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Abstract

In-Space Servicing, Assembly, and Manufacturing (ISAM) can enable larger-

scale and longer-lived infrastructure projects in space, with interest ranging

from commercial entities to the US government. Servicing, in particular, has

the potential to vastly increase the usable lifetimes of satellites. However, the

vast majority of spacecraft on low Earth orbit today were not designed to be

serviced on-orbit. As such, several of the manipulations during servicing cannot

easily be automated and instead require ground-based teleoperation.

Ground-based teleoperation of on-orbit robots brings its own challenges of

high latency communications, with telemetry delays of several seconds, and

difficulties in visualizing the remote environment due to limited camera views.

We explore teleoperation methods to alleviate these difficulties, increase task

success, and reduce operator load.

First, we investigate a model-based teleoperation interface intended to pro-

vide the benefits of direct teleoperation even in the presence of time delay. We

evaluate the model-based teleoperation method using professional robot opera-

tors, then use feedback from that study to inform the design of a visual planning

tool for this task, Interactive Planning and Supervised Execution (IPSE). We
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describe and evaluate the IPSE system and two interfaces, one 2D using a tra-

ditional mouse and keyboard and one 3D using an Intuitive Surgical da Vinci

master console. We then describe and evaluate an alternative 3D interface using

a Meta Quest head-mounted display. Finally, we describe an extension of IPSE

to allow human-in-the-loop planning for a redundant robot. Overall, we find

that IPSE improves task success rate and decreases operator workload compared

to a conventional teleoperation interface.
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Chapter 1

Introduction

In-Space Servicing, Assembly, and Manufacturing (ISAM) can enable larger-

scale and longer-lived infrastructure projects in space, with interest ranging

from commercial entities to the US government. Servicing, in particular, has

the potential to vastly increase the usable lifetimes of satellites, both existing

satellites and those which will be launched in the future. Most present-day satel-

lites are designed with a finite service life limited by on-board consumables—

principally fuel for orbital maneuvering and attitude control. When a satellite

on low Earth orbit reaches the end of its service life, or when an unrecoverable

fault occurs, it gets decommissioned and placed on a decaying orbit, where it

eventually succumbs to atmospheric drag and enters the Earth’s atmosphere.

Beyond low Earth orbit, severe malfunctions may make it impossible to execute

a deorbiting maneuver and the satellite becomes space junk.

The development of robotic technologies to enable on-orbit servicing of satel-

lites would enable the repair and refueling of the over 1,000 satellites presently

operational on Earth’s orbit, dramatically extending their service lifetimes and

utility to society. These technologies could soon once again enable the servicing
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of satellites in low Earth orbit at altitude 160-2000 km (the Space Shuttle was

capable of servicing in the lower altitudes of LEO). Moreover, they could enable

the unprecedented capability of servicing satellites on geosynchronous orbit at

35,900 km altitude and at the Sun-Earth Lagrange points at 1,500,000 km from

Earth. However, the vast majority of spacecraft on low Earth orbit today were

not designed to be serviced on-orbit. As such, several of the manipulations

during servicing cannot easily be automated and instead require ground-based

teleoperation.

Ground-based teleoperation of on-orbit robots is challenging due to high la-

tency communications, with telemetry delays of several seconds, and difficulties

in visualizing the remote environment due to limited camera views. Due to the

specific constraints and priorities of ISAM, some common teleoperation strate-

gies (such as direct teleoperation) are infeasible and others are not well-suited

for the task. This thesis investigates teleoperation methods for on-orbit ISAM

and describes the development of the Interactive Planning and Supervised Ex-

ecution (IPSE) teleoperation system.

Chapter 2 investigates a model-based teleoperation interface with virtual

fixtures and augments a previously-reported Augmented Virtuality (AV) visu-

alization tool. In Chapter 3 we perform a comparative study of the model-based

teleoperation interface using robot operators trained on on-orbit servicing op-

erations. Chapter 4 describes IPSE and evaluates two interfaces to the system.

Chapter 5 introduces and evaluates an improved 3D interface to IPSE. Chap-

ter 6 expands IPSE to facilitate teleoperation of a redundant robot, including

human-in-the-loop control of the redundant degree of freedom.

In this thesis we develop an architecture to support multiple visualization
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and user input modalities for model-based teleoperation with time delay.

Through implementation and experimental evaluation, we determine that

conveying human input directly to robot action is ill-suited for this task, that

an interface that provides maximal opportunity to validate motions is preferred,

that a 3D Head-Mounted Display interface has advantages in visualization and

gross positioning, but a traditional mouse-and-keyboard interface is still supe-

rior for fine positioning, and that the interface can include elements that, with

suitable kinematic parametrization of redundancy, help a human operator de-

sign feasible and safe trajectories for a 7 degree of freedom robot. Finally, we

develop and refine the Interactive Planning and Supervised Execution teleoper-

ation tool based on the results of these evaluations to produce a teleoperation

system which allows operators to command robots in high-risk, high-latency

environments with high success rates and low operator workload.
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Chapter 2

Augmented Virtuality with
Model-Based Teleoperation

This chapter presents an Augmented Virtuality (AV) based visualization and

model-based teleoperation system for use in ISAM applications. We describe the

design of a model-based method for teleoperation with time delay, and present

the results of a pilot study of the AV visualization and model-based teleoper-

ation on a Multi-Layer Insulation (MLI) blanket cutting task. This chapter

is based on work published in [57]. Balazs Vagvolgyi contributed the scene

modeling (Section 2.2.1) and augmented virtuality visualization (Section 2.2.2)

components and assisted in conducting the study and analyzing the results.

2.1 Related Work

The research of teleoperation with time delay can be traced back to the 1960s,

when Ferrell observed that the presence of significant time delay can negatively

affect an operator’s performance in completing a task and proposed a “move-

and-wait” strategy to avoid stability issues [15]. Recent studies have shown
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that delayed feedback results in degraded performance [2] and increased opera-

tor frustration [64]. For systems with several seconds of delay, one early effort

was predictive display [4, 6], where the system predicts and displays the fu-

ture position of the robot, often as an augmented reality overlay on the delayed

camera images. Another approach is supervisory control [45] where, instead

of directly teleoperating the remote robot, the operator issues high-level goal

specifications, supervises the execution process and intervenes when errors oc-

cur. Model-based methods have increasingly been adopted for time-delayed

teleoperation [18, 22, 35, 66]. This includes teleprogramming [18] and tele-

sensor-programming [22], which allow the operator to interact with a simulated

remote environment and teleprogram the remote robot through a sequence of

elementary motion commands. Model-mediated telemanipulation [35] creates

a model from the remote sensor data; this model is rendered haptically to the

operator without delay. On the remote side, the robot controller only executes

the position/force commands from the leader if the predicted state displayed to

the user when the commands were issued matches the actual state of the robot

when the commands are to be executed.

Separately, the challenge of teleoperating with limited camera viewpoints

has been studied. One prior study demonstrated that the limited selection

of camera perspectives available during conventional space teleoperation poses

a significant mental workload [33]. In the medical domain, researchers have

reported approaches for visualizing endoscopic camera images from alternate

viewpoints [29, 30]. Draelos et al. [12] presented an Arbitrary Viewpoint Robot

Manipulation (AVRM) framework, targeted at visualization of 3D optical co-

herence tomography (OCT) imaging during ophthalmic surgery. These prior

5



approaches offer visualization of real-time images from alternate viewpoints and

therefore cannot provide visualization when cutting blind spots, as is possible

with our model-based approach.

The two most recognized mixed reality concepts are augmented reality (AR)

and augmented virtuality (AV) [34]. Both combine visual representations of

real and virtual environments. In AR, virtual objects are overlaid on video

streams. Since the 1990s, NASA has been experimenting with AR in teleop-

eration while servicing the ISS and other satellites to improve the operators’

situational awareness [23].

In contrast, in augmented virtuality (AV) the result is a computer generated

rendering of the environment, in which registered real-life images are overlaid

on virtual objects. This approach enables visualization from arbitrary points

of view, as opposed to AR, where the location of the camera is fixed. AV also

enables the rendering of stereoscopic views of the scene, which has been shown

to improve teleoperation performance [48].

2.2 Teleoperation System Description

The major components of the teleoperation system are depicted in Fig. 2.1,

with conceptual contributions represented by the Scene Modeling and Aug-

mented Virtuality Visualization components. Implementation details for these

two components and the overall teleoperation system are provided in the fol-

lowing subsections.
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Figure 2.1: System diagram of the augmented virtuality teleoperation system.
The telemetry delay was simulated in software, with no upstream delay and 5
seconds downstream delay. The Follower Proxy, simulated delay, and Follower
Controller were combined in a single component for ease of implementation.

2.2.1 Scene Modeling

Scene Modeling is provided by the Vision Assistant software, which is respon-

sible for image capture, camera calibration, hand-eye calibration, registration,

modeling of unknown objects, and definition of cutting paths (virtual fixtures).

This consists of a set of C++ applications with Qt GUI and ROS interfaces, and

is deployed on the computer that handles video capture from the cameras. In an

actual servicing mission, video capture would occur on-orbit and the remaining

functions would be performed on the ground, as shown in Fig. 2.1.

2.2.1.1 Calibration and Registration

Accurate augmented virtuality visualization requires precise registration be-

tween the CAD model and the real camera images of the client satellite. This

registration can be calculated by locating the satellite’s natural landmarks

within the images, then using pose estimation to find the satellite pose that

best fits these observations. If the camera’s pose (extrinsic parameters) is known

from robot kinematics, then the satellite’s pose with respect to the camera will
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also yield a registration of the satellite to the robot’s base frame. Pose estima-

tion is sensitive to the landmark observation accuracy; thus, we combine pose

estimates from multiple camera viewpoints to obtain more accurate registration.

This registration procedure requires the camera’s extrinsic and intrinsic pa-

rameters. The camera intrinsics can be calibrated prior to launch, and they are

unlikely to change during the mission. However, the Vision Assistant is capa-

ble of re-calibrating the camera during flight using a checkerboard pattern or

natural landmarks. The Vision Assistant can also calculate the tool camera’s

extrinsic parameters using either natural features or a checkerboard pattern.

The algorithm first uses Tsai’s method [53] to solve the conventional AX=XB

hand-eye formulation, then refines X using reprojection error minimization.

2.2.1.2 Modeling Unknown Geometry

The MLI hat is a soft structure that is not included in the CAD model of the

satellite and therefore must be modeled based on an image survey performed

with the tool camera. The modeling takes place in the Vision Assistant, where

the operator manually locates natural landmarks on the MLI that are unam-

biguously identifiable on at least two images taken from different view angles.

Once the landmark observations are added, the software automatically calcu-

lates the landmark positions in 3D space with respect to the satellite’s base

coordinate frame. The triangulation algorithm uses a closed-form least squares

method to find the best positions given at least two observations per landmark.

Knowing the 3D coordinates of the MLI hat landmarks enables the user

to create triangular or quadrilateral ‘faces’ between the landmarks and build

a 3D mesh of the MLI object. The landmarks serve as vertices and the faces
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Figure 2.2: Modeling of MLI hat and the cutting path in Vision Assistant.
Geometry of the hat shown with a 5 mm grid on one side (left), user selects
grid point for landmark creation (center), cutting path defined and shown as a
purple line (right).

are converted into triangles that form the topology of the mesh. The Vision

Assistant sends the mesh to the visualization computer, where a custom RViz

plugin converts it into an Ogre3D object and adds it to the OpenGL scene (Fig.

2.2).

While we only modeled the box-like MLI hat for our specific application, the

method allows the construction of arbitrary 3D shapes – e.g. a deformed MLI

hat – as long as 3D landmarks marking the shape’s outlines are available.

2.2.1.3 Definition of Cutting Path

The Vision Assistant provides the capability to define paths by connecting mul-

tiple landmarks with one continuous line. However, the desired cutting path

may not be located between uniquely identifiable natural landmarks. In fact,

for the MLI cutting task, the path lies on a flat, featureless area, where picking

a landmark on multiple camera views would be nearly impossible, especially

considering the highly reflective nature of the MLI. For this reason, the Vision

Assistant provides a helper tool for adding 3d vertices with high precision in

such featureless spots. The tool enables the user to project a metric grid on

any previously modeled quadrilateral face. The resolution of the grid can be

customized to arbitrary precision, and the coordinate frame of the grid can be
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Camera

Image Projection

MLI hat Virtual Fixture

Figure 2.3: Augmented virtuality view during cutting (labels and coordinate
frame added for clarity); see Fig. 2.7 for a real image of a similar scene.

aligned with any corner and side of the face. Using the grid tool, the user can

pick any point on any previously modeled surface with sub-millimeter precision,

then create a 3D landmark on that grid point, as shown in Fig. 2.2 (right). The

quadrilaterals defined by the user need not be planar (i.e., skew quadrilaterals),

therefore the projected grid can follow the 3D curvature of the faces.

In our experiments, the ideal cutting path, defined in the Vision Assistant,

was displayed for the robot operators in the master console (e.g., purple line in

Figs. 2.2 and 2.3). For robot control, however, we chose to represent each line

in the path by a virtual fixture plane, so that the operator can easily control the

depth of cutter penetration into the MLI. For the experiments reported here,

all cut path lines were designed to lie in a single plane, so we defined the virtual

fixture by fitting a plane to the landmarks of the ideal cutting path.
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2.2.2 Augmented Virtuality Visualization System

The master side visualization system is responsible for rendering the stereoscopic

augmented virtuality view for the master console. It comprises a collection of

ROS RViz plugins and configuration files, and is capable of rendering the mixed

reality scene featuring the following elements (Fig. 2.3):

Client satellite: A combination of known geometry (satellite CAD model)

and reconstructed geometry (MLI hat).

Time-delayed robot, camera, and cutting tool: Represents the state

of the robot acquired through delayed telemetry. Rendered semi-transparently.

Real-time robot, camera, and cutting tool: The command the robot

operator is sending to the satellite.

Delayed video projection: Camera images arrive after a few seconds of

delay. Rendered with high opacity.

Ideal cutting path and virtual fixture: Cutting path is modeled in

Vision Assistant and virtual fixture is calculated from points on the path.

The visualization module is also responsible for rendering the conventional

teleoperation display used for the baseline experiments. In this mode, the master

console displays the unaltered tool camera image for both the left and the right

eye, as shown in Fig. 2.4.

2.2.3 Teleoperation System Implementation

The master console of a da Vinci surgical robot (Intuitive Surgical, Sunnyvale,

CA) is used to teleoperate a Universal Robots UR5 (Universal Robots, Odense,
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Figure 2.4: Conventional teleoperation view during cutting.

Denmark). Specifically, the operator uses the left da Vinci Master Tool Ma-

nipulator (MTM) to provide the commanded pose of the follower UR5 robot.

The MTM is controlled by the da Vinci Research Kit (dVRK) open source con-

trollers [26]. In principle, it is possible to use the da Vinci MTM to control the

virtual camera, but in our implementation we use a SpaceNavigator (3Dcon-

nexion, Munich, DE) 3D mouse, placed on the arm rest of the master console.

While performing the task, the operator uses the stereo visualization system on

the da Vinci master console to observe either the view from the follower robot’s

tool camera or the augmented virtuality view described in Section 2.2.2.

The UR5 end-effector is equipped with a rotary cutting tool and a camera,

as shown in Figs. 2.3, 2.4, 2.5 and 2.7. The cutter is composed of a 45 mm rotary

blade (Arteza, Wilmington, DE) attached to a Dynamixel MX-12W servo motor

(Robotis, Lake Forest, CA). The motor is attached to a 6 axis force/torque

sensor (JR3 Inc., Woodland, CA) by a 3D printed curved link. The blade is

inserted on a mandrel and is secured between two concentric adapters. The
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overall length of the tool is 121 mm. The motor speed can be controlled in

software, with a maximum no load speed of 470 RPM. Additional safety features

such as maximum load and maximum torque limits are implemented to protect

the hardware and the environment.

The tool camera is a lightweight 1080p High Definition device (PointGrey

BlackFly, FLIR Integrated Imaging Solutions Inc., BC, Canada) mounted rigidly

on the robot’s end effector, oriented towards the cutting tool, as shown in Fig.

2.7.

The teleoperation software communicates the commanded motion from the

user’s manipulation of the MTM to the UR5. In augmented virtuality mode, the

operator provides position input. The command position of the UR5 relative

to the virtual camera is set to the measured position of the MTM relative to

the da Vinci stereo viewer, with a translation offset to allow the smaller MTM

workspace to accommodate the larger UR5 workspace:

pcmd = Tvc,sTm,svpmtm + poff (2.1)

where pmtm and pcmd are the measured MTM pose and commanded UR5 pose,

Tvc,s is the transform from the UR5 to the virtual camera, Tm,sv is the transform

from the MTM to the da Vinci stereo viewer, and poff is the stored offset, with

orientation component fixed at identity. Operators can “clutch” to adjust the

position offset at any time by depressing one of the foot pedals in the master

console. As shown in Fig. 2.1, commands to the robot are sent as a twist derived
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from the desired position,

vcmd = min(kpx∆, vmax) (2.2)

ωcmd = min(kθθ∆, ωmax)

where vcmd and ωcmd are the linear and angular velocity components of the

commanded twist, x∆ and θ∆ are the position and orientation components of

p∆ = pcmd − pur5, pur5 is the measured position of the UR5, and kp, kθ, vmax,

and ωmax are constant.

