
Abstraction in Real Time Process Algebra 

A.S. Klusener 
CWI 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

e-mail: stevenk@cwi.nl 

Abstract. In this paper we extend Real Time Process Algebra by the silent step r. 
We start by giving the operational semantics and we find a characterizing law of which the 
soundness and the completeness is proven. By adding the integral construct we can in­
terpret symbolic (untimed) process terms as timed processes. We investigate the resulting 
r-equivalence and come to a delay bisirnulation with a stronger root condition. Finally we 
test the applicability of this notion of real time abstraction by proving the PAR protocol 
(Positive Acknowledgement with Retransmission) correct. 

1985 Mathematics Subject Classification: 68Q60. 
1982 CR Categories: D.3.1, F.3.1, J.7. 
Key Words & Phrases: Real Time, Process Algebra, ACP, Abstraction, Protocol Verifica­
tion. 
Note: This work is in part sponsored by ESPRIT Basic Research Action 3006, CONCUR. 
Some proofs have been omitted in this paper, they can be found in the full version which 
has appeared as CWI report CS9144 under the same title. 

1 Introduction 

In recent years much effort is paid to develop techniques for proving software systems 
correct w.r.t. to their specification. A motivation and an overview of these techniques 
can be found in [dR89]. In this paper we restrict ourselves to ACP ([BW90]), which is a 
Proces Algebra like CCS ([Mil89]) and CSP ([Hoa85]). The idea of protocol verification 
by using Process Algebra is that one has a specification and an implementation both 
formulated in the same language. One can abstract from the implementation details by 
renaming certain "internal" actions to the silent action T. Then, one can apply the axioms 
of the algebra for proving the equality between the specification and the implementation. 
For examples of protocol verification in ( untimed) Process Algebra we refer to [Bae90]. 

The most common notion of abstraction, weak bisimulation, is due to Milner (Mil80]. 
Van Glabbeek and Weijland introduced in (GW89] delay bisimulation and branching 
bisirnulation, which are slightly different notions of abstraction. 

In timed Process Algebra abstraction is not yet well developed. Only Wang studied 
abstraction in a timed Process Algebra (timed CCS) ((Wan90]), although his weak bisim­
ulation is not a congruence. In another timed extension of a Process Algebra, Timed CSP 
((RR88],(Ree89]), there is a special action WAIT t which idles for t time units. In this 
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way an internal activity can be expressed. Similar constructs can be found in [MT90], 
[HR90]. It may be the case that the introduction of a T action to Real Time ACP makes 

it more easy to compare Real Time ACP with other calculi. 
In this paper a notion of abstraction in Real Time Process Algebra is proposed. As 

starting point we take the work of Ba.eten and Bergstra, they presented in [BB91] their 

Real Time Process Algebra BPAp8. In that paper they suggested already to interpret a 

timed r as an explicit idling. We will investigate this idea more thoroughly. 

We take BPAp8 (without integrals) and add the timed action r(t). The operational 

semantics is given and we give a complete axiomatization. The addition of the integral 

construct allows us to interpret symbolic process terms as a special class of timed process 

terms. It comes out that the resulting subtheory can be considered as being a delay 

bisimulation with a strongly rooted condition. By generalizing the laws of earlier sections 

we obtain axioms for process terms with integrals. Finally, we show the use of this theory 

by giving a protocol verification which depends on time. 
This paper is based on "absolute" time, thus the timestamps of the actions are in­

terpreted from the starting point. This is not a serious point since all results can be 

formulated in "relative" time as well. 

2 Adding the Silent Step to the Original Semantics 

2.1 The Syntax 

In this Section we give some intuition for timed processes by introducing the opera­

tional semantics of [BB91] for process expressions over Basic Real Time Process Algebra 

(BPAp8). We do not yet consider integration in this section. Let Asr be the set of actions, 

containing the constants 8 (for inaction) and r (for internal activity). The alphabet of 
the theory BPAp8r is 

A~~me = {a(t)la E Asr, t E Jl2'.0 } 

Similarly we use A~me, as the set of timed actions without timed 8's. In the sequel we 

refer to actions from Asr as symbolic actions and we refer to actions from A~i,:"e as timed 

actions. Moreover, process expressions are simply called terms. The set T of (closed) 

terms over BPAp8r is generated by the alphabet A~ime and the binary operators + for 

alternative composition and · for sequential composition and the operator », called the 
(absolute) time shift. 

The (absolute) time shift, », takes a nonnegative real number and a process term; 

t » X denotes that part of X which starts after t. The set T with typical elements 

p, P1, P2 is defined in the following way, where a E Asr and r E R2'.0 : 

PET P := a(r) I P1 + P2 I P1 · P2 I r » p 

Syntactical equivalence is denoted by :=, syntactical equivalence modulo associativity and 

commutativity of the + is denoted by ~- Equivalence within a theory T?-i is denoted by 

TH f- P = q or simply p = q when the theory is clear from the context. 8(0) is abbreviated 
by 8. 

There are three functions defined by induction. U(p) is the ultimate delay of p and 

S(p) is the earliest start time of p and L(p) is the latest start time. We need an auxiliary 
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function inittime; inittime(p) contains all time stamps at which p can perform an initial 
action 

These functions already occur in [Klu91]. a is taken from Ar 

U(a(t)) = t inittime(a(t)) = {t} 
U(o(t)) = t inittime(o(t)) = 0 
U(p · q) = U(p) inittime(p· q) = inittime(p) 
U(p+q) = max(U(p),U(q)) inittime(p+q) = inittime(p)Uinittime(q) 
U(r ~ p) == max(r, U(p)) inittime(r ~ p) = inittime(p)n < r,w > 

We take max(0) = min(0) == 0 and we define S(p) = min(inittime(p)) and L(p) = 
max( inittime(p )). 

2.2 The Original Semantics 

The semantics of Baeten and Bergstra ([BB91]) assigns to every term (in T) a transition 
system in which each state is a pair consisting of a term and a point in time and in which 
each transition is labeled by a timed (non 6) action. 

For example the process a( 1) starts in state < a( 1), 0 >, denoting that each process 
starts at 0. From < a( 1), 0 > an idle transition is possible to a state of the form < a(l ), t > 
with 0 < t < 1. An idle transition is a transition in which only the time component is 
increased without executing any action. In general, from each state < a(l ), t > an idle 
transition is possible to < a(l ), t' >, whenever t < t' < 1. Furthermore, from each state 
< a(l ), t > a terminating a(l )-transition to < .j, 1 > is possible whenever t < 1. 

For technical reasons we add in this paper a boolean value to each state, which is 
initialized on F. So, the process a(l) starts in < a(l), 0, F >. An idle transition does not 
change the boolean value. As soon as an action is executed the value is set to T. Once 
the value is set to T it remains T throughout the execution of the proces. 

For the moment it suffices to say that we need the boolean value to distinguish root 
states from internal states. A root state is a state with time 0 or a state which can be 
reached from a state with time 0 by idling only. 

Within this semantics the transition system concerns three relations 

Step ~ (T x R~0 x {T,F}) x Atime x (T x R~0 x {T,F}) 
Idle ~ (T x R~0 x {T,F}) x (T x R~0 x {T,F}) 
Terminate ~ (T x R~0 x {T, F}) x A time x R~0 

These three relations are defined as the least relations satisfying the action rules given 
in Table 1. The definition of an operational semantics by giving action rules is due to 
Plotkin ([Plo81]). We write 

b a(r) I I b' ( ( ) I I b' ) < x, t, > - < x, t , > for < x, t, b >,a r , < x, t, > 
< x, t, b > - < x', t', b' > for ( < x, t, b >, < x', t', b' >) 

a(r) 1 ( ) ') < x,t,b > - < .j,t > for (< x,t,b >,a r ,t 

The transition relation will be defined such that it is guaranteed that 

E Step 
E Idle 

E Terminate 

< x,t,b > ~ < x',t',b' > 
< x, t, b >-< x', t', b' > 

===> t < r /\ t' = r /\ b' = T 
===} t < t' /\ b = b' 

a(r) 1 < x, t, b > --'-+ < .j, t > ===> t < r /\ t' = r 
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As notion of equivalence we have strong bisimulation; every step or idle transition on 
the left hand side has to be matched with an associated step or idle transition on the 
right hand side. A bisimulation relation on (7 x R~0 x { F, T}) x (7 x ~o x { F, T}) 
is defined in the obvious way. Two terms p, q are bisimilar, denoted by p !:!orig q, if there 
is a bisimulation relation containing ( < p, 0, F >, < q, 0, F > ). The action rules are given 
in Table l. 

From the atomic rules for r(r) we see that executing the silent step r is modeled by 
an idle step which changes the process term in the state. Therefore we have to cover now 
as well cases where idling may change the process term in the state. 

2.3 Some Process Diagrams 

The transition system of the term a( 1) can be represented by the left-hand process diagram 
given in Figure 1. A process diagram is simply a pictorial representation of a transition 
system. It is not possible to make a picture of the transition system itself, since it has 
uncountably many transitions. The intuition behind such a process diagram is that the 
process starts in the top-point. It can idle by going to a lower point without crossing any 
line, whereas the execution of an action a at time r is reflected by going to a dashed line 
at level r labeled with a. Only dashed lines may be crossed, after landing on them. 

A very particular set of atomic actions is the set of c5(r)-terms. 6(1) can do nothing 
more then idling until l. Thus the root node is< 6(1), 0 > and from each state< 8(1), t > 
an idle transition to < 8(1), t' >is possible, whenever t < t' < l. 

The transition system of p + q is defined in terms of the transition systems of p and q. 
The behaviour of p + q can be considered as the "union" of the behaviour of p and that 
of q. 

A state µ (in Figure 1) is of the form < a(l) + b(2), t > with 0 < t < 1. From 
µ both a terminating a(l)-transition to < J, 1 > and a terminating b(2)-transition to 
< J, 2 > are possible. However, from a state like v of the form < a(l) + b(2), t > with 
1 :5 t < 2 only a terminating b(2)-transition to < J, 2 > is possible. Hence, by idling 
from < a(I) + b(2), t0 > to < a(l) + b(2), t1 > with 0 < t0 < I S t1 < 2 we have lost 
the option of executing the a(l)-summand. Thus one could say that a choice has been 
made at time l; after the choice has been made for b(2) the summand a(l) has become 
redundant. 

The transition system of a{l) + 6(1) consists of exactly the same relations as the 
transition system of a(l). The summand 8(1) contributes only idle steps which are con-

Figure 1: Process Diagrams of the terms a(l),8(1), a(l) + b(2) and a(l) + 8(2) 
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t<s<r t < r 

< a(r), t, b >--+< a(r), s, b > < a(r),t,b> ~ < y',r > 

t<s<r t<r 

< T(r), t, b >--+< T(r),s, b > < T(r ), t, b >--+< y', r > 

t<s<r 

< c5(r), t, b >--+< c5(r), s, b > 

< p, t, F >--+< p, r, F > 
< p + q, t, b >--+< p + q, r, b > 

a(r) 
< p,t,b >--+ < y',r > b a(r) I b' < p, t, > --+ < p, r, > 

<p+q,t,b> ~ < y',r > 
a(r) / 

<p+q,t,b>--+<p',r,b > 

< p,t,b >--+< y',r > < p, t,F >--+< p',r,T > 
< p + q, t, b >--+< y', r > < p + q, t, b >--+< p', r, T > 

And similar rules for q + p 

a(r) 
< p,t,b >--+ < y',r > b a(r) I b' < p, t, > --+ < p, r, > 

a(r) < p · q, t, b > --+ < q, r, T > b a(r) ' b' < p · q, t, > --+ < p · q, r, > 

< p,t,b >--+< y',r > < p, t, b >--+< p', r, b' > 
< p · q, t, b >--+< q, r, T > < p · q, t, b >--+< p' · q, r, b' > 

t<r<s 

< s » p,t,b >--+< s » p,r,b > 

r>s 
a(r) 

< p, t, b > --+ < y', r > r > s b a(r) ' b' < p, t, >--+ < p, r, > 
< s » p, t, b > ~ < y', r > b a(r) ' b' < s » p, t, >--+ < p ,r, > 

r>s < p, t, b >--+< y', r > r>s < p, t, b >--+< p', r, b' > 
< s » p,t,b >--+< y',r > < s » p, t, b >--+< p', r, b' > 

Table 1: The Original Transition System of BPApc5T, (a EA, r,s > 0) 
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tributed by the summand a{l) as well, hence we may consider the 8(1) summand as being 
redundant. 

However if we consider a{l )+6(2), the 8(2) summand contributes idle transitions which 
are not contributed by a(l), since 8(2) has idle transitions to points in time between 1 
and 2. The transition system of a(l) + 8(2) can be represented by the process diagram 
on the right-hand side in Figure 1. 

The last operator we introduce is the (absolute} time shift denoted by >,which takes 
a rea.l number s and a process X and delivers that part of X which starts after s. Hence, 
before s it can only idle or do a transition to a state after s. 

2.4 The Closure Rules 

In the original transition system of Baeten and Bergstra, thus the one without silent 
actions and without a boolean value in the state, the following property was guaranteed: 

<1(r) I < p,t >--+< p,s > /\ < p,s >--+ < p ,r > ==> < p, t > ~ < p', r > 

Since we require this property a.lso in the context with silent steps (where idling may 
change the process term), we need the following closure rules. In the sequel we will 
discuss why these closure rules may only be applied on internal states. 

< p, t, T >--+< p', t', T > 
I I T a(r) I <p,t, >--+<y,r> 

<1(r) 
< p, t, T > --+ < y, r > 

< p,t, T >--+< p', t', T > 
< p' t' T > _±l < p" r T > 

' ' ' ' 
< p, t, T > ~ < p", r, T > 

< p,t,T >--+< p',t',T > 
< p', t', T >--+< y, r > 
< p,t,T >--+< y,r > 

< p,t,T >--+< p',t',T > 
< p',t',T >--+< p",r,T > 
< p, t, T >--+< p", r, T > 

Table 2: The Closure Rules, (a E A, r, s > 0) 

In Figure 2 we see process diagrams corresponding to the terms a(l) · ( r(2) · b(3) +c(3)) 
and a(l) · (b(3) + r(2) · c(3)). On the left hand side the process diagrams without closure 
rules a.re given; without closure rules the terms are certainly not bisimilar. On the right 
hand side the process diagrams with closure rules are given; the two terms have become 
bisimilar. 

Since in both terms the two summands are in a context a(l) ·( ... )we know that there 
are no other summands involved, hence the r{2) action determines a moment of choice, 
namely at time 2. But it is not relevant whether the r(2) is on the left hand side of the 
+or on the right hand side. Consider r(2) · b(3) + c(3), thus without context a(l) · ( ... ), 
then we can not say that the choice for the c(3) is made at 2. This becomes clear when 
we would add d(3). In the next Section we discuss this in more detail. 
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without closure rules with closure rules 

0 0 

1 1 

2 2 

3 3 

Figure 2: Process Diagrams for a(l) · (r(2) · b(3) + c(3)) and a(l) · (b(3) + r(2) · c(3)) 

In the sequel we refer to idle steps which are generated by the closure rules as implicit 
{idle) steps. Similarly we have explicit (idle) steps. 

2.5 Closure Rules and Internal States 

Now we can discuss the need for distinguishing root states from internal states. Assume 
that we would not make this distinction, so forget about the boolean values. And assume 
that we would apply the closure rules on the root level as well. Then we would have 

a(l)+r(l)·b(2) ~ a(l)+b(2) 

But if we add c(2) then 

a(l) + r(l) · b(2) + c(2) h. a(l) + b(2) + c(2) 

Since in the left hand process the choice for the b(2)-summand is made at time 1, while in 
the right hand side the corresponding choice is made at time 2. Thus in case of a(l)+b(2) 
it is not right to say that the choice for the b(2) is made at 1, since other summands, such 
as c(2), may be there in the context. 

If we put both terms in a sequential composition after d(l) then 

d(l) · (a(l) + r(l) · b(2)) h. d(l) · (a(l) + b(2)) 

because only the right hand process has an option of doing the b at time 2. 
So, when the closure rules are applied from the root level as well bisimulation equiv­

alence is not a congruence. By making the distinction between root states and internal 
states we can apply the closure rules only for internal states and bisimulation equivalence 
is a congruence. For example: 

a(l) + r(l) · b(2) i:± a(l) + b(2) 
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3 An Alternative Operational Semantics 

3.1 Encoding the Course of Time in the Process Terms 

In the previous Section the operational semantics is presented according to [BB91]. Each 
state consisted of three components. In this Section we give a transition relation, in which 
the course of time is encoded in the prefix by an occurrence of the~ operator. In [Klu91] 
a similar operational semantics is given. Since no abstraction was considered in that paper 
it was not necessary to model the idle steps there. Hence, the transition relation became 
finite for (recursion free) terms without integration. Now, we encorporate the silent step 
into this semantics; idle steps which determine a moment of choice are modeled by 7-
steps. Moreover, we define a notion of equivalence, called timed weak bisimulation, which 
coincides with .±:±.orig· 

In the semantics for ACP, as presented in [Gla87], we have the following transitions 

a~ J and a a·p--+p 

In a real time setting we have to take the time stamps into account. In a(r) · p, after doing 
the a(r) action, only that part of p can be done which starts after r, which is denoted by 
r ~ p. Hence, after the addition of time we have the following transitions (we have also 
added the boolean values). 

< a(r ), b > .±.!. J and ( a(r) 
< a r) · p, b > --+ < r ~ p, T > 

If p can perform an action b(t) then s ~ p can perform this action only if t > s. 

3.2 The Transition System Specification 

In table 3 an alternative operational semantics is given. Only the implicit 7-rule is new 
here, the other ones are taken from [Klu91]. This implicit 7-rule models a moment of 
choice by a 7-step. The alternative operational semantics given in this Section concerns 
two relations: 

Step c (T x {F,T}) 
Terminate C (T x { F, T}) 

x 
x 

x (T x {F,T}) 

These relations are defined as the least relations satisfying the action rules of Table 3. We 
write: 

< p, b > .±4 < p', b' > for ((p, b),a(r), (p', b')) E Step 

<p,b>.±4 J for ((p,b),a(r))ETerminate 

Again it is guaranteed that b' = T if < p, b > ~ < p', b' >. This can be shown by 
induction on the length of the derivation. It is also guaranteed that 

a(r) 1 
a E A,. : < p, T > --+ < p , T > ~ r = S (p) 

All initial actions of p with a time stamp greater than S(p) are postponed till a later state, 
as is shown in Figure 3. Two terms p and q are bisimilar, denoted by p .±±tw q, if there 
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<a(r),b>~ J 

<p,F> 5j J < p, F > ~ < p', T > 
a(r) 

<p+q,F>--+ J a(r) 
<p+q,F >--+ <p',T > 

r::; S(q) <p,T> ~ J r::; S(q) < p, T > ~ < p', T > 
a(r) 

< P + q, T >--+ J a(r) 
<p+q,T>--+ <p',T> 

And similar rules for q + p 

< p, b > a(r) J < p, b > 5j < p', T > 

< p · q, b > .±1 < r ';:$> q, T > 
a(r) 

< p · q, b > --+ < p' · q, T > 

s < r <p,b>~ J s<r < p, b > a(r) < p', T > 

< s ';:$> p, b > .±1 J a(r) 
< s ';:$> p, b >--+ < p', T > 

5-rule 
U(p) > L(p) 

b 6(U(p)) J < p, > --+ 

implicit T-rule 
s = S(r ';:$> p) < U(s ';:$> p) 

T(s) 
< r ';:$> p, T > --+ < s ';:$> p, T > 

Table 3: An Alternative Operational Semantics, (a EA,,., r,s > 0) 

is a timed weak bisimulation relation containing ( < p, F >, < q, F > ). In the following 

definition< p, T >~< p', T >abbreviates < p, T > * 1 l < p1 , T > ... <Pk, T > ~ < 
p', T >for some k:?: 0, moreover a is take from As,,. and a' is taken from A5• 

Definition 3.2.1 R C (T x {T, F}) x (T x {T, F}) is a timed weak bisimulation relation 
iff it is symmetric and ( < p, b >, < q, b >) E R implies that 

• if b = F and < p, F > ~ < p', T > then there is a q' such that 
a(r) 

< q,F >--+ < q',T >and(< p',T >,< q',T >)ER. 

. a(r) a(r) 
• if b = F and < p, F > --+ J then < q, F > --+ J. 

• if b = T and < p, T > '.'.J:l < p', T > then there is a q' such that 
a'(r) 

< q,T >=='=}< q',T >and(< p',T >,< q',T >)ER. 



a(l) · (r(2) · b(3) + c(3)),F 

l a(l) 

1 ~ (r(2) · b(3) + c(3)),T 

~ 
2 ~ b(3), T 2 ~ ( r(2) · b(3) + c(3)), T l b(3) l c(3) 

J J 
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a(l) · (b(3) + r(2) · c(3)),F 

l a(l) 

1 ~ (b(3) + r(2) · c(3)), T 

~ 
2 ~ ( b(3) + r(2) · c(3), T 2 ~ c(3), T l b(3) l c(3) 

J J 
Figure 3: Transition Systems for a(l) · (r(2) · b(3) + c(3)) and a(l) · (b(3) + r(2) · c(3)) 

• if b = T and < p, T > _jj < p', T > then either ( < p', T >, < q, T >) E R or there 

is a q' such that< q,T >~< q',T >and(< p',T >,< q',T >)ER 

• if b = T and < p, T > ..'.'.ij J then < q, T >~ J. 
The 8-rule generates transitions labeled with 8(t), for example if t < 2 then 

< t ~ (a(l) +8(2)),b > ~ J 
These deadlock transitions are needed to distinguish a(l) + 8(2) from a(l) + 8(3). Note 
that < a(l) + 8(1), b > does not have a deadlock transition at all. Deadlock transitions 
are discussed exhaustively in (Klu91], but they are not important for discussing the silent 
step. Hence, they will not be mentioned anymore in this paper. 

In this transition relation we have implicit r-steps only when they determine a moment 
of choice. Consider the state < r ~ p, T >. Assume that the first moment in time at 
which r ~ p can do an action is s (e.g. S(r ~ p) = s ). Furthermore, assume that it can 
idle till a moment afters (e.g. U(r ~ p) > s). Then we say that sis a moment of choice; 
either the actions with time stamp s are executed or the idling continues and the actions 
with timestamp s are dropped from the computation. Since there are only finitely many 
of those moments of choice we have only finitely many r-steps as well. In Figure 3 the 
states < 2 ~ b(3), T > and < 2 ~ (b(3) + r(2) · c(3), T > may be related by a timed 
weak bisimulation relation. In Section 5 we will give a corresponding semantics where we 
can use the standard notion of strong hisimulation. The price to pay, however, is that we 
have to allow infinite many implicit r steps there. 

We can prove similarly as in [Klu91]: 

Lemma 3.2.2 Bisimulation equivalence in the alternative operational semantics equals 
bisimulation equivalence in the original operational semantics. 

