
Abstraction in Real Time Process Algebra

A.S. Klusener
CWI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

e-mail: stevenk@cwi.nl

Abstract. In this paper we extend Real Time Process Algebra by the silent step r.
We start by giving the operational semantics and we find a characterizing law of which the
soundness and the completeness is proven. By adding the integral construct we can in­
terpret symbolic (untimed) process terms as timed processes. We investigate the resulting
r-equivalence and come to a delay bisirnulation with a stronger root condition. Finally we
test the applicability of this notion of real time abstraction by proving the PAR protocol
(Positive Acknowledgement with Retransmission) correct.

1985 Mathematics Subject Classification: 68Q60.
1982 CR Categories: D.3.1, F.3.1, J.7.
Key Words & Phrases: Real Time, Process Algebra, ACP, Abstraction, Protocol Verifica­
tion.
Note: This work is in part sponsored by ESPRIT Basic Research Action 3006, CONCUR.
Some proofs have been omitted in this paper, they can be found in the full version which
has appeared as CWI report CS9144 under the same title.

1 Introduction

In recent years much effort is paid to develop techniques for proving software systems
correct w.r.t. to their specification. A motivation and an overview of these techniques
can be found in [dR89]. In this paper we restrict ourselves to ACP ([BW90]), which is a
Proces Algebra like CCS ([Mil89]) and CSP ([Hoa85]). The idea of protocol verification
by using Process Algebra is that one has a specification and an implementation both
formulated in the same language. One can abstract from the implementation details by
renaming certain "internal" actions to the silent action T. Then, one can apply the axioms
of the algebra for proving the equality between the specification and the implementation.
For examples of protocol verification in (untimed) Process Algebra we refer to [Bae90].

The most common notion of abstraction, weak bisimulation, is due to Milner (Mil80].
Van Glabbeek and Weijland introduced in (GW89] delay bisimulation and branching
bisirnulation, which are slightly different notions of abstraction.

In timed Process Algebra abstraction is not yet well developed. Only Wang studied
abstraction in a timed Process Algebra (timed CCS) ((Wan90]), although his weak bisim­
ulation is not a congruence. In another timed extension of a Process Algebra, Timed CSP
((RR88],(Ree89]), there is a special action WAIT t which idles for t time units. In this

326

way an internal activity can be expressed. Similar constructs can be found in [MT90],
[HR90]. It may be the case that the introduction of a T action to Real Time ACP makes

it more easy to compare Real Time ACP with other calculi.
In this paper a notion of abstraction in Real Time Process Algebra is proposed. As

starting point we take the work of Ba.eten and Bergstra, they presented in [BB91] their

Real Time Process Algebra BPAp8. In that paper they suggested already to interpret a

timed r as an explicit idling. We will investigate this idea more thoroughly.

We take BPAp8 (without integrals) and add the timed action r(t). The operational

semantics is given and we give a complete axiomatization. The addition of the integral

construct allows us to interpret symbolic process terms as a special class of timed process

terms. It comes out that the resulting subtheory can be considered as being a delay

bisimulation with a strongly rooted condition. By generalizing the laws of earlier sections

we obtain axioms for process terms with integrals. Finally, we show the use of this theory

by giving a protocol verification which depends on time.
This paper is based on "absolute" time, thus the timestamps of the actions are in­

terpreted from the starting point. This is not a serious point since all results can be

formulated in "relative" time as well.

2 Adding the Silent Step to the Original Semantics

2.1 The Syntax

In this Section we give some intuition for timed processes by introducing the opera­

tional semantics of [BB91] for process expressions over Basic Real Time Process Algebra

(BPAp8). We do not yet consider integration in this section. Let Asr be the set of actions,

containing the constants 8 (for inaction) and r (for internal activity). The alphabet of
the theory BPAp8r is

A~~me = {a(t)la E Asr, t E Jl2'.0 }

Similarly we use A~me, as the set of timed actions without timed 8's. In the sequel we

refer to actions from Asr as symbolic actions and we refer to actions from A~i,:"e as timed

actions. Moreover, process expressions are simply called terms. The set T of (closed)

terms over BPAp8r is generated by the alphabet A~ime and the binary operators + for

alternative composition and · for sequential composition and the operator », called the
(absolute) time shift.

The (absolute) time shift, », takes a nonnegative real number and a process term;

t » X denotes that part of X which starts after t. The set T with typical elements

p, P1, P2 is defined in the following way, where a E Asr and r E R2'.0 :

PET P := a(r) I P1 + P2 I P1 · P2 I r » p

Syntactical equivalence is denoted by :=, syntactical equivalence modulo associativity and

commutativity of the + is denoted by ~- Equivalence within a theory T?-i is denoted by

TH f- P = q or simply p = q when the theory is clear from the context. 8(0) is abbreviated
by 8.

There are three functions defined by induction. U(p) is the ultimate delay of p and

S(p) is the earliest start time of p and L(p) is the latest start time. We need an auxiliary

327

function inittime; inittime(p) contains all time stamps at which p can perform an initial
action

These functions already occur in [Klu91]. a is taken from Ar

U(a(t)) = t inittime(a(t)) = {t}
U(o(t)) = t inittime(o(t)) = 0
U(p · q) = U(p) inittime(p· q) = inittime(p)
U(p+q) = max(U(p),U(q)) inittime(p+q) = inittime(p)Uinittime(q)
U(r ~ p) == max(r, U(p)) inittime(r ~ p) = inittime(p)n < r,w >

We take max(0) = min(0) == 0 and we define S(p) = min(inittime(p)) and L(p) =
max(inittime(p)).

2.2 The Original Semantics

The semantics of Baeten and Bergstra ([BB91]) assigns to every term (in T) a transition
system in which each state is a pair consisting of a term and a point in time and in which
each transition is labeled by a timed (non 6) action.

For example the process a(1) starts in state < a(1), 0 >, denoting that each process
starts at 0. From < a(1), 0 > an idle transition is possible to a state of the form < a(l), t >
with 0 < t < 1. An idle transition is a transition in which only the time component is
increased without executing any action. In general, from each state < a(l), t > an idle
transition is possible to < a(l), t' >, whenever t < t' < 1. Furthermore, from each state
< a(l), t > a terminating a(l)-transition to < .j, 1 > is possible whenever t < 1.

For technical reasons we add in this paper a boolean value to each state, which is
initialized on F. So, the process a(l) starts in < a(l), 0, F >. An idle transition does not
change the boolean value. As soon as an action is executed the value is set to T. Once
the value is set to T it remains T throughout the execution of the proces.

For the moment it suffices to say that we need the boolean value to distinguish root
states from internal states. A root state is a state with time 0 or a state which can be
reached from a state with time 0 by idling only.

Within this semantics the transition system concerns three relations

Step ~ (T x R~0 x {T,F}) x Atime x (T x R~0 x {T,F})
Idle ~ (T x R~0 x {T,F}) x (T x R~0 x {T,F})
Terminate ~ (T x R~0 x {T, F}) x A time x R~0

These three relations are defined as the least relations satisfying the action rules given
in Table 1. The definition of an operational semantics by giving action rules is due to
Plotkin ([Plo81]). We write

b a(r) I I b' (() I I b') < x, t, > - < x, t , > for < x, t, b >,a r , < x, t, >
< x, t, b > - < x', t', b' > for (< x, t, b >, < x', t', b' >)

a(r) 1 () ') < x,t,b > - < .j,t > for (< x,t,b >,a r ,t

The transition relation will be defined such that it is guaranteed that

E Step
E Idle

E Terminate

< x,t,b > ~ < x',t',b' >
< x, t, b >-< x', t', b' >

===> t < r /\ t' = r /\ b' = T
===} t < t' /\ b = b'

a(r) 1 < x, t, b > --'-+ < .j, t > ===> t < r /\ t' = r

328

As notion of equivalence we have strong bisimulation; every step or idle transition on
the left hand side has to be matched with an associated step or idle transition on the
right hand side. A bisimulation relation on (7 x R~0 x { F, T}) x (7 x ~o x { F, T})
is defined in the obvious way. Two terms p, q are bisimilar, denoted by p !:!orig q, if there
is a bisimulation relation containing (< p, 0, F >, < q, 0, F >). The action rules are given
in Table l.

From the atomic rules for r(r) we see that executing the silent step r is modeled by
an idle step which changes the process term in the state. Therefore we have to cover now
as well cases where idling may change the process term in the state.

2.3 Some Process Diagrams

The transition system of the term a(1) can be represented by the left-hand process diagram
given in Figure 1. A process diagram is simply a pictorial representation of a transition
system. It is not possible to make a picture of the transition system itself, since it has
uncountably many transitions. The intuition behind such a process diagram is that the
process starts in the top-point. It can idle by going to a lower point without crossing any
line, whereas the execution of an action a at time r is reflected by going to a dashed line
at level r labeled with a. Only dashed lines may be crossed, after landing on them.

A very particular set of atomic actions is the set of c5(r)-terms. 6(1) can do nothing
more then idling until l. Thus the root node is< 6(1), 0 > and from each state< 8(1), t >
an idle transition to < 8(1), t' >is possible, whenever t < t' < l.

The transition system of p + q is defined in terms of the transition systems of p and q.
The behaviour of p + q can be considered as the "union" of the behaviour of p and that
of q.

A state µ (in Figure 1) is of the form < a(l) + b(2), t > with 0 < t < 1. From
µ both a terminating a(l)-transition to < J, 1 > and a terminating b(2)-transition to
< J, 2 > are possible. However, from a state like v of the form < a(l) + b(2), t > with
1 :5 t < 2 only a terminating b(2)-transition to < J, 2 > is possible. Hence, by idling
from < a(I) + b(2), t0 > to < a(l) + b(2), t1 > with 0 < t0 < I S t1 < 2 we have lost
the option of executing the a(l)-summand. Thus one could say that a choice has been
made at time l; after the choice has been made for b(2) the summand a(l) has become
redundant.

The transition system of a{l) + 6(1) consists of exactly the same relations as the
transition system of a(l). The summand 8(1) contributes only idle steps which are con-

Figure 1: Process Diagrams of the terms a(l),8(1), a(l) + b(2) and a(l) + 8(2)

329

t<s<r t < r

< a(r), t, b >--+< a(r), s, b > < a(r),t,b> ~ < y',r >

t<s<r t<r

< T(r), t, b >--+< T(r),s, b > < T(r), t, b >--+< y', r >

t<s<r

< c5(r), t, b >--+< c5(r), s, b >

< p, t, F >--+< p, r, F >
< p + q, t, b >--+< p + q, r, b >

a(r)
< p,t,b >--+ < y',r > b a(r) I b' < p, t, > --+ < p, r, >

<p+q,t,b> ~ < y',r >
a(r) /

<p+q,t,b>--+<p',r,b >

< p,t,b >--+< y',r > < p, t,F >--+< p',r,T >
< p + q, t, b >--+< y', r > < p + q, t, b >--+< p', r, T >

And similar rules for q + p

a(r)
< p,t,b >--+ < y',r > b a(r) I b' < p, t, > --+ < p, r, >

a(r) < p · q, t, b > --+ < q, r, T > b a(r) ' b' < p · q, t, > --+ < p · q, r, >

< p,t,b >--+< y',r > < p, t, b >--+< p', r, b' >
< p · q, t, b >--+< q, r, T > < p · q, t, b >--+< p' · q, r, b' >

t<r<s

< s » p,t,b >--+< s » p,r,b >

r>s
a(r)

< p, t, b > --+ < y', r > r > s b a(r) ' b' < p, t, >--+ < p, r, >
< s » p, t, b > ~ < y', r > b a(r) ' b' < s » p, t, >--+ < p ,r, >

r>s < p, t, b >--+< y', r > r>s < p, t, b >--+< p', r, b' >
< s » p,t,b >--+< y',r > < s » p, t, b >--+< p', r, b' >

Table 1: The Original Transition System of BPApc5T, (a EA, r,s > 0)

330

tributed by the summand a{l) as well, hence we may consider the 8(1) summand as being
redundant.

However if we consider a{l)+6(2), the 8(2) summand contributes idle transitions which
are not contributed by a(l), since 8(2) has idle transitions to points in time between 1
and 2. The transition system of a(l) + 8(2) can be represented by the process diagram
on the right-hand side in Figure 1.

The last operator we introduce is the (absolute} time shift denoted by >,which takes
a rea.l number s and a process X and delivers that part of X which starts after s. Hence,
before s it can only idle or do a transition to a state after s.

2.4 The Closure Rules

In the original transition system of Baeten and Bergstra, thus the one without silent
actions and without a boolean value in the state, the following property was guaranteed:

<1(r) I < p,t >--+< p,s > /\ < p,s >--+ < p ,r > ==> < p, t > ~ < p', r >

Since we require this property a.lso in the context with silent steps (where idling may
change the process term), we need the following closure rules. In the sequel we will
discuss why these closure rules may only be applied on internal states.

< p, t, T >--+< p', t', T >
I I T a(r) I <p,t, >--+<y,r>

<1(r)
< p, t, T > --+ < y, r >

< p,t, T >--+< p', t', T >
< p' t' T > _±l < p" r T >

' ' ' '
< p, t, T > ~ < p", r, T >

< p,t,T >--+< p',t',T >
< p', t', T >--+< y, r >
< p,t,T >--+< y,r >

< p,t,T >--+< p',t',T >
< p',t',T >--+< p",r,T >
< p, t, T >--+< p", r, T >

Table 2: The Closure Rules, (a E A, r, s > 0)

In Figure 2 we see process diagrams corresponding to the terms a(l) · (r(2) · b(3) +c(3))
and a(l) · (b(3) + r(2) · c(3)). On the left hand side the process diagrams without closure
rules a.re given; without closure rules the terms are certainly not bisimilar. On the right
hand side the process diagrams with closure rules are given; the two terms have become
bisimilar.

Since in both terms the two summands are in a context a(l) ·(...)we know that there
are no other summands involved, hence the r{2) action determines a moment of choice,
namely at time 2. But it is not relevant whether the r(2) is on the left hand side of the
+or on the right hand side. Consider r(2) · b(3) + c(3), thus without context a(l) · (...),
then we can not say that the choice for the c(3) is made at 2. This becomes clear when
we would add d(3). In the next Section we discuss this in more detail.

331

without closure rules with closure rules

0 0

1 1

2 2

3 3

Figure 2: Process Diagrams for a(l) · (r(2) · b(3) + c(3)) and a(l) · (b(3) + r(2) · c(3))

In the sequel we refer to idle steps which are generated by the closure rules as implicit
{idle) steps. Similarly we have explicit (idle) steps.

2.5 Closure Rules and Internal States

Now we can discuss the need for distinguishing root states from internal states. Assume
that we would not make this distinction, so forget about the boolean values. And assume
that we would apply the closure rules on the root level as well. Then we would have

a(l)+r(l)·b(2) ~ a(l)+b(2)

But if we add c(2) then

a(l) + r(l) · b(2) + c(2) h. a(l) + b(2) + c(2)

Since in the left hand process the choice for the b(2)-summand is made at time 1, while in
the right hand side the corresponding choice is made at time 2. Thus in case of a(l)+b(2)
it is not right to say that the choice for the b(2) is made at 1, since other summands, such
as c(2), may be there in the context.