In conventional mode, because the real camera moves with the blade, it is

unintuitive to use position input. We therefore use rate input, where the MTM

is servoed to a fixed position pfixed and the user displaces it proportionally to

the desired rate, similar to a joystick. The command twist is computed using

(2.2) with pcmd = Tvc,sTm,sv(pfixed − pmtm).

The teleoperation software is aware of all virtual fixtures that have been

defined in the virtual environment (see Sec. 2.2.1.3). For this application, each

virtual fixture is assumed to be a plane, but the software could be extended

to support more complex fixtures. The operator may choose to use the virtual

fixture as simply a visual cue to aid in aligning the blade or can press a foot

pedal to “attach” to the virtual fixture. When the tool is attached to a virtual

fixture, the control mode is modified to assist the operator in keeping the cutting

blade parallel to the virtual fixture plane, while still allowing the operator to

override this assistance if necessary (i.e., a soft virtual fixture). The soft virtual

fixture is achieved by the use of non-isotropic gains. Specifically, lower gains

are used for the direction perpendicular to the plane (along the z axis in Fig.
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2.3) and for the rotations out of the plane (about the x and y axes in Fig. 2.3),

resulting in slower motion in any direction not parallel to the virtual fixture.

Assistance in alignment of the blade to the virtual fixture is provided by

an imposed force gradient that guides the blade into alignment with the virtual

fixture. The force gradient is implemented by projecting the robot’s current pose

into the virtual fixture plane to obtain a pguide, then computing a corresponding

twist as in (2.2) with pguide replacing pcmd. The resulting twist is added to vcmd

and ωcmd. This results in the blade drifting into alignment with the virtual

fixture if the operator allows the motion, but enables the operator to override

the motion if necessary.

2.3 Experiments

2.3.1 Mock Satellite and MLI Hat

It is desirable to evaluate MLI cutting performance under realistic conditions,

since minor details of material selection and visual appearance may significantly

affect the success of execution. Thus, we constructed realistic models of an MLI

hat and mounted them on our scaled down mock satellite platform [56] shown

in Fig. 2.5.

The natural features of the mock satellite, and their known locations in the

corresponding CAD model, were used to establish registration between the robot

platform and the satellite, as described in Section 2.2.1.1. The MLI blanket

covering the frame of the satellite provided a realistic and stable platform for

the MLI hat.
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Figure 2.5: Mock satellite and the UR5 robot equipped with the tool camera
and the rotary cutting tool.

The hats were fabricated from publicly available, non-aerospace-rated ma-

terials, but the materials were carefully selected and assembled to accurately

simulate the rigidity, thickness, texture, and visual appearance of the flight-

rated blanket (Fig. 2.6).

2.3.2 Teleoperation Pilot Study

The purpose of this pilot study is to evaluate whether the scene modeling and

AV visualization makes it easier for operators to perform motions that are rep-

resentative of cutting. The operators’ performance while using a conventional

teleoperation interface was compared to their performance using our proposed

AV visualization interface and the virtual fixture. The cutting task was simu-

lated by a non-destructive drawing task, using a circular crayon “blade” (Fig.
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Figure 2.6: Realistic mock-up of MLI ‘hat’

2.7). We placed a foam support inside the MLI hat to provide sufficient rigidity

for the drawing task; this also keeps the MLI hat from sagging due to the effects

of gravity in our ground-based platform.

Correctly registered virtual fixtures are enabled by the registration and scene

modeling steps performed for AV visualization, therefore in our experiments the

use of virtual fixtures was limited to the AV visualization tasks.

The seven test subjects were all familiar with the design of the system,

reflecting the use of skilled operators in the real-world cutting task. Operators

were instructed on the use of the system and allowed to practice. For the trials

with the virtual fixture, the fixture was pre-defined and always visible in the AV

view. Operators were free to activate and deactivate the virtual fixture control

features at will. For the conventional teleoperation trials, operators were asked

to draw a straight line near the base of the MLI hat, but were not asked to follow

a specific trajectory. Each operator performed the conventional teleoperation

task first and the AV teleoperation task second.
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Figure 2.7: Crayon blade mounted on the cutting tool during the pilot study.

Correct	blade	pose
Barely	touching
Off-axis	blade
Severe	error

TOP SIDE BOTTOM

Augmented	Virtuality	Visualization
TOP SIDE BOTTOM

Conventional	Teleoperation

Figure 2.8: Paths drawn on hat by all users; three sides for augmented virtuality
and two sides for conventional teleoperation.

For both control approaches, the operators started with the top of the MLI

hat and continued smoothly to the side. When using AV, the operator also

continued to the bottom of the hat but with the delayed camera image projection

disabled, mimicking the expected task where one of the sides may be cut without

camera visibility. In AV mode, this restriction means only that the operator

has less visual feedback. However, in the conventional teleoperation mode, the

task is impossible without visualization, so only the top and side are cut.

The resulting paths from all trials are shown in Fig. 2.8. Green lines indicate
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Table 2.1: Mean (standard deviation) of angular deviations of the blade during
the entire length of the cutting task (degrees), not including periods when the
follower robot was not moving.

Augmented Virtuality Conventional Teleoperation
∠V FPlane ∠Trajectory ∠V FPlane ∠Trajectory

User 1 8.4 (3.9) 8.3 (9.2) 6.8 (3.8) 13.6 (11.5)
User 2 2.0 (1.4) 6.5 (10.2) 11.5 (3.2) 11.5 (11.5)
User 3 3.1 (1.4) 10.1 (16.1) 9.6 (4.1) 13.8 (15.3)
User 4 7.9 (6.9) 12.9 (15.4) 17.2 (8.6) 15.0 (12.0)
User 5 3.9 (3.0) 9.8 (10.6) 20.2 (5.9) 15.6 (16.0)
User 6 4.6 (2.9) 11.5 (10.6) 19.9 (5.5) 18.0 (10.5)
User 7 3.1 (3.1) 10.1 (12.6) 22.2 (6.0) 16.1 (14.9)
All Users 4.7 (3.7) 9.9 (12.4) 15.3 (5.6) 14.8 (13.3)
z test h(p) 1 (5.7e-7) 0 (0.33) 1 (2.7e-14) 0 (0.30)

Table 2.2: Task execution times (seconds) for each user. The augmented vir-
tuality (AV) values correspond to the same progress along the path as the
conventional teleoperation (Conv.) times.

User 1 2 3 4 5 6 7 Mean σ z test h(p)
AV 178 176 396 321 357 231 344 286 90 1 (p=0.026)
Conv. 316 449 382 662 1430 600 418 608 382 1 (p<0.001)

proper cutting, while other colors indicate various types of errors. While using

AV mode, shown at the top, operators were able to both keep much straighter

paths and keep the cutting blade properly positioned. Using the conventional

teleoperation mode, operators struggled to maintain the proper drawing angle,

maintain contact, and maintain a straight path. We expect this is caused by

loss of situational awareness when using the narrow view from the tool camera,

which is further exacerbated by the reflectivity of the MLI.

Fig. 2.9 and Table 2.1 show the difference in orientation between the blade

and virtual fixture plane for both modes. Similarly, these show that the majority

of operators were better able to maintain the proper blade alignment using AV
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with virtual fixtures than using conventional teleoperation. These also show

that some operators were not able to finish cutting the side using conventional

teleoperation after becoming completely disoriented. The mean and standard

deviation for all users in Table 2.1 is computed by averaging the individual

means and variances, which assumes that each user’s data is an independent

random variable. A Z-test analysis of the data in Table 2.1 shows that the

angular deviation of the blade with respect to the VF plane is distinct between

the AV and conventional teleoperation populations with a 95% confidence level,

but that the deviation of the blade with respect to the trajectory is not distinct.

Table 2.2 shows the execution times for the drawing task in the AV and con-

ventional teleoperation modes. The time listed for both trials is the time until

the blade reached the endpoint of that operator’s conventional teleoperation

task, which controls for both the additional bottom-side “cut” in AV mode and

the fact that some operators were not able to complete both sides in the conven-

tional teleoperation mode. For all but one operator, the AV task was completed

more quickly than using conventional teleoperation. On average, the AV task

was completed in less than half the time as the conventional teleoperation task.

This is partially attributed to the fact that the conventional teleoperation mode

did not provide visual feedback to the operators until the delayed camera feed

caught up to their actions, causing them to adopt a move-and-wait approach.

Using AV, operators could see the commanded position of the robot in real

time, allowing them a level of feedback to perform longer stretches of the task

without waiting for confirmation from the delayed camera feed. A Z-test anal-

ysis of the data in Table 2.2 shows that the AV population is distinct from the

conventional teleoperation population with a 95% confidence level.
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Figure 2.9: Visualization of blade trajectories projected on the virtual fixture
plane. Colors indicate the angular deviation of the blade from the virtual fix-
ture plane (columns 1 and 3) and the angular deviation of the blade from the
direction of motion (columns 2 and 4).

Fig. 2.10 shows the robot speed over time for a single representative trial.

The move-and-wait strategy is clearly visible for the entire duration of the con-

ventional teleoperation, while the augmented virtuality teleoperation had peri-

ods of sustained motion. The extra time spent waiting for the delayed visual

feedback more than compensates for the time spent moving the virtual camera.

An analysis of the Cartesian velocities for all trials reveals that operators using

conventional teleoperation paused, for 5 or more seconds, 3.25 times more often
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Figure 2.10: Robot and camera speed over time during a typical run. In AV
mode, the velocity of the follower robot is smooth and continuous, and the oper-
ator only stops moving the robot to adjust the virtual camera. In Conventional
mode, the operator moves the robot a short distance at a time, then waits for
the delayed video feedback; this results in a characteristic move-and-wait pat-
tern. Red lines represent the bottom corner, which is the stopping point for the
conventional teleoperation mode. As the location of the red lines indicate, in
this particular run, the operator reached the bottom corner of the MLI hat in
a significantly shorter time in AV mode.

than operators using AV (p < 0.001).

The reported system, including an augmented virtuality view and virtual

fixtures, allowed the operators to perform the task more quickly and accurately

than with conventional teleoperation. Using AV, the paths were straight with

minimal gaps, while with conventional teleoperation the paths deviated signif-

icantly from a straight line and contained large gaps. Additionally, the blade

angle deviation from the ideal cutting plane was minimal using AV and often

extreme using conventional teleoperation. It should be noted that the effect of

blade angle deviation with respect to the desired trajectory would be greater

when using this system to cut MLI, as compared to the drawing task, because
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a skewed path may force the blade off the desired trajectory or rip the MLI.

2.4 Discussion and Conclusions

Due to the high risk of remote operations in space, a human operator will remain

in the loop whenever feasible. Our approach, therefore, was to develop a system

to improve the performance of the human operator in the challenging case of

teleoperation with multi-second time delay and limited camera views. This

system relies on three capabilities: (1) creation of a 3D model of the satellite

that is registered with respect to the coordinate system of the remote robot,

(2) visualization of the 3D model from arbitrary viewpoints, augmented by

projections of the (delayed) camera feedback, and (3) motion assistance, in the

form of virtual fixtures. Clearly, the latter two capabilities rely on the model

created by the first. The experiments demonstrate that the proposed system can

significantly improve user performance for time-delayed teleoperation, compared

to a baseline case with no modeling, a fixed view from the tool camera, and no

motion assistance. Moreover, this augmented virtuality system enabled the

human operators to reliably perform otherwise infeasible teleoperation tasks in

“blind spots”, in this case, the bottom of the MLI hat, that cannot be imaged

directly by the camera at the remote site. Note that our experiments did not

identify the relative benefits of augmented visualization and motion assistance,

which remains a topic for future studies.

In addition to teleoperation, a primary role for the human operator is to

carefully monitor operations and handle unexpected conditions. For the MLI

cutting task, this is important because the MLI hat is not rigid and is likely
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to deform and/or shift. Because the real video feedback is registered with,

and projected onto, the model, the augmented virtuality interface enables the

operator to detect these changes by observing the discrepancy between the

projected camera image and the underlying model. For small discrepancies,

the operator can compensate by adjusting the path, which is allowed by the

soft virtual fixture constraints. If the discrepancy becomes large, the operator

can pause the cutting operation, perform another image survey to update the

model, and then resume cutting.

Our pilot studies of drawing on the MLI surface revealed several opportu-

nities for improvement, both with the augmented virtuality and conventional

interfaces. With the augmented virtuality interface, it was sometimes challeng-

ing for the operator to obtain the desired virtual view using the 3D mouse. One

simple improvement would be to allow the operator to quickly select from a set

of views that are pre-defined with respect to the cutting blade; for example,

views from above or in front of the blade wheel. This set of pre-defined views

could be augmented by the operator, who could “save” a particular view and

then recall it later. For the conventional interface, it would have been helpful

to include a predictive display [6] to give the operator a better sense of how

the commanded robot motion compared to the currently visualized position. In

practice, satellite servicing systems may be equipped with situational aware-

ness (SA) cameras mounted on the base platform of the robot arms. While the

remote locations of the SA cameras would prevent them from providing high

quality close-up imaging of the immediate surrounding of the robotic tools, op-

erator performance during our experiments would likely have benefited from

having additional SA camera views available, especially during conventional
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teleoperation. Another limitation of the reported experiments was the use of a

fixed round-trip telemetry delay of 5 seconds; in an actual mission, this delay is

expected to vary by several seconds, which would further degrade teleoperation

performance.
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Chapter 3

Evaluation of Augmented
Virtuality with Model-Based
Teleoperation with Trained
Experts

In this chapter we present an evaluation of the Augmented Virtuality with

Model-Based Teleoperation system described in Chapter 2 using professional

robot operators trained on a real-world satellite servicing task. We also adjust

the experimental setup to more closely replicate the real-world task by replacing

the crayon-drawing proxy task with the actual MLI cutting task and by updating

our conventional interface to more closely imitate the interface our professional

operators are trained to use. This chapter is based on work published in [40].

Balazs Vagvolgyi contributed the conventional and augmented virtuality visual-

ization (Sections 3.4.1 and 3.4.2) and assisted with the experimental procedure

and data analysis.
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3.1 Introduction

We previously described the development of an augmented virtuality interface

(see Chapter 2), where the operator interacted with a virtual 3D model of the

satellite that was augmented by projecting the real images from the robot tool

camera onto the satellite model. The 3D model was obtained by performing

2D/3D registration between a 3D model of the satellite and multiple 2D images

(from a robotic survey) [56] and by reconstructing “unknown” objects (i.e.,

objects not in the satellite CAD model) from the 2D images [57]. A multi-user

study was performed to evaluate the system, subject to a telemetry time delay

of 5 seconds between leader and follower, for a task that emulated a satellite

servicing operation [57]. Limitations of the prior study were that the human

subjects were not trained robot operators and the task, drawing on the satellite

surface, was not an actual servicing task. This chapter reports the results of an

experimental study to compare the proposed augmented virtuality visualization

to the conventional camera-based visualization for an actual servicing task with

trained robot teleoperators. In addition, we report a keyboard and graphical

user interface (GUI) that more closely emulates the conventional robot control

interface typically used by our subjects, and report an experimental evaluation

of task performance with this interface in comparison to our previously reported

teleoperation console, [56–59, 62, 63], based on the master console of a da Vinci

surgical robot [21].

The remainder of this chapter is organized as follows: Section 3.2 presents

background information about the satellite servicing task that motivated this

work. Sections 3.3 and 3.4 describe the platform and system configurations at
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Figure 3.1: Conceptual illustration of robotic servicing. Images captured from
video on NASA website [36]. Left: view showing servicing spacecraft (bottom)
docked with target satellite (top). Right: closer view of multi-layer insulation
(MLI) hat on target satellite, which must be removed (cut on three sides, as
indicated by dashed line) to access fill/drain valves. Direct visualization may
be obstructed during cutting of top path segment.

Johns Hopkins University (JHU) that are used for the experiments described in

Section 3.5, with results presented in Section 3.6.

3.2 Background

The majority of spacecraft are covered in a thin blanket of thermal insulation

material called multi-layer insulation (MLI) [16], which must be removed prior

to servicing. MLI is composed of thin layers of insulating foil stacked together

in a blanket which is then wrapped around the spacecraft to help regulate the

temperature of internal components. MLI blankets have very little structural
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Figure 3.2: Left: Conventional teleoperation keyboard and GUI (KB); Center:
da Vinci master console (dV) with space mouse; Right: remote robot with
satellite (see Fig. 3.3 for closeup of cutting assembly). Left image shows operator
performing trial with augmented virtuality (AV) visualization on 3D monitor
(lower left monitor). Operator is wearing noise-canceling headphones and 3D
shutter glasses. Conventional (CAM) visualization is similar, except that lower
left monitor shows 2D camera image. Lower right monitor shows robot control
GUI (also shown in Fig. 3.5).

rigidity so that they can be easily fit to arbitrarily shaped satellites, which

can complicate efforts to manipulate and remove them robotically. Further

difficulties are introduced by the gradual degradation of MLI in the low Earth

orbit environment from solar radiation, atomic oxygen, micro-meteor debris

impact, and other effects. In addition, MLI layers often have high reflectivity,

which can cause large disparities in brightness when viewed with cameras. When

attempting to service a vehicle, it is often undesirable to remove entire sections

of blanketing. Thus, servicing missions must be capable of cutting into a blanket

to remove only a portion of it.

Different cutting tools may be required for differing MLI geometries and to

accommodate a variety of underlying equipment and surfaces. Prior research at

JHU [58, 59, 62, 63] used a blade to cut through tape that secured an MLI patch

over the refueling valve. A similar blade was used to demonstrate telerobotic

cutting of MLI tape in a cross-country experiment between the University of
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Pennsylvania and the Jet Propulsion Laboratory in California [49]. In many

cases, items of interest that protrude from the flat paneling of a spacecraft,

such as the refueling valve in Landsat 7, are covered with MLI structures that

provide a box-like shape over the items, in which blanketing is not secured

directly to critical interfaces, but only to the exterior panels around it. These

free-standing MLI “hats” (see Fig. 3.1-right) present a unique challenge for

robotic systems to remove.

One such tool utilizes a rotary cutting blade to cut into free-standing MLI.

This tool has been tested extensively by experienced operators using ground

robots. During testing, operators have indicated that they rely heavily on the

views provided by cameras mounted on the robot’s end effector to inform their

situational awareness (SA) and make real time decisions on robot commands.

However, there are several factors that reduce a teleoperator’s ability to utilize

these camera views. In tight areas, these cameras often have limited visibility of

the MLI being cut, as anticipated for the top segment of the cut path (dashed

lines) in Fig. 3.1. In addition, remote teleoperation of in-space systems involves

inherent limits on bandwidth that provide an upper bound on image quality

and frame rate. Commands to, and telemetry from, remote systems are relayed

through ground stations and often one or more communications satellites, in-

troducing delays on the order of 2-7 seconds between sending a command and

receiving telemetry of the robot’s response. In controlled ground-based experi-

ments, without telemetry delays, highly skilled telerobotic operators with years

of experience may take in excess of one hour to completely cut and remove an

MLI hat covering the satellite fuel valves. When the factors above are consid-

ered, this time can significantly increase.
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3.3 System Description

Figure 3.3: Closeup of cutting assembly on UR10 robot.

The JHU laboratory testbed, shown in Fig. 3.2, employs a UR-10 robot ma-

nipulator (Universal Robots, Odense, Denmark), equipped with a rotary cutting

tool (Fig. 3.3). The tool is composed of a 45 mm circular blade (Arteza, Wilm-

ington DE) that is attached to a Dynamixel MX-12W servo motor (Robotis,

Lake Forest, CA). The overall length of the tool is 148 mm and the blade can

rotate up to 470 RPM. The tool is mounted on a six axis force/torque sensor

(JR3 Inc., Woodland, CA) that measures the forces applied on the blade. A

BlackFly (FLIR Integrated Imaging Solutions Inc. BC, Canada) 1080p color

camera is also mounted on the UR-10 end-effector to provide a close-up view
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of the blade and worksite. The lens of the camera is equipped with a LED ring

light.

The testbed also includes one pan-tilt-zoom (PTZ) camera (HuddleCam

Downingtown, PA) and one BlackFly camera equipped with a wide angle lens

(Rochester, NY) as proxies for cameras to be mounted on the servicer spacecraft

platform. Both of these cameras are attached near the base of the UR-10 and

directed towards the MLI hat to provide SA views of the workspace, as shown

in Fig. 3.2-right.

The master input device is either a keyboard (Fig. 3.2-left) or a haptic

arm (Fig. 3.2-center), where the latter consists of the Master Tool Manipulator

(MTM) of the da Vinci Research Kit (dVRK) [26]. The dVRK is an open

source research platform based on the da Vinci surgical robot [21]. Details of

the master consoles are given in the following section.

The software modules of the teleoperation system are implemented in C++,

and use the Robot Operating System (ROS) for communication, video capture,

and handling of the transformation tree. Graphical user interface (GUI) mod-

ules are implemented as RQT (Qt-based GUI development framework for ROS)

plug-ins. The dVRK MTM and UR10 robot are controlled using the cisst/SAW

software library [11].

3.4 System Configurations

The system supports several human-machine teleoperation interfaces, based on

the type of visualization and method of teleoperation. The following sections

present two different visualization interfaces: conventional camera view (CAM)
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and augmented virtuality (AV), and two different teleoperation interfaces: key-

board (KB) and da Vinci (dV), which lead to the three configurations tested

in the experiments (i.e., all combinations except dV+CAM). We note that our

prior work [57] demonstrated that dV+AV provided better teleoperation per-

formance than dV+CAM.

3.4.1 CAM: Conventional (Camera) Visualization

For visualization, the teleoperation console our operators typically use provides

a combination of video displays—real video and simulation—to guide opera-

tors while executing the robotic servicing tasks. The video feeds are captured

from an array of SA cameras and from the tool cameras that are designed to

provide high quality close-up views of the robotic tools and their immediate

surroundings. Although this console provides a 3D simulation of the on-orbit

scene, the accuracy of the model is not expected to be high enough to support

precision teleoperation. Thus, the operators are trained to rely primarily on the

time-delayed video feeds streaming from the servicing satellite.

A similar visualization console was implemented as a special configuration of

the augmented virtuality visualization described in Section 3.4.2. Specifically,

the time-delayed camera image is placed in the background of the rendered

view, the virtual camera is set to the pose of the tool camera, and its intrinsic

parameters are set to match the calibrated intrinsic parameters of the real tool

camera. The visualization also includes two ring overlays, similar to the ones

shown in Fig. 3.4, except overlayed on the camera image. The yellow ring

indicates the contemplated pose of the circular cutting blade; when using the

keyboard interface, it is updated whenever the operator changes the desired
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position in a text input. The red ring indicates the commanded robot position

[31] and immediately (i.e., without time delay) begins following the commanded

trajectory when the operator initiates a motion.

Figure 3.4: Augmented virtuality (AV) visualization of virtual 3D model, aug-
mented by projection of real tool camera image. 3D model includes satellite
CAD model (yellow), reconstructed MLI hat (red), and robotic tool. Overlays
include commanded robot position (red ring), contemplated robot position (yel-
low ring), and cut path (green lines).

3.4.2 AV: Augmented Virtuality Visualization

The augmented virtuality visualization is based on our prior work, where we

first perform a robotic image survey and then register the 2D survey images to

a 3D CAD model of the satellite [56] and reconstruct features, such as the MLI

hat, for which there are no accurate pre-existing models [57]. The resulting
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3D model, which includes both the registered satellite CAD model and the

reconstructed features, can be visualized (in stereo) from arbitrary viewpoints.

Other researchers have noted that virtual displays can provide alternative views

that could not be achieved with live video [31]. This approach also enables

the operator to define a desired cut path with respect to the model. We go

beyond virtual reality by projecting the time-delayed video captured from the

tool and/or SA cameras onto the 3D model to create an augmented virtuality

visualization.

In the present study, we employ an improved version of the visualization

system (see Fig. 3.4) that addresses rendering flaws encountered in the previous

version and implements new visualization features. Due to performance con-

cerns and feature limitations, the new renderer software does not rely on RViz

and was instead re-implemented in C++, using OpenGL. Having the flexibil-

ity to fully customize the rendering pipeline enabled a significant performance

improvement and the development of advanced rendering features. It also elim-

inated the need to manually create an image mask for the cutting assembly

which, in the previous system, was required to prevent the image of the cutting

assembly from being mapped onto the satellite model.

The new renderer performs real-time ray-tracing to project the camera im-

ages with correct occlusions on the 3D scene, thereby mapping the image of the

tool assembly on the tool model and the image of the satellite on the satellite

model, without the need of an image mask. The 3D models in the scene are

all wrapped in high resolution texture, and the renderer is capable of adding

multiple camera projections to the texture using mosaicking techniques to cover

the visible parts of the satellite model with registered real-life camera images.
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On top of the static mosaic, the system also maps on the scene the time-delayed

video streams captured from the cameras. All this is performed real-time, en-

abling a more realistic and dynamic 3D visualization.

The new renderer also enables the display of a variety of status indicators in

the 3D view. The indicators are rendered as icons and text overlays (see icons

at top of Fig. 3.4). When stereoscopic rendering is enabled, the stereo disparity

of the status indicators is adjusted to reduce eye strain on the operator. The

robot model in Fig. 3.4 is updated by the delayed telemetry from the remote

robot. In addition, Fig. 3.4 shows the yellow and red ring overlays that were

described in Section 3.4.1 and are available in both CAM and AV modes.

The updated visualization system includes a graphical user interface through

which the operator can dynamically configure the visualization features, such as

show/hide/reposition picture-in-picture views, set the visibility of texture layers,

or change between augmented reality (conventional) and augmented virtuality

modes (Fig. 3.5, bottom).

During the experiments performed in AV mode, robot operators controlled

the pose of the rendered view (virtual camera) using a 3D mouse or the da Vinci

master console.

3.4.3 KB: Conventional (Keyboard/GUI) Control Inter-
face

We created a keyboard/GUI interface for the experiments at JHU that closely

replicates the interface typically used by our subjects. This interface, shown

in Fig. 3.5, allows operators to input a relative (delta) or absolute (final) goal

pose in Cartesian space (with respect to a specified reference frame), preview
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Figure 3.5: Conventional robot interface GUI

the expected result, and execute the command after confirming desired motion.

In all configurations, the reference frame can be set to the robot’s (stationary)

base frame or the tool frame. When using the augmented virtuality interface,

the task frame can also be chosen. The task frame is defined relative to the

currently-selected segment of the desired cut path, with the x axis in the di-

rection of the path and the y axis in the direction perpendicular to the hat’s

surface. The task frame is not available in the conventional interface because it
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requires an accurate registration between the robot and the satellite, which is

not normally available. The interface also displays the latest measured position

of the robot, both in Cartesian and joint space.

As the operator adjusts the GUI, the visualization displays a preview of

the commanded pose via the yellow ring described in Section 3.4.2. When the

operator is satisfied with the command, the Move button initiates the motion.

A progress bar shows completion percent and the Move button is replaced by

an Abort button. During motion, the preview ring remains stationary, even if

the tool frame is selected, allowing the operator to judge the progress towards

the goal. Once a motion reaches its goal or is aborted, the preview ring resumes

tracking the current value of the inputs.

The operator may also adjust the speed with which the remote robot will

move to the goal, with independent control of linear and angular speed. A

Synchronized checkbox, when checked, limits the faster of the two speeds so

that the position and orientation goals are reached simultaneously.

3.4.4 dV: da Vinci Control Interface

The da Vinci interface allows the operator to use the master console of a

da Vinci surgical robot (Fig. 3.2-center) to directly teleoperate the satellite

servicing robot. The operator holds one of the two MTMs, looks into the stereo

viewer, operates the six foot pedals, and optionally uses the space mouse. The

da Vinci teleoperation interface extends on the previously reported system [57]

with new features and improvements.

Previously, we used a foot pedal to activate teleoperation. In the current

system, the operator must pinch the gripper sensor on the da Vinci MTM to
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start moving the remote robot, freeing the foot pedal for other uses. The master

manipulator begins directly controlling the remote robot after a delay of two

seconds, which prevents motions caused by the pinch action from being conveyed

to the robot.

We added the ability for the operator to lock the manipulator into rotation-

only or translation-only mode using a foot pedal as a three-way toggle. When

in one of these modes, the manipulator is still physically able to move in any

direction or rotation, but the translation or rotation component of the motion,

respectively, is discarded when computing the command velocity. The current

state of the lock mode is displayed as an icon in the visualizer.

In addition to manipulating the virtual camera with the space mouse, which

previously was the only available method, operators may reposition the virtual

camera by moving the master manipulator. While holding the “Camera” foot

pedal, the manipulator can be freely translated and rotated. As the operator

moves the manipulator, the virtual camera moves to maintain the logical map-

ping between the manipulator pose and the apparent pose of the robot in the

visualizer.

As with the traditional teleoperation interface, the desired cut path is dis-

played in the visualizer. Operators may opt to use it solely as a visual guide.

However, the da Vinci interface also offers the ability to use the desired cut path

as a virtual fixture, with non-isotropic gains and haptic feedback. The haptic

feedback replaces the force gradient used in the previous system. Operators

may attach to the currently-selected segment of the cut path, changing its color

in the visualizer and activating the virtual fixture. When the virtual fixture

is attached, a force or torque is applied in the translational and rotational
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directions outside of the desired cut plane that gently pushes the manipulator

back into the desired plane. The magnitude of the force is proportional to

the displacement from the desired cut plane at a factor of 50 N m−1 for trans-

lation and 0.1 N m rad−1 for rotation. Additionally, a slider in the GUI allows

the operator to scale down the velocity in the directions orthogonal to the vir-

tual fixture plane, ranging from the default scale factor of 1 (no scaling) to 0

(disallow motion completely, i.e., a hard virtual fixture).

The traditional (KB) teleoperation interface allows operators to easily align

the robot to the desired cut plane before motion by setting the relevant compo-

nents of the desired pose to zero. We provide a similar ability in the da Vinci

interface with an “auto-align” feature, enabled by pressing a foot pedal, which

automatically moves the robot to align the end effector with the virtual fixture,

first in rotation and then in translation.

3.5 Experiments

We evaluated three distinct system configurations to separately determine the

effect of the augmented virtuality (AV) visualization and the direct telemanip-

ulation (dV) interface. The following sections describe the subject population

for the study, the experimental setup, and the three system configurations.

3.5.1 Study Subjects

The study used trained robotic teleoperators, who go through extensive training

to learn the intricacies of remotely controlling on-orbit robot arms. The training

process, which is modeled on that used for International Space Station (ISS)

robot operators at Johnson Space Center, requires potential operators to become
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familiar with robotic operations and robot kinematics. New teleoperators begin

by observing ground based testing and acting as a safety operator. In addition

to training on the robotic system, teleoperators also train for a given task by

first using ground industrial robots before performing the task on the ground

unit of the flight robot. This progression ensures that teleoperators for servicing

missions are experts in both the robotic system they are operating as well as

the task they are performing.

3.5.2 Experimental Setup

The experimental setup consists of a control station and a servicing platform,

as shown in Fig. 3.2. The control station is either a keyboard and computer

displays (KB) or the da Vinci master console (dV), as described in Section 3.4.

The mock satellite is constructed from 80/20 aluminum bars and panels

wrapped in a layer of Mylar [56]. Not including its solar panel, the satellite

is a box of size 24 × 24 × 36 inches. MLI hats were manually assembled to

replicate a space-grade hat at a reasonable cost. The blanket used for the

hats is composed of 21 alternating layers of 0.5 mil (0.013 mm) polymer film

(McMaster 8567K102) and fine tulle. The layers are then placed between two

layers of 1 mil (0.025 mm) metalized PET (Mylar) film (CS Hyde 48-1F-1M).

Kapton tape (McMaster 7648A34) is used to assemble the blanket and to fold

the corners of the hats. The fabrication of each hat takes approximately 3 hours

for a trained person. Because the MLI is folded multiple times at the corners,

the cutting blade must cut through approximately 100 layers of film, tulle, and

tape at the thickest point.

The initial preparation consists of first calibrating the camera intrinsics and
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extrinsics, and then performing a robot-to-satellite registration, as described in

[56]. Specifically, the robot acquires a set of 2D images from multiple poses,

which are then registered to a 3D model of the rigid parts of the mock satellite.

The resulting camera calibration and robot-to-satellite registration are used

for all trials. Before each trial, a new hat is mounted in approximately the

same location on the satellite. An image survey is performed, using predefined

viewing angles, to manually reconstruct the hat’s geometry, as described in [57].

A desired cut path is defined in the same relative location on each reconstructed

hat model. Each trial begins with the robot in the same position relative to the

mock satellite.

During trials, operators sat out of visual range of the robot, relying only

on the time-delayed camera feedback for visualization. In addition, all opera-

tors wore noise-canceling headphones, through which music or white noise was

played, to prevent them from hearing real-time (i.e., undelayed) audio feedback,

such as changes in the cutting motor sound. Figure 3.2-left shows an image

from one trial. Operators completed a NASA TLX survey after each trial and a

post-experiment survey after the last trial. The survey asked them to rate the

difficulty of use for each system configuration and provided an opportunity for

free-form feedback.

The order of trials was fixed to introduce no more than one new feature at a

time. Each operator first performed the conventional (KB+CAM) trial, which

emulates their familiar teleoperation interface, though with different hardware

and software. Next, the augmented virtuality (AV) visualization was intro-

duced, while keeping the familiar keyboard teleoperation interface (KB+AV).
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Finally, the AV visualization was kept and the da Vinci teleoperation inter-

face was introduced (dV+AV). Operators were allowed to practice with each

configuration prior to beginning each trial.

3.5.3 Conventional Teleoperation (KB+CAM)

The first experimental condition used conventional teleoperation. The visual-

ization was used in Augmented Reality mode, using the stereo display as a 2D

monitor. The red “commanded” and yellow “preview” rings were overlayed on

the tool camera image. Operators were free to enable picture-in-picture overlays

of the deck cameras or to display the deck cameras on a second monitor. The

robot was controlled using the traditional robot interface with the ability to

control in task frame disabled, reflecting the fact that the conventional system

does not provide a sufficiently accurate robot-to-satellite registration to define

a task frame.

