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This paper discusses a timed variant of a process algebra akin to LOTQOS, baptized
TPA, in a causality-based setting. Two timed features are incorporated—a delay
function which constrains the occurrence time of atomic actions and an urgency
operator that forces (local or synchronized) actions to happen urgently. Timeouts
are typical urgent phenomena. A novel timed extension of event structures is
introduced and used as a vehicle to provide a denotational causality-based semantics
for TPA. In addition, an operational interleaving semantics is presented based on
time- and action-transitions that is shown to be consistent with an ‘interleaving
view' of the event structure semantics. By adopting this dual approach the well-
developed timed interleaving view is extended with a consistent timed partial order
view and a comparison is facilitated of the partial order model and the variety of
existing (interleaved) timed process algebras.
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1.1 Introduction

We study—in a causality-based setting—a timed extension of a basic process algebraic
formalism including multi-way synchronization. The formalism, referred to as TPA,
is based on a subset of LOTOS [4]. The approach followed in this paper can, however,
be adapted to related process algebras like CCS [24], CSP [15], and ACP [2|. Two
timed features are incorporated a delay function which constrains the occurrence
time of atomic actions and an urgency operator that forces (local or synchronized)
actions to happen urgently. Urgent actions are important to model timeouts that are
forced to occur at a certain time irrespective of the rest of the system in case some
desired action (like receiving an acknowledgement) has not happened yet.

Various timed process algebras have been developed based on the interleaving of
independent actions [5, 25, 30]. Although each timed formalism has its own char-
acteristics and operators, one may say that the way in which to construct a timed
process algebra in an interleaving setting is well-developed. see for instance the recipe
in [27]. Due to their observational nature interleaving models are quite appropriate
for the description of a system at a high level of abstraction (i.e. considering the
system’s behaviour as viewed from the outside), and for conformance testing [1]. The
incorporation of time in such models is important to obtain an overall view on how
the system’s behaviour evolves in (linear) time. In the final stages of the design
trajectory, however, the global state assumption hampers us to faithfully model the
distribution aspects of a system, each part having its own local state. At this design
phase the ‘local’ causal dependencies between actions and their timing constraints are
important, while interleavings with actions of other (irrelevant) system parts burden
the design. (Timed) partial order models are considered to be much more appropriate
here.

This motivates the need for the support of the design process with a coherent
set of complementary semantic models. For our timed formalism TPA we there-
fore take a dual approach—we provide an event-based operational semantics for this
timed process algebra which yields an interleaving semantics when omitting the event
identifiers, and extend this view with a novel causality-based semantics. The result-
ing operational and denotational semantics are proven to be consistent in the sense
that they generate identical sets of timed event traces. The causality-based model is a
timed extension of Langerak’s bundle event structures [20], an adaptation of Winskel’s
labeled event structures [32] to fit the specific requirements of parallel composition
with multi-way synchronization.

The specification of timing aspects is crucial for performing performance analysis.
Preliminary studies indicate that the analysis of performance aspects could benefit
from a causality-based setting [8, 9, 18] as the parallelism between system components
is explicitly retained in the semantic model. In addition, a causality-based model
facilitates the possibility to study only that part of a system in which one is interested
for the analysis in a relatively easy way (locality) and does not suffer from the state
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explosion problem—parallelism leads to the sum of the components states, rather than
to their product (as in interleaving).

1.2 Timed event structures

Bundle event structures consist of events labeled with actions (an event modeling the
occurrence of its action), together with relations of causality and conflict between
events. System runs can be modeled as partial orders of events satisfying certain
constraints posed by the causality and conflict relations between the events. Conflict
is a symmetric binary relation between events and the intended meaning is that
when two events are in conflict, they can never both happen in a single system run.
Causality is represented by a relation between a set of events X, that are pairwise
in conflict, and an event e. The interpretation is that if e happens in a system run,
exactly one event in X has happened before (and caused e). This enables us to
uniquely define a causal ordering between the events in a system run. When there is
neither a conflict nor a causal relation between events they are independent. Once
enabled, independent events can occur in any order or in parallel.

