
Clemson University
TigerPrints

All Dissertations Dissertations

5-2011

Automated, Parallel Optimization Algorithms for
Stochastic Functions
Dheeraj Chahal
Clemson University, dchahal@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Chahal, Dheeraj, "Automated, Parallel Optimization Algorithms for Stochastic Functions" (2011). All Dissertations. 706.
https://tigerprints.clemson.edu/all_dissertations/706

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268634564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/706?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Automated, Parallel Optimization Algorithms
for Stochastic Functions

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Science

by

Dheeraj Chahal

May 2011

Accepted by:

Dr. Sebastian Goasguen, Committee Chair

Dr. Steve Stuart

Dr. D. E. Stevenson

Dr. Pradip Srimani

Abstract

The optimization algorithms for stochastic functions are desired specifically

for real-world and simulation applications where results are obtained from sampling,

and contain experimental error or random noise. We have developed a series of

stochastic optimization algorithms based on the well-known classical down hill sim-

plex algorithm. Our parallel implementation of these optimization algorithms, using

a framework called MW, is based on a master-worker architecture where each worker

runs a massively parallel program. This parallel implementation allows the sampling

to proceed independently on many processors as demonstrated by scaling up to more

than 100 vertices and 300 cores. This framework is highly suitable for clusters with an

ever increasing number of cores per node. The new algorithms have been successfully

applied to the reparameterization of a model for liquid water, achieving thermody-

namic and structural results for liquid water that are better than a standard model

used in molecular simulations, with the the advantage of a fully automated parame-

terization process.

ii

Dedication

I dedicate my dissertation work to my teachers, my family and many friends.

iii

Acknowledgments

I am heartily thankful to my advisor, Dr. Sebastian Goasguen, for his encour-

agent, support and guidance during this work. I am indebted to Dr. Steve Stuart for

guiding me through this research. I greatfully acknowledge him and deeply appreciate

his concern for my problems during my research. I admit that without his support

this work could not be completed.

The members of my dissertation committee, Dr. D. E. Stevenson, and Dr.

Pradip Srimani, have generously given their time and expertise to better my work. I

thank them for their contribution and their support.

My wife, Dr. Neetu Tomar, has always been an inspiration for me. Her

encouragement to pursue higher studies has resulted in this work.

All through the difficult phases during this work my daughter Srinidhi Chahal

was a source of joy for me. I will always regret for denying her share of love for the

first two years of my study at Clemson.

My parents, brother, sister-in-law, parents-in-law, brother-in-law should be

acknowledged for motivating me for higher studies.

Special thanks to my friends Dr. Neeraj Gohad, Radheyshyam, Dr. Indranil

Mitra, Rooplekha Mitra for their support and encouragement during the difficult

times. I also acknowledge all my friends in India who were very supportive, though

thousands of miles away.

iv

I am also thankful to the School of Computing and Clemson University for

providing the resources.

I would like to sincerely thank the whole hpc team for the timely responses and

tireless efforts. I also thank physics department for providing the financial support

in the form of teaching assistantship. In particular, I thank Mr. Jerry Hester for

providing me an opportunity to work, teach and learn in the physics department.

My sincere thanks to Stuart research group in chemistry. They showed im-

mense patience while listening to my research updates specially during group meet-

ings. I hope, I compensated their fruitless effort to teach me chemistry by giving

them my share of bagles.

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 Problem Statement . 5
1.2 Research Approach . 8
1.3 Optimization Methods . 10
1.4 Document Organization . 17

2 Algorithms . 19
2.1 Simplex Algorithm . 19
2.2 Max noise algorithm . 21
2.3 Point-to-point comparison algorithm 25
2.4 Point-to-point with maxnoise . 28

3 Work Completed . 30
3.1 Work Completed . 30
3.2 Performance Measurement of MN algorithm 34
3.3 Performance Measurement of PC and PC+MN 40
3.4 Scale Up . 53
3.5 Application . 55

4 Implementation . 65
4.1 Hardware . 65
4.2 Software . 66

vi

4.3 Parallellization and Distribution . 71

5 Conclusions and Discussion . 75
5.1 Conclusions . 75
5.2 Recommendations for Future Research 77

Bibliography . 79

vii

List of Tables

3.1 Results of optimization using MN algorithm with controlled noise. . . 35
3.2 Results of optimization using Anderson algorithm with controlled noise. 36
3.3 Processor allocation for Rosenbrock optimization using MW framework. 53
3.4 Numerical values of initial and final parameters obtained with MN,

PC, and PC+MN algorithms. 62
3.4 Property (Pr) values(V) and error (E) : Diffusion constant (D), hydrogen-

hydrogen (HH) g(r), Oxygen-Hydrