23 research outputs found

    Teleoperation Methods for High-Risk, High-Latency Environments

    Get PDF
    In-Space Servicing, Assembly, and Manufacturing (ISAM) can enable larger-scale and longer-lived infrastructure projects in space, with interest ranging from commercial entities to the US government. Servicing, in particular, has the potential to vastly increase the usable lifetimes of satellites. However, the vast majority of spacecraft on low Earth orbit today were not designed to be serviced on-orbit. As such, several of the manipulations during servicing cannot easily be automated and instead require ground-based teleoperation. Ground-based teleoperation of on-orbit robots brings its own challenges of high latency communications, with telemetry delays of several seconds, and difficulties in visualizing the remote environment due to limited camera views. We explore teleoperation methods to alleviate these difficulties, increase task success, and reduce operator load. First, we investigate a model-based teleoperation interface intended to provide the benefits of direct teleoperation even in the presence of time delay. We evaluate the model-based teleoperation method using professional robot operators, then use feedback from that study to inform the design of a visual planning tool for this task, Interactive Planning and Supervised Execution (IPSE). We describe and evaluate the IPSE system and two interfaces, one 2D using a traditional mouse and keyboard and one 3D using an Intuitive Surgical da Vinci master console. We then describe and evaluate an alternative 3D interface using a Meta Quest head-mounted display. Finally, we describe an extension of IPSE to allow human-in-the-loop planning for a redundant robot. Overall, we find that IPSE improves task success rate and decreases operator workload compared to a conventional teleoperation interface

    Overview of some Command Modes for Human-Robot Interaction Systems

    Get PDF
    Interaction and command modes as well as their combination are essential features of modern and futuristic robotic systems interacting with human beings in various dynamical environments. This paper presents a synthetic overview concerning the most command modes used in Human-Robot Interaction Systems (HRIS). It includes the first historical command modes which are namely tele-manipulation, off-line robot programming, and traditional elementary teaching by demonstration. It then introduces the most recent command modes which have been fostered later on by the use of artificial intelligence techniques implemented on more powerful computers. In this context, we will consider specifically the following modes: interactive programming based on the graphical-user-interfaces, voice-based, pointing-on-image-based, gesture-based, and finally brain-based commands.info:eu-repo/semantics/publishedVersio

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Complementary Situational Awareness for an Intelligent Telerobotic Surgical Assistant System

    Get PDF
    Robotic surgical systems have contributed greatly to the advancement of Minimally Invasive Surgeries (MIS). More specifically, telesurgical robots have provided enhanced dexterity to surgeons performing MIS procedures. However, current robotic teleoperated systems have only limited situational awareness of the patient anatomy and surgical environment that would typically be available to a surgeon in an open surgery. Although the endoscopic view enhances the visualization of the anatomy, perceptual understanding of the environment and anatomy is still lacking due to the absence of sensory feedback. In this work, these limitations are addressed by developing a computational framework to provide Complementary Situational Awareness (CSA) in a surgical assistant. This framework aims at improving the human-robot relationship by providing elaborate guidance and sensory feedback capabilities for the surgeon in complex MIS procedures. Unlike traditional teleoperation, this framework enables the user to telemanipulate the situational model in a virtual environment and uses that information to command the slave robot with appropriate admittance gains and environmental constraints. Simultaneously, the situational model is updated based on interaction of the slave robot with the task space environment. However, developing such a system to provide real-time situational awareness requires that many technical challenges be met. To estimate intraoperative organ information continuous palpation primitives are required. Intraoperative surface information needs to be estimated in real-time while the organ is being palpated/scanned. The model of the task environment needs to be updated in near real-time using the estimated organ geometry so that the force-feedback applied on the surgeon's hand would correspond to the actual location of the model. This work presents a real-time framework that meets these requirements/challenges to provide situational awareness of the environment in the task space. Further, visual feedback is also provided for the surgeon/developer to view the near video frame rate updates of the task model. All these functions are executed in parallel and need to have a synchronized data exchange. The system is very portable and can be incorporated to any existing telerobotic platforms with minimal overhead

    Intent-Recognition-Based Traded Control for Telerobotic Assembly over High-Latency Telemetry