Definition 1. A bundle event structure € is a quadruple (E,#,+—,1) with E, a set
of events, # C Ex E, the (irreflevive and symmetric) conflict relation, — C 2P x E,
the causality relation, and | : E — Act, the action-labeling function, where Act is a
set of action labels, such that £ satisfies

VXCEecE:Xw—e = (Ve,e; €EX e, #e; = e fej)

The constraint specifies that for bundle X +— e all events in X are in mutual conflict.
Bundle event structures are graphically represented in the following way. Events
are denoted as dots; near the dot the action label is given. Conflicts are indicated
by dotted lines between representations of events. A bundle (X, e) is indicated by
drawing an arrow from each event in X to e and connecting all arrows by small lines.
We often denote an event labeled a by e,.

In the sequel we adopt the following notations. For sequences ¢ = x1...x,, let
7 denote the set of elements in o, that is, 7 = {x1,...,2, }, and let o; denote the
prefix of o up to the (i—1)-th element, that is, o; = 21 ... 2;_1, for 0 < i < n+1. For
o a sequence of events e;...e, we define cfl(c) = {e € E | Je; € 7 : ¢; #e} and
sat(o) ={e € F|VXCE: X—e = X NaT#0}. cfl(o) is the set of events that
are in conflict with some event in o. sat(o) is the set of events that have a causal
predecessor in o for all bundles pointing to them. That is, for events in sat(o) all
bundles are ‘satisfied’. Let en(o) = sat(o) \ (cfl(o) U 7).

The concept of a sequential observation of a system’s behaviour is defined as
follows. Event traces consist of distinct events (i.e. ¢; & @7, for all i) and are conflict-
free (e; & cfl(;)), for obvious reasons. In addition, each event in the event trace is
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e b cl

(a) (b) (c)
Figure 1.1: Some example bundle event structures.

preceded in the sequence by a causal predecessor for each bundle pointing to it (that
is, e; € sat(0;)). That is,

Definition 2. An event trace o of € is a sequence ey ... e, withVi: e; € en(o;).

Ezample 3. Some bundle event structures are depicted in Figure 1.1. Event structure
(¢) has bundles {e,, e, } — e, {e} — eq, and {e. } — ¢4, and a conflict between
e, and e;. Thus, event e, is enabled once both e, and e; have happened, and e. once
either e, or e; has occurred before. Example event traces of this structure are e,e.e.,
epe., and e epeqe,.

Time is added to bundle event structures in two ways. To specify the relative
delay between causally dependent events time is associated to bundles, and in order
to facilitate the specification of timing constraints on events that have no bundle
pointing to them (i.e. the initial events), time is also associated to events. Though it
seems sufficient to only have time labels for initial events, synchronization of events
makes it necessary to allow for equipping all events with time labels, including the
non-initial ones. !

We assume mappings 7 and D to associate a value of T', the time domain, to
bundles and events, respectively. A bundle (X, e) with 7((X,¢)) =t is denoted by
X & e; its interpretation is that if an event in X has happened at a certain time,
then e is enabled ¢ time units later. D associates time to events; the interpretation is
that e with D(e) =t can happen after ¢ time-units from the beginning of the system.
Urgency is modeled by a predicate U on events: U(e) is true iff e is an urgent event.

Definition 4. A timed event structure is a quadruple (€, D, T ,U) with £ a bundle
event structure (E,#,—,1), T : — — T, the timing function, D : E — T, the delay
function, and U : E — Bool, the urgency predicate.

For depicting timed event structures we use the following conventions. The time
associated with a bundle and event is a non-negative real and is depicted near to

! Alternatively, we could explicitly model the start of the system by some fictitious event, w say.
Then the time associated to event e can be considered as the time associated to the bundle pointing
from the fictitious event to e. We do not consider the introduction of such event w as the definitions
become more complex—w has to be treated differently than ‘normal’ events—and proof obligations
become more severe e.g. one has to prove that bundles X — e satisfy X = {w}, or w ¢ X and

e # w.
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Figure 1.2: Some example timed event structures.

a bundle and event, respectively. For convenience, zero delays are omitted. Urgent
events are depicted by open dots, and ordinary events by closed dots.