If we put both terms in a sequential composition after d(l) then

d(l) · (a(l) + r(l) · b(2)) h. d(l) · (a(l) + b(2))

because only the right hand process has an option of doing the b at time 2.
So, when the closure rules are applied from the root level as well bisimulation equiv­

alence is not a congruence. By making the distinction between root states and internal
states we can apply the closure rules only for internal states and bisimulation equivalence
is a congruence. For example:

a(l) + r(l) · b(2) i:± a(l) + b(2)

332

3 An Alternative Operational Semantics

3.1 Encoding the Course of Time in the Process Terms

In the previous Section the operational semantics is presented according to [BB91]. Each
state consisted of three components. In this Section we give a transition relation, in which
the course of time is encoded in the prefix by an occurrence of the~ operator. In [Klu91]
a similar operational semantics is given. Since no abstraction was considered in that paper
it was not necessary to model the idle steps there. Hence, the transition relation became
finite for (recursion free) terms without integration. Now, we encorporate the silent step
into this semantics; idle steps which determine a moment of choice are modeled by 7-
steps. Moreover, we define a notion of equivalence, called timed weak bisimulation, which
coincides with .±:±.orig·

In the semantics for ACP, as presented in [Gla87], we have the following transitions

a~ J and a a·p--+p

In a real time setting we have to take the time stamps into account. In a(r) · p, after doing
the a(r) action, only that part of p can be done which starts after r, which is denoted by
r ~ p. Hence, after the addition of time we have the following transitions (we have also
added the boolean values).

< a(r), b > .±.!. J and (a(r)
< a r) · p, b > --+ < r ~ p, T >

If p can perform an action b(t) then s ~ p can perform this action only if t > s.

3.2 The Transition System Specification

In table 3 an alternative operational semantics is given. Only the implicit 7-rule is new
here, the other ones are taken from [Klu91]. This implicit 7-rule models a moment of
choice by a 7-step. The alternative operational semantics given in this Section concerns
two relations:

Step c (T x {F,T})
Terminate C (T x { F, T})

x
x

x (T x {F,T})

These relations are defined as the least relations satisfying the action rules of Table 3. We
write:

< p, b > .±4 < p', b' > for ((p, b),a(r), (p', b')) E Step

<p,b>.±4 J for ((p,b),a(r))ETerminate

Again it is guaranteed that b' = T if < p, b > ~ < p', b' >. This can be shown by
induction on the length of the derivation. It is also guaranteed that

a(r) 1
a E A,. : < p, T > --+ < p , T > ~ r = S (p)

All initial actions of p with a time stamp greater than S(p) are postponed till a later state,
as is shown in Figure 3. Two terms p and q are bisimilar, denoted by p .±±tw q, if there

333

<a(r),b>~ J

<p,F> 5j J < p, F > ~ < p', T >
a(r)

<p+q,F>--+ J a(r)
<p+q,F >--+ <p',T >

r::; S(q) <p,T> ~ J r::; S(q) < p, T > ~ < p', T >
a(r)

< P + q, T >--+ J a(r)
<p+q,T>--+ <p',T>

And similar rules for q + p

< p, b > a(r) J < p, b > 5j < p', T >

< p · q, b > .±1 < r ';:$> q, T >
a(r)

< p · q, b > --+ < p' · q, T >

s < r <p,b>~ J s<r < p, b > a(r) < p', T >

< s ';:$> p, b > .±1 J a(r)
< s ';:$> p, b >--+ < p', T >

5-rule
U(p) > L(p)

b 6(U(p)) J < p, > --+

implicit T-rule
s = S(r ';:$> p) < U(s ';:$> p)

T(s)
< r ';:$> p, T > --+ < s ';:$> p, T >

Table 3: An Alternative Operational Semantics, (a EA,,., r,s > 0)

is a timed weak bisimulation relation containing (< p, F >, < q, F >). In the following

definition< p, T >~< p', T >abbreviates < p, T > * 1 l < p1 , T > ... <Pk, T > ~ <
p', T >for some k:?: 0, moreover a is take from As,,. and a' is taken from A5•

Definition 3.2.1 R C (T x {T, F}) x (T x {T, F}) is a timed weak bisimulation relation
iff it is symmetric and (< p, b >, < q, b >) E R implies that

• if b = F and < p, F > ~ < p', T > then there is a q' such that
a(r)

< q,F >--+ < q',T >and(< p',T >,< q',T >)ER.

. a(r) a(r)
• if b = F and < p, F > --+ J then < q, F > --+ J.

• if b = T and < p, T > '.'.J:l < p', T > then there is a q' such that
a'(r)

< q,T >=='=}< q',T >and(< p',T >,< q',T >)ER.

a(l) · (r(2) · b(3) + c(3)),F

l a(l)

1 ~ (r(2) · b(3) + c(3)),T

~
2 ~ b(3), T 2 ~ (r(2) · b(3) + c(3)), T l b(3) l c(3)

J J

334

a(l) · (b(3) + r(2) · c(3)),F

l a(l)

1 ~ (b(3) + r(2) · c(3)), T

~
2 ~ (b(3) + r(2) · c(3), T 2 ~ c(3), T l b(3) l c(3)

J J
Figure 3: Transition Systems for a(l) · (r(2) · b(3) + c(3)) and a(l) · (b(3) + r(2) · c(3))

• if b = T and < p, T > _jj < p', T > then either (< p', T >, < q, T >) E R or there

is a q' such that< q,T >~< q',T >and(< p',T >,< q',T >)ER

• if b = T and < p, T > ..'.'.ij J then < q, T >~ J.
The 8-rule generates transitions labeled with 8(t), for example if t < 2 then

< t ~ (a(l) +8(2)),b > ~ J
These deadlock transitions are needed to distinguish a(l) + 8(2) from a(l) + 8(3). Note
that < a(l) + 8(1), b > does not have a deadlock transition at all. Deadlock transitions
are discussed exhaustively in (Klu91], but they are not important for discussing the silent
step. Hence, they will not be mentioned anymore in this paper.

In this transition relation we have implicit r-steps only when they determine a moment
of choice. Consider the state < r ~ p, T >. Assume that the first moment in time at
which r ~ p can do an action is s (e.g. S(r ~ p) = s). Furthermore, assume that it can
idle till a moment afters (e.g. U(r ~ p) > s). Then we say that sis a moment of choice;
either the actions with time stamp s are executed or the idling continues and the actions
with timestamp s are dropped from the computation. Since there are only finitely many
of those moments of choice we have only finitely many r-steps as well. In Figure 3 the
states < 2 ~ b(3), T > and < 2 ~ (b(3) + r(2) · c(3), T > may be related by a timed
weak bisimulation relation. In Section 5 we will give a corresponding semantics where we
can use the standard notion of strong hisimulation. The price to pay, however, is that we
have to allow infinite many implicit r steps there.

We can prove similarly as in [Klu91]:

Lemma 3.2.2 Bisimulation equivalence in the alternative operational semantics equals
bisimulation equivalence in the original operational semantics.

P ~tw q ~ P =:!orig q

Thus we may omit the subscripts of !:ttw and =:!orig· In Section 5 we will prove that
bisimulation equivalence is a congruence.

335

4 The Theory BP ApbT

4.1 A Characterizing Law

From the operational semantics we know that a r-action may be removed if it does not
determine a choice. Moreover, this r-removal can only be applied 'within' a term and not
at the level of the root. This is exactly characterized by the r-law given in Table 4.1. The
theory BPAp8 can be found in [BB91] and [Klu91]

TAUl t < r < U(X) /\ U(Y) $ r

a(t) · (r(r) · X + Y) = a(t) · (r ~ X + Y)

Table 4: BPAp8r = BPAp8 + TAUl

Lemma 4.1.1 The axiom TAUl is sound w.r.t. to bisimulation equivalence.