P ~tw q ~ P =:!orig q 

Thus we may omit the subscripts of !:ttw and =:!orig· In Section 5 we will prove that 
bisimulation equivalence is a congruence. 
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4 The Theory BP ApbT 

4.1 A Characterizing Law 

From the operational semantics we know that a r-action may be removed if it does not 
determine a choice. Moreover, this r-removal can only be applied 'within' a term and not 
at the level of the root. This is exactly characterized by the r-law given in Table 4.1. The 
theory BPAp8 can be found in [BB91] and [Klu91] 

TAUl t < r < U(X) /\ U(Y) $ r 

a(t) · (r(r) · X + Y) = a(t) · (r ~ X + Y) 

Table 4: BPAp8r = BPAp8 + TAUl 

Lemma 4.1.1 The axiom TAUl is sound w.r.t. to bisimulation equivalence. 

Theorem 4.1.2 Soundness of BPAp8r 

BPAp8r f- p = q ::::::::} p !::::!:. q 

Proof. A theory is sound w.r.t. to an equivalence if all the axioms are sound and if 
the equivalence is a congruence w.r.t. to all operators. Since the bisimulation equivalence 
introduced in this paper identifies more than the one of [Klu91] we may conclude that 
all the axioms of BPAp8 are still sound. Moreover, in Lemma 4.1.1 we have stated the 
soundness of the additional r-law and we will show that bisimulation equivalence is a 
congruence in Section 5. D 

Lemma 4.1.3 Assume t < r < min(S(X), S(Y)) and U(Z) $ r then 

Proof. 

r-removal a(t) · r(r) · X a(t)-X 
T-swap a(t) · (r(r) · X + Y) a(t) · (X + r(r) · Y) 
r-swap a(t) · (r(r) · X + Y + Z) a(t) · (X + r(r) · Y + Z) 

a(t) · r(r) · X 

a(t) · (r(r) · X + Y) 

a(t) · (r(r) · X + 8) 
= a(t) · (X + 8) 
= a(t) · X 

a(t) · (r(r) · X + r(r) · Y) 
= a(t)·(X+r(r)·Y) 

a(t) · (r(r) · X + Y + Z) a(t) · (r(r) · X + r(r) · Y + Z) 
= a(t)·(X+r(r)·Y+Z) D 
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4.2 Completeness 
In this Section we prove the completeness of BPAp8T, e.g. we have to prove that if two 
terms are bisimilar then there is a derivation in BPAp8T which proves them equal. We 
construct for each pair of bisimilar terms another pair of terms by adding T-actions, such 
that the resulting pair is also bisimilar in the semantics without closure rules. We only 
add T-actions in one term if there is already an associated T in the other term. Or, put 
in other words, if implicit idling is matched with explicit idling then the implicit idling is 
rewritten into an explicit idling. Thus the pair 

( a(l) · b(3) · d(4) , a(l) · T(2) • b(3) • (d(4} + d(4)} 
is rewritten into 
( a(l). r(2} · b(3} · d(4) , a(l) · T(2) · b(3) · (d(4) + d(4)) 

Since we are working in absolute time and since we have timed 8's, we allow terms with 
a lot of "junk" (redundant parts) in it. A basic term is a term without "junk". If we 
consider a term like a(2)·b(l), then the b can never be executed at 1 after we have executed 
the a at 2. Thus a deadlock will be encountered after executing the a at 2. Hence, we 
can rewrite the term a(2} · b(l) into the basic term a(2) · 8, where the deadlock appears 
explicitly. Similarly we can remove all redundant 8's, for example the 8(2} is redundant in 
the term a(2) + 8(2). 

For the formal definition of basic terms and for further details we refer to [Klu91]. The 
set of basic terms is denoted by B. Next, we rewrite all basic terms of the form 

E;ai(r) ·Pi+ Lj bj(r) + q with S(q) > r 
into 
Li ai(r) ·Pi+ E; b;(r) + r(r) · q 

In this way we obtain the set of ordered terms which is denoted by 5ord. 
If p is an ordered term starting afters we may write p E 5ord(s ). If we take Lie0 Pi = 8, 

then every ordered term is of the form 

Lai(r) ·Pi+ LbJ(r) with Pi E 5ord(r) 
i j 

For each s E R~0 and timed weak bisimulation relation R we define a function JR. which 
maps a pair of ordered terms onto another pair of ordered terms. The construction of 
JR(p, q) guarantees that 

Lemma 4.2.1 If p,q in 5ord(s) and(< s ~ p, T >, < s ~ q, T >) in R and JR,(p,q) = 
(p', q'), then 

- BPAp8r f- a(s) · p = a(s) · p', a(s) · q = a(s). q' 
- p' 5i!t:.q' 

He~e, .~ denotes strong bisimulation in the transition system without implicit r-rule, 
which is completely characterized by BPApS. The complexity of a pair of ordered terms is 
the pair of natu~al num~ers (depth(p) + depth(q), number of summands in (p + q)), and 
we assume a lex1cograph1c ordering on pairs of natural numbers. 
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Definition 4.2.2 

We construct JR.(p, q) inductively; we assume that we have constructed already the func­
tion Jh on pairs with smaller complexity for arbitrary t. 

Consider (p, q) both in B""d( s) and a timed weak bisimulation relation R containing 
(< s » p,T >,< s » q,T >)such that 

p ~ L:;eJ a;(t) · P; + L:;eJ' aj(t) 
q ~ L:1eL b1(r) · q1 + L:1eL' bl(r) 

There are two cases, either J = 0 = L or J # 0 V L # 0. In the first case we simply take 
JR(p,q) = (p,q). The second case has on its turn two subcases, t =rand t # r; these 
subcases are considered below. We assume that J # 0. 

• If t = r then for every j in Ja; EA.- and there is a z; (with z; = q1 for some l EL) 
such that 

<s»p,T> 
R 

< s » q,T > 

Gj(t) -
Gj(t) -

< t » p;,T > 
R 

< t » z;,T > 
By induction we have already constructed Jh(p;, z i) = (pj, q'j). Similarly for every 
l we can find a term z; obtaining fh(q1,z/) = (q!,p:'). (It is more efficient of course 
to construct (qf,pn only for those l E L such that q1 '$1. z; for every j E J, but this 
will not be considered any further). 

Since ( < s » p, T >, < s » q, T >) E R it is guaranteed that every terminating 
aj(t) step can be matched by some terminating bl(r) and vice versa. 

We define 

JR(p,q) = ( L:;oa;(t)·pj+L:1eLb1(t)·p~+L:;eJ'aj(t) 
L:;eJ a;(t) · q'J + L:1eL b1(t) ·qi+ L:teL' bl(t) 

• If t # r then we may assume t < r. Then it must be the case that a; = T for all 
j in J and J' = 0. We have for every j that(< t » p;,T >,< s » q,T >)in R. 
Since s < t and q E sord(t) we may extend R such that it remains a timed weak 
bisimulation relation which contains ( < s » q, T >, < t » q, T > ). Hence we may 
extend R further such that it contains ( < t » p;, T >, < t » q, T >)for each j E J. 
By induction we have already constructed fh(p;, q) = (pj, q'j). We define 

JR(p, q) = ( E r(t) · pj, E r(t) · p'J ) 
jeJ jEJ 

Now we are ready to give the completeness proof. 

Theorem 4.2.3 Completeness of BPAp8r 

p .t:t q ==> BPAp8r I- p = q 
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Proof. We prove it first for ordered terms p and q, assume 

p ~ LjeJa;(t;)·Pi+LieJ'aj(tj) 
q ~ LleL b1(r1) · q1 +Lieu bj(rD 

We take some timed weak bisimulation relation R which contains ( < p, F >, < q, F > ). 
From a root state (a state with boolean value F) no implicit r steps have to be considered. 
Hence, for each j in J there is a li in L such that 

/\ 

and we take JU (p;, q1,) = (pj, qj'). We do similar for each l in L and its associated index 
)1 in J. We construct p' and q', 

p' LjeJ ai(ti) · pj + LIEL b1(r1) ·PI'+ LjEJ' aj(tj) 
q' ~ LjEJ aj(tj) · qj' + LleL b1(ri) ·qi+ LIEL' bf(r;) 

such that BPAp8r f- p = p', q = q'. By construction p' ~ q'. Hence, BPAp8 f- p' = q' 
and BP Ap8r f- p = q follows immediately. 