Ezxample 5. Some example timed event structures are depicted in Figure 1.2. Fig-
ure 1.2(a) has bundles {e, } ER ee, {en} LR e, {ep} X eq. and a conflict between
urgent event e, and ey4. For Figure 1.2(b) we have D(e,) = 2, D(ey) = 0, D(e.) =7
and 7T (({eq},ep)) = 1.

As a generalization of the notion of event trace we define the notion of timed event
trace. A timed event (e, t) denotes that e happened at time ¢. As a shorthand notation
for sequences of timed events o = (e1,t1)...(e,,t,) let [o] denote the sequence of
events in o, i.e. [0] = e;...e,. Let time(o,e) denote the moment from which e €
en([o]) could happen, given that each event e; in timed trace o occurred at time t;. e
is allowed to occur if at least its delay D(e) and the time relative to all its immediate
causal predecessors is respected. That is,

time(o, ¢) = max(D(e), Max{t +t; | IX CE: X S e A XN[o]={¢;}})

where Max of the empty set is defined as 0.

Definition 6. A timed event trace of (€,D.7,U) is a sequence o of timed events
(e1,t1) ... (en, t,) with e; € E, t; € T, satisfying for all 0 < i < n:

1. ey...e, is an event trace of £

2. Vi:(U(e;) = t; =time(o;,e;)) A (=U(e;) = t; > time(o;,e;))

3 NVi,gri<y = t; <t

4. Vije:e€en(o;) N Ule) = t; < time(oy,e)

The second constraint requires correct times to be associated to events in o—
ordinary events can happen at any moment from the time they are enabled and urgent
events can happen only as soon as they are enabled. This constraint does, however,
not take into account the fact that urgent events may prevent other events to occur
after a certain time. For instance, according to the first three constraints, the timed

event structure depicted in Figure 1.2(a) has timed event trace (e,,0)(ep, 2)(eq, 8).
However, if event e; has not happened before time max(0,0 + 3.2 +5) = 7, then
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urgent event e, should have happened at time 7. Thus, (e,,0)(ep,2)(eq,8) should
not be considered a legal timed event trace. The last constraint takes this matter
into account. Some timed event traces of Figure 1.2(a) are (given that t, < ;)
(€asta)(ens ty)(€q, tq) with 6,42 < t; < max(t,+3, t,+5) and (eq. t,)(ep, ty) (e, t.) wWith
te = max(t,+3, t,+5).

1.3 A temporal process algebra

Let a € Act, where 7 € Act is a special label representing silent actions, G C Act™ (G
finite and Act™ = Act\ {7}), U C Act and H : Act — Act a relabeling function with
H(7) =7 and H(a) # 7 for a € Act”. We consider the timed process algebra TPA

B:=0|(t)a; B|B+B|B|leB| B[H] | B\G | Uy(B).

We abbreviate (0)a by a and denote the time at which action a occurs by t¢,. Ter-
minating Os are omitted and ||y is denoted |||. The precedences of the operators
are, in decreasing binding order: ;, +, ||g, [| and \, Uy (). If G, U are singleton sets,
{a} say, we simply denote ||,, \a and U,(). Actions are considered to be atomic
and to occur instantaneously. (¢) a; B denotes a behaviour which may engage in a
from ¢ time units on relative to the beginning of the system and after the occurrence
of a behaves like B. t specifies the relative delay of an action. Uy (B) behaves like
B except that actions in U are forced to happen as soon as they are enabled. Notice
that U may contain also internal action 7. Actions in U different from 7 are visible
to the environment but the environment cannot synchronize with them. The other
operators have their usual meaning.

Behaviours may synchronize on a common action as soon as all participants are
ready to engage in it, i.e. when all individual timing constraints on such action are
met. For example, action ¢ is enabled in the composite behaviour a; (3)¢||.b; (7)¢
if both a has occurred at least 3 time-units before and b has occurred at least 7 time-
units before, that is, £, > max(t,+3.,47). In a similar way, ina; (t1)b|/{apya; (t2)b
action b is enabled after t,+max(tq,s).