Theorem 4.1.2 Soundness of BPAp8r

BPAp8r f- p = q ::::::::} p !::::!:. q

Proof. A theory is sound w.r.t. to an equivalence if all the axioms are sound and if
the equivalence is a congruence w.r.t. to all operators. Since the bisimulation equivalence
introduced in this paper identifies more than the one of [Klu91] we may conclude that
all the axioms of BPAp8 are still sound. Moreover, in Lemma 4.1.1 we have stated the
soundness of the additional r-law and we will show that bisimulation equivalence is a
congruence in Section 5. D

Lemma 4.1.3 Assume t < r < min(S(X), S(Y)) and U(Z) $ r then

Proof.

r-removal a(t) · r(r) · X a(t)-X
T-swap a(t) · (r(r) · X + Y) a(t) · (X + r(r) · Y)
r-swap a(t) · (r(r) · X + Y + Z) a(t) · (X + r(r) · Y + Z)

a(t) · r(r) · X

a(t) · (r(r) · X + Y)

a(t) · (r(r) · X + 8)
= a(t) · (X + 8)
= a(t) · X

a(t) · (r(r) · X + r(r) · Y)
= a(t)·(X+r(r)·Y)

a(t) · (r(r) · X + Y + Z) a(t) · (r(r) · X + r(r) · Y + Z)
= a(t)·(X+r(r)·Y+Z) D

336

4.2 Completeness
In this Section we prove the completeness of BPAp8T, e.g. we have to prove that if two
terms are bisimilar then there is a derivation in BPAp8T which proves them equal. We
construct for each pair of bisimilar terms another pair of terms by adding T-actions, such
that the resulting pair is also bisimilar in the semantics without closure rules. We only
add T-actions in one term if there is already an associated T in the other term. Or, put
in other words, if implicit idling is matched with explicit idling then the implicit idling is
rewritten into an explicit idling. Thus the pair

(a(l) · b(3) · d(4) , a(l) · T(2) • b(3) • (d(4} + d(4)}
is rewritten into
(a(l). r(2} · b(3} · d(4) , a(l) · T(2) · b(3) · (d(4) + d(4))

Since we are working in absolute time and since we have timed 8's, we allow terms with
a lot of "junk" (redundant parts) in it. A basic term is a term without "junk". If we
consider a term like a(2)·b(l), then the b can never be executed at 1 after we have executed
the a at 2. Thus a deadlock will be encountered after executing the a at 2. Hence, we
can rewrite the term a(2} · b(l) into the basic term a(2) · 8, where the deadlock appears
explicitly. Similarly we can remove all redundant 8's, for example the 8(2} is redundant in
the term a(2) + 8(2).

For the formal definition of basic terms and for further details we refer to [Klu91]. The
set of basic terms is denoted by B. Next, we rewrite all basic terms of the form

E;ai(r) ·Pi+ Lj bj(r) + q with S(q) > r
into
Li ai(r) ·Pi+ E; b;(r) + r(r) · q

In this way we obtain the set of ordered terms which is denoted by 5ord.
If p is an ordered term starting afters we may write p E 5ord(s). If we take Lie0 Pi = 8,

then every ordered term is of the form

Lai(r) ·Pi+ LbJ(r) with Pi E 5ord(r)
i j

For each s E R~0 and timed weak bisimulation relation R we define a function JR. which
maps a pair of ordered terms onto another pair of ordered terms. The construction of
JR(p, q) guarantees that

Lemma 4.2.1 If p,q in 5ord(s) and(< s ~ p, T >, < s ~ q, T >) in R and JR,(p,q) =
(p', q'), then

- BPAp8r f- a(s) · p = a(s) · p', a(s) · q = a(s). q'
- p' 5i!t:.q'

He~e, .~ denotes strong bisimulation in the transition system without implicit r-rule,
which is completely characterized by BPApS. The complexity of a pair of ordered terms is
the pair of natu~al num~ers (depth(p) + depth(q), number of summands in (p + q)), and
we assume a lex1cograph1c ordering on pairs of natural numbers.

337

Definition 4.2.2

We construct JR.(p, q) inductively; we assume that we have constructed already the func­
tion Jh on pairs with smaller complexity for arbitrary t.

Consider (p, q) both in B""d(s) and a timed weak bisimulation relation R containing
(< s » p,T >,< s » q,T >)such that

p ~ L:;eJ a;(t) · P; + L:;eJ' aj(t)
q ~ L:1eL b1(r) · q1 + L:1eL' bl(r)

There are two cases, either J = 0 = L or J # 0 V L # 0. In the first case we simply take
JR(p,q) = (p,q). The second case has on its turn two subcases, t =rand t # r; these
subcases are considered below. We assume that J # 0.

• If t = r then for every j in Ja; EA.- and there is a z; (with z; = q1 for some l EL)
such that

<s»p,T>
R

< s » q,T >

Gj(t) -
Gj(t) -

< t » p;,T >
R

< t » z;,T >
By induction we have already constructed Jh(p;, z i) = (pj, q'j). Similarly for every
l we can find a term z; obtaining fh(q1,z/) = (q!,p:'). (It is more efficient of course
to construct (qf,pn only for those l E L such that q1 '$1. z; for every j E J, but this
will not be considered any further).

Since (< s » p, T >, < s » q, T >) E R it is guaranteed that every terminating
aj(t) step can be matched by some terminating bl(r) and vice versa.

We define

JR(p,q) = (L:;oa;(t)·pj+L:1eLb1(t)·p~+L:;eJ'aj(t)
L:;eJ a;(t) · q'J + L:1eL b1(t) ·qi+ L:teL' bl(t)

• If t # r then we may assume t < r. Then it must be the case that a; = T for all
j in J and J' = 0. We have for every j that(< t » p;,T >,< s » q,T >)in R.
Since s < t and q E sord(t) we may extend R such that it remains a timed weak
bisimulation relation which contains (< s » q, T >, < t » q, T >). Hence we may
extend R further such that it contains (< t » p;, T >, < t » q, T >)for each j E J.
By induction we have already constructed fh(p;, q) = (pj, q'j). We define

JR(p, q) = (E r(t) · pj, E r(t) · p'J)
jeJ jEJ

Now we are ready to give the completeness proof.

Theorem 4.2.3 Completeness of BPAp8r

p .t:t q ==> BPAp8r I- p = q

338

Proof. We prove it first for ordered terms p and q, assume

p ~ LjeJa;(t;)·Pi+LieJ'aj(tj)
q ~ LleL b1(r1) · q1 +Lieu bj(rD

We take some timed weak bisimulation relation R which contains (< p, F >, < q, F >).
From a root state (a state with boolean value F) no implicit r steps have to be considered.
Hence, for each j in J there is a li in L such that

/\

and we take JU (p;, q1,) = (pj, qj'). We do similar for each l in L and its associated index
)1 in J. We construct p' and q',

p' LjeJ ai(ti) · pj + LIEL b1(r1) ·PI'+ LjEJ' aj(tj)
q' ~ LjEJ aj(tj) · qj' + LleL b1(ri) ·qi+ LIEL' bf(r;)

such that BPAp8r f- p = p', q = q'. By construction p' ~ q'. Hence, BPAp8 f- p' = q'
and BP Ap8r f- p = q follows immediately.

If we start with non ordered terms p and q, with p H q, then we construct ordered
terms Po and q0 such that BPAp8 f- p = po, q = q0 • By soundness of BPAp8 we obtain
p H p0 and q .!::!. q0 and by transitivity of H we get Po .!::!. q0 • Now we have reduced
it to the previous case and we conclude BPAp8r f- Po = q0 from which we conclude
BPAp8r f- p = q. o

5 A Third Corresponding Semantics

In the two transition relations of the previous sections we had to keep track of a boolean
value in each state to distinguish root states from internal states. In this Section we give
another solution, we extend the set of terms T to T> by adding a new (absolute) time
shift operator ~' which will be used to encode whether a state is internal or not. We
saturate the transition relation with all possible implicit r steps as was the case in the
original semantics of Baeten and Bergstra as well. This enables us to deal with strong
bisimulation instead of timed weak bisimulation.

- - a(r) Furthermore, we define only one relation ---+C T> x T>. We now have a(r) ---+ 8

instead of a(r) ~ J (which abbreviated (a(r),r) E Terminate). By doing so we avoid
a lot of rules. The action rules are given in Table 5. Two terms are bisimilar, denoted
by p .!::!.::> q, if there is a strong bisimulation relation R c T> x T>. This approach
only works when there are no occurrences of ~ at the root level. Therefore we have the
following equivalence for terms without ~.

Lemma 5.0.4 p, q E T

We still have to prove the following Theorem, which can be proven easily for the bisimu­
lation equivalence defined by the transition relation of Table 5.