3.5.4 Conventional Teleoperation with Augmented Vir-
tuality (KB+AV)

The second experimental condition was designed to measure the effect of the

augmented virtuality visualization. The visualizer was used in Augmented Vir-

tuality mode on the 3D monitor, as shown in Fig. 3.2-left. The “commanded”

and “preview” rings and the desired cut path were displayed in the virtual envi-

ronment. Operators were able to move the virtual camera with the space mouse

or use buttons on the space mouse to cycle between predefined views. An ad-

ditional GUI element allowed operators to select one of the three segments of

the cut path to define the task frame. Operators used the conventional robot
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interface, but with the task frame enabled.

3.5.5 da Vinci Teleoperation with Augmented Virtuality
(dV+AV)

The final experimental condition was designed to measure the effect of the da

Vinci teleoperation interface. The visualizer was used in Augmented Virtuality

mode viewed through the da Vinci master console’s stereo viewer. In addition to

all elements from the previous experimental condition, the visualizer displayed

icons to communicate the current internal state of the da Vinci robot interface.

Operators were able to move the virtual camera using the space mouse or the

da Vinci MTMs. On request from the operator, an experimenter operated GUI

controls which are not currently exposed to the da Vinci interface, such as

selecting and attaching to desired cut paths. Ultimately, these controls would

either be implemented within the da Vinci interface or managed by a second

robot operator.

3.6 Results

All five of our subjects completed the experiments with all three configurations.

Table 3.1 shows the time that each operator spent operating each feature of

the system during each trial. The Moving Robot category shows the time each

operator spent sending commands to the remote robot. The Adjusting View

category shows the time each operator spent manipulating the virtual camera

in trials with augmented virtuality visualization. The Clutching category, only

applicable to the da Vinci interface, shows the time spent repositioning the
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Table 3.1: Time breakdown, seconds (Conv. configuration is KB+CAM)

Moving
Robot

Adjusting
View

Clutching Auto-
Aligning

Total

Subject 1
Conv. 537.0 — — — 2358.5

KB+AV 577.8 305.3 — — 3139.4
dV+AV 590.8 115.3 16.6 14.8 1067.2

Subject 2
Conv. 185.0 — — — 1088.1

KB+AV 327.0 305.3 — — 983.0
dV+AV 509.8 316.7 15.1 0.0 776.5

Subject 3
Conv. 344.7 — — — 2088.5

KB+AV 578.8 112.6 — — 1639.0
dV+AV 470.1 127.9 16.7 43.9 1008.7

Subject 4
Conv. 576.7 — — — 3154.8

KB+AV 570.7 176.4 — — 1912.8
dV+AV 706.5 160.4 10.4 15.5 1162.5

Subject 5
Conv. 307.4 — — — 4620.2

KB+AV 460.0 724.5 — — 2846.6
dV+AV 629.6 124.3 9.4 11.4 1298.0

45



Mental

Physical

Temporal

Performance

Effort

Frustration

KB+CAM
KB+AV
dV+AV

Mental

Physical

Temporal

Performance

Effort

Frustration

KB+CAM
KB+AV
dV+AV

Mental

Physical

Temporal

Performance

Effort

Frustration

KB+CAM
KB+AV
dV+AV

Mental

Physical

Temporal

Performance

Effort

Frustration

KB+CAM
KB+AV
dV+AV

Mental

Physical

Temporal

Performance

Effort

Frustration

KB+CAM
KB+AV
dV+AV

Figure 3.6: TLX survey results for Subjects 1-5 (left to right). Values range
from 1 to 7, with 7 representing the greatest burden in that category.

MTM. The time was insignificant compared to the total experiment time, sug-

gesting that subjects were not overly constrained by the limited workspace of

the MTM. The Auto-Aligning category, also only applicable to the da Vinci

interface, shows the time spent using the auto-align feature. The results show

that all but one operator chose to use that feature. Finally, the total time to cut

the two sides of the hat is shown. For four out of the five subjects, the conven-

tional keyboard/GUI interface with the augmented virtuality visualization took

less time than with the conventional visualization. However, all five subjects

completed the task in the shortest time using the da Vinci interface. This is

expected, as the da Vinci’s direct teleoperation does not allow the chance to

preview the result of a command, eliminating the time spent confirming that

the correct command will be issued. For this reason, the lower time does not

necessarily indicate an improvement.

Figure 3.6 shows the results of the NASA TLX survey completed by each

participant after each trial. It indicates that the augmented virtuality interface

caused less stress (frustration) than the conventional visualization for three

operators, a better self-assessed performance for three operators, and that all

operators found it less or equally as difficult. These results are consistent with

the faster completion times shown in Table 3.1 for the KB+AV configuration

for four out of the five subjects. Three out of five operators found the da
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Vinci teleoperation interface considerably more frustrating than either trial with

the keyboard interface, and four operators thought it was more or equally as

difficult. This is not surprising, given that it is an unfamiliar interface for

these operators. This was also evident in the post-experiment survey, Table

3.2, where operators rated the difficulty of each system configuration on a scale

from 1 (very easy) to 5 (very hard). All five operators selected the KB+AV

configuration as the easiest or as one of the easiest and four operators rated the

dV+AV configuration as the hardest.

Table 3.2: Post-Experiment survey results (1 = very easy, 5 = very hard)

Condition Op-1 Op-2 Op-3 Op-4 Op-5 Mean
KB + CAM 4 3 3 3 3 3.2
KB + AV 3 2 2 2 3 2.4
dV + AV 3 4 5 4 4 4.0

In order to evaluate success of the cut, the total number of layers and

successfully-cut layers were measured. Figure 3.7 shows the number of lay-

ers cut compared to the number of layers present. Note that the geometry of

the hat construction causes a significant increase in the number of layers that

must be cut at a corner. Table 3.3 shows the rate of success and the degree of

failure in terms of the number of layers cut. We see that the KB+AV configura-

tion led to the highest percentage of complete and acceptable cuts. The results

also indicate that, despite the increased number of layers, the corners typically

saw more success than the straight sides. We attribute this to the additional

structural integrity of the hat, which restricts the layers from spreading apart

as much as on the sides.
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Figure 3.7: Visualization of the number of layers successfully cut in all MLI
cutting trials. Horizontal axis represents cutting progress [cm], starting at the
top of the hat then continuing on the right side. The thin black lines indicate
the number of layers that need to be cut, and the thick colored lines show the
number of successfully cut layers for each trial. A single sheet of MLI consists
of 23 layers, but there are as many as 95 layers at the corners where the MLI is
folded and taped multiple times. The colored horizontal bands under the charts
show the number of layers cut for each trial. There are 5 bands for each task,
representing the 5 operators.

48



Table 3.3: MLI cutting success rate

Layers not cut KB+CAM KB+AV dV+AV
All cut 95.29% 99.71% 91.18%
X=1 0.00% 0.00% 0.59%

3≥X>1 0.59% 0.29% 1.76%
10≥X>3 2.35% 0.00% 3.24%

X>10 1.76% 0.00% 3.24%

3.7 Discussion and Conclusions

We developed an augmented virtuality interface to support ground-based teleop-

eration of robots on orbit for satellite servicing tasks, subject to communication

delays of several seconds and challenging visualization of the remote scene. The

system was tested with trained robot operators and the results indicate that

the augmented virtuality visualization can provide benefits, including reduced

execution time and lower task load, compared to the conventional visualization.

One likely explanation is that the augmented virtuality system provides teleop-

erators the ability to choose arbitrary views of the robot workspace, which can

significantly improve their situational awareness. This reduces risk and makes

teleoperated servicing tasks more efficient and reliable. Although satellite ser-

vicing resembles telesurgery, our experiments also revealed that the trained

operators preferred the conventional keyboard/GUI interface over the da Vinci

master console. This is likely due to their extensive training and familiarity

with that interface, but also to the nature of the MLI cutting task, where most

motions can be easily expressed within the task frame. The da Vinci mas-

ter console might be more effective for other tasks, especially those involving

complex motions that cannot be as easily commanded via a keyboard.
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Chapter 4

Interactive Planning and
Supervised Execution (IPSE)

In this chapter we describe a new teleoperation interface, Interactive Planning

and Supervised Execution (IPSE), designed based on the results of the study

described in Chapter 3. We describe the lessons learned from that study, review

previous work in the area of visual robot programming, describe the implemen-

tation of the IPSE core and two user interfaces to IPSE, and present the results

of a study comparing those interfaces to a conventional keyboard/GUI inter-

face. This chapter is based on the work described in [39]. Balazs Vagvolgyi

contributed the registration and reconstruction procedure described in Section

4.2.1.

4.1 Background and Motivation

NASA is developing new technologies around satellite servicing [36], with plans

to use ground-based telerobotic control for proximity operations. These opera-

tions include cutting the multilayer insulation (MLI) that encases the satellite,

cutting retaining wires, removing the cap on the fill/drain valve, attaching the
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refueling hose, transferring fuel, and then reinstalling the cap and applying

an MLI patch. The overall procedure requires both coarse motion to transit

to/from the tool stowage area and fine motion to perform proximity operations.

The design of the interactive planning system was primarily motivated by

the results of the study described in Chapter 3, in which we recruited five trained

robot operators to evaluate several teleoperation interfaces for the task of cut-

ting the multilayer insulation (MLI) “hat” that covers the satellite fill/drain

valve. Specifically, we compared our recently-developed augmented virtuality

(AV) visualization [57] to the conventional camera visualization and the da Vinci

master console to the conventional keyboard/GUI control interface (Fig. 4.1).

The results showed that the trained operators unanimously preferred the AV

visualization, but only when paired with the conventional keyboard/GUI con-

trol interface. The da Vinci control interface was the least preferred; in fact,

operators were more willing to sacrifice the AV visualization in order to retain

the keyboard/GUI interface. This was surprising because the trained operators

consistently performed the task faster with the da Vinci interface.

Post-experiment interviews with the trained operators revealed two primary

reasons for their preferences. First, the task of cutting the MLI did not require

the dexterity offered by the da Vinci master console, since the cutting operation

primarily involved moving in a straight line. They hypothesized that other

operations, such as large motions between the worksite and the tool stowage

area, would be likely to benefit from the ability to command more complex

motions. Second, operators opined that performing the task without error is

more important than performing the task quickly. Although task failures could

be easily remedied in our ground-based setup, the trained operators followed
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Figure 4.1: Teleoperation control interfaces: Keyboard/GUI (left) and da Vinci
master console (right); left image also shows augmented virtuality (AV) visual-
ization on 3D monitor (lower left).

their training to avoid failure. The keyboard/GUI interface provided a simple

method to preview a motion before executing it; specifically, a yellow ring was

overlayed on the camera images to show the position the cutter would reach

if the operator pressed the “Move” button. In contrast, the da Vinci interface

only allowed the operator to move the robot or to adjust the virtual camera

(for the AV visualization) – there was no ability to preview motions. This

revelation led to the development of an interactive planning capability, presented

in this chapter, where the operator first plans in a virtual environment, previews

the plan, makes adjustments if necessary, and then supervises execution of the

motion with the ability to pause and replan/resume at any time.

The experiments reported in this chapter address the attachment of the refu-

eling hose as a representative task for on-orbit telerobotic servicing of spacecraft.

We assume that the robot has just removed the cap on the fill/drain valve and
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must first move to the tool stowage area to acquire the hose manipulation tool,

then move to grasp the hose and mate it with the fill/drain valve. We report the

development of an interactive planning system, where the operator plans the

motion in a virtual environment, created from real-time modeling of the actual

environment [57], previews and adjusts the plan in the virtual environment, and

then supervises its execution in the real environment.

This approach resembles offline robot programming, which has been used for

decades [38]. However, offline programming is unable to respond to geometry

which is unknown a priori, or to geometry which may change unpredictably

during the operation. Another strategy which has been used to mitigate the

effects of time delay is to have operators command the robot using high-level

task goals, which generalize to variations in the environment, and the remote

robot determines the exact details of the operation autonomously [25]. This

relies on the autonomous system’s ability to execute a high-level goal without

error, which creates unnecessary risks with high penalties in a satellite servicing

environment. Likewise, systems which predict the response of the remote robot

and environment to simulate real-time feedback, such as in [5, 54], are reliant

on accurate simulation of the robot and environment.

More recent related work involves the use of mixed/augmented reality for

visual programming of robot motions. In [42], a user can plan paths as a

series of waypoints in an augmented reality (AR) environment, preview and

edit the paths, and then execute them either autonomously or by allowing the

user to control progress through the path. In [19], the user similarly builds a

path out of primitives, visualizes the final path, and then executes it. [19] also

evaluates the mixed reality interface against a 2D baseline interface among a
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non-expert population, finding that the mixed reality interface was preferred.

We implement a waypoint-based planning system with both a mixed reality and

2D interface and evaluate each on a high-risk task in the presence of time delay

and with expert users.

4.2 System Description

An operation using our proposed system begins with a registration and recon-

struction procedure, to locate and build the objects in the virtual (simulated)

environment. The operator then creates a motion plan using the interactive

planning system and executes the plan with supervised execution. The latter

two steps are repeated until the task is complete. The system is implemented

with a set of programs using the Robot Operating System (ROS) [43].

4.2.1 Registration and Reconstruction

The operator of our system views and manipulates the work-site via a computer

simulation of the scene that contains the relevant objects, robots, and equip-

ment. The simulation is based on design drawings, robot kinematics, camera

images, and other sensor data. We did not include dynamics in our simulation

because we assume that the scene contains rigid objects that do not collide with

each other.

The simulation of most of the robotic servicing platform is reliable and ac-

curate as it is based on well known manufacturing design and robot kinematics,

however, the simulation of the object to be manipulated (in this case the satel-

lite to be refueled) is in an unknown position and orientation with respect to
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the servicing platform. The geometry of the object may also be just an approx-

imation of the real object if the original manufacturing design is not entirely

available.

We used our Workspace Registration Tool software [57] to perform object

registration and to reconstruct the geometry of unknown but relevant features

of the object. The registration and reconstruction process requires the robot

operator to perform a visual survey of the object by taking several images of

it from multiple positions using the tool camera mounted on the robot’s end

effector. Visual landmarks which match reliably known features in the object’s

CAD model are used for registration, while landmarks that are different from

the CAD model, such as the MLI hat, are reconstructed using 3D triangulation

and added to the model.

The result of the registration and reconstruction process is a 3D simulation

of the scene that accurately represents the physical location of the relevant

objects, robots, and equipment in the remote work-site.

4.2.2 Interactive Planning

The Interactive Planning component allows the operator to design a motion

plan using one of multiple co-existent user interfaces. At any time, the operator

can preview the resulting robot motion and edit the plan until the motion is

satisfactory.

A motion plan consists of a series of waypoints, as shown on the left in Fig.

4.2. Each waypoint represents an intermediate destination in the motion plan.

A motion planning engine, using the MoveIt! planning framework [50], plans a
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Figure 4.2: The custom user interface for the 2D planning interface allows
the operator to view and edit the waypoints as delta (relative to the previous
waypoint) and final (relative to the fixed frame) values.

trajectory to connect each waypoint’s destination pose with the final configu-

ration of the previous waypoint’s trajectory, with the first waypoint connected

to the robot’s current configuration. The resulting trajectories are collision-free

when possible and marked as invalid when a collision cannot be avoided. Invalid

trajectories cause execution to be disabled and the waypoint marker (Fig. 4.3,

see Sec. 4.2.2.1) to be displayed in red.

The operator may configure each waypoint to use a straight-line path, which

causes the end effector to follow a straight line in task space; to avoid obstacles,

in which case the motion planner may select any collision-free path; or to follow

the same task-space path that the operator followed to move the waypoint

marker. Each waypoint also has an independent set of desired speeds, both

linear and rotational. The trajectory is initially timed to obey pre-configured
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Figure 4.3: A waypoint marker displays as a colored end-effector with additional
controls to enable moving it in all six degrees of freedom. A dotted line shows
the path the end effector will take to reach this waypoint.

joint-level limits and then the duration of each trajectory segment is scaled up

if necessary to ensure the segment obeys both limits on end-effector speed.

The planner is independent from any user interface. It communicates with

any number of interfaces simultaneously using a ROS topic API, and changes

made in any interface are immediately reflected in all connected interfaces. We

implemented two user interfaces: a 2D mouse-and-keyboard interface composed

of a custom GUI with RViz for visualizations and a 3D interface operated with

the master console of a da Vinci surgical robot.

4.2.2.1 2D Interface

The 2D interface uses a custom configuration of RViz, the standard robot vi-

sualizer bundled with ROS, in combination with a custom Qt interface called

the Planner GUI (Fig. 4.2). The Planner GUI displays the list of waypoints in
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the current plan and allows the operator to edit the selected waypoint. In addi-

tion to naming each waypoint, the operator can input the goal pose as either a

“delta” from the start pose or as a “final” absolute pose, and modifying either

column will update the other. The operator can choose the reference frame in

which to display these poses from a list, which can include any frame whose

pose is known and static during an entire planning operation. If the pose of

an object of interest to the task is known, the operator can choose that frame

and align each degree of freedom independently by entering 0 in the appropriate

input of the Final column.