The notion of urgency here is an extension of the notion of urgency in an earlier
paper [9] where urgent actions are assumed to model activities whose occurrence can
be controlled completely internally. Here, urgency can involve several participants
and is strongly influenced by the notion of urgency in [5, 6] (see also later on). Once
made urgent, actions cannot be used for synchronization any further. Without such a
restriction, expressions like B = U((2) b) ||sUp((1) b) would be allowed. Conforming
to the principle that an urgent action happens as soon as all participants are ready
for it, (b, 2) would be a trace of B. This would cause a delay of action b in the right
component, contradicting its local urgency. The fact that we do not allow synchro-
nizations on urgent events is captured by a syntactical constraint on behaviours which
can easily be formulated and is omitted here.
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Urgent actions are forced to happen as soon as all participants are ready for it.
For example, in

B=a;(3)c|l.b; ((2) d+ (5) ¢)

action ¢ can occur at any t, > max(t,+3,t,45) if d has not yet appeared. If ¢ has
not yet occurred, d can occur from t,+2 on. In U.(B) action ¢ is forced to happen
at t. = max(t,+3,t,+5) in case d has not yet appeared at that time. That is, d
is prevented to occur at any time later than ., and can only occur in the interval
[ty+2,t.]. At time t. a non-deterministic choice between ¢ and d occurs (so-called
weak timeout [27]) urgency does not impose a priority in this case.

The urge operator is inspired by a similar operator, denoted p, introduced in [5].
p prevents the passage of time as an alternative to the occurrence of an enabled
urgent action. [5] allows synchronizations on urged actions. Such synchronizations
only succeed if all participants are ready to participate at the same instant of time.
In case a synchronization does not succeed, a so-called time deadlock appears, a
situation in which passage of time is blocked as a result of which the entire system
may halt execution. In our semantic models no notion of time deadlock is possible.
6] generalizes the notion of urgency by introducing the time operator. time a(t;,1)
in B denotes B in which @ must occur in interval [¢;,?,] once it is enabled. U,(B) is
similar to time «(0,0) in B.

1.4 Causality-based semantics

The model of timed event structures is well-suited to provide a causality-based se-
mantics of TPA in a compositional way. Let £[ || associate to each expression B of
TPA a timed event structure £ B]. In Appendix A we provide a complete defini-
tion of £[ |, but here we present it just by example. In Figure 1.3 the timed event
structures corresponding to the following expressions are depicted:

(a) ((2) a: (3) d+ (1) b: (2) ) ]| 27) e
(b) Us((2) a: (4) ][5 (7) b). and
(©) ((2) a: (5) ell. (7) b: (1) &) \ b

Case (b) illustrates that by parallel composition even events that have a bundle
pointing to them can have a non-zero delay D. As a second example the semantics of
Bi ||{apy Beis given for By = (1) a; (5) b||sc; (3) band By = (4) a; (2) b||, (b+(3) d).
In addition, the corresponding timed bundle event structure of

((2) a: (7) 2+ U, ((4) a: (11) y)) |« ((5) a; (2) D)

(
is determined. Figures 1.4(a) resp. (b) illustrate the timed event structure semantics
of these expressions. In case (a) D(e,) = max(1,4) and 7 (({ eq },ep)) = max(2,5).
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Figure 1.4: Some example timed event structure semantics (IT).

A nice result is that £] | is an ‘orthogonal’ extension of the semantics of LOTOS
presented in [21, 20]—that is, removing the parts concerning the timing/urgency of
events and timing of bundles in the definition of £[ | leads to the causality-based
semantics of LOTOS.

1.5 Operational interleaving semantics

Various timed process algebras are known based on an interleaving semantics. In
order to compare our non-interleaving approach to these existing approaches and
to investigate the ‘compatibility” of our proposal with the standard (interleaving) se-
mantics of LOTOS we present an ‘interleaving view’ on the causality-based semantics.
That is, we define an operational (interleaving) semantics for TPA that corresponds
to the non-interleaving semantics. The basic idea is to define a transition system (in
the sense of [29]) in which we keep track of the occurrence of actions in an expression
of TPA rather than the actions themselves. This results in a timed event transition
system. The approach is adopted from [20] and based on [7].