-- -- ------- - ---

339

a(r) ~ 8
L(p) < U(p) s<r p .±4 p'

6(U(p)) C a(r) /

p -
s>p - p

a(r) O
P- p' 'I- 8

a(r) /

p - p
a(r) /

p - p
a(r} _

p·q--+ r>q p·q .±4 p'·q p+q .±l.p',q+p ~ p'

S > p b(r) p' r < s < U(r > p) s>p
'T(t) I --tp 1 a(r)

p--t p"

s>p b(r) p' r"»p 'T(•) s>p s>p a(r) p"

Table 5: An Operational Semantics without Boolean Value (a EA.., b E As.., r,s > 0)

Lemma 5.0.5 Bisimulation Equivalence is a congruence w.r.t. all operators

Proof. If all action rules of a Transition System Specification are in Groote's ntyft/ntyxt
format, then bisimulation equivalence is a congruence (see [Gro89]). We have to prove
only for the closures rules that they can be written into this format, since in [Klu91] we
proved it already for all other action rules of Table 5. The first and the third closure rule
are already in the right format and for the second one we may take

s<t
b(t)

r>p--tp"
instead of

r < s < U(r > p)

- T(s) -
r>p - s>p

D

In this paper we will not mention anymore this variant of the semantics, since we do not
want to discuss the inclusion of the operator > in the theory.

6 Symbolic Processes as Timed Processes

In this Section we interpret each symbolic process term as a timed process. We will
investigate the resulting subtheory.

6.1 The Interpretation of Symbolic Process Terms as Timed
Processes

By using the integral construct of Baeten and Bergstra we can express a process which
executes an a somewhere in time by the process term fv>O a(v). The formal introduction of
the integral construct is postponed till the next section. By extending the syntax with the

340

integral construct we obtain BPAp8rl. We define a function RT: BPA8r---+ BPApb7l,
which interprets every symbolic process term as a timed process.

a EA RT(a) d;j fv>O a(v) · fw>O r(w)

RT(r) d;j fv>O r(v)

RT(8) d;J fv>O 8(v)

RT(p + q) d;J RT(p) + RT(q)

RT(p · q) d;J RT(p) · RT(q)

Originally, Baeten and Bergstra had RT(a) dgf fv>O a(v) (they denote RT(p) by p). But
in this case the first 7-law X · 7 = X ([Mil89]) would not be sound anymore. Since we

prefer to maintain this law we define RT(a) dgf fv>O a(v) · fw>O 7(w).
The range of the function RT is denoted by RT(BPAb7).

6.2 A Delay Bisimulation Semantics on BPA8T

Here we give a semantics for symbolic processes which corresponds with the semantics of
their timed interpretations. In the previous sections we have studied transition relations
which where 7-saturated, i.e all possible appropriate r-steps between internal states were
added.

In this Section we will not saturate the transition relation but we move the 7-saturation
into the definition of bisimulation. In this way we obtain a notion of delay bisimulation
[GW89].

a v a p' a. p --+ p ----+
a --+ v ll ~ p' p+q --+ v p+q

--.':..+ v a p' p p ---+
a a p'. q p·q ----+ q p·q ---+

Table 6: Transition System Specification for Symbolic Process Terms (a E A.,.)

Moreover we want to get rid of this boolean value. In the previous sections the boolean
value guaranteed that the closure rules were only applied on internal states, hence from
a root only explicit steps were defined. This property will be expressed now by a root
condition which is stronger then the usual one ([GW89]).

If there is a path Po::_. p1 ... ~ Pk then we may write p0 ===>Pk· In this Section
we allow ourselves the freedom to consider J as a special state.

Definition 6.2.1 A relation R C BPA8r U { V} x BPA8r U { yl} is strongly rooted w.r.t.

p and q if it obeys the following (a E Ar):

341

• R relates p and q with each other and not with other terms.

• p ~ p1 implies that there is a q' such that q ~ q' and (p', q') E R.

• q ~ q' implies that there is a p' such that p ~ p1 and (q', p') E R.

A relation R is rooted if it satisfies the first of the conditions above. An example of a
relation which is strongly rooted is given in Figure 4. In this Figure we can see that the
strongly rooted requirement corresponds to the requirement that the closure rule is applied
on internal states only.

not strongly rooted

T

b

b b

strongly rooted

fa::···:}
... JT

....... .J b

Figure 4: Example of Strongly Rootedness

Definition 6.2.2 Symbolic Bisimulation or Strongly Rooted Delay Bisimulation

p i:±aym q

iff there is a symmetric relation R C BPA6r U { y'} x BPA6r U { y'} which is strongly
rooted w.r.t. p and q such that for every pair (r, s) in R with r ~ r' either a= T and
(r', s) in R or s ==> s" ~ s' and (r', s') in R .

In the sequel we will use the definition of rooted Branching Bisimulation ([GW89]) as
well.

Definition 6.2.3 Rooted Branching Bisimulation

iff there is a bisimulation relation R C BPAor x BPA6r which is rooted w.r.t. p and
q such that for every pair (r,s) in R with r ~ r' either a= T and (r',s) in R or
s ==> s" ~ s' and both (r, s") and (r', s') in R.

We have the following Lemma, since strongly rootedness is implied by rooted branching
bisimulation.

Lemma 6.2.4

342

Finally we have the following Theorem which states that the equivalence .!:ts11m is exactly
the equivalence which we obtain by interpreting symbolic processes as timed processes.
Bisimulation equivalence over BPAh'r is denoted by .!:tsym and bisimulation equivalence
over RT(BPA6r) is denoted by +-?time·

Theorem 6.2.5 P ±:taym q ~ RT(p) +-?time RT(q)

6.3 Completeness for Strongly Rooted Delay Bisimulation

In this Section we give a complete axiomatization for the equivalence .!:::t.11m following the
work of Van Glabbeek and Weijland ([GW89)). We take the axioms DEL l and 2 from
[GW89], where it is proven that these two axioms characterize Branching Bisimulation
completely. Furthermore, we take the axiom

r·Y=r·Y+Y,

which can be found in [GW89] as well and we require that it is only applied in a context.
In this way we obtain

DEL3 X · (r · Y + Z) = X · (r · Y + Y + Z)

Since Van Glabbeek and Weijland use a graph model we have to define the following.
The set of graphs g is the set of triples (N, E,r) where N is a set of nodes, EC N x N
is a set of edges and r E N is the root. Moreover, if g = (N, E, r) then E(g) = E. A
graph g is trivial if E(g) = 0. g+ is the set of non trivial graphs. The graph of a term p
is denoted by [p], this graph can be seen as that part of the transition relation which is
associated with p, where .,/ is now considered as a special state.

Definition 6.3.1 The graph rewriting --tr

If a graph g has a path s ~ s' ~ s" where s is not the root of g and g has no edge
s ~ s" then s ~ s" is added.

Lemma 6.3.2 [p] --tr g =?- 3p' [p'] = g /\ DEL3 f- p = p'

As in [GW89] we can prove easily

Lemma 6.3.3

DELl x. T = x

DEL2 X · (r · (Y + Z) + Y) = X · (Y + Z)

DEL3 X · (r · Y + Z) = X · (r · Y + Y + Z)

Table 7: BPA8rdel

343

• Both g and g+ are closed under --+.,..

• --+.,. is confluent and terminating.

Definition 6.3.4 A graph g is r-saturated if it can not be reduced any further by --+.,..

Lemma 6.3.5 If g and h are r-saturated graphs then

Proof. Since +-+rb is a smaller equivalence than ~.11m it is sufficient to prove that
R : g ~ym h implies R : g +-+rb h.

• The roots a.re related only with each other

• if R(r, s) and r!...+ r' then either

- a = T and (r', s) E R or

- s => s"!...+ s' with (r', s') E R, assumes = s0 ~ s 1 ..•

h is r-saturated we have s; ~ s' and also s ~ s'.
~ sk = s11 , since

D

Theorem 6.3.6 P ~sym q {:::::::} BPAh'Tdel I- p = q

Proof.