As waypoints are added and edited, each one is represented in RViz as a col-

ored end effector, as shown in Fig. 4.3. The end effector is green when the plan

is valid, red when it is invalid, and white when the plan has not been computed.

The latter case occurs briefly whenever an edit is made as well as whenever a

previous waypoint was invalid, as each waypoint’s plan depends on the previ-

ous. Clicking each waypoint marker selects the corresponding waypoint. The

selected end effector is surrounded by interactive markers which allow the way-

point to be translated along each axis (arrows), rotated about each axis (rings),

or translated in the plane perpendicular to the virtual camera (sphere). When

a trajectory has been computed between each pair of waypoints, it is shown as

a dotted line tracing the path of the end effector tip.

The Planner GUI also allows for choosing between path types and setting

the maximum speeds. Below the waypoint edit areas, the Play button and

scrubber allow the operator to preview the current plan, either by playing it back

in real-time or scrubbing through as in a typical media player. The “preview

robot”, a partially-transparent version of the actual robot, animates through

58



Figure 4.4: The 3D Interface displays the virtual world in 3D, with a GUI
overlay to replicate the most common features of the Planner GUI.

the planned path. The preview and execute functions use the same stored

trajectory, so the operator can be assured that the execution will follow the

exact same configurations as the preview. The Planner GUI also includes the

Supervised Execution controls, described in Sec. 4.2.3.

4.2.2.2 3D Interface

The planning system can also be controlled with a 3D interface, shown in Fig.

4.4, which uses the da Vinci master tool manipulators (MTMs) to control the

same path. Each of these two MTMs is a 7 DOF compliant robot arm which is

used to track the operator’s hands in space and also includes a gripper which

may be pinched with the user’s thumb and forefinger to command actuation of

some tool. In our system, each of the MTMs controls a 3D cursor, represented

in the virtual world as a sphere. Pinching the MTM’s gripper acts as a click.
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The operator looks into the da Vinci stereo viewer at the same virtual world

as shown in RViz, here rendered in 3D. The 3D cursor can be used as a mouse

to select and move waypoints in the same way as with the 2D interface, except

that with a 6-DOF input device the sphere can be used to position and orient

the waypoint anywhere in the workspace. The addition of 3D visualization

and 6-DOF manipulation greatly enhances the operator’s ability to position the

waypoints, which is especially important when recording paths.

The 3D interface includes an overlay GUI to give operators access to the

most-used features of the Planner GUI without moving from the da Vinci con-

sole. When the 3D cursor moves behind one of the buttons visible at the bottom

of Fig. 4.4, it transforms into a 2D cursor of the same color and allows click-

ing the buttons, which provides the ability to add a waypoint at the end of the

plan, convert the current preview location to a new waypoint, delete the current

waypoint, and preview and execute the plan. The 2D cursor also manipulates

the preview scrubber, as illustrated by the lower interactive cursor in Fig. 4.4.

4.2.3 Supervised Execution

When the operator is satisfied with the planned trajectory, they may execute

it on the remote robot. The Execute button in the Planner GUI (see Fig. 4.2)

transmits the current trajectory to the remote robot immediately, but due to

the communication delay, the robot does not appear to move until one round-

trip time (RTT). Once feedback is available, the progress bar fills to indicate

progress through the planned trajectory and the opaque robot shown in the

virtual world follows the robot telemetry feedback.
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Figure 4.5: Augmented Virtuality (AV) visualization: the tool camera image is
projected onto the virtual environment (in this case, both the robot tool and
satellite).

During execution, the operator may watch the robot’s progress in an Aug-

mented Virtuality (AV) visualization environment (Fig. 4.5). This visualization

displays the robot and environment as in RViz, but also augments the virtual

models with a projection of the image from the robot’s tool camera. The reg-

istration procedure in Sec. 4.2.1 is sufficiently accurate that each area of the

camera image is projected onto the virtual model of the object it belongs to

with minimal error. The projection improves the operators’ situational aware-

ness and ability to judge the completion of the task by transforming the 2D

image into 3D textured objects; furthermore, it helps operators recognize inac-

curacies in the simulation which informs them when more caution is required.

In principle, this visualization and the visualization used during planning could

be implemented in the same software tool, but in our implementation they are

separate due to implementation limitations.

If the operator judges that the trajectory is inaccurate, they may pause the

trajectory from the Planner GUI. However, due to the time delay, the robot
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will continue moving 1 RTT past its apparent position before the pause com-

mand is received. For cases where this delay could damage the mission, the

operator can instead use the Step functionality to execute only a small portion

of the trajectory at a time, allowing the operator to reassess the trajectory’s

success between each step. The step function truncates the trajectory to the

specified time and sends only the truncated portion to the robot. The robot’s

progress through the trajectory is retained through multiple uses of the Step

and Execute buttons so the trajectory may be resumed from the robot’s cur-

rent position. Before sending a trajectory to the robot, whether by step or by

full execution, the portion to be sent is re-timed (including post-processing to

satisfy maximum end effector speed) to ensure smooth acceleration and, if the

trajectory is not paused, deceleration. This re-timing may lengthen the actual

execution duration, although in practice the difference is insignificant at the

speeds typical during a satellite servicing operation.

When the trajectory requires correction, the operator may choose to start a

new motion plan, at which point the trajectory progress is reset. If the difference

is small, the operator may also choose to use a space mouse as a joystick to adjust

the robot’s pose, which is also subject to communications delay. The operator

can then re-compute the trajectory for the remaining portion of the motion plan

using the new start position and resume normal execution.

For technical reasons, Supervised Execution was only implemented in the

2D interface.
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Figure 4.6: The space-side setup includes a mock satellite (right), mock servicing
robot (front left), and refueling tool station (back left).

4.3 Experiments

4.3.1 Experimental Setup

The experimental setup is based on that described in Section 3.5.2, using the

same robot, cameras, and mock satellite. A set of three pipes of varying diame-

ters is added, fixed within a cavity in one side of the satellite; one of these pipes

is selected to represent the satellite fill/drain valve. A tool stowage area, visible

behind the mock servicing robot in Fig. 4.6, is attached to the same structure

as the mock satellite. The motor in the tool mounting assembly is not used

in this experiment, and instead a set of magnets to which passive tools can be
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attached is added. The refueling tool, a section of pipe affixed to magnets, is

shown attached to the tool mount. The outer diameter of the refueling tool fits

snugly into the smallest pipe on the mock satellite. At the base of the servicing

robot, not visible, are two deck cameras with views of the pipe cavity on the

mock satellite.

While operating the robot, the operator sits at an operator station which

includes several monitors, a keyboard and (2D) mouse, a (6D) space mouse,

and a da Vinci master console. A 3D monitor, used with active shutter 3D

glasses, displays the Augmented Virtuality Visualizer described in Sec. 4.2.3.

A standard 2D monitor displays the Planner GUI and RViz, described in Sec.

4.2.2.1, and an additional 2D monitor displays the unaltered tool camera images.

4.3.2 Experimental Task

An experiment begins with the mock satellite already registered using the Vision

Assistant software tool described in Sec. 4.2.1. The robot begins in a standard

location not near the mock satellite or tool stowage area and the refueling tool

begins in the tool stowage area. During the experiment, the operator must

first command the robot to the tool stowage area and lower it onto the tool

to engage the magnetic attachment. Once at least one magnet attaches, an

experimenter records whether the tool was aligned correctly. The operator

must then command the robot to move the tip of the refueling tool inside one

of the pipes on the mock satellite (which represents the fill/drain valve). The

experiment is complete when the operator believes the tool tip is inserted at

least 3 cm inside the pipe, or failed if the operator believes it is not possible

to insert the tool tip into the pipe (for example, if the tool is knocked off the
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magnetic mount).

4.3.3 Conditions

Each operator performs the experimental task three times. In all three condi-

tions, the operator looks at the Augmented Virtuality environment on the 3D

monitor and the unaltered tool camera image for feedback. Under the first con-

dition, “Conventional teleoperation”, the operator may use a joystick to move

the robot or enter a pose command into a simple GUI. The commanded pose is

indicated in the Augmented Virtuality environment with a small marker.

Under the second condition, the operator uses the 2D Interactive Planning

with Supervised Execution (Sec. 4.2) interface and may also use the joystick.

In the final condition, the operator uses the 3D Interactive Planning interface

to plan, but the 2D interface for Supervised Execution, as the 3D interface does

not provide any way to view the camera image.

Although the Interactive Planning was designed to enable the operator to

switch between the 2D and 3D interfaces at will, we decided to evaluate them in

separate trials for two reasons: (1) to compare their effectiveness in performing

the task, and (2) to ensure that each interface was actually used (otherwise an

operator could choose to only use one of them). Note that because the 3D in-

terface did not fully support all functionality, operators were allowed to use the

2D interface in cases where the 3D interface did not provide the necessary func-

tionality (e.g., to modify the motion speed or to view the Augmented Virtuality

visualization during execution).
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Figure 4.7: In the tool pickup task, no operator failed in any condition and both
the 2D and 3D Interactive Planning cases saw complete success.

4.4 Results

Six operators participated in the user study (JHU HIRB 00000701). Operators

were recruited from a population familiar with using the da Vinci surgical sys-

tem for teleoperation, to reflect the fact that outside of laboratory conditions

this task would be performed by trained operators. Three of the operators rated

themselves as “Experienced” and two as “Familiar” with remote teleoperation

systems. All operators performed all three tasks in the same order: Conven-

tional teleoperation, 2D Interactive Planning, then 3D Interactive Planning.

In a high-risk task such as an on-orbit operation, task success is the most

relevant metric. We categorized the results for the two tasks, tool pickup and

refueling, into three categories: Full success, partial success, and failure. Partial

success was defined as an attached but improperly aligned tool in the tool pickup
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Table 4.1: Pickup Task Success

Conv. 2D 3D
Full Success 66.7% 100% 100%
Partial Success 33.3% 0% 0%
Failure 0% 0% 0%
Position Error (cm) 2.3 0.6 0.9
Orientation Error (deg) 4.3 1.8 4.2

task, and as a tool inserted less than the desired 3 cm in the refueling task. For

both tasks, failure was categorized as when the operator believed it was no longer

possible to complete the task. We also measured the pose difference between

the final tool pose at the end of each task and the nominal tool pose. It should

be noted that this nominal tool pose is subject to registration error, and so some

small amount of deviation from the nominal pose may indicate a more accurate

tool placement. Large deviations, however, indicate misplacement. Position

and orientation error are reported as average values over all successful trials.

Table 4.2: Refueling Task Success

Conv. 2D 3D
Full Success 50% 83.3% 50%
Partial Success 16.7% 16.7% 0%
Failure 33.3% 0% 50%
Tool Misalignment 50% 16.7% 33.3%
Orientation Error (deg) 2.4 1.9 1.2

Success metrics for the pickup task are shown in Table 4.1 and Figure 4.7.

This task had no failures under any of the three conditions, which we believe re-

flects the fact that the magnetic mount is sufficiently strong to attach even across

a fairly large distance. However, attaching at a distance increases the probability
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Figure 4.8: In the refueling task, only the 2D planning interface saw zero failures.
In this task it was possible for operators to misalign the tool and still complete
the task, shown here in darker color.

of a misaligned tool, which was evident in the partial success rate. Using conven-

tional teleoperation, two of the operators misaligned the tool. The displacement

metrics indicate that operators were able to position the tool much more accu-

rately to the nominal pickup position using Interactive Planning, which may be

due to the ability to preview the commanded end effector pose using a model

of the end effector itself, rather than the simple ring indicator used in Chap. 3.

The orientation error is similar between the conventional and 3D interfaces, but

lower with the 2D interface, which may indicate the influence of being able to

place a waypoint with respect to the nominal tool pickup pose using the 2D

interface (i.e., by setting the Frame in Fig. 4.2 to the tool pickup pose).

For the refueling task, the environment places a very tight constraint on

the tool position. The position deviation from the nominal value is likely more
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representative of registration error than operator error, and so is not reported.

However, this task affords the opportunity to dislodge the magnetically attached

tool without knocking it off entirely, and the rate of such misalignment is also

reported in Table 4.2. Tool misalignments are reported as the percentage of

(fully or partially) successful tasks for which the tool was misaligned.

Success rates for the refueling task (Table 4.2 and Figure 4.8) were much

lower, demonstrating the significantly higher requirement for precision in this

task. Of the five failures across all conditions, four were due to the operator

knocking the tool off the mount with some obstacle in the real world which

was not modeled in the virtual environment. Of these, three were caused by

contacting the refueling tool holder, which was visible when the operators were

introduced to the task but was not included in the environment. In addition, two

of the four instances of operators knocking the tool out of alignment occurred

on the same object. For this reason, the promise of the virtual environment

and/or collision detection may have been detrimental to overall performance

because operators expected that every collision would be visible in the virtual

environment or detected by the Interactive Planning system.

In another example of operators failing the task due to placing trust in the

virtual environment, the operator who achieved a partial success in the refueling

task using the 2D interface had correctly entered the command to insert the tool

by exactly 3 cm. However, due to a 1.4 mm registration error, the refueling tool

only entered 2.86 cm into the fuel pipe. This failure mode was not readily

available in the 3D interface, in which no operators achieved partial success.

The combined success rate for the 3D interface (50%) was the lowest of the
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three conditions, followed by the conventional interface (67%). Only the 2D In-

teractive Planning interface had a 0% failure rate, and it also had the highest full

success rate of the three. While the 2D Interactive Planning interface improved

task performance, the 3D interface led to worse results than the conventional

interface. Multiple operators reported that they did not use the camera view, or

used it much less, while using the 3D interface because of the effort of switching

between the 3D planning and 2D execution interfaces. Other operators reported

that the preview feature was more difficult to activate using the 3D interface,

leading them to use it less. It was also noted that the 3D interface did not offer

the advantage of specifying precise movements with respect to a defined frame

in the environment, such as the tool mount frame or the refueling pipe frame,

which are known as a result of the 3D scene model constructed from the camera

survey. It is likely that a fully-featured 3D interface, which does not require

exiting to the 2D interface to access some functionality, would produce different

results (see Chapter 5).

Orientation error appears to once again be lower using Interactive Planning,

although in this task the 3D Interactive Planning interface had the lowest aver-

age error. However, since these numbers are the average of only trials that were

completed successfully with no misalignment, the conventional and 3D cases are

each derived from only two data points. The 2D case, which is derived from

five data points, shows a similar alignment error to the pickup task.

We also measured the workload for each interface using a version of the

NASA Task Load Index (TLX) which reports values on a scale from 1 to 7. The

results correlate with the performance measures: The conventional interface was

rated an average of 3.7, the 2D Interactive Planning interface imposed the lowest
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workload with 2.2, and the 3D Interactive Planning interface was significantly

more difficult, with an average rating of 4.5. We also asked the participants to

rate the difficulty on a scale of 1 to 5 (where higher numbers indicate greater

difficulty) with similar results: 3.5, 1.7, and 4.5 respectively.

Table 4.3: Average Task Duration (minutes:seconds)

Conv. 2D 3D
Tool Pickup 11:31 6:34 10:59
Refueling 17:35 12:18 30:22

Although execution time is significantly less important than success rate,

we also recorded the average time to successful completion of each task, where

applicable, which is shown in Table 4.3. The results for the conventional and

2D cases show that the 2D Interactive Planning interface allowed operators to

complete the task faster, which we attribute to the lower difficulty and the

operators’ increased confidence in their ability to safely execute longer motions.

The results for the 3D interface, however, indicate that in the less-constrained

tool pickup task the 3D interface was not worse than the conventional interface.

It was in the severely constrained refueling task that the execution time in the

3D interface was much longer than in both the other interfaces. At least some

of this time difference was likely due to the need to frequently switch between

the 3D planning and 2D execution, as well as the difficulty of using features

such as the path preview with the da Vinci manipulators.
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4.5 Discussion and Conclusions

We developed a teleoperation system to allow operators to accurately command

satellite servicing robots from the ground in the presence of multi-second com-

munication delays and non-ideal camera views. The system includes Interactive

Planning, which allows operators to define a motion plan as a series of way-

points, and Supervised Execution, in which operators can observe the plan’s

execution and respond if failure is imminent. We implemented two interfaces to

Interactive Planning, one using RViz and a custom GUI in 2D, and one using

the da Vinci to allow planning in 3D.

The system was evaluated with six operators, most of whom rated them-

selves as Experienced or Familiar with teleoperation systems. We found that

operators were more successful with the 2D Interactive Planning and Supervised

Execution system than with a conventional teleoperation interface, and rated

the 2D interface as easier to use. We also found that the 3D interface was, in

most measures, equal to or worse than the conventional interface in both suc-

cess metrics and difficulty. Some operators indicated specific limitations of the

3D interface that influenced their success, such as having to leave the da Vinci

console to view camera feedback or the inability to specify precise motions with

respect to certain defined task frames. We hypothesize that the 3D interface

may have been effective for some parts of the task, but not for the entire task.