Each occurrence of an action-prefix is subscripted with an arbitrary but unique
event occurrence identifier, denoted by a Greek letter. These occurrence identifiers
play the role of event names. For parallel composition new event names can be
created. If e is an event name of B and ¢’ an event name in B’, then possible new
names for events in B ||g B’ are (e, %) and (%, ¢') for unsynchronized events and (e, ¢’)
for synchronized events.
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We present two sets of SOS (Structured Operational Semantics [29]) rules that
define transition relations ~» and —, handling the passing of time and the occurrence
of events, respectively. These relations transform a pair (B.t), where B € TPA and
t € T. (B,t) should be interpreted as behaviour B at time ¢. Usually one starts

with (B.0). (B,t) ~ (B'.t') means that B evolves into B’ as time goes from ¢ to t'

(e,a)
(' > t). (B,ty — (B’,t) means that B at time ¢ performs event e, labeled a, and

turns into B’ (at t). ~» and — are the smallest relations closed under all inference
rules defined below.

Inaction: This behaviour cannot perform any internal or communication action,
that is, it can perform no — transitions. 0 permits any amount of time to pass,
remaining 0.

0.0 =1

Action prefiz: The behaviour (t) ag; B will wait for ¢ time units to become (0) a¢; B
after which it either permits any amount of time to pass, remaining the same be-
haviour, or it may perform event ({,a) and behave subsequently like B. Let z &y
denote max(z — y,0) for z,y € T.

«w%;aw~NWe@LﬂM@Bf®(ﬂzw «m%;aw§ﬂ<aw

Choice: If the components By and By permit the passage of time with some amount
then so does their choice By + By. If By (or By) performs event (§,a) and evolves
into B (Bj) then By + By can do the same.

(Bi.t) ~ (By.t') A (By.1) ~ (By.t)
<Bl + BQ, t) a4 <BZ/L + Bé t,>

(§:a) (€:a)

<B17t> - <B1,t> <B27t> - <Bévt>
(fa) (Eﬂa‘)
(B1 + By.t) — (B4, t) (B1 + By, t) — (B}, t)

Parallel composition: Like for choice, By ||g By allows the passage of time with some
amount if both component behaviours permit this. Components of a parallel com-
position may perform actions not in the synchronization set G independent of each
other, while if both By and By can participate in a synchronization action a € G then
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so can their parallel composition.

((§9),a)
<Bl ||G B27 t> —

(B, t) ~ (B, ') N (Bg,t) ~ (By, 1)
(Billg B2, t) ~ (B ||g By, 1
(&,a)
<Blvt> - <B/7t>
((€%).a) : (a ¢ G)
(Billg B2, t) — (Bi||e Ba,t)
<B t> (&,a) <B/ t>
2 E— )
(:€),a) : (a g G)
(Billg B2,t) — (Bille Bs,t)
Bty S By A (Bat) U (Bl
— — .
1, 1 2, 2 (a = G)

(Bille Bs. 1)

Hiding: Tf B allows the passage of time with a certain amount, then so does B\ G.

Any action that B can perform, can also be performed by B\ G whereby actions in

set G are turned into silent actions 7.

(B.t) ~ (B, ')
(B\ G.t) ~ (B'\ G.t))
€a) a0
<Bﬂ()<B t) (a ¢ G) (B.t) (gB t) (a €G)
(B\ G,t) — (B'\ G.1) (B\ G,t) — (B'\ G.t)

Relabeling: Like for abstraction, if B allows the passage of time with a certain amount,

then so does B[H].
perform H(a) and evolve into B'[H].

If B can perform action a and evolve into B’, then B[H] can

(B.t) ~ (B'.t) (8. = (81
(BHLO~ BTHLE) i o ™ (g g

Urgency: If B permits time to pass with some amount, then Uy (B) is able to do
the same provided that there is no urgent action in U that can be performed by B at

any time earlier. Thus, the effect of the urgency operator is to prevent the passage

of time as an alternative to the occurrence of an action in the urgent set U. If B can
perform (e, a) and evolve into B’ then so can Uy (B). evolving into Uy (B').

(B.1) ~ (B.1)

T B).0) ~ oy ©

B0 2 B
U (B). 1) = (B 1)
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Here, C' abbreviates Va € U : t'—t < doin(a, B) where d,,;,(a, B) denotes for
initial action a in B the minimal time at which it can appear. The interpretation of
dpmin(a, B) = oo is that B is not able to perform an a action initially.