• {::= The soundness can be seen by investigating the operational semantics.

• ==> By construction of the graph model we have p ~ymq iff [p] ~ym[q]. By
T-saturating the graphs [p] and [q] we obtain g and h. By Lemma 6.3.2 we can
construct terms p' and q' such that [p'] = g, [q1 =hand BPAS-rdel 1- p = p',q = q'.
By transitivity of +--+ aym we get g ~11m h and since g and h are T-saturated we
obtain g ~rb g and by the completeness result of Van Glabbeek and Weijland we
conclude BPA8Tdel I- p' = q', from which it follows directly that BPASrdel I- p = q.

0

7 Adding Integrals

An integral can be considered as a sum over a continuum of alternatives, this notion is
introduced in [BB91]. Baeten and Bergstra allow integration over arbitrary subsets of
the real numbers and they allow more then one integral behind each other. The idea
of prefixed integration is that every action has a.s time stamp a time variable v taken
from some set TV ar, and the action is directly preceded by the integral binding this
v. Moreover, only Intervals are allowed. In (Klu91] a completeness result is given for
prefixed integration. The term fve<O,l> a(v) denotes the process which executes an action
a somewhere between 0 and 1. An integral binds a time variable, which may occur in the
rest of the term, for example the term fve<O,l> a(v) · fwe<v+l,v+2> b(w) denotes the process
which executes an action a at t where t is within 0 and 1. It waits between 1 and 2 time

344

units after t and executes an action b. Hence, the bounds of a interval of an integral are
(linear) expressions over the real numbers. Lett E R~0 , v E TVar then we can define the
set Bounds as follows:

b E Bounds b := t I v I bi + b2 I bi ..:..b2 I t · b

where ..:.. denotes the monus operator, i.e 5..:..3 = 2 but 3 - 5 = 0. If b E Bounds then
the set of time variables occurring in b is denoted by tvar(b). Now we can construct
intervals like < 1, 9 > and < v + 3, w >. An interval without free time variables can be
considered as a connected part of the nonnegative reals. However, we don't want to deal
with the complexity of set theory over reals and we want to define intervals containing
occurrences of free time variables. Hence, every interval is a four tuple, containing two
booleans and two reals. The interval V = (F, 1, 2, T) is abbreviated in the sequel by
V =< 1, 2], denoting that the lower bound is open and 1, and that the upper bound is
closed and 2. If b E Bounds then b E V denotes the logical expression of (in)equalities

TAUil V < W < U(X) /\ U(Y) ;:; inf(W)

fvEV a(v) · ((JwEW r(w)) · X + Y) = fvEV a(v) · (inf(W) ~ X + Y)

TAUI2 V < W < U(X + Y) /\ U(Y) = sup(W)

fvEV a(v) · ((JwEW r(w)) · (X + Y) + X) = fveV a(v) · (X + inf(W) ~ Y)

TAUI3 V < W < U(X) /\ U(X) = sup(W)

fveva(v) · ((fwEwr(w)) · X + Y) = X · ((fwEwr(w)) · X + inf(W) ~ X + Y)

Table 8: BPApJ = BPAp5r +TAU 11 - 3

1 < b :S 2. Similarly we have t E V1 U Vi, t < sup(V), V = 0, Vi < Vi and V < t as
abbreviations for logical expressions over Bounds.

We can redefine the set of terms. Let a E Aer, VE lnt, v E TVar, b E Bounds

pET p:=l (a(v))ll (a(v)·p)lp·qlp+qlr~p
vEV veV

We abbreviate fve[w,w] a(v) by a(w) and 5(0) by 5. In this definition the notion of prefixed
integration becomes clear; every action has as time stamp a time variable v and is directly
preceded by its binding integral. Hence, we do not allqw a term like fvEV f wew (a(v) ·
fre<v,w> b(l) · c(r)). On these terms we have notions as FV() for the set of free time
variables , a-conversion, and substitution. If a term or interval has no free time variables,
then it is called time closed.

345

The adaptions of the transition relation as given in Table 3 are given in Table 9. Due
to the integral construct there is no more a discrete notion of a moment of choice, hence
the closure rule must generate infinitely many r-steps.

Theorem 7.0.7 The laws TAUll - 3 are sound

a(r) / • a(r)
rEV <f.,eva(v),b>--'-'+ '· msteadof <a(r),b>--'-'+ .J

r E V < f.,ev(a(v) · p),b > ~ r > p[r/v]

r < s < U(s > p) . ad f s = S(r > p) < U(s ~ p)
mste o

< r ~ p, T > 1"(a) < s > p, T > < r > p, T > ~ < s > p, T >

Table 9: (Additional/Changed) Action Rules for Integral Construct

8 Protocol Verification

Now we are ready to verify a protocol which is time dependent. First we have to state the
fact that every time guarded recursive specification has exactly one solution (RSP and
RDP). A guarded recursive specification is time guarded if there is a lower bound bound
on the time interval between two recursion variable unfoldings. This is only an informal
characterization but it is needed to exclude so-called 'Zeno' machines. The proof of this
principle and a thorough treatment of time guarded specifications do not fall into the
scope of this paper, they will treated in later papers. Next, we have to state an Unwind
Principle (UP) which allows us to unwind a recursive specification infinitely many times.
The dots in the derivation below express that this principle is not provable within the
theory BPApcr in a finite derivation . We take Y(t) such that

t ~ Y(t) = Y(t)

thus assuming that Y(t) has no parts starting at or before t. We define X(t) as

X(t) = r(t) · {Y(t + s) + r(t + r 0) · X(t + r 1)}

346

K

1
A

L

for some r 0 < r1 and r0 < s then

X(t) = r(t) · {Y(t + s) + r(t + r 0) • X(t + r 1)}

= r(t) · {r(t + r0) · Y(t + s) + X(t + r 1)}

= r(t)·{r(t+ro)·Y(t+s)+

2
B

r(t + r 1) · {Y(t + s + r 1) + r(t + ro + r1) · X(t + 2 · r1)}}
= r(t) · {r(t + r 0) · Y(t + s) + {Y(t + s + r1) + r(t + ro + r1) · X(t + 2 · r1)}}

r(t) · { r(t + r0) · Y(t + s) + r(t + r0 + ri) · Y(t + s + r1) + X(t + 2 · r1)}

UP r(t). u::~=O r(t + ro + n. ri). Y(t + s + n. r1)}

We take example 6.15 of [BB91], which is a PAR protocol (Positive Acknowledgement
with Retransmission). Some small changes are made. In the example below the set H
contains all read and send actions along the internal ports 3,4,5 and 6. The operator 8n
renames every action which occurs in H to 8. It is known as the encapsulation operator
and it forces actions to communicate, for example if r;Js; = c; then 8{r;,s;}(s;llr;) = e;.

8.1 The Specification and the Implementation of the Protocol

First we define the individual components.

A
A(b,t)
A(b,d,t)

K
L

B
B(b)

B(b,t)

= A(O, 0)
LdED fv>t ri (d)(V) · A(b, d, t)

= s3(db)(t + 0.001) · Uwe[t+o.ooi,t+o.ot> rs(ack)(w) · A(l - b, w) +
time....out(t + 0.01) · A(b, d, t + 0.01)}

= LfEDxB fv>O r3(f)(v) · {s4(f)(v + 0.002) + errorK(v + 0.001)} · K
= fv>O r6(ack)(v) · {ss(ack)(v + 0.002) + errorL(v + 0.001)} · L

= B(O)
= LdED fv>O r4(db)(v) · s2(d)(v + 0.001) · B(l - b, v) +

LdED fv>O r4(d(b - 1))(V) · B(b, V)
= s6(ack)(t + 0.002) · B(b)

The implementation of the protocol is the following merge:

PA/4mpl = 8H(A II J{ II L II B)

347

8.2 Expanding the Definitions

We expand the definitions, for each new configuration a new recursion variable is chosen.
In this way we obtain the parameterized recursion variables X 0 - X 4 and Yi - }4.