If we start with non ordered terms p and q, with p H q, then we construct ordered 
terms Po and q0 such that BPAp8 f- p = po, q = q0 • By soundness of BPAp8 we obtain 
p H p0 and q .!::!. q0 and by transitivity of H we get Po .!::!. q0 • Now we have reduced 
it to the previous case and we conclude BPAp8r f- Po = q0 from which we conclude 
BPAp8r f- p = q. o 

5 A Third Corresponding Semantics 

In the two transition relations of the previous sections we had to keep track of a boolean 
value in each state to distinguish root states from internal states. In this Section we give 
another solution, we extend the set of terms T to T> by adding a new (absolute) time 
shift operator ~' which will be used to encode whether a state is internal or not. We 
saturate the transition relation with all possible implicit r steps as was the case in the 
original semantics of Baeten and Bergstra as well. This enables us to deal with strong 
bisimulation instead of timed weak bisimulation. 

- - a(r) Furthermore, we define only one relation ---+C T> x T>. We now have a( r) ---+ 8 

instead of a(r) ~ J (which abbreviated (a(r),r) E Terminate). By doing so we avoid 
a lot of rules. The action rules are given in Table 5. Two terms are bisimilar, denoted 
by p .!::!.::> q, if there is a strong bisimulation relation R c T> x T>. This approach 
only works when there are no occurrences of ~ at the root level. Therefore we have the 
following equivalence for terms without ~. 

Lemma 5.0.4 p, q E T 

We still have to prove the following Theorem, which can be proven easily for the bisimu­
lation equivalence defined by the transition relation of Table 5. 
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a(r) ~ 8 
L(p) < U(p) s<r p .±4 p' 

6(U(p)) C a(r) / 

p -
s>p - p 

a(r) O 
P- p' 'I- 8 

a(r) / 

p - p 
a(r) / 

p - p 
a(r} _ 

p·q--+ r>q p·q .±4 p'·q p+q .±l.p',q+p ~ p' 

S > p b(r) p' r < s < U(r > p) s>p 
'T(t) I --tp 1 a(r) 

p--t p" 

s>p b(r) p' r"»p 'T(•) s>p s>p a(r) p" 

Table 5: An Operational Semantics without Boolean Value (a EA.., b E As.., r,s > 0) 

Lemma 5.0.5 Bisimulation Equivalence is a congruence w.r.t. all operators 

Proof. If all action rules of a Transition System Specification are in Groote's ntyft/ntyxt 
format, then bisimulation equivalence is a congruence (see [Gro89]). We have to prove 
only for the closures rules that they can be written into this format, since in [Klu91] we 
proved it already for all other action rules of Table 5. The first and the third closure rule 
are already in the right format and for the second one we may take 

s<t 
b(t) 

r>p--tp" 
instead of 

r < s < U(r > p) 

- T(s) -
r>p - s>p 

D 

In this paper we will not mention anymore this variant of the semantics, since we do not 
want to discuss the inclusion of the operator > in the theory. 

6 Symbolic Processes as Timed Processes 

In this Section we interpret each symbolic process term as a timed process. We will 
investigate the resulting subtheory. 

6.1 The Interpretation of Symbolic Process Terms as Timed 
Processes 

By using the integral construct of Baeten and Bergstra we can express a process which 
executes an a somewhere in time by the process term fv>O a( v ). The formal introduction of 
the integral construct is postponed till the next section. By extending the syntax with the 
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integral construct we obtain BPAp8rl. We define a function RT: BPA8r---+ BPApb7l, 
which interprets every symbolic process term as a timed process. 

a EA RT( a) d;j fv>O a(v) · fw>O r(w) 

RT(r) d;j fv>O r(v) 

RT(8) d;J fv>O 8(v) 

RT(p + q) d;J RT(p) + RT(q) 

RT(p · q) d;J RT(p) · RT(q) 

Originally, Baeten and Bergstra had RT( a) dgf fv>O a(v) (they denote RT(p) by p). But 
in this case the first 7-law X · 7 = X ([Mil89]) would not be sound anymore. Since we 

prefer to maintain this law we define RT( a) dgf fv>O a(v) · fw>O 7(w). 
The range of the function RT is denoted by RT(BPAb7). 

6.2 A Delay Bisimulation Semantics on BPA8T 

Here we give a semantics for symbolic processes which corresponds with the semantics of 
their timed interpretations. In the previous sections we have studied transition relations 
which where 7-saturated, i.e all possible appropriate r-steps between internal states were 
added. 

In this Section we will not saturate the transition relation but we move the 7-saturation 
into the definition of bisimulation. In this way we obtain a notion of delay bisimulation 
[GW89]. 

a v a p' a. p --+ p ----+ 
a --+ v ll ~ p' p+q --+ v p+q 

--.':..+ v a p' p p ---+ 
a a p'. q p·q ----+ q p·q ---+ 

Table 6: Transition System Specification for Symbolic Process Terms (a E A.,.) 

Moreover we want to get rid of this boolean value. In the previous sections the boolean 
value guaranteed that the closure rules were only applied on internal states, hence from 
a root only explicit steps were defined. This property will be expressed now by a root 
condition which is stronger then the usual one ([GW89]). 

If there is a path Po .....::_. p1 ... ~ Pk then we may write p0 ===>Pk· In this Section 
we allow ourselves the freedom to consider J as a special state. 

Definition 6.2.1 A relation R C BPA8r U { V} x BPA8r U { yl} is strongly rooted w.r.t. 

p and q if it obeys the following (a E Ar): 
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• R relates p and q with each other and not with other terms. 

• p ~ p1 implies that there is a q' such that q ~ q' and (p', q') E R. 

• q ~ q' implies that there is a p' such that p ~ p1 and ( q', p') E R. 

A relation R is rooted if it satisfies the first of the conditions above. An example of a 
relation which is strongly rooted is given in Figure 4. In this Figure we can see that the 
strongly rooted requirement corresponds to the requirement that the closure rule is applied 
on internal states only. 

not strongly rooted 

T 

b 

b b 

strongly rooted 

fa::···:} 
... JT 

....... .J b 

Figure 4: Example of Strongly Rootedness 

Definition 6.2.2 Symbolic Bisimulation or Strongly Rooted Delay Bisimulation 

p i:±aym q 

iff there is a symmetric relation R C BPA6r U { y'} x BPA6r U { y'} which is strongly 
rooted w.r.t. p and q such that for every pair (r, s) in R with r ~ r' either a= T and 
( r', s) in R or s ==> s" ~ s' and ( r', s') in R . 

In the sequel we will use the definition of rooted Branching Bisimulation ([GW89]) as 
well. 

Definition 6.2.3 Rooted Branching Bisimulation 

iff there is a bisimulation relation R C BPAor x BPA6r which is rooted w.r.t. p and 
q such that for every pair (r,s) in R with r ~ r' either a= T and (r',s) in R or 
s ==> s" ~ s' and both ( r, s") and ( r', s') in R. 

We have the following Lemma, since strongly rootedness is implied by rooted branching 
bisimulation. 

Lemma 6.2.4 
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Finally we have the following Theorem which states that the equivalence .!:ts11m is exactly 
the equivalence which we obtain by interpreting symbolic processes as timed processes. 
Bisimulation equivalence over BPAh'r is denoted by .!:tsym and bisimulation equivalence 
over RT(BPA6r) is denoted by +-?time· 

Theorem 6.2.5 P ±:taym q ~ RT(p) +-?time RT(q) 

6.3 Completeness for Strongly Rooted Delay Bisimulation 

In this Section we give a complete axiomatization for the equivalence .!:::t.11m following the 
work of Van Glabbeek and Weijland ([GW89)). We take the axioms DEL l and 2 from 
[GW89], where it is proven that these two axioms characterize Branching Bisimulation 
completely. Furthermore, we take the axiom 

r·Y=r·Y+Y, 

which can be found in [GW89] as well and we require that it is only applied in a context. 
In this way we obtain 

DEL3 X · (r · Y + Z) = X · (r · Y + Y + Z) 

Since Van Glabbeek and Weijland use a graph model we have to define the following. 
The set of graphs g is the set of triples (N, E,r) where N is a set of nodes, EC N x N 
is a set of edges and r E N is the root. Moreover, if g = (N, E, r) then E(g) = E. A 
graph g is trivial if E(g) = 0. g+ is the set of non trivial graphs. The graph of a term p 
is denoted by [p], this graph can be seen as that part of the transition relation which is 
associated with p, where .,/ is now considered as a special state. 