    Get PDF
    As we deploy robotic manipulation systems into unstructured real-world environments, the tasks which those robots are expected to perform grow very quickly in complexity. These tasks require a greater number of possible actions, more variable environmental conditions, and larger varieties of objects and materials which need to be manipulated. This in turn leads to a greater number of ways in which elements of a task can fail. When the cost of task failure is high, such as in the case of surgery or on-orbit robotic interventions, effective and efficient task recovery is essential. Despite ever-advancing capabilities, however, the current and near future state-of-the-art in fully autonomous robotic manipulation is still insufficient for many tasks in these critical applications. Thus, successful application of robotic manipulation in many application domains still necessitates a human operator to directly teleoperate the robots over some communications infrastructure. However, any such infrastructure always incurs some unavoidable round-trip telemetry latency depending on the distances involved and the type of remote environment. While direct teleoperation is appropriate when a human operator is physically close to the robots being controlled, there are still many applications in which such proximity is infeasible. In applications which require a robot to be far from its human operator, this latency can approach the speed of the relevant task dynamics, and performing the task with direct telemanipulation can become increasingly difficult, if not impossible. For example, round-trip delays for ground-controlled on-orbit robotic manipulation can reach multiple seconds depending on the infrastructure used and the location of the remote robot. The goal of this thesis is to advance the state-of-the art in semi-autonomous telemanipulation under multi-second round-trip communications latency between a human operator and remote robot in order to enable more telerobotic applications. We propose a new intent-recognition-based traded control (IRTC) approach which automatically infers operator intent and executes task elements which the human operator would otherwise be unable to perform. What makes our approach more powerful than the current approaches is that we prioritize preserving the operator's direct manual interaction with the remote environment while only trading control over to an autonomous subsystem when the operator-local intent recognition system automatically determines what the operator is trying to accomplish. This enables operators to perform unstructured and a priori unplanned actions in order to quickly recover from critical task failures. Furthermore, this thesis also describes a methodology for introducing and improving semi-autonomous control in critical applications. Specifically, this thesis reports (1) the demonstration of a prototype system for IRTC-based grasp assistance in the context of transatlantic telemetry delays, (2) the development of a systems framework for IRTC in semi-autonomous telemanipulation, and (3) an evaluation of the usability and efficacy of that framework with an increasingly complex assembly task. The results from our human subjects experiments show that, when incorporated with sufficient lower-level capabilities, IRTC is a promising approach to extend the reach and capabilities of on-orbit telerobotics and future in-space operations

    Study of Mobile Robot Operations Related to Lunar Exploration

    Get PDF
    Mobile robots extend the reach of exploration in environments unsuitable, or unreachable, by humans. Far-reaching environments, such as the south lunar pole, exhibit lighting conditions that are challenging for optical imagery required for mobile robot navigation. Terrain conditions also impact the operation of mobile robots; distinguishing terrain types prior to physical contact can improve hazard avoidance. This thesis presents the conclusions of a trade-off that uses the results from two studies related to operating mobile robots at the lunar south pole. The lunar south pole presents engineering design challenges for both tele-operation and lidar-based autonomous navigation in the context of a near-term, low-cost, short-duration lunar prospecting mission. The conclusion is that direct-drive tele-operation may result in improved science data return. The first study is on demonstrating lidar reflectance intensity, and near-infrared spectroscopy, can improve terrain classification over optical imagery alone. Two classification techniques, Naive Bayes and multi-class SVM, were compared for classification errors. Eight terrain types, including aggregate, loose sand and compacted sand, are classified using wavelet-transformed optical images, and statistical values of lidar reflectance intensity. The addition of lidar reflectance intensity was shown to reduce classification errors for both classifiers. Four types of aggregate material are classified using statistical values of spectral reflectance. The addition of spectral reflectance was shown to reduce classification errors for both classifiers. The second study is on human performance in tele-operating a mobile robot over time-delay and in lighting conditions analogous to the south lunar pole. Round-trip time delay between operator and mobile robot leads to an increase in time to turn the mobile robot around obstacles or corners as operators tend to implement a `wait and see\u27 approach. A study on completion time for a cornering task through varying corridor widths shows that time-delayed performance fits a previously established cornering law, and that varying lighting conditions did not adversely affect human performance. The results of the cornering law are interpreted to quantify the additional time required to negotiate a corner under differing conditions, and this increase in time can be interpreted to be predictive when operating a mobile robot through a driving circuit

    Virtual Reality Based Environment for Orthopedic Surgery (Veos)

    Get PDF
    The traditional way of teaching surgery involves students observing a �live� surgery and then gradually assisting experienced surgeons. The creation of a Virtual Reality environment for orthopedic surgery (VEOS) can be beneficial in improving the quality of training while decreasing the time needed for training. Developing such virtual environments for educational and training purposes can supplement existing approaches. In this research, the design and development of a virtual reality based environment for orthopedic surgery is described. The scope of the simulation environment is restricted to an orthopedic surgery process known as Less Invasive Stabilization System (LISS) surgery. The primary knowledge source for the LISS surgical process was Miguel A. Pirela-Cruz (Head of Orthopedic Surgery and Rehabilitation, Texas Tech University Health Sciences Center (TTHSC)). The VEOS was designed and developed on a PC based platform. The developed VEOS was validated through interactions with surgical residents at TTHSC. Feedback from residents and our collaborator Miguel A. Pirela-Cruz was used to make necessary modifications to the surgical environment.Industrial Engineering & Managemen