P AR;mpl = Xo(O, 0)

Xo(b, to) = 5H(A(b, to)lll<JILJIB(b))
= fv>to LdeD ri (d)(v) · X1(b, d, v)

X1(b,d,t) =bH(A(b,d,t)llKllLJIB(b))
= bH (s3(db)(t + 0.001) ·

[JwE[t,t+O.Ol} rs(ack, w) · A(l - b, w) + time_out(t + 0.01) · A(b, d, t + 0.01)]
II LteDxB fv>O r3(f)(v) · [s4(f)(v + 0.002) + errorK(v + 0.001)] · K
II L
II B(b)
)

= C3(db)(t + 0.001) . X2(b, d, t)

X2(b, d, t) = bH (Uwe[t,t+O.Ol} rs(ack, w) · A(l - b, w) + time_out(t + 0.01) · A(b, d, t + 0.01)]
II h(db)(t + 0.003) + errorK(t + 0.002)] ·](

II L
II I:deD fv>O r4(db)(v) · s2(d)(v + 0.001) · B(l - b, v) +

I:deD fv>O r4(d(l - b))(v) · B(b, v)
)

= c4(db)(t + 0.003) · s2(d)(t + 0.004) · X 3 (b, d, t) +
errorK(t + 0.002) · time_out(t + 0.01) · X1 (b, d, t + 0.01)

X3(b, d, t) = bH (Uwe[t,t+O.Ol} rs(ack,w) · A(l - b, w) + time_out(t + 0.01) · A(b,d,t + 0.01)]

II K
II fv>O r6(ack)(v) · [ss(ack)(v + 0.002) + errorL(v + 0.001)] · L
II s6(ack)(v)(t + 0.005) · B(l - b)
)

= es(ack)(t + 0.005) · X 4 (b, d, t)

X4(b, d, t) = bH (Uwe[t,t+o.oi) rs(ack, w) · A(l - b, w) + time_out(t + 0.01) · A(b, d, t + 0.01)]

II /<
II [ss(ack)(t + 0.007) + errorL(t + 0.006)] · L
II B(l-b)
)

= c5 (ack)(t + 0.007) · X0 (1 - b, t + 0.007) +
errorL(t + 0.006) · time_out(t + 0.01) · Yi (b, d, t + 0.01)

Yi.(b,d,t) = bH (A(b,d,t)JI I< II L II B(l -b))
= bu (S3(db)(t + 0.001) ·

Uwe[t,t+O.Ol} rs(ack, w) · A(l - b, w) + time_out(t + 0.01) · A(b, d, t + 0.01)]

348

II E1eDxB fu>O r3(f)(v) · (s4(f)(v + 0.002) + errorK(v + 0.001)] · K
II L
II B(l - b)
)

=c3 (db)(t+0.001) · Yi(b,d,t)

Y2(b, d, t) =OH ([fwe[t,t+o.Ol) rs(ack, w) · A(l - b, w) + time..out(t + 0.01) · A(b, d, t + 0.01)]
II [s4(f)(t + 0.003) + errorK(t + 0.002)] · K
II L
II EdeD fv>O r4(d(l - b))(v) · s2(d)(v + 0.001) · B(b, v) +

EcteD fu>O r4(db))(v) · B(l - b, v)
)

= c.i(db)(t + 0.003) · Y3 (b, d, t) +
errorK(t + 0.002) · time..out(t + 0.01) · Yi(b,d,t + 0.01)

l';(b, d, t) = 8H (Uwe[t,i+o.ot) rs(ack, w) · A(l - b, w) + time..out(t + 0.01) · A(b, d, t + 0.01)]
II K
II fu>O ra(ack)(v) · [ss(ack)(v + 0.002) + errorL(v + 0.001)] · L
II sG(ack)(v)(t+0.005) ·B(b)
)

= ee(ack)(t + 0.005) · Y.i(b,d, t)

Y.i(b,d, t) =CH (Uwe[t,t+O.Ol) rs(ack,w) · A(l - b,w) + time..out(t + 0.01) · A(b,d,t+ 0.01)]
II K
II [ss(ack)(t+0.007)+errorL(t+0.006)] ·L
II B(b)
)

= cs(ack)(t + 0.007) · X0(1 - b, t + 0.007) +
errorL(t + 0.006) · time_out(t + 0.01) ·Yi (b, d, t + 0.01)

8.3 Abstracting from Internal Steps

We apply the renaming operator rr which renames every atomic action a(t) to r(t) except
for the actions r1(d)(t) and s2 (d)(t).

r1(Xo(b, to)) = ft>to L:deD ri(d)(t) · r1(X1(b, d, t))
71(X1(b,d,t)) = 7(t+0.001) · 71(X2(b,d,t))
71(X2(b, d, t)) = r(t + 0.003) · s2(d)(t + 0.004) · 71(X3 (b, d, t)) +

r(t + 0.002) · 7(t + 0.01) · 7r(X1(b, d, t + 0.01))
71(X3(b, d, t)) = r(t + 0.005) · rr(X4 (b, d, t))
71(X4(b, d, t)) = r(t + 0.007) · rr(X0 (l - b, t + 0.007)) +

71(Yi (b, d, t)) =
7r(Y2(b,d,t)) =

71(Y3(b, d, t)) =

r(t + 0.006) · r(t + 0.01) · 7r(Y1(b, d, t + 0.01))

r(t+0.001) · 7I(Jl2(b,d,t))
7(t + 0.003) . 71(Y3(b, d, t)) +
r(t + 0.002) · 7(t + 0.01) · 7r(Yi(b, d, t + 0.01))
r(t + 0.005) · 7r(~(b, d, t))

349

r1(Y.a(b,d,t)) = r(t+0.007) ·r1(X0(1-b,t+0.007)) +
r(t + 0.006) · r(t + 0.01) · rr(Yi.(b, d, t + 0.01))

Now we can apply the r-law and its implied identities (such a.s the r-swap and the r­
removal).

r1(X1(b,d,t)) = r(t+0.001) · r1(X2(b,d,t))
= r(t + 0.001) ·

{ r(t+0.003)·s2(d)(t+0.004)·r1(X3(b,d,t)) +
r(t + 0.002) · r(t + 0.01) · rr(X1 (b, d, t + 0.01)) }

= r(t + 0.001) ·
{ s2(d)(t+ 0.004) · r(t + 0.005) · T1(X4(b, d, t)) +

r(t+0.002)·r1(X1(b,d,t+O.Ol))}
= r(t + 0.001) ·

{ s2(d)(t + 0.004)·
{ r(t + 0.007) · rr(Xo(l - b, t + 0.007)) +

r(t + 0.006) · r(t + 0.01) · rr(Yi.(b,d, t + 0.01))} +
r(t + 0.002) · r1(X1 (b, d, t + 0.01)) }

= r(t + 0.001) ·
{ s 2(d)(t + 0.004)·

{ rr(X0 (1 - b, t + 0.007)) + r(t + 0.006) · r1(Yi(b,d, t + 0.01))} +
r(t + 0.002) · rr(X1 (b, d, t + 0.01)) }

r1(Yi(b,d,t)) = r(t+0.001) · rr(Y2(b,d,t))