Definition 6.3.1 The graph rewriting --tr 

If a graph g has a path s ~ s' ~ s" where s is not the root of g and g has no edge 
s ~ s" then s ~ s" is added. 

Lemma 6.3.2 [p] --tr g =?- 3p' [p'] = g /\ DEL3 f- p = p' 

As in [GW89] we can prove easily 

Lemma 6.3.3 

DELl x. T = x 

DEL2 X · ( r · (Y + Z) + Y) = X · (Y + Z) 

DEL3 X · (r · Y + Z) = X · (r · Y + Y + Z) 

Table 7: BPA8rdel 
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• Both g and g+ are closed under --+.,.. 

• --+.,. is confluent and terminating. 

Definition 6.3.4 A graph g is r-saturated if it can not be reduced any further by --+.,.. 

Lemma 6.3.5 If g and h are r-saturated graphs then 

Proof. Since +-+rb is a smaller equivalence than ~.11m it is sufficient to prove that 
R : g ~ym h implies R : g +-+rb h. 

• The roots a.re related only with each other 

• if R(r, s) and r ....!...+ r' then either 

- a = T and ( r', s) E R or 

- s => s" ....!...+ s' with (r', s') E R, assumes = s0 ~ s 1 ..• 

h is r-saturated we have s; ~ s' and also s ~ s'. 
~ sk = s11 , since 

D 

Theorem 6.3.6 P ~sym q {:::::::} BPAh'Tdel I- p = q 

Proof. 

• {::= The soundness can be seen by investigating the operational semantics. 

• ==> By construction of the graph model we have p ~ymq iff [p] ~ym[q]. By 
T-saturating the graphs [p] and [q] we obtain g and h. By Lemma 6.3.2 we can 
construct terms p' and q' such that [p'] = g, [q1 =hand BPAS-rdel 1- p = p',q = q'. 
By transitivity of +--+ aym we get g ~11m h and since g and h are T-saturated we 
obtain g ~rb g and by the completeness result of Van Glabbeek and Weijland we 
conclude BPA8Tdel I- p' = q', from which it follows directly that BPASrdel I- p = q. 

0 

7 Adding Integrals 

An integral can be considered as a sum over a continuum of alternatives, this notion is 
introduced in [BB91]. Baeten and Bergstra allow integration over arbitrary subsets of 
the real numbers and they allow more then one integral behind each other. The idea 
of prefixed integration is that every action has a.s time stamp a time variable v taken 
from some set TV ar, and the action is directly preceded by the integral binding this 
v. Moreover, only Intervals are allowed. In (Klu91] a completeness result is given for 
prefixed integration. The term fve<O,l> a( v) denotes the process which executes an action 
a somewhere between 0 and 1. An integral binds a time variable, which may occur in the 
rest of the term, for example the term fve<O,l> a( v) · fwe<v+l,v+2> b( w) denotes the process 
which executes an action a at t where t is within 0 and 1. It waits between 1 and 2 time 
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units after t and executes an action b. Hence, the bounds of a interval of an integral are 
(linear) expressions over the real numbers. Lett E R~0 , v E TVar then we can define the 
set Bounds as follows: 

b E Bounds b := t I v I bi + b2 I bi ..:..b2 I t · b 

where ..:.. denotes the monus operator, i.e 5..:..3 = 2 but 3 - 5 = 0. If b E Bounds then 
the set of time variables occurring in b is denoted by tvar(b). Now we can construct 
intervals like < 1, 9 > and < v + 3, w >. An interval without free time variables can be 
considered as a connected part of the nonnegative reals. However, we don't want to deal 
with the complexity of set theory over reals and we want to define intervals containing 
occurrences of free time variables. Hence, every interval is a four tuple, containing two 
booleans and two reals. The interval V = (F, 1, 2, T) is abbreviated in the sequel by 
V =< 1, 2], denoting that the lower bound is open and 1, and that the upper bound is 
closed and 2. If b E Bounds then b E V denotes the logical expression of (in)equalities 

TAUil V < W < U(X) /\ U(Y) ;:; inf(W) 

fvEV a(v) · ((JwEW r(w)) · X + Y) = fvEV a(v) · (inf(W) ~ X + Y) 

TAUI2 V < W < U(X + Y) /\ U(Y) = sup(W) 

fvEV a(v) · ((JwEW r(w)) · (X + Y) + X) = fveV a(v) · (X + inf(W) ~ Y) 

TAUI3 V < W < U(X) /\ U(X) = sup(W) 

fveva(v) · ((fwEwr(w)) · X + Y) = X · ((fwEwr(w)) · X + inf(W) ~ X + Y) 

Table 8: BPApJ = BPAp5r +TAU 11 - 3 

1 < b :S 2. Similarly we have t E V1 U Vi, t < sup(V), V = 0, Vi < Vi and V < t as 
abbreviations for logical expressions over Bounds. 

We can redefine the set of terms. Let a E Aer, VE lnt, v E TVar, b E Bounds 

pET p:=l (a(v))ll (a(v)·p)lp·qlp+qlr~p 
vEV veV 

We abbreviate fve[w,w] a(v) by a(w) and 5(0) by 5. In this definition the notion of prefixed 
integration becomes clear; every action has as time stamp a time variable v and is directly 
preceded by its binding integral. Hence, we do not allqw a term like fvEV f wew (a( v) · 
fre<v,w> b(l) · c(r)). On these terms we have notions as FV() for the set of free time 
variables , a-conversion, and substitution. If a term or interval has no free time variables, 
then it is called time closed. 
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The adaptions of the transition relation as given in Table 3 are given in Table 9. Due 
to the integral construct there is no more a discrete notion of a moment of choice, hence 
the closure rule must generate infinitely many r-steps. 

Theorem 7.0.7 The laws TAUll - 3 are sound 

a(r) / • a(r) 
rEV <f.,eva(v),b>--'-'+ '· msteadof <a(r),b>--'-'+ .J 

r E V < f.,ev(a(v) · p),b > ~ r > p[r/v] 

r < s < U(s > p) . ad f s = S(r > p) < U(s ~ p) 
mste o 

< r ~ p, T > 1"(a) < s > p, T > < r > p, T > ~ < s > p, T > 

Table 9: (Additional/Changed) Action Rules for Integral Construct 

8 Protocol Verification 

Now we are ready to verify a protocol which is time dependent. First we have to state the 
fact that every time guarded recursive specification has exactly one solution (RSP and 
RDP). A guarded recursive specification is time guarded if there is a lower bound bound 
on the time interval between two recursion variable unfoldings. This is only an informal 
characterization but it is needed to exclude so-called 'Zeno' machines. The proof of this 
principle and a thorough treatment of time guarded specifications do not fall into the 
scope of this paper, they will treated in later papers. Next, we have to state an Unwind 
Principle (UP) which allows us to unwind a recursive specification infinitely many times. 
The dots in the derivation below express that this principle is not provable within the 
theory BPApcr in a finite derivation . We take Y(t) such that 

t ~ Y(t) = Y(t) 

thus assuming that Y(t) has no parts starting at or before t. We define X(t) as 

X(t) = r(t) · {Y(t + s) + r(t + r 0 ) · X(t + r 1 )} 
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K 

1 
A 

L 

for some r 0 < r1 and r0 < s then 

X(t) = r(t) · {Y(t + s) + r(t + r 0 ) • X(t + r 1 )} 

= r(t) · {r(t + r0 ) · Y(t + s) + X(t + r 1 )} 

= r(t)·{r(t+ro)·Y(t+s)+ 

2 
B 

r(t + r 1) · {Y(t + s + r 1 ) + r(t + ro + r1) · X(t + 2 · r1)}} 
= r(t) · {r(t + r 0) · Y(t + s) + {Y(t + s + r1) + r(t + ro + r1) · X(t + 2 · r1)}} 

r(t) · { r(t + r0 ) · Y(t + s) + r(t + r0 + ri) · Y(t + s + r1) + X(t + 2 · r1)} 

UP r(t). u::~=O r(t + ro + n. ri). Y(t + s + n. r1)} 

We take example 6.15 of [BB91], which is a PAR protocol (Positive Acknowledgement 
with Retransmission). Some small changes are made. In the example below the set H 
contains all read and send actions along the internal ports 3,4,5 and 6. The operator 8n 
renames every action which occurs in H to 8. It is known as the encapsulation operator 
and it forces actions to communicate, for example if r;Js; = c; then 8{r;,s;}(s;llr;) = e;. 