Definition 7. For a € Act and B € TPA, function d,,;, is defined as:

) = o©
) = { oo ifa#b
t ifa=10
dmin(a, By + By) = min(du(a, By), dmin(a, By))
) { min(d, i (a, By), dpin(a, Bs))  ifa g G
- max (d,in(a, By), dpin(a, Be)) ifa€G
Min{ dpin(b.B) |be G U {7}} ifa=r1
dpmin(a, B\ G) = 00 ifaeG
dpmin(a, B) ifag GU {1}
Amin(a, B[H]) = Min{ dpn(b. B) | a = H(b) }
Apin (0, Uy (B)) = dpin(a, B).

dmin(aa 0
a

Apmin(a, (1) b: B

dmm(a: Bl ||G BQ

where Min of the empty set equals co. Here it is assumed that min, max and
their generalizations on sets of events are defined on T' U { oo } in the obvious way.
For instance, min(t, 00) = t and max(t, c0) = oc.

From the event transition system defined by — we can easily obtain the standard
interleaving semantics for LOTOS by omitting time components from tuples {...)
and the event identifiers from transitions and expressions. When retaining the event
identifiers and only omitting the time components we obtain the event transition sys-
tem obtained in [20]. In this sense the presented transition system can be considered
to be an orthogonal extension of the untimed one.

1.6 Consistency between causality-based and op-
erational semantics

In this section we investigate the relationship between the causality-based and opera-
tional semantics of TPA. For convenience we first introduce a new transition relation
ﬁ'
Definition 8. Let (B.t) ““X (B'.#) iff AB" . (B.1) ~ (B".#) A
(e,a)

<B//: tl> SN <Bl7 tl>

Using the relation — the notion of timed event trace and a trace derivation
relation —+ can be defined in the usual way. We summarize the following results,
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where for B € TPA the set U(B) denotes the set of urgent actions in B. U(B) can
easily be defined by induction on B. The proofs are omitted and can be found in [19].

Theorem 9. For all B, B € TPA, t,t € T and a € Act U {7} we have

1. (B.t) “Y = t> ¢+ dpla, B).

(e7b7t)
—

\&}

. VbeU(B):(B,t) = t=t"+ dyn(b, B).

(e,a.t’)

3. dmin(a,B) =00 = = (3B :(B,t) — B').

(e,a,t’")

4. (B YY) o ¢ <t 4 Min{ dyin (b, B) | b e U(B)}.

(e,ayta)

5. (B.t) — A (B.t)~ (B'.t') = dym(a.B") =dum(a, B)S (t'—t).

1. expresses that the time determined by d,,;,(a, B) corresponds to the earliest mo-
ment at which initial action a can be performed by B. 2. says that urgent actions
in B can only happen as soon as they are enabled. If d,,;,(a, B) = oo then B is
not able to perform a initially. This is stated in 3. 4. states that actions can only
be performed by B provided there is no urgent action in B that could occur earlier.
Finally, 5. shows the relation between d,,;, and ~».

We now consider the well-known properties time determinism. action persistency,
and time additivity [27] for TPA.

Theorem 10. For all B, B', B” € TPA, t,t',t" € T we have

1. Time determinism: ({B,t) ~ (B'.t') AN (B,t)~ (B",t')) = B' = B".

(e.) (e.0)
2. Action persistency: ((B,t) — (B,t) ~ (B',t')) = (B,t') —.

3. Time additivity?: (B, t) ~ (B t+(t'+t")) iff
(3B : (B, t) ~ (B" t+t') ~ (B’ t+(t'+1")).

The proofs of all theorems are by induction on the structure of B. These proofs
are rather straightforward and omitted here; see [19].

Since the transition system under —- is deterministic, this transition system can
be represented by its set of timed event traces 7| B |. This set can be characterized in
a denotational way. and subsequently proven to coincide with the set of timed event
traces of the corresponding timed event structure £[ B]. We thus have the following

2For timed I/O-automata [31] a stronger notion is adopted that says that there must be a trajec-
tory of consistent states through the interval [¢,¢']. Since our timed transition system satisfies the
image-finiteness condition (that is, for any B and ¢’ there are at most finitely many B’ such that
(B, t) ~ (B, ")) it follows from [17] that our model also satisfies this stronger trajectory condition.
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consistency result, where TT(E[ B]) denotes the set of timed event traces of £ B].