Summarizing,

= r(t + 0.001) ·
{ r(t+0.003) ·r1(Ya(b,d,t)) +

r(t + 0.002) · r(t + 0.01) · r1(Yi. (b, d, t + 0.01)) }
= r(t + 0.001) ·

{ r(t + 0.005) · r1(Y.i(b, d, t)) +
r(t + 0.002) · rr(Yi. (b, d, t + 0.01)) }

= r(t + 0.001) ·
{ { r(t + 0.007) · r1(X0 (1 - b, t + 0.007)) +

r(t + 0.006) · r(t + 0.01) · rr(Yi.(b, d, t + 0.01)) } +
r(t + 0.002) · rr(Yi. (b, d, t + 0.01)) }

r(t + 0.001) ·
{ r1(X0 (1- b, t + 0.007)) + r(t + 0.006) · r1(Y1(b,d, t + 0.01)) +

r(t + 0.002) · r1(Yi. (b, d, t + 0.01)) }
= r(t + 0.001) ·

{ r1(Xo(l - b, t + 0.007)) + r(t + 0.006) · r1(Y1 (b, d, t + 0.01)) }

r1(Xo(b,to)) = ft>taLdevr1(d)(t)·r1(X1(b,d,t))

r1(X1(b,d,t)) = r(t + 0.001) ·
{ s2(d)(t + 0.004)·

{ r1(X0 (1 - b, t + 0.007)) + r(t + 0.006) · rI('Yi(b, d, t + 0.01)) } +

350

11(Yi.(b,d,t)) =

1(t + 0.002) · 11(X1 (b, d, t + 0.01)) }

r(t+0.001) ·
11(Xo(l - b, t + 0.007)) + r(t + 0.006) · r1(Yi.(b, d, t + 0.01))

By applying the Unwind Principle:

r1(X1(b, d, t)) = ;(t + 0.001) · I::=o r(t + 0.002 + n · 0.01) · s2(d)(t + 0.004 + n · 0.01)·
{ 11(Xo(l - b, t + 0.007 + n · 0.01)) +

r(t + 0.006 + n · 0.01) · r1(Yi.(b, d, t + (n + 1) · 0.01)) }

11(Yi.(b,d,t)) = ;(t+0.001) ·L:~=0 1(t+0.006+n·O.Ol)
11(X0 (1 - b, t + 0.007 + n · 0.01))

Adding together

1 1(X1(b,d,t)) = r(t + 0.001) · 2:~=0 ;(t + 0.002 + n · 0.01) · s2(d)(t + 0.004 + n · 0.01) ·
{ r1(Xo(l - b, t + 0.007 + n · 0.01)) +

11(Xo(b, to))

{ r(t + 0.006 + n · 0.01) ·
{I:~=O r((t + (n + 1) · 0.01) + 0.006 + n' · 0.01) ·

11(X0 (1 - b, ((t + (n + 1) · 0.01) + 0.007 + n' · 0.01))} }

= 1(t + 0.001) · I:~=o 1(t + 0.002 + n · 0.01) · s2(d)(t + 0.004 + n · 0.01) ·
{ r(t + 0.006 + n · 0.01) · r1(Xo(I - b, t + 0.007 + n · 0.01)) +

{I:~=O r(t + 0.006 + (n + n' + 1) · 0.01) ·
r1(X0 (l - b, (t + 0.007 + (n + n' + 1) · 0.01))} }

= r(t + 0.001). z:=o ;(t + 0.002 + n. 0.01). s2(d)(t + 0.004 + n. 0.01) .
{:L~=o r(t + 0.006 + (n + n') · 0.01) ·

*

r1(Xo(l - b, (t + 0.007 + (n + n') · 0.01))}

ft> to LdeD r1 (d) (t) ·
{ L:~=O r(t + 0.002 + n · 0.01) · s2(d)(t + 0.004 + n · 0.01) ·

{:L~=O r(t + 0.006 + (n + n') · 0.01) ·
r1(Xo(l - b, (t + 0.007 + (n + n') · 0.01))} }

The atomic actions occurring in r1(X0 (b, to)) are independent of the parameter b, thus
with RSP we get:

PARimp1(t) = r1(Xo(l, t)) = r1(Xo(O, t))

The expression on the right hand side of the ~ can be considered as the specification
of the PAR protocol. However, one can say that it contains too much time information
and one would expect a specification which states that sooner or later the incoming
datum will be send out at port 2. Hence, one needs a mechanism to abstract from some
time information. Moreover, one needs to express a notion of fairness, saying that the
datum and the acknowledgement can be lost only a finite amount of times. In the above
expression this would mean that the n and n' are finite. One very rough way to obtain

351

this, is to throw away all time information obtaining the (untimed) term:

S(b) = L ri(d) · s2(d) · S(l - b)
dED

9 Conclusions and Further Research

In this report a notion of abstraction is introduced. The adjustment of the model is quite
simple and requires the introduction of so-called closure rules. As equivalence we still
can use the standard notion of strong bisimulation. The resulting equivalence can be
characterized by only one additional r-law for the calculus without integration.

By interpreting symbolic processes as a special class of timed processes, we obtain a
notion of r equivalence for symbolic processes. The resulting equivalence is delay bisim­
ulation with a strongly rootedness condition.

We can verify a protocol using these laws. To deal with recursion, we need as well
the common requirement that every guarded recursive specification has a unique solution
(RDP and RSP) and a new principle which we call the Unwind Principle (UP).

However, some questions are left open. The completeness proof is given for terms
without integration. It is to be expected that the addition of integrals complicates the
proof only in a technical way, also because the r can only be removed if the bounded
variable of the associated integral is not used afterwards. But there is a need for techniques
dealing with terms with integrals and their transition systems such that these proofs can
be done more easily. The statement of the principles RDP, RSP and UP is rather ad hoe
and needs further research.

Acknowledgements

The author would like to thank Jos Baeten (Eindhoven Univ. of Technology) for his
encouraging comments. Part of the research of this paper was suggested by him. Willem
Jan Fokkink (CWI) is thanked for his stylistic advices.

References

[Bae90] J .C.M. Baeten, editor. Applications of Process Algebra. Cambridge Tracts in
Theoretical Computer Science 17. Cambridge University Press, 1990.

[BB91] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal of Formal
Aspects of Computing Science, 3(2):142-188, 1991.

[BW90] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in The­
oretical Computer Science 18. Cambridge University Press, 1990.

[dR89] W.P. de Roever. Foundations of computer science: Leaving the ivory tower.
Bulletin of the European Association for Theoretical Computer Science, 44:455-
492, 1989.

352

[Gla87] R.J. van Glabbeek. Bounded nondeterminism and the approximation induc­
tion principle in process algebra. In F.J. Brandenburg, G. Vidal-Naquet, and
M. Wirsing, editors, Proceedings STAGS 87, volume 247 of Lecture Notes in
Computer Science, pages 336-347. Springer-Verlag, 1987.

(Gro89] J.F. Groote. Transition system specifications with negative premises. Report
CS-R8950, CWI, Amsterdam, 1989. An extended abstract appeared in J.C.M.
Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, LNCS
458, pages 332-341. Springer-Verlag, 1990.

[GW89] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisim­
ulation semantics (extended abstract). In G.X. Ritter, editor, Information Pro­
cessing 89, pages 613-618. North-Holland, 1989.

(Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International,
1985.

[HR90) M. Hennessy and T. Regan. A temporal process algebra. Report 2/90, Computer
Science Department, University of Sussex, 1990.

(Klu91] A.S. Klusener. Completeness in realtime process algebra. Report CS-R9106,
CWI, Amsterdam, 1991. An extended abstract appeared in J.C.M. Baeten and
J.F. Groote, editors, Proceedings CONCUR 91, Amsterdam, LNCS 527 , pages
376-392. Springer-Verlag, 1991.

(Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, 1980.

[Mil89] R. Milner. Communication and concurrency. Prentice Hall International, 1989.

[MT90) F. Moller and C. Tofts. A temporal calculus of communicating systems. In
J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam,
volume 458 of Lecture Notes in Computer Science, pages 401-415. Springer­
Verlag, 1990.

[Plo81] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Computer Science Department, Aarhus University, 1981.

(Ree89] M. Reed. A hierarchy of domains for real-time distributed computing. In Math­
ematical Foundations of Programming Language Semantics. Springer-Verlag,
1989.

(RR88) M. Reed and A.W. Roscoe. A timed model for communicating sequential pro­
cesses. Theoretical Computer Science, 58:249-261, 1988.

[Wan90] Y. Wang. Real time behaviour of asynchronous agents. In J.C.M. Baeten and
J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of Lec­
ture Notes in Computer Science, pages 502-520. Springer-Verlag, 1990.