8.1 The Specification and the Implementation of the Protocol 

First we define the individual components. 

A 
A(b,t) 
A(b,d,t) 

K 
L 

B 
B(b) 

B(b,t) 

= A(O, 0) 
LdED fv>t ri ( d)( V) · A(b, d, t) 

= s3(db)(t + 0.001) · Uwe[t+o.ooi,t+o.ot> rs(ack)(w) · A(l - b, w) + 
time....out(t + 0.01) · A(b, d, t + 0.01)} 

= LfEDxB fv>O r3(f)(v) · {s4(f)(v + 0.002) + errorK(v + 0.001)} · K 
= fv>O r6(ack)(v) · {ss(ack)(v + 0.002) + errorL(v + 0.001)} · L 

= B(O) 
= LdED fv>O r4(db)(v) · s2(d)(v + 0.001) · B(l - b, v) + 

LdED fv>O r4( d(b - 1))( V) · B(b, V) 
= s6(ack)(t + 0.002) · B(b) 

The implementation of the protocol is the following merge: 

PA/4mpl = 8H(A II J{ II L II B) 
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8.2 Expanding the Definitions 

We expand the definitions, for each new configuration a new recursion variable is chosen. 
In this way we obtain the parameterized recursion variables X 0 - X 4 and Yi - }4. 

P AR;mpl = Xo(O, 0) 

Xo(b, to) = 5H(A( b, to)lll<JILJIB(b)) 
= fv>to LdeD ri (d)(v) · X1(b, d, v) 

X1(b,d,t) =bH( A(b,d,t)llKllLJIB(b)) 
= bH ( s3(db)(t + 0.001) · 

[JwE[t,t+O.Ol} rs(ack, w) · A(l - b, w) + time_out(t + 0.01) · A(b, d, t + 0.01)] 
II LteDxB fv>O r3(f)(v) · [s4(f)(v + 0.002) + errorK(v + 0.001)] · K 
II L 
II B(b) 
) 

= C3( db)(t + 0.001) . X2(b, d, t) 

X2(b, d, t) = bH ( Uwe[t,t+O.Ol} rs(ack, w) · A(l - b, w) + time_out(t + 0.01) · A(b, d, t + 0.01)] 
II h(db)(t + 0.003) + errorK(t + 0.002)] · ]( 

II L 
II I:deD fv>O r4(db)(v) · s2(d)(v + 0.001) · B(l - b, v) + 

I:deD fv>O r4( d(l - b))( v) · B(b, v) 
) 

= c4( db )(t + 0.003) · s2(d)(t + 0.004) · X 3 (b, d, t) + 
errorK(t + 0.002) · time_out(t + 0.01) · X1 (b, d, t + 0.01) 

X3(b, d, t) = bH ( Uwe[t,t+O.Ol} rs(ack,w) · A(l - b, w) + time_out(t + 0.01) · A(b,d,t + 0.01)] 

II K 
II fv>O r6(ack)(v) · [ss(ack)(v + 0.002) + errorL(v + 0.001)] · L 
II s6(ack)(v)(t + 0.005) · B(l - b) 
) 

= es( ack)(t + 0.005) · X 4 (b, d, t) 

X4(b, d, t) = bH ( Uwe[t,t+o.oi) rs(ack, w) · A(l - b, w) + time_out(t + 0.01) · A(b, d, t + 0.01)] 

II /< 
II [ss(ack)(t + 0.007) + errorL(t + 0.006)] · L 
II B(l-b) 
) 

= c5 ( ack)(t + 0.007) · X0 (1 - b, t + 0.007) + 
errorL(t + 0.006) · time_out(t + 0.01) · Yi (b, d, t + 0.01) 

Yi.(b,d,t) = bH ( A(b,d,t)JI I< II L II B(l -b) ) 
= bu ( S3(db)(t + 0.001) · 

Uwe[t,t+O.Ol} rs(ack, w) · A(l - b, w) + time_out(t + 0.01) · A(b, d, t + 0.01)] 
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II E1eDxB fu>O r3(f)(v) · (s4(f)(v + 0.002) + errorK(v + 0.001)] · K 
II L 
II B(l - b) 
) 

=c3 (db)(t+0.001) · Yi(b,d,t) 

Y2(b, d, t) =OH ( [fwe[t,t+o.Ol) rs(ack, w) · A(l - b, w) + time..out(t + 0.01) · A(b, d, t + 0.01)] 
II [s4(f)(t + 0.003) + errorK(t + 0.002)] · K 
II L 
II EdeD fv>O r4(d(l - b))(v) · s2(d)(v + 0.001) · B(b, v) + 

EcteD fu>O r4(db))(v) · B(l - b, v) 
) 

= c.i( db)(t + 0.003) · Y3 (b, d, t) + 
errorK(t + 0.002) · time..out(t + 0.01) · Yi(b,d,t + 0.01) 

l';(b, d, t) = 8H ( Uwe[t,i+o.ot) rs(ack, w) · A(l - b, w) + time..out(t + 0.01) · A(b, d, t + 0.01)] 
II K 
II fu>O ra(ack)(v) · [ss(ack)(v + 0.002) + errorL(v + 0.001)] · L 
II sG(ack)(v)(t+0.005) ·B(b) 
) 

= ee( ack)(t + 0.005) · Y.i(b,d, t) 

Y.i(b,d, t) =CH ( Uwe[t,t+O.Ol) rs(ack,w) · A(l - b,w) + time..out(t + 0.01) · A(b,d,t+ 0.01)] 
II K 
II [ss(ack)(t+0.007)+errorL(t+0.006)] ·L 
II B(b) 
) 

= cs( ack)(t + 0.007) · X0(1 - b, t + 0.007) + 
errorL(t + 0.006) · time_out(t + 0.01) ·Yi (b, d, t + 0.01) 

8.3 Abstracting from Internal Steps 

We apply the renaming operator rr which renames every atomic action a(t) to r(t) except 
for the actions r1(d)(t) and s2 (d)(t). 

r1(Xo(b, to)) = ft>to L:deD ri(d)(t) · r1(X1(b, d, t)) 
71(X1(b,d,t)) = 7(t+0.001) · 71(X2(b,d,t)) 
71(X2(b, d, t)) = r(t + 0.003) · s2(d)(t + 0.004) · 71(X3 (b, d, t)) + 

r(t + 0.002) · 7(t + 0.01) · 7r(X1(b, d, t + 0.01)) 
71(X3(b, d, t)) = r(t + 0.005) · rr(X4 (b, d, t)) 
71(X4(b, d, t)) = r(t + 0.007) · rr(X0 (l - b, t + 0.007)) + 

71(Yi (b, d, t)) = 
7r(Y2(b,d,t)) = 

71(Y3( b, d, t)) = 

r(t + 0.006) · r(t + 0.01) · 7r(Y1(b, d, t + 0.01)) 

r(t+0.001) · 7I(Jl2(b,d,t)) 
7(t + 0.003) . 71(Y3(b, d, t)) + 
r(t + 0.002) · 7(t + 0.01) · 7r(Yi(b, d, t + 0.01)) 
r(t + 0.005) · 7r(~(b, d, t)) 
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r1(Y.a(b,d,t)) = r(t+0.007) ·r1(X0(1-b,t+0.007)) + 
r(t + 0.006) · r(t + 0.01) · rr(Yi.(b, d, t + 0.01)) 

Now we can apply the r-law and its implied identities (such a.s the r-swap and the r­
removal). 

r1(X1(b,d,t)) = r(t+0.001) · r1(X2(b,d,t)) 
= r(t + 0.001) · 

{ r(t+0.003)·s2(d)(t+0.004)·r1(X3(b,d,t)) + 
r(t + 0.002) · r(t + 0.01) · rr(X1 (b, d, t + 0.01)) } 

= r(t + 0.001) · 
{ s2(d)(t+ 0.004) · r(t + 0.005) · T1(X4(b, d, t)) + 

r(t+0.002)·r1(X1(b,d,t+O.Ol))} 
= r(t + 0.001) · 

{ s2(d)(t + 0.004)· 
{ r(t + 0.007) · rr(Xo(l - b, t + 0.007)) + 

r(t + 0.006) · r(t + 0.01) · rr(Yi.(b,d, t + 0.01))} + 
r(t + 0.002) · r1(X1 (b, d, t + 0.01)) } 

= r(t + 0.001) · 
{ s 2(d)(t + 0.004)· 

{ rr(X0 (1 - b, t + 0.007)) + r(t + 0.006) · r1(Yi(b,d, t + 0.01))} + 
r(t + 0.002) · rr(X1 (b, d, t + 0.01)) } 

r1(Yi(b,d,t)) = r(t+0.001) · rr(Y2(b,d,t)) 

Summarizing, 

= r(t + 0.001) · 
{ r(t+0.003) ·r1(Ya(b,d,t)) + 

r(t + 0.002) · r(t + 0.01) · r1(Yi. (b, d, t + 0.01)) } 
= r(t + 0.001) · 

{ r(t + 0.005) · r1(Y.i(b, d, t)) + 
r( t + 0.002) · rr(Yi. ( b, d, t + 0.01)) } 

= r(t + 0.001) · 
{ { r(t + 0.007) · r1(X0 (1 - b, t + 0.007)) + 

r(t + 0.006) · r(t + 0.01) · rr(Yi.(b, d, t + 0.01)) } + 
r( t + 0.002) · rr(Yi. ( b, d, t + 0.01)) } 

r(t + 0.001) · 
{ r1(X0 (1- b, t + 0.007)) + r(t + 0.006) · r1(Y1(b,d, t + 0.01)) + 

r( t + 0.002) · r1(Yi. ( b, d, t + 0.01)) } 
= r(t + 0.001) · 

{ r1(Xo(l - b, t + 0.007)) + r(t + 0.006) · r1(Y1 (b, d, t + 0.01)) } 

r1(Xo(b,to)) = ft>taLdevr1(d)(t)·r1(X1(b,d,t)) 

r1(X1(b,d,t)) = r(t + 0.001) · 
{ s2(d)(t + 0.004)· 

{ r1(X0 (1 - b, t + 0.007)) + r(t + 0.006) · rI('Yi(b, d, t + 0.01)) } + 
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11(Yi.(b,d,t)) = 

1( t + 0.002) · 11(X1 (b, d, t + 0.01)) } 

r(t+0.001) · 
11(Xo(l - b, t + 0.007)) + r(t + 0.006) · r1(Yi.(b, d, t + 0.01)) 

By applying the Unwind Principle: 

r1(X1(b, d, t)) = ;(t + 0.001) · I::=o r(t + 0.002 + n · 0.01) · s2(d)(t + 0.004 + n · 0.01)· 
{ 11(Xo(l - b, t + 0.007 + n · 0.01 )) + 

r(t + 0.006 + n · 0.01) · r1(Yi.(b, d, t + (n + 1) · 0.01)) } 

11(Yi.(b,d,t)) = ;(t+0.001) ·L:~=0 1(t+0.006+n·O.Ol) 
11(X0 (1 - b, t + 0.007 + n · 0.01)) 

Adding together 

1 1(X1(b,d,t)) = r(t + 0.001) · 2:~=0 ;(t + 0.002 + n · 0.01) · s2(d)(t + 0.004 + n · 0.01) · 
{ r1(Xo(l - b, t + 0.007 + n · 0.01)) + 

11(Xo(b, to)) 

{ r(t + 0.006 + n · 0.01) · 
{I:~=O r((t + (n + 1) · 0.01) + 0.006 + n' · 0.01) · 

11(X0 (1 - b, ((t + (n + 1) · 0.01) + 0.007 + n' · 0.01))} } 

= 1(t + 0.001) · I:~=o 1(t + 0.002 + n · 0.01) · s2(d)(t + 0.004 + n · 0.01) · 
{ r(t + 0.006 + n · 0.01) · r1(Xo(I - b, t + 0.007 + n · 0.01)) + 

{I:~=O r(t + 0.006 + (n + n' + 1) · 0.01) · 
r1(X0 (l - b, (t + 0.007 + (n + n' + 1) · 0.01))} } 

= r(t + 0.001). z:=o ;(t + 0.002 + n. 0.01). s2(d)(t + 0.004 + n. 0.01) . 
{:L~=o r(t + 0.006 + (n + n') · 0.01) · 

* 

r1(Xo(l - b, (t + 0.007 + (n + n') · 0.01))} 

ft> to LdeD r1 ( d) ( t) · 
{ L:~=O r(t + 0.002 + n · 0.01) · s2(d)(t + 0.004 + n · 0.01) · 

{:L~=O r(t + 0.006 + (n + n') · 0.01) · 
r1(Xo(l - b, (t + 0.007 + (n + n') · 0.01))} } 

The atomic actions occurring in r1(X0 (b, to)) are independent of the parameter b, thus 
with RSP we get: 

PARimp1(t) = r1(Xo(l, t)) = r1(Xo(O, t)) 

The expression on the right hand side of the ~ can be considered as the specification 
of the PAR protocol. However, one can say that it contains too much time information 
and one would expect a specification which states that sooner or later the incoming 
datum will be send out at port 2. Hence, one needs a mechanism to abstract from some 
time information. Moreover, one needs to express a notion of fairness, saying that the 
datum and the acknowledgement can be lost only a finite amount of times. In the above 
expression this would mean that the n and n' are finite. One very rough way to obtain 
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this, is to throw away all time information obtaining the ( untimed) term: 

S(b) = L ri(d) · s2(d) · S(l - b) 
dED 

9 Conclusions and Further Research 

In this report a notion of abstraction is introduced. The adjustment of the model is quite 
simple and requires the introduction of so-called closure rules. As equivalence we still 
can use the standard notion of strong bisimulation. The resulting equivalence can be 
characterized by only one additional r-law for the calculus without integration. 

By interpreting symbolic processes as a special class of timed processes, we obtain a 
notion of r equivalence for symbolic processes. The resulting equivalence is delay bisim­
ulation with a strongly rootedness condition. 

We can verify a protocol using these laws. To deal with recursion, we need as well 
the common requirement that every guarded recursive specification has a unique solution 
(RDP and RSP) and a new principle which we call the Unwind Principle (UP). 

However, some questions are left open. The completeness proof is given for terms 
without integration. It is to be expected that the addition of integrals complicates the 
proof only in a technical way, also because the r can only be removed if the bounded 
variable of the associated integral is not used afterwards. But there is a need for techniques 
dealing with terms with integrals and their transition systems such that these proofs can 
be done more easily. The statement of the principles RDP, RSP and UP is rather ad hoe 
and needs further research. 
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