Theorem 11. Forall Be TPA:TT(E[B])=T|B].

The proof of this theorem is quite involved and omitted here for space reasons;
see [19]. The main issue is to characterize correctly the timed traces of + and Uy () in
a denotational way and to prove that this characterization coincides with the timed
event traces of the corresponding timed event structure.

1.7 Related Work

To the best of our knowledge this constitutes the first timed causality-based model
incorporating urgent and non-urgent actions. A few timed extensions of causality-
based models do exist. For the sake of brevity we just briefly mention them here.
[13] describes an interesting real-time extension of CCS based on causal trees. [23]
considers a theoretical model, called timed configurations, where all events are treated
to be urgent. [26] treats a timed extension of event structures in which events have a
duration and all are urgent. [16] introduce a real-time process language consisting of
simple sequential processes that are composed by means of ‘layering” and independent
parallelism. An extension of Pratt’s pomset model with delays is studied in [10].
The behaviour of timed systems with both disjunctive and conjunctive causality is
analyzed in [14].

For the untimed case several approaches exist that relate a causality-based se-
mantics to an interleaving one [3, 7, 22]. These investigations differ from our work
in particular in the causality-based model, the language at hand, and the type of
consistency relation between the two types of semantics. [3, 22] prove the consistency
between an operational semantics for Theoretical CSP (TCSP) and a compositional
true concurrency semantics based on labeled prime event structures. They show that
the ‘interleaved view’ of the event structure semantics—obtained by considering re-
mainders of event structures after the execution of a single event—is (weak) bisimilar
to the operational semantics of TCSP. [12] proposed an approach to prove the consis-
tency of an operational non-interleaving semantics of CCS (with guarded recursion)
and a denotational one based on labeled prime event structures. From the opera-
tional semantics an occurrence net is derived which is shown using the well-known
connection between this class of nets and event structures [28] to be equal to the
event structure obtained in the denotational way.

1.8 Conclusions

This paper introduced a temporal process algebra TPA with just two timed features
a simple delay function and an urgency operator. A novel timed enhancement of event
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structures is used to provide a causality-based semantics in a compositional way. In
addition an operational semantics is given inspired by the separation of the passage
of time (relation ~) and the occurrence of actions (relation —) as introduced by [25]
and adopted by several others [5, 30]. Tt turns out that the transition system for —
is identical to Langerak’s untimed transition model [20]. Thus, time is added in a
completely orthogonal way. The operational semantics of TPA turns out to be very
close to the proposal(s) of Bolognesi & Lucidi [5, 6]. The main difference with these
proposals is the treatment of synchronization on urgent actions they allow them at
the prize of introducing time deadlocks, whereas our proposal avoids them. Since
the operational and denotational semantics of TPA are consistent in the sense that
identical sets of timed event traces are generated we consider the aforementioned
characteristics to provide evidence for the adequacy of our timed causality-based
model.

A problem in defining an operational semantics is that there seems to be no con-
sensus on how to include time into transition systems besides models that explicitly
distinguish between time- and action-transitions, another school advocates timed ac-
tion transitions. It can be shown that for TPA without urgency an elegant transition
model based on timed actions can be provided which is strong bisimulation equivalent
to the ‘interleaving view’ of the causality-based semantics and which allows ‘ill-timed’
traces to occur. For space reasons this alternative approach is not presented in this
extended abstract.

Though TPA does not include recursion, there are no serious problems in incor-
porating recursive behaviours. For technical reasons we only need to require guarded
instantiation, which—from a user’s perspective—is not a severe restriction. In the
denotational model the semantics of a recursive behaviour is defined using standard
fixed point theory. The approach in [8] for the stochastic timed case can be carried

over to the timed setting of this paper in a straightforward manner. The full details
can be found in [19].