In Chapter 5, we will explore an alternative 3D interface which alleviates or

eliminates these limitations.
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Chapter 5

A VR HMD Interface to IPSE

This chapter presents the development and evaluation of an alternative 3D in-

terface to IPSE using a Virtual Reality (VR) Head-Mounted Display (HMD).

We describe the motivation for choosing HMDs and background on previous

work in VR/AR planning using HMDs, describe our design and implementa-

tion choices in the translation of the IPSE interface to the HMD, and present

an evaluation of the HMD interface to IPSE against the previous best, 2D, in-

terface. This chapter is based on work published in [41]. Liam J. Wang assisted

with the design and implementation of the HMD interface and in conducting

the evaluation.

5.1 Introduction

The conventional operator interface for teleoperating robots in space (and in

other extreme environments) relies on traditional input devices, such as a key-

board and mouse, and multiple displays for visualizing remote camera views,

robot telemetry, and simulated robot motion. While this approach has worked

for decades, the recent proliferation of mixed reality hardware, in particular
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Figure 5.1: Virtual reality planning environment using Meta Quest 2 headset.

head-mounted displays (HMDs), offers the possibility for a more compact, in-

tuitive and immersive environment.

In this chapter, we present a mixed reality interface (Fig. 5.1) that facilitates

interactive planning as a mechanism for teleoperation of technically challenging

and high-risk robotic operations, such as satellite servicing. Our goals are to

alleviate the burden of these procedures for the ground-based operator and to

decrease the risk of failure and errors. As an illustrative task, we focus on a

critical step of refueling of a spacecraft where the remote manipulator combines

large motions to reach its tool staging area with fine motions to insert the nozzle

into the filler neck.

Our first contribution is the development of a mixed reality implementation,

using a virtual reality (VR) headset with six degrees of freedom (DOF) con-

trollers, of our Interactive Planning and Supervised Execution (IPSE) method

[39]. IPSE previously relied on mouse and keyboard inputs to manipulate inter-

active markers in an augmented virtual environment and visualize the results
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on multiple monitors (an alternate 3D implementation, using the stereo dis-

play and 3D input devices of a da Vinci surgical console, was less preferred).

Our second contribution is a multi-user study that compares the mixed reality

implementation of IPSE to the prior system.

5.2 Related Work

Advances in robotics hardware have enabled robots to execute increasingly com-

plicated tasks in a broad variety of environments requiring equally complex pro-

gramming. The benefits of using mixed reality in robotics and, in particular, for

interactive robot programming have been researched for several years but the re-

cent development of immersive and affordable HMDs has increased the amount

of research in this area [8, 67]. Yet, few of these immersive robot programming

technologies have been designed for robots operating in non-engineered remote

environments where feedback is subject to latencies of several seconds.

A large portion of the research in this area is aimed at industrial applica-

tions, with the objective of making robot programming accessible to operators

without experience [10]. In [42], a user can plan paths as a series of way-

points in an augmented reality (AR) environment, preview and edit the paths,

and then execute them either autonomously or by allowing the user to control

progress through the path. Likewise, path-planning within an AR environment

is presented in [7] where the user is able to visualize the free space and select

configurations by using interactive markers. In [37], instead of moving a virtual

robot, input devices are used to directly define paths in an AR workcell. In [14],

dynamic constraints were also included to improve the preview of the trajectory
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of the robot. As is often the case for industrial applications, the aforementioned

methods all assume knowledge of the robot’s operating environment. This is

primarily achieved by accurate CAD models and careful calibration or by the

operator physically sharing the workcell with the robot. As the operator is

physically present near the robot in these applications, the operator can view

the physical robot to monitor execution and compensate for any inaccuracies in

the motion plan.

Other research focuses on enabling HMD-based teleoperation in more dy-

namic environments, using deep learning pose estimation to localize objects.

The system described in [65] maps the operator’s VR hand controller pose di-

rectly to the end effector. In [61], operators plan and preview robot paths by

placing a series of waypoints, but the interface lacks methods for precise way-

point positioning. Neither system was designed for high-latency teleoperation.

Drone applications have a natural need for immersive environments for

First-Person View (FPV) drone flying [28, 47], building 3D immersive envi-

ronments [3] or monitoring and surveillance [51, 73]. Similar to the industrial

applications, the proximity between the drones and the operators makes the

sensed data readily available to the operator. Additionally, few drone applica-

tions require precise close-proximity movements, so slight inaccuracies in virtual

environments are inconsequential.

Our application requires an interface that allows precise teleoperation of

a remote robot where direct observation is not possible. Erroneous motion

must be avoided, as operator reaction time is limited due to the communication

time delay of several seconds. We aim to improve upon these prior systems

by integrating methods to visualize the remote environment with the available
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limited sensor data, to tolerate inaccuracies in the CAD model of the operating

environment, and to allow confident execution in situations with large round-

trip time delay.

5.3 Background and Motivation

Satellite servicing will require robots to perform multiple tasks, with different

tools designed for these tasks. It is expected that multiple tool changes will be

necessary during the servicing task, which necessitates navigation of the robot

arm between the worksite on the target satellite and the tool stowage area on

the servicing spacecraft. This must be accomplished while avoiding collisions

between the robot arm and structures on either spacecraft. Thus, a typical

satellite servicing task will require both coarse motion to transit to/from the

tool stowage area and fine motion to perform proximity operations.

In Chapters 2 and 3, we proposed methods for modeling the remote environ-

ment to overcome the visualization challenges due to the limited camera views.

Specifically, the servicing robot first performs an image survey by moving its

tool-mounted camera through a number of positions around the target satel-

lite. Features on these 2D images are manually identified and used to either

register to a known model (for example, the satellite frame) or to reconstruct

an unknown or imprecisely known object, such as soft structures attached to

the satellite. The resulting 3D model enables a VR visualization of the remote

environment. However, the approach proposed in our prior work [56, 57] went

beyond VR by projecting the received camera images onto the 3D models. This
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projection of real content onto the virtual environment is referred to as aug-

mented virtuality (AV). A user study with trained robot operators (Chapter 3)

revealed that the AV visualization led to improved task performance and higher

operator satisfaction when compared to the traditional visualization interface

(i.e., camera views that are unmodified, or with minimal augmented reality

overlays).

In Chapter 4 we developed a system for Interactive Planning and Supervised

Execution that leverages the constructed 3D models to provide an intuitive

environment to specify a plan involving both coarse and fine motion, verify its

accuracy to the operator’s satisfaction, and execute it with as much human-

in-the-loop supervision as can be afforded in the satellite servicing scenario.

We evaluated this system using two user interfaces: one with keyboard-and-

mouse interaction on a traditional 2D computer monitor (with occasional use

of a 3D monitor), and one using the da Vinci surgical robot control console

for 3D interaction. The results of this study clearly indicated that the 2D user

interface led to better outcomes, however, users indicated that their lack of

success with the 3D interface may be attributable to implementation details

rather than inherent properties of the interaction. Specifically, the 3D interface

lacked some key features, which included the ability to (1) numerically specify

precise motions with respect to a selected coordinate frame in the model, and

(2) view the augmented virtuality visualization during the supervised execution

phase. Thus, in this work we implement an alternative 3D interface to the same

system using a VR headset and evaluate its success compared to the previously-

indicated best interface.
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Figure 5.2: Overview of virtual reality planning interface architecture. The
core IPSE planning system and augmented virtuality server is implemented
using ROS. The ROS network is distributed across ground-based computers
and space-side computers. The Unity Robotics Hub TCP proxy is used for
bidirectional communication between ROS nodes and the VR Unity application.

5.4 System Description

The system we present in this chapter builds upon the Interactive Planning

and Supervised Execution (IPSE) system presented in Chapter 4, which was

implemented using the Robot Operating System (ROS) [43]. The VR interface

is implemented using the Unity 3D game engine, which is the predominant

development platform for mixed reality. We used the Unity Robotics Hub [55]

ROS-TCP-Connector package to interface the Unity application with IPSE and

the AV server using ROS topics over a local Wi-Fi network (Fig. 5.2). Because

Unity supports a number of different hardware platforms, including most (if not

all) commercially-available AR and VR headsets, it also provides the advantage

of portability to different hardware. In this chapter, we report the development

of a VR interface using the Quest 2 (Meta, Menlo Park, CA), a standalone

wireless headset with 6-DOF tracked hand controllers, with the following section

presenting the rationale for this choice.

79



5.4.1 Selection of Mixed Reality HMD

Our development effort initially targeted the Microsoft HoloLens 2 (HL2) aug-

mented reality headset due to our prior experience with this platform for other

projects. However, we concluded that the HL2 hand tracking capability was

not sufficient for precise motion specification and therefore integrated a Xence-

labs Quick Keys handheld scroll wheel controller for reduced-DOF waypoint

adjustment. Later in development we compared the HL2 to the Meta Quest 2

and we found that the improved field of view and visual clarity of the Quest

2 enabled a more immersive operating experience. Additionally, the Quest 2

hand controllers offered greater precision than the built-in hand tracking of the

HoloLens 2 and were more ergonomic than the Quick Keys controller. Since the

VR interface was developed with Unity, minimal code changes were required to

deploy to Quest 2.

5.4.2 Interactive Planning: Camera Visualization

The virtual world includes the AV camera feed overlays (Fig. 5.3) which aug-

ment the virtual models with tool camera images. This is implemented using

the previously-developed OpenGL-based software [40], running on an external

PC, that projects video frames captured by the tool camera onto texture maps

covering the 3D model of the satellite. Texture maps are calculated real-time

using ray casting to account for occlusions, then published by the renderer to

compressed ROS image topics. The HMD receives the images via the ROS-

TCP-Connector and updates the texture maps on the rendered 3D models. In

addition, operators can view multiple live camera feeds with virtual 2D windows
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Figure 5.3: Augmented Virtuality texture overlays are displayed in the virtual
reality planning environment.

which can be arbitrarily resized and positioned, as can be seen in Fig. 5.4.

5.4.3 Interactive Planning: Virtual Reality Interface

Using the headset, operators can view the virtual world (Fig. 5.4) in 3D and

create IPSE motion plans, which consist of a series of waypoints. The built-

in 6-DOF inside-out tracking on the Meta Quest 2 allows operators to look

around the virtual world by moving in physical space. The 6-DOF tracked

hand controllers allow operators to interact with IPSE and the virtual world.

The hand controllers have joysticks, triggers, and buttons that are mapped to

various actions within the planning environment. Using the hand controllers,

operators can move, rotate, and scale the virtual world to inspect areas of

interest.
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Figure 5.4: A screenshot of the operator’s perspective in the Meta Quest 2
headset. The 3D virtual planning scene (top center) shows the pose of the
space-side robot relative to the satellite and refueling tool station. Operators
can place green waypoint markers to create a motion plan using the Meta Quest
2 6-DOF hand controllers, which are displayed virtually with labeled buttons
(bottom). Virtual camera windows (top left) display live 2D video from space-
side cameras. The waypoint list (top right) displays the waypoints in the motion
plan and highlights the currently selected waypoint.

Figure 5.5: Motion plans are constructed by placing green waypoint markers
(left) in 3D space. A dotted line shows the path of the end effector when moving
from the initial pose to the destination pose.
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Buttons on the controllers allow operators to add and delete waypoints (Fig.

5.5), change waypoint reference frames, and reset waypoints to reference frame

origins. Operators can grab waypoints with the controllers and move them

in all six degrees of freedom. Using an alternate grab button, operators can

translate waypoints along a single axis at a time relative to the selected reference

frame. For precise translational adjustment of waypoint position, operators can

scale the world to “zoom in” before grabbing waypoints, which allows large

physical motion of the hand controllers to be mapped to an arbitrarily small

virtual movement of waypoints. Operators can view the position and rotation of

waypoints using the virtual tooltip which appears above the selected waypoint.

The sequence of waypoints in the motion plan can be viewed in the waypoint

list window. The ability, described above, to precisely move each waypoint

with respect to a selected reference frame solves the first limitation of our prior

implementation on the da Vinci console (Section 5.3).

5.4.4 Interactive Planning: Motion Preview and Execu-
tion

After creating an IPSE motion plan, operators can use buttons and joysticks on

the hand controllers to preview the robot motion and execute the motion plan

on the remote robot. The VR environment always displays the robot model at

its actual location, based on (time-delayed) telemetry feedback. The preview

option moves a second robot model (the preview robot) through each waypoint

in the motion plan, enabling operators to determine whether the motion plan

is acceptable or whether the plan must be revised. The interface also includes

a “scrubber” bar, enabling operators to scroll through the plan at any speed.

83



Deck Camera

Tool Camera
Refueling Tool

Fill/Drain Valve
UR10 Robot

Refueling Tool 
Station

Figure 5.6: The space-side setup includes a mock satellite (right), mock servicing
robot (left), and refueling tool station (center).

Plans are calculated and stored in robot joint space, so operators can be confi-

dent that the actual robot motion will match the previewed motion.

Once satisfied with the plans, operators can choose the execution option to

send the motion plan to the remote robot. In this case, the robot model will

follow the motion plan, subject to the telemetry delay. A heads-up display in

the virtual world contains a progress bar to indicate execution progress. During

execution, the camera views will be shown as AV projections on the models, as in

Figs. 5.3 and 5.4, and optionally on separate 2D virtual windows, as in Fig. 5.4.

The availability of the AV visualization in the VR environment solves the second

limitation of our prior implementation on the da Vinci console (Section 5.3),

which lacked this capability and therefore required operators to leave the console

and view the visualization on a 3D monitor with shutter glasses.
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5.5 Experiments

5.5.1 Experimental Setup

The space side of the experimental setup, including the servicing robot, tools,

and patient satellite, is the same as described in Sec. 4.3.1 except for an improved

design of the refueling tool station.

The operator station is located in a different room, on a different floor of

the building, to reproduce the remote teleoperation experience and to eliminate

the need for noise-canceling headphones, used in Chapter 4. The conventional

teleoperation interface consists of four monitors (one of which is a 3D monitor), a

keyboard, standard mouse, and a 3D mouse, as in Sec. 4.3.1. It includes one new

feature, which leverages the software described in Section 5.4.2 to incorporate

AV visualization in rviz, in addition to displaying it on the 3D monitor as in

our prior implementation. The experimental teleoperation interface consists of

the Meta Quest 2 and hand controllers, as described in Section 5.4. A software-

created 5 second delay is added to emulate the multi-second delay expected

between the ground station and on-orbit robot.

5.5.2 Experimental Task

An experiment begins with the mock satellite already registered using the Vision

Assistant software tool described in Ch. 4. The robot begins in a standard

location not near the mock satellite or tool stowage area and the refueling tool

begins in the tool stowage area. During the experiment, the operator must

first command the robot to the tool stowage area and lower it onto the tool

to engage the magnetic attachment. Once attached, the operator must then
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command the robot to move the tip of the refueling tool inside one of the pipes

on the mock satellite (which represents the fill/drain valve). The experiment is

complete when the operator believes the tool tip is inserted at least 3 cm inside

the pipe, or failed if the operator believes it is not possible to insert the tool tip

into the pipe (for example, if the tool is knocked off the magnetic mount).

5.5.3 Conditions

Each operator performs the experimental task twice, once with each experi-

mental condition. The order of the conditions was randomly selected for each

participant.

Both experimental conditions use the same virtual environment, planning

and execution engine, and satellite registration. The registration error was

estimated to be about 3-5 mm, which is large enough to require operators to

visually confirm (on the camera images) alignment of the refueling tool with

the pipe, rather than relying on the VR environment. Tool pickup was not

adversely affected because the magnetic attachment tolerated that amount of

registration error.

In the test condition, the subject interacts with the planning and execution

engine using the VR interface described in Section 5.4. In the control condition,

the subject uses the 2D interface described in Ch. 4.

5.6 Results

We evaluated the system with an IRB-approved user study (HIRB00000701)

consisting of nine operators all of whom self-reported as “experienced” or “fa-

miliar” with robotic teleoperation. This reflects the intended training level of
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the operators of this system in a real-life environment.

The most important metric for a teleoperation system in a high-risk environ-

ment with a high cost of failure is task success. All users successfully completed

both portions of the experimental task under both interfaces. Two users of the

proposed VR interface and one user of the baseline 2D interface misaligned the

tool after contact with the environment, but all successfully performed the task

using the misaligned tool. All three users who misaligned the tool did so on

their first trial, suggesting that additional practice mitigated this outcome.

We also recorded the results of a NASA TLX survey administered after each

experimental condition. TLX results are reported in Fig. 5.7. The TLX showed

a preference for the proposed VR interface (p=0.070), with four users rating it

as more favorable by at least one full TLX point. Those who did not favor the

VR interface rated it either equal (one user) or only slightly worse than the

baseline 2D interface. The average TLX score was 3.21 for the 2D interface and

2.39 for the VR interface, with standard deviations 0.87 and 0.58 respectively.

Additionally, users were asked to rate the difficulty of using each interface

on a scale from 1 (Very Easy) to 5 (Very Hard). Users reported an average of

1.56 with the VR interface compared to 2.56 with the 2D interface. This also

shows a preference for the proposed VR interface (p=0.081).

