388 research outputs found

    Improved tabu search and simulated annealing methods for nonlinear data assimilation

    Get PDF
    Nonlinear data assimilation can be a very challenging task. Four local search methods are proposed for nonlinear data assimilation in this paper. The methods work as follows: At each iteration, the observation operator is linearized around the current solution, and a gradient approximation of the three dimensional variational (3D-Var) cost function is obtained. Then, samples along potential steepest descent directions of the 3D-Var cost function are generated, and the acceptance/rejection criteria for such samples are similar to those proposed by the Tabu Search and the Simulated Annealing framework. In addition, such samples can be drawn within certain sub-spaces so as to reduce the computational effort of computing search directions. Once a posterior mode is estimated, matrix-free ensemble Kalman filter approaches can be implemented to estimate posterior members. Furthermore, the convergence of the proposed methods is theoretically proven based on the necessary assumptions and conditions. Numerical experiments have been performed by using the Lorenz-96 model. The numerical results show that the cost function values on average can be reduced by several orders of magnitudes by using the proposed methods. Even more, the proposed methods can converge faster to posterior modes when sub-space approximations are employed to reduce the computational efforts among iterations

    A modified differential evolution based solution technique for economic dispatch problems

    Get PDF
    Economic dispatch (ED) plays one of the major roles in power generation systems. The objective of economic dispatch problem is to find the optimal combination of power dispatches from different power generating units in a given time period to minimize the total generation cost while satisfying the specified constraints. Due to valve-point loading effects the objective function becomes nondifferentiable and has many local minima in the solution space. Traditional methods may fail to reach the global solution of ED problems. Most of the existing stochastic methods try to make the solution feasible or penalize an infeasible solution with penalty function method. However, to find the appropriate penalty parameter is not an easy task. Differential evolution is a population-based heuristic approach that has been shown to be very efficient to solve global optimization problems with simple bounds. In this paper, we propose a modified differential evolution based solution technique along with a tournament selection that makes pair-wise comparison among feasible and infeasible solutions based on the degree of constraint violation for economic dispatch problems. We reformulate the nonsmooth objective function to a smooth one and add nonlinear inequality constraints to original ED problems. We consider five ED problems and compare the obtained results with existing standard deterministic NLP solvers as well as with other stochastic techniques available in literature.Fundação para a Ciência e a Tecnologia (FCT

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Automated, Parallel Optimization Algorithms for Stochastic Functions

    Get PDF
    The optimization algorithms for stochastic functions are desired specifically for real-world and simulation applications where results are obtained from sampling, and contain experimental error or random noise. We have developed a series of stochastic optimization algorithms based on the well-known classical down hill simplex algorithm. Our parallel implementation of these optimization algorithms, using a framework called MW, is based on a master-worker architecture where each worker runs a massively parallel program. This parallel implementation allows the sampling to proceed independently on many processors as demonstrated by scaling up to more than 100 vertices and 300 cores. This framework is highly suitable for clusters with an ever increasing number of cores per node. The new algorithms have been successfully applied to the reparameterization of a model for liquid water, achieving thermodynamic and structural results for liquid water that are better than a standard model used in molecular simulations, with the the advantage of a fully automated parameterization process

    Population-based algorithms for improved history matching and uncertainty quantification of Petroleum reservoirs

    Get PDF
    In modern field management practices, there are two important steps that shed light on a multimillion dollar investment. The first step is history matching where the simulation model is calibrated to reproduce the historical observations from the field. In this inverse problem, different geological and petrophysical properties may provide equally good history matches. Such diverse models are likely to show different production behaviors in future. This ties the history matching with the second step, uncertainty quantification of predictions. Multiple history matched models are essential for a realistic uncertainty estimate of the future field behavior. These two steps facilitate decision making and have a direct impact on technical and financial performance of oil and gas companies. Population-based optimization algorithms have been recently enjoyed growing popularity for solving engineering problems. Population-based systems work with a group of individuals that cooperate and communicate to accomplish a task that is normally beyond the capabilities of each individual. These individuals are deployed with the aim to solve the problem with maximum efficiency. This thesis introduces the application of two novel population-based algorithms for history matching and uncertainty quantification of petroleum reservoir models. Ant colony optimization and differential evolution algorithms are used to search the space of parameters to find multiple history matched models and, using a Bayesian framework, the posterior probability of the models are evaluated for prediction of reservoir performance. It is demonstrated that by bringing latest developments in computer science such as ant colony, differential evolution and multiobjective optimization, we can improve the history matching and uncertainty quantification frameworks. This thesis provides insights into performance of these algorithms in history matching and prediction and develops an understanding of their tuning parameters. The research also brings a comparative study of these methods with a benchmark technique called Neighbourhood Algorithms. This comparison reveals the superiority of the proposed methodologies in various areas such as computational efficiency and match quality

    Wind Energy Potential Estimation via a Hybrid Data Assimilation Method

    Get PDF
    This research proposes a 4D-Var ensemble-based data assimilation framework for wind energy potentialestimation. In this formulation, in the 4D-Var context, the intrinsic need of adjoint models is avoided via the use of an ensemble of model realizations. These ensembles are employed to build control spaces onto which analysis increments are estimated. Control spaces are built via a modified Cholesky decomposition. The particular structure of this estimator allows for a matrix-free implementation of the proposed filter formulation. Experimental tests are performed,making use of wind turbines catalogs and the Atmospheric General Circulation Model Speedy. The results reveal that our proposed framework can properly estimate wind energy potential capacities within reasonable accuracies in terms of Root-Mean-Square-Error, and even more,these estimations are better than those of traditional 4D-Var ensemble-based methods. Besides, Wind Turbine Generators(WTGs) with low rate-capacity are the ones which provide homogeneous behavior of error estimations around the globe. As the rate-capacity increases,the potential energy increases as well, but the error dispersion of ensemble members grow, which can difficult decision-makingprocesses. Of course, rate-capacity is just a single parameter of many in the WTG context, and we do not consider, for instance, economic aspects in our study, which can be crucial for deciding whether or not to employ green sources of energy.DoctoradoDoctor en Ingeniería de Sistemas y Computació

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    Applied (Meta)-Heuristic in Intelligent Systems

    Get PDF
    Engineering and business problems are becoming increasingly difficult to solve due to the new economics triggered by big data, artificial intelligence, and the internet of things. Exact algorithms and heuristics are insufficient for solving such large and unstructured problems; instead, metaheuristic algorithms have emerged as the prevailing methods. A generic metaheuristic framework guides the course of search trajectories beyond local optimality, thus overcoming the limitations of traditional computation methods. The application of modern metaheuristics ranges from unmanned aerial and ground surface vehicles, unmanned factories, resource-constrained production, and humanoids to green logistics, renewable energy, circular economy, agricultural technology, environmental protection, finance technology, and the entertainment industry. This Special Issue presents high-quality papers proposing modern metaheuristics in intelligent systems
    • …
    corecore