpeci

tick
−→ tSpeci+1

and ((Rj
i+1(null, Kj

0)||Xφi+1
)\C, tSpeci+1) ∈ R

• ((Rj
i (xi−1, K

j
0)||Xφi

)\C, tSpeci). In this case the equality check among hashes
does not succeed and the system gets stuck. tSpeci is always able to simulate
it.

	cover7.pdf
	Consiglio Nazionale delle Ricerche
	R. Gorrieri, F. Martinelli, M. Petrocchi
	Iit