Task duration, shown in Table 5.1, for the two conditions also favored the

VR interface. While task duration is much less important than task success

for the application we consider, increased operating time can contribute to the

operators’ mental and physical load. The decrease in task time by 22% and

25% respectively for the two segments of the task may be partially responsible

for the improved TLX score for the VR interface, although this is a weaker
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Figure 5.7: NASA TLX results (left) and operator difficulty ratings (right) show
that most operators preferred the VR interface, and those who did not only had
a slight preference against it.

result (p=0.242 and 0.214 respectively). Additionally, decreased time for oper-

ations without corresponding increases in task failure rate improves the overall

productivity.

Table 5.1: Task Duration (seconds)

2D Mean 2D Std.Dev. VR Mean VR Std.Dev.
Tool Pickup 250 158 198 101
Refueling 740 460 575 346

To further evaluate successful execution of the experimental task, we recorded

the robot’s position and orientation at the end of each segment of the task. Due

to imperfect registration between the robot and the satellite, the absolute po-

sition and orientation are not meaningful. However, the variance reflects the

consistency operators were able to achieve with each interface. These results,
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Table 5.2: Variance in Position (mm2) and Orientation (deg2)

2D VR
Pos. Ori. Pos. Ori.

Tool Pickup 0.84 1.53 0.70 1.00
Refueling 0.66 0.29 0.60 0.25

shown in Table 5.2, indicate no significant difference between the two interfaces.

Cases where the tool became misaligned are excluded from the calculation as

the true tool position is not known.

5.7 Discussion and Conclusions

We developed a virtual reality interface for the Interactive Planning and Su-

pervised Execution (IPSE) robotic planning system as an alternative to the

keyboard and mouse interface presented in Ch. 4. The virtual reality inter-

face was implemented for the Meta Quest 2 standalone headset and 6-DOF

hand controllers. While using the headset, operators can create, preview, and

execute motion plans on satellite servicing robots while monitoring execution

progress with Augmented Virtuality overlays and 2D camera feeds.

The system was evaluated against the baseline keyboard and mouse 2D in-

terface through a user study with nine operators, all of whom rated themselves

as “experienced” or “familiar” with teleoperation systems. We found significant

indication that the VR interface led to a lower operator workload as compared

to the 2D interface in Ch. 4, without any indication that the VR interface low-

ers performance. This improves over the VR interface presented in Ch. 4 (there

termed “3D interface”), which was shown to have worse outcomes and higher
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workload. In addition, the VR interface we implemented requires only a com-

mercial off-the-shelf virtual reality headset and a standard personal computer,

whereas the previous 3D interface used a highly specialized da Vinci master con-

sole. The 2D interface used previously and in this work contains four monitors,

one of which is a stereo display. Thus, the VR interface also offers portability

and economy of space. These advantages were not offset by any loss in perfor-

mance and were accompanied by an improvement in operator workload. Future

work may include experiments with alternative headsets and input devices.
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Chapter 6

Extension to 7-DOF
Teleoperation

In previous chapters we addressed the challenge of commanding a 6-DOF robot

in Cartesian space for applications in an ISAM task. However, ISAM appli-

cations frequently prefer 7-DOF manipulators, such as the Space Station Re-

mote Manipulator System (“Canadarm2”) and two arms of the Special Purpose

Dexterous Manipulator (“Dextre”) on the International Space Station [17] and

multiple arms on the Tiangong space station [24]. 7-DOF manipulators pro-

vide redundancy which can be utilized for increased flexibility in manipulation,

but which must be considered in the arm’s control system. In this chapter we

present an extension of the IPSE system to allow full teleoperation of a 7-DOF

robot with minimal cognitive burden.

6.1 Background

Unlike a 6-DOF robot, where each Cartesian pose can be reached by a small

finite number of configurations which cannot be traversed with self motions, a

7-DOF robot can reach most poses in its workspace with an infinite number of
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different configurations. Therefore, control of a 7-DOF robot must, implicitly

or explicitly, decide which of the infinite feasible configurations to select. Most

commonly, an optimization criterion is defined and various methods are used to

compute or approximate the optimal configuration according to this criterion

[27, 52, 60, 70]. When used with teleoperated robots, these methods impose

no burden on operators, since no additional input is required to select a config-

uration. However, these methods restrict the operator’s ability to control the

robot, and if the optimal solution is not the operator’s desired solution there is

no recourse. For manipulators which are sufficiently similar to the human arm,

a mapping can be used to allow the operator to command the robot simply by

moving their arm [20, 71]. While this has very low cognitive overload, it has the

downside of limiting the robot’s precision to that of the human operator’s arm

and of transmitting accidental motions, similar disadvantages to the method

explored in Ch. 2.

Another, simpler strategy is to simply “lock” one joint of the 7-DOF arm,

fixing it to its current position, which effectively transforms the robot into a

6-DOF arm which does not require infinite redundancy resolution [1]. As with

the optimization criterion strategy, this limits the operator’s ability to take

advantage of the redundancy provided by the 7-DOF arm. Some control of

redundancy can be offered by allowing operators to choose which joint is locked

for a given motion, but the relationship between this choice and the resulting

change in motion profile is unintuitive [1]. Alternatively, the redundancy can be

utilized in a separate control mode which only allows self-motion, such as the

Canadarm’s Pitch Plane Change mode [1]. This allows more intuitive control,

as the user can specify the rotation of some single joint and the self-motion
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constraint uniquely determines the position of the remaining joints. However,

implementing this strategy as a separate mode prevents the redundancy from

being used continuously during an end-effector motion to navigate precise paths.

The operator may be allowed to specify joint trajectories directly, but this im-

poses a high cognitive burden if a specific tool pose is desired, as the operator

is now required to perform complex inverse kinematics calculations mentally.

For the commonly used Spherical-Revolute-Spherical (SRS) type 7-DOF

arm, such as the Canadarm2 [1], the redundant degree of freedom controls the

location of the elbow joint. Specifying this location is a logical way to allow the

operator to control the redundancy. There is no single joint of the SRS robot

which directly controls the elbow joint position, but it is possible to define a pa-

rameter which encodes this location and then derive an analytical solution to the

inverse kinematics problem given a desired end effector pose and value of this

parameter. Many variants of this parameterization exist under many names,

including “redundancy angle” [9], “arm angle” [32, 46, 72], “swivel angle” [44,

71], and “Shoulder-Elbow-Wrist (SEW) angle” [13]. In this work we prefer the

term “SEW angle”. Previous studies have explored the automatic selection of

SEW angle to maximize some criterion, such as distance from joint limits [9,

46]. We explore the use of this parameterization as an easy-to-understand way

for operators to control the redundancy of the SRS arm during teleoperation.

In this work we use the SEW angle to enable a visualization to assist oper-

ators in choosing the best resolution of the redundancy. There is previous work

exploring methods to visualize constraints within the 3D environment [68, 69],

but we are unaware of any research into using visualization over time to aid in

trajectory design.
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Figure 6.1: The updated 2D interface keeps most of the controls the same, but
adds a visualization of the redundancy space available for the selected way-
point’s motion.

6.2 Method

Our method extends the IPSE planning system described in previous chapters,

and its 2D interface, to support planning for an SRS 7-DOF robot. Extending

these methods to the 3D VR interface is left as future work. Though the ma-

jority of the UI is unchanged from the 6-DOF case, significant changes to the

planning engine are required to enable the new redundancy resolution capabil-

ities.
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6.2.1 2D Redundancy Resolution Interface

The updated IPSE interface adds redundancy resolution as an augmentation

to the existing method of specifying poses, so the majority of the interface

is still in place. The user still builds a plan as a series of waypoints, where

the primary datum that defines a waypoint is a Cartesian pose. The tools for

specifying this pose — an interactive marker in RViz and an x-y-z-roll-pitch-

yaw numerical representation in the custom Planner GUI program — are still in

place. However, the previously-offered obstacle avoidance mode, where MoveIt!

[50] was used to compute a collision-free trajectory, is no longer available due to

changes in the planner. Recorded-path mode, where the user could record an

exact path by moving the end-effector marker, is similarly unavailable. Both of

these modes are possible to replicate in the updated planner, but we noted that

operators never elected to use these features in our previous trials and so did

not prioritize their reimplementation. This leaves a straight-line path between

waypoints as the only option.

In the previous 6-DOF case, most desired poses in the robot’s workspace

have a small finite number of inverse kinematics solutions and the robot cannot

navigate from one solution to another using only self-motion. (The exceptions

where a pose has an infinite number of inverse kinematics solutions occur at

singularity, which robot teleoperators typically avoid because of their potential

to amplify slow task-space motions into dangerously fast joint-space motions.)

This means that there is little utility in using these multiple solutions to increase

maneuverability or avoid obstacles, and allowing MoveIt! to automatically select

the appropriate configuration was sufficient. However, with the 7-DOF robot,
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we want to provide the operator full control over the redundancy. To achieve

this, we use a combination of the SEW angle, a method to parameterize the

infinite family of solutions which are mutually reachable with a self-motion, and

the kinematic branch, a categorization of the finitely many families of solutions

defined by their mutual reachability with a self-motion.

6.2.1.1 SEW Angle

As described in Sec. 6.1, the SEW angle is a parameter which encodes the

location of the elbow joint of the SRS manipulator for a given end-effector pose

using a single number. The SEW angle is defined as the angle between two

planes: the shoulder-elbow-wrist plane, which is defined as the plane which

passes through the shoulder, elbow, and wrist points; and the reference plane,

which is defined as the shoulder-elbow-wrist plane of the configuration that

reaches the desired pose with the axes of joints 2 and 4 parallel (typically when

θ3 = 0) [46]. This is a particularly easy parameterization to visualize, since a

zero SEW angle occurs with its elbow at either the highest or lowest position

with respect to the joint 1 axis (except at the shoulder singularity, when all SEW

angles place the elbow at equal height). A SEW angle of π or −π places the

elbow at the opposite extreme, and intermediate SEW values behave intuitively.

Although there is some value in using a static, but operator-selectable, SEW

angle for an entire motion [1], some constrained motions require the SEW an-

gle to change throughout the motion to maintain clearance from some nearby

obstacle, a nearby joint limit, or both. For this reason, we allow the operator

to define a piecewise linear path for the SEW angle to follow over the duration
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of each waypoint, as shown in Fig. 6.1. Users specify this line by manipulat-

ing control points on a 2D representation of the waypoint’s redundancy space.

A graph is displayed, with the x-axis being progress through the waypoint’s

straight-line path and the y-axis being SEW angle. A SEW angle path is repre-

sented by a straight line across the width of this graph, where the y-position of

the line at each point determines the SEW angle at the corresponding point in

the trajectory. By default the SEW angle remains at whatever value it had at

the previous waypoint (or the robot’s current SEW angle for the first waypoint).

To add a control point, the operator clicks on the line and drags the cursor to

the desired position. A new control point is created and placed where the oper-

ator indicated. The operator can move existing control points by clicking them

and dragging, and can delete the selected control point with a button.

Behind the SEW path, the SEW graph is colored to indicate which com-

binations of pose and SEW angle are disallowed or undesirable due to joint

limits, collision, or singularity. In this graph, black areas violate one or more

joint limits; red areas obey joint limits but place the robot in collision; and pur-

ple areas are feasible non-colliding configurations which are close to singularity.

Computation of this graph is discussed in Sec. 6.3.

As the user manipulates the control points, the preview robot in RViz up-

dates to show the corresponding configuration (see Fig. 6.2). The user can

inspect the configuration of the control points to ensure they meet any require-

ments, or can intentionally move a control point into a black, red, or purple

area to visualize the corresponding limit, collision, or singularity. Additionally,

a visualization of the redundancy circle at the preview robot’s configuration

is displayed in the virtual environment. The redundancy circle uses the same

97



Figure 6.2: The RViz visualisation during a planning operation in the pilot
study environment, showing the addition of the redundancy hoop.

color coding as the SEW graph to indicate which SEW angles are disallowed or

dangerous. A ball rides along the circle, allowing the user to change the desired

SEW angle directly in the virtual environment. If a SEW control point is se-

lected, moving this ball moves the selected point along the y-axis in the SEW

graph. If no control point is selected, the ball appears partially transparent

and moving it creates a new control point. The x coordinate of the new control

point is determined by the current preview position.

6.2.1.2 Kinematic Branches

The combination of pose and SEW angle is, in most cases, not enough to

uniquely specify a single configuration. The SRS arm has three additional

redundancies: For any configuration θ = {θ1, ..., θ7}, a configuration θ′ can be
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defined such that

θ′ = {θ1 ± π,−θ2, θ3 ± π, θ4, θ5, θ6, θ7}

where θn ± π is chosen so the result is in the interval [−π, π). The resulting

θ′ has the same end effector pose and same SEW angle, but links 1 and 2 are

rotated by π about the corresponding joint’s axes. The same is true of the

configuration with θ4 negated and θ3,5 offset,

θ′ = {θ1, θ2, θ3 ± π,−θ4, θ5 ± π, θ6, θ7}

and the configuration with θ6 negated and θ5,7 offset.

θ′ = {θ1, θ2, θ3, θ4, θ5 ± π,−θ6, θ7 ± π}

These transformations may be applied in any combination, yielding 8 configu-

rations for each pose and SEW angle.

Unlike SEW angles, kinematic branches typically cannot be traversed with-

out moving the end effector (i.e., without self motion). For this reason, the

operator is not allowed to choose an arbitrary branch for each waypoint. In-

stead, the interface for changing branches is conceptualized as consisting of two

features: First, when a waypoint ends with any of joints 2, 4, or 6 at zero, the

next waypoint offers the operator a choice of branches for those particular joints.

Either branch is reachable from the zero position, as −0 = 0, and so this branch

choice can occur without causing the end effector to deviate from the selected

trajectory. Second, to assist in initiating a branch switch, a waypoint can be

configured to lock any of joints 2, 4, or 6 to zero. This would enable the user
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to select the most advantageous location to make the potentially large motions

involved in a branch switch. This branch switching concept is not implemented

due to time constraints.

6.2.2 Planner Implementation

The implementation of the features described in Sec. 6.2.1 requires SEW- and

branch-aware inverse kinematics and planning. This section describes our im-

plementation of a custom SEW- and branch-aware motion planner. The planner

computes each waypoint’s plan in turn, and uses the final end effector pose, SEW

angle, and branch as the starting values for the next waypoint. The starting

values for the first waypoint are derived from the robot’s current configuration.

6.2.2.1 Workspace projection

While not strictly related to 7-DOF planning, one limitation of the previous

IPSE implementation was its inability to display a preview configuration for

poses outside the robot’s workspace. Such a preview configuration would not

be able to reach the desired goal, but displaying a best-attempt configuration

helps operators understand why their commanded pose is unattainable and how

to fix it. For this reason, the first step in computing a waypoint’s plan is to

project the desired end effector pose into the workspace. The optimization-based

7-DOF SEW-aware inverse kinematics implementation provided in [13] is used

to compute a best-effort inverse kinematics solution for the desired pose and

SEW angle. This software returns a set of configurations and a value indicating

whether the solution reaches the goal position. If this value indicates that

the solution does not reach the goal position, we select an arbitrary returned
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solution and use forward kinematics to get the closest feasible pose to the goal

position. Otherwise the desired pose can be used directly.

6.2.2.2 Interpolation

Once the projected pose is computed, we perform a coordinated interpolation

between translation, rotation, and SEW angle change. The interpolation density

depends on the amount of change in translation, rotation, and SEW angle. Of

those three, only SEW angle changes at a varying rate. Because of this, the

segments between each pair of SEW control handles are interpolated separately.

Each SEW control handle is a (Φ, s) pair where Φ ∈ [−π, π) is the desired

SEW angle and s ∈ [0, 1] is the point along the end-effector path where the

desired SEW angle should be reached. There is an implicit handle at s = 0

where Φ is equal to the SEW angle at the end of the previous waypoint, or the

robot’s current SEW angle if this is the first waypoint. If there is no explicit

handle at s = 1, an implicit handle is added at s = 1 where Φ is equal to

the Φ of the (possibly implicit) previous handle. These handles separate the

waypoint into segments. We refer to the handle at the beginning of the segment

as (Φstart, sstart) and the handle at the end of the segment as as (Φend, send).

For each segment, the start and end pose are interpolated

pstart = pn−1 + sstart

(︂
pn − pn−1

)︂
θstart = slerp (θn−1,θn; sstart)

pend = pn−1 + send (pn − pn−1)

θend = slerp (θn−1,θn; send)
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where pn and θn are the desired end effector position and orientation at way-

point n, or the current pose if n = 0. The number of intermediate points T is

computed as:

T = max
(︄

2,
⌈︄

|pend − pstart|
Dp

⌉︄
,

⌈︄
|θend − θstart|

Dθ

⌉︄
,

⌈︄
|Φend − Φstart|

DΦ

⌉︄)︄

where Dp, Dθ, and DΦ are constants representing the maximum linear, angular,

and SEW angle distance between points. At each integer t from 0 to T , the end

effector pose pt, θt and SEW angle Φt are computed

pt = pstart + st (pend − pstart)

θt = slerp (θstart,θend; st)

Φt = Φstart + st (Φend − Φstart)

where st = t
N−1 . The result is visible in Fig. 6.2: The density of points along

the green trajectory line changes in concert with the slope of the line segments

of the SEW graph in Fig. 6.1.

6.2.2.3 Parametric Inverse Kinematics

In [46], Shimizu et al. describe the computation of a parameterized inverse

kinematics, where expressions for each joint value as a function of the SEW

angle ψ are derived for an SRS robot defined using DH parameters. We use a

KUKA LBR iiwa 14, whose parameters are not defined using the DH convention.

For this robot, the orientation of link 3 relative to the base link 0R3 is given by

0R3 =

⎡⎢⎣ ∗ ∗ cos θ1 sin θ2
∗ ∗ sin θ1 sin θ2

− sin θ2 cos θ3 sin θ2 sin θ3 cos θ2

⎤⎥⎦
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and the expressions for joints 1-3 are

tan θ1 = as23 sinψ + bs23 cosψ + cs23

as13 sinψ + bs13 cosψ + cs13

cos θ2 = as33 sinψ + bs33 cosψ + cs33

tan θ3 = as32 sinψ + bs32 cosψ + cs32

−as31 sinψ − bs31 cosψ − cs31

where, as in [46],

As =
[︂

0usw×
]︂

0Ro
3

Bs = −
[︂

0usw×
]︂2 0Ro

3

Cs =
[︂

0usw
0uT

sw

]︂
0Ro

3

and 0usw is the unit vector of the vector from the shoulder to the wrist and

[v×] denotes the skew-symmetric matrix of the vector v. asij, bsij, and csij

denote the (i, j)th component of As, Bs, and Cs respectively.

Similarly, the value of 4R7 is

4R7 =

⎡⎢⎣ ∗ ∗ cos θ5 sin θ6
− sin θ6 cos θ7 sin θ6 sin θ7 cos θ6

∗ ∗ − sin θ5 sin θ6

⎤⎥⎦
and the expressions for joints 5-7 are

tan θ5 = −aw33 sinψ − bw33 cosψ − cw33

aw13 sinψ + bw13 cosψ + cw13

cos θ6 = aw23 sinψ + bw23 cosψ + cw23

tan θ7 = aw22 sinψ + bw22 cosψ + cw22

−aw21 sinψ − bw21 cosψ − cw21
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where

Aw = 3RT
4 AT

s
0Rd

7

Bw = 3RT
4 BT

s
0Rd

7

Cw = 3RT
4 CT

s
0Rd

7

and 3R4 is the orientation of link 4 in the frame of link 3 and 0Rd
7 is the

desired tip orientation.

As in [46], θ4 is determined independently of the SEW angle as

cos θ4 = ∥0xsw∥2 − d2
se − d2

ew

2dsedew

where dse is the distance from the shoulder to the elbow and dew is the

distance from the elbow to the wrist.

We store these values both in the given parametric form, to facilitate com-

puting the SEW graph (see Sec. 6.3) and as joint angles, using the interpolated

SEW angle for Ψ and the selected kinematic branch to resolve the inverse cosine

ambiguity — that is, to select whether to use the θn ≤ 0 solution or the θn ≥ 0

solution for joints 2, 4, and 6.

The planner is designed to be tolerant at all steps so that users can still

preview an invalid plan in as much detail as possible to understand why the

plan is invalid. The inverse kinematics may result in configurations where some

joints are out of limits, and instead of returning failure, the trajectory is marked

as invalid but computation continues. In some cases, the trajectory may pass

outside the workspace during a trajectory, such as when the interpolated pose
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passes too close to the base of the robot, and there is no real-valued solution (in

this case, the value of cos θ4 is outside the range [−1, 1]). The planner leaves

the configuration blank but still stores the interpolated pose and SEW angle for

visualization. The execute functionality checks that a trajectory is not marked

as invalid before allowing its execution.

6.2.2.4 Trajectory Timing

The prior steps compute a path for each waypoint, and the final step is to

add timing information to turn the path into a trajectory. The time between

each pair of interpolated points is the greater of the linear distance divided by

desired linear speed, angular distance divided by desired angular speed, and

each joint distance divided by that joint’s velocity limit. Acceleration limits are

not currently implemented.

To support error tolerance, interpolation points for which no configuration

could be computed are still assigned a duration. The linear speed and angular

speed limits are used, and the joint speed limits are not. As with Sec. 6.2.2.1,

this offers an improvement over the previous implementation by allowing more

robust preview of invalid trajectories.

6.3 Computing the SEW Graph

When a new trajectory is planned, a SEW graph update is queued. Currently,

the colors of the SEW graph are computed by sampling each pixel. The config-

uration corresponding to that pixel is computed using the parametric configu-

ration described in Sec. 6.2.2.3, and the resulting joint configuration is checked

for violations of joint angles, collision constraints, or singularity requirements
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using MoveIt!. Although the computation is multi-threaded, it is still compu-

tationally intensive, taking up to 3 seconds on a 6-core Intel® Core™ i7-8700

CPU for a 250 × 60 sample SEW graph. Future work could include improving

the actual computation time by precomputing reachability maps, using closed-

form expressions for joint limits in terms of the SEW angle as described in

[46], or improving collision check batching. Perceived computation time could

be decreased by using similar progressive loading techniques to those used in

image file formats, which allow the viewer to begin perceiving detail before the

image finishes loading. More sophisticated image upscaling could reduce the

appearance of pixelation.

To avoid repeated work, the colorization of the SEW hoop is derived by

taking a vertical slice of the already-computed SEW graph at the appropriate x

coordinate. Best results are achieved when the vertical resolution of the SEW

graph is an integer multiple of the number of segments used to render the hoop.

6.4 Experiments

We conducted a pilot study using a simulated KUKA LBR iiwa 14 collabo-

rative robot. This is a 7-DOF SRS robot where each joint has limits smaller

than [−π, π), so use of the redundancy to manage joint limits is necessary in

some situations. We designed an “obstacle course” environment with 6 goals

of varying difficulty, shown in Fig. 6.3. Goals 1 and 2 can be accessed with

minimal difficulty, goals 3 and 4 require navigating the robot through a nar-

row gap, and goals 5 and 6 require the robot to be operated near the edge of

its workspace. Gazebo is used for dynamic simulation of the robot, but the
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Figure 6.3: The experimental environment, with the six spherical touch targets
labeled 1-6.

obstacles are only present in the collision-checking environment and the RViz

visualization. Therefore, collisions are not simulated, but are monitored. The

task is considered a failure if the robot collides with the environment. Due to

the limitations of the simulation environment, Augmented Virtuality (AV) is

not used in this experiment.

The experiment begins with the robot in a standard position, with the end

effector between goals 3 and 4. The operator must touch all six goal spheres

with the end effector in any order. Each operator performs the experimental

task twice: once using the proposed 7-DOF extension of IPSE, and once using

a simplified version where the SEW graph is not visible, the redundancy circle

is not colored, and the operator is restricted to commanding a single goal SEW

angle at each waypoint. This is treated by the planner as a single linear segment

spanning the entire waypoint, with the single control point positioned at the

end of the motion.

The interfaces are evaluated on task success rate, total time taken to touch

all six targets, and the results of a NASA TLX survey and difficulty rating to
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Figure 6.4: Duration of each task segment from both operators under both
experimental conditions. Some segments took longer under the control case,
while others were longer in the experimental case. Segments are numbered in
the order the operators attempted them, which was the same for both operators,
not by which target is approached.

judge operator workload. To minimize the impact of learning effects between

trials, the order of the conditions is randomized.

6.5 Results

We evaluated the system with an IRB-approved pilot study (HIRB00000701)

consisting of two operators, both of whom self-reported as “experienced” with

robotic teleoperation. This experience level reflects the intended training level

of the operators of this system in a real-world environment.

On the most important metric, task success rate, the two experimental con-

ditions were equal. Both subjects were able to touch all targets successfully.

Task duration also shows no conclusive difference between the two interfaces,
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Figure 6.5: NASA TLX (left) and difficulty rating (right). The TLX result
shows a clear preference for the experimental condition, while the difficulty
rating is less conclusive.

with one operator completing the task 15% faster using the proposed method

and the other 3% slower. In both cases, the subject’s second trial was faster

than the first, suggesting the time difference is in part caused by a learning

effect. Although task order was not specified, the operators chose to approach

the goals in the same order in all trials, allowing direct comparison of task seg-

ments. Fig. 6.4 shows that task segment duration has no strong correlation

with experimental condition.

Unlike the objective metrics, the NASA TLX survey results show a corre-

lation. The TLX rating for the experimental case is lower (more favored) than

for the control case, by 0.73 for Subject 1 and 1.33 for Subject 2. While the
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numerical difference is large, with only two subjects this result does not reach

statistical significance (with p = 0.18), but it is sufficient to justify a larger trial.

For the difficulty rating, subjects are asked to rate the difficulty on a scale

of 1 to 5. For all trials except one, the reported difficulty was the lowest allowed

value, and the remaining trial was only one step above that. The low resolution

of this rating and small sample size mean no conclusion can be drawn from

these results.

6.6 Discussion and Conclusions

We presented an extension of the Interactive Planning and Supervised Exe-

cution (IPSE) teleoperation method to 7-DOF SRS manipulators, which are

commonly used in ISAM applications. We use the SEW angle parameteriza-

tion of redundancy, along with the concept of kinematic branches, to provide a

human-friendly method of resolving the redundancy of the 7-DOF robot while

still allowing full use of the robot’s workspace. A 2D display helps operators

define a piecewise linear path for the SEW angle to follow over the course of a

single waypoint’s execution, enabling easy traversal of narrow gaps where precise

SEW angle control is required to avoid obstacles and joint limits. We evaluated

the proposed interface with a pilot study in simulation and found justification

to perform a larger study.

Future work includes implementation of the proposed kinematic branch

switching functionality, improvements to the computation speed and resolu-

tion of the SEW graph, extension of the 7-DOF teleoperation functionality into

the VR interface, and evaluation with a physical robot.
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Chapter 7

Discussion and Conclusion

This thesis explores teleoperation methods for the purpose of In-Space Servicing,

Assembly, and Manufacturing (ISAM), particularly focusing on the challenges

of communications delay, non-ideal camera views, and the very high cost of

failure.

7.1 Summary

Chapter 1 outlines the opportunities offered by ISAM, explains the need for

ground-based teleoperation, and details the challenges posed by this unique en-

vironment. In Chapter 2 we consider a direct teleoperation approach, while also

incorporating a previously-developed Augmented Virtuality (AV) visualization

tool. We aim to imitate the direct teleoperation methods which are successful

in surgical robotics but which cannot be used in the presence of multi-second

time delay. A pilot study found that the combination of AV visualization and

direct teleoperation led to significant improvement in task success rate, but we

did not quantify how much of the improvement was due to the teleoperation

method and how much was attributable to the AV visualization.
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In Chapter 3 we conduct a detailed evaluation with trained experts in tele-

operation for ISAM. From consultation with the experts, we develop a new

conventional interface which mimics the one the experts are trained to use. We

conduct an evaluation with three experimental conditions: conventional visual-

ization and teleoperation, AV visualization with conventional teleoperation, and

AV visualization with direct teleoperation. Results show that AV visualization

improves performance and decreases operator workload, but direct teleoperation

is detrimental to both performance and workload.

Based on the results detailed in Chapter 3, we develop the Interactive Plan-

ning and Supervised Execution (IPSE) system for ISAM teleoperation. Chapter

4 describes the initial development of IPSE. Rather than attempting to imitate

methods from surgical robotics, we design a tool which allows for slow, deliber-

ate planning, extensive verification, and execution with as much supervision as

the time delay allows. The result is a visual planning environment where the

operator builds a plan from waypoints, may visualize the plan’s execution in a

virtual replica of the remote environment, and may modify the plan until satis-

fied with its safety (Interactive Planning). The operator can then execute the

plan, in whole or in part, while monitoring its progress in the virtual environ-

ment and with camera views (Supervised Execution). IPSE supports multiple

user interfaces, and we present a 2D interface using a standard display, mouse,

and keyboard, and a 3D interface using the da Vinci surgical robot for visual-

ization and user input. Our evaluation indicates that the 2D interface to IPSE

significantly improves performance and operator workload, but the 3D interface

performs worse than the conventional interface. We attribute this decrease in
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performance to the operators’ lack of familiarity with the da Vinci Master Con-

sole hardware and to key features which were present in the 2D interface but

not the 3D interface.

In Chapter 5 we present an alternative 3D interface to IPSE which uses a

Head-Mounted Display (HMD) and commercial handheld controllers in place of

the da Vinci. We describe how the features of IPSE are adapted for use in the

HMD, and conduct an evaluation of the new 3D HMD interface compared to

the previous best 2D interface. We find that the new interface is comparable or

better than the 2D interface in task performance and operator workload.

Finally, in Chapter 6 we extend IPSE with features to control the redun-

dancy of a 7 degree of freedom (DOF) manipulator. We use the SEW angle

parameterization to allow operator control of the redundant DOF with mini-

mal workload overhead. We propose an interface for providing piecewise linear

control of the SEW angle over the course of a waypoint’s execution and a novel

visualization of joint limit, collision, and singularity constraints in terms of the

SEW angle path. A pilot study justifies further investigation into 7-DOF IPSE.

7.2 Contributions

The contributions of this thesis are the development of IPSE and several con-

clusions about effective teleoperation interfaces for ISAM applications. We de-

termined that conveying human input directly to robot action is ill-suited for

this task because of the likelihood of conveying accidental actions. With IPSE

we showed that a system that allows detailed planning and verification before

execution leads to higher task success and lower cognitive burden. In our user
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studies we found that defining waypoints by manipulating objects in a 3D en-

vironment was easier for tasks with low precision requirements, such as gross

motions, but in tasks which require finer positioning users prefer additional

tools such as numerical inputs or a “snap-to-frame” feature with frames that

are relevant to the task. We observed the importance of providing an intuitive

method to move and scale the user’s view when precisely interacting with the

3D scene, since ideal viewpoint positioning helps users provide precise input;

this was most visible in the comparison between the 3D da Vinci and 3D HMD

interfaces to IPSE. Finally, we found that the SEW angle parameterization of

redundancy was a useful tool in human-in-the-loop command of a 7-DOF robot,

and that a 2D visualization of the redundancy space with marked regions of joint

limits, collisions, and singularities assisted the user in designing feasible and safe

trajectories for the redundant robot.

7.3 Future Work

There are many more opportunities in the area of ground-based teleoperation

for ISAM. On the ground side, automated planning can be combined with IPSE

to assist the user in developing a plan while still allowing full human oversight

over what is executed. On a single-waypoint scale, the SEW graph provides a

2D environment with obstacles and disfavored areas which is well-suited for a

low-dimensional path planner such as A*. On a full-plan scale, a path planner

could automatically place the minimal number of waypoints necessary to reach

the specified goal pose while avoiding joint limits, collision, and regions near

singularity.
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Another potential ground-based direction of research is in unifying the 2D

and 3D interfaces. Currently, each has an advantage: the precision and famil-

iarity of a mouse and keyboard make the 2D interface to IPSE easier to interact

with for most tasks. However, the 3D interface offers depth perception, easier

manipulation of the view into the 3D scene, and direct 6-DOF positioning of

waypoints using hand controls. An interface which married the two may be able

to offer the benefits of both.

In space, the area with the greatest potential is automated error detection.

Currently, Interactive Planning comprises most of the implementation of IPSE.

This is by necessity, as the communications delay means that timely reaction to

environmental feedback on the ground is impossible. However, if a component

of IPSE were able to run on the space side of the communications barrier, much

more is possible. One especially useful ability for space-side processing is error

detection. Each object in the environment could be tracked, and expectations

of which objects will move in which way can be encoded into the plan which

is sent to the space-side robot. During execution, the space-side processing

could monitor the motion of each object and trigger an error condition if the

motion of any object deviates from the expected. In cases where reaction time

is critical, such as when an important object is accidentally freed from whatever

mechanism keeps it in place and begins moving away, automated error recovery

could also be beneficial.

Space-side processing could also open the door to more complex interactions

between the robot and the world. For example, a cutting task may benefit from

hybrid position-force control, and IPSE could be used to specify the position

component of motion, the desired force or torque to be applied, and how to
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resolve the redundancy for motions along the force-controlled axis. Similarly,

many fine manipulation tasks may benefit from visual servoing, and IPSE could

be used to indicate the target and to give safety bounds which the robot must

stay within during the visual servoing task.
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Appendix A

Installing and Running IPSE

To install the Interactive Planning and Supervised Execution (IPSE) system,

visit https://git.lcsr.jhu.edu/teleop/satellite_surgery (access permis-

sions and Johns Hopkins University user account required). To install the 6-

DOF version using the UR10, stay on the default master branch. To install the

7-DOF version using the KUKA, switch to the seven-dof branch. Follow the

instructions in INSTALL.md to install.

To run the system, first activate the ROS workspace with

source deve l / setup . bash

or the equivalent setup file for your shell, within the workspace directory. If you

installed the 6-DOF version, run IPSE using the command

ros launch s a t e l l i t e _ s u r g e r y s im_sa t e l l i t e_surge ry . launch

If you installed the 7-DOF version, run IPSE using the command

ros launch s a t e l l i t e _ s u r g e r y s im_sa t e l l i t e_surge ry . launch \
space_robot :=kuka
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