    Web-Based Laboratory Using Multitier Architecture

    Get PDF

    Toward safe and stable time-delayed mobile robot teleoperation through sampling-based path planning

    Get PDF
    This work proposes a teleoperation architecture for mobile robots in partially unknown environments under the presence of variable time delay. The system is provided with artificial intelligence represented by a probabilistic path planner that, in combination with a prediction module, assists the operator while guaranteeing a collision-free motion. For this purpose, a certain level of autonomy is given to the system. The structure was tested in indoor environments for different kinds of operators. A maximum time delay of 2s was successfully coped with. © 2011 Cambridge University Press

    Faciliter la téléopération d'un robot mobile non-holonome (application au maintien à domicile des personnes âgées)

    Get PDF
    Le maintien de personnes âgées au domicile le plus longtemps possible est censé apporter une réponse à la croissance de l espérance de vie en occident et a des coûts toujours croissants pour la société. ce travail de thèse a été réalisé dans le cadre du projet CompanionAble, qui vise a fournir une solution intégrée maison intelligente - robot aux personnes âgées, vivant seules. L'objectif est de maintenir un confort en fin de vie à un niveau élevé et à traiter les situations dangereuses pour elles, comme les chutes, avant que les conséquences ne deviennent trop importantes. Les éléments qui m intéressent dans ce cadre sont le robot et l opérateur, qui se trouve à l extérieur de la maison, et qui peut téléopérer le robot en vue d interagir avec la personne âgée, soit pour des activités ludiques (visioconférence, exercices de stimulation cognitive), soit pour des situations d urgence (chute, perte de connaissance de la personne âgée). Pour maintenir les coûts du système à un niveau raisonnable, on a envisagé l utilisation de l internet public pour la connexion entre le site maître (où se trouve l opérateur) et le site esclave (où se trouve le robot). Une autre spécificité du notre système est le fait que les utilisateurs ne sont pas des spécialistes de la téléopération. J ai donc cherché à faciliter la tâche de pilotage du robot, dans ce contexte spécifique. Du côté de l interface, on a cherché à aider l opérateur traitant les problèmes liés aux délais de transmission (possibles à cause de l utilisation de l internet) et lui donner la possibilité d utiliser une interface écologique, qui utilise des éléments de réalité augmentée. Du côté du robot, on a rajouté un nouveau mode de commande, semi-autonome, pour que l opérateur soit plus à l aise pendant qu il le déplace. Pour finir, on a examiné la possibilité de passer d un mode de commande à un autre, pour que l opérateur soit le moins affecté que possible par des perturbations et que les performances du système restent acceptables. Les solutions proposées ont été implantée sur un système réel et évaluées au laboratoire et en situations réelles dans le cadre du projet européen CompanionAble.Enabling older people to live in their homes as long as possible is supposed to respond to the growth of life expectancy in the west and the increasing costs to society. The present thesis was conducted in the framework of the companionable, which aims to provide an integrated smart home - robot for the elderly, which are living alone. The objective is to maintain the end of life comfort at a high level and to deal with dangerous situations for them, such as falls, before the consequences become too costly. The elements that interest me in this context are the robot and the remote operator, which is outside the home, and can teleoperate the robot to interact with the elderly, for recreational activities ( videoconferencing, cognitive stimulation exercises) or for emergency situations (falls, loss of consciousness, etc.). To keep the system costs to a reasonable level, we considered using the public internet as the connection between the master site (where the operator is) and the slave site (where the robot is). another unique feature of our system is that users are not specialists in teleoperation. As such, i tried to ease the task of controlling the robot, in this specific context. On the remote control interface side, we tried to help the operator in dealing with the problems associated with transmission delays (due to the possible use of the internet) and we gave him/her the option of using an ecological interface, which uses elements of augmented reality. On the robot side, we added a new command mode, semi-autonomous, so that the operator is more at ease as he/she controls the robot. finally, we examined the possibility of switching from one control mode to another, so that the operator is the least affected by possible disturbances and system performance is kept acceptable. The proposed solutions have been implemented on a real system and evaluated in the laboratory and in real situations, in the framework of the european CompanionAble project.EVRY-Bib. électronique (912289901) / SudocSudocFranceF
    corecore