Appendix A: Denotational semantics of TPA

In this appendix we provide the full definition of the causality-based semantics of
TPA. Let &| B;| = Ty = (&, D;, T;,U;), for i = 1,2, with & = (E;,~»,—,1;) and
E1 N E2 = @

For action-prefix () a; By, a bundle is introduced from a new non-urgent event
e, (labeled a) to all initial events of T'; (as e, causally precedes them) and all events
in I'; that have a non-zero delay. For all these initial and non-zero delay events e the
delay is now relative to e,, so each bundle {¢, } — ¢ is associated with a time delay
Di(e), and D(e) is made zero. D(e,) becomes t.

E[ By + By ] is equal to the union of I'y and TI'y extended with mutual conflicts
between all initial events of I'y and T'y such that either By or By can happen. ] B1\G |
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is identical to I'; except that events labeled with a label in G are now labeled with 7.
E[ B1[H]] and E[Uy(By) | are defined similarly where events are relabeled according
to H, respectively become urgent when l;(e) € U.

For parallel composition the events of £[ By ||g Bz | are constructed as follows: an
event ¢ of I'y or I'y that does not need to synchronize is paired with the auxiliary
symbol %, and an event which is labeled with an action in G is paired with all events
(if any) in the other process that are equally labeled. Thus events are pairs of events
of I'y and I'y, or with one component equal to *. Two events are now put in conflict
if any of their corresponding components are in conflict, or if different events have a
common component different from * (such events appear if two or more events in one
process synchronize with the same event in the other process). A bundle is introduced
such that if we take the projection on the i-th component (i=1,2) of all events in
the bundle we obtain a bundle in I';. The bundle delay is equal to the maximum of
the delays of the bundles we get by projecting on the i-th components (i=1, 2).if this
projection yields a bundle in I';. The event delay is the maximum of the delays of
its components that are not equal to *. Finally, an event is urgent when one of its
components is urgent.

Definition 12. For I' = (£, D, T,U) let pos(T') denote the set of non-zero delay
events in T init(T") the set of initial events in I'. That is, pos(T') = {e € E | D(e) #0}
and init(T) ={e€e E| ~-3X CE: X —e)}

As a shorthand notation we use pin(I") = pos(I") U init(I"). We suppose there is
an infinite universe of events Eyy. For G C Act™ let Ef = {e € E; | l;(e) € G} the

set of synchronization events and Ezf = [E; \ E; the set of non-synchronizing events
(1=1,2).

Definition 13. £[ | is defined as follows:

glo] = ((0,0,0,0).0,0.0)
E[(t)a; By] = ((E,#1,—,11 U{(ea.a)}),D, T, U UH{/e,,false)}) where
E = Ey U{e,}fore, € Ey\ Ey
— = =1 U ({{ea}} xpin(I))
D = {(et)} U (E1x{0})
7T = Tiu{(({ea}t e).Dile)) | e € pin(I1)}
E[B1+ Bs] = ((E1UFEs, #,—1 U911 Uly), Dy U Dy, T3 U T, Uy UlUs)
# = F#1 U #o U (init(Ty) x init(Ty))
g[[Bl\G]] = <(E1,#1,P—>1,l),D1,7'1,Z/{1> where
(lile) e G = lle)=7) N (li(e) € G = l(e) =11(e))
E[Bi[H]] = (B, #1,—1,Holy), Dy, Ti,Us)
E|Uy (B ((Eq, #1,—1,11), Dy, T1,U) where

Q =
—~

a ~—
~— =

I

Ui(e) V (li(e) € U)
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((E,#,—,1),D,T.U) where

(B x {+*}) u ({*}x E) U

{(e1,e2) € EY x E5 [ 11(e1) = lz(e2) }

(e1#f1€l) V (e2#aey) V (e =€) #* N exFey) V

(ea =ey #% N e1 #ey)

X, (X111 A X ={(ej,e;) €EE|e; € X1}) V
Xy (Xgraea AN X ={(ej,e;) €EElej € Xa})

if 1 = * then ly(es) else I1(ey)

max(D;(e1), Da(e2)) with D;(x) = 0.

max(hq, hy) with

if (3X1 CE X1 e A X={(e;e;) € E|e; € X))
then t; else 0

if (3Xy C By Xy PBoes A X ={(ese;) € E|ej € Xa)})
then ¢4 else 0

Ui(er) V Us(es) with U;(x) = false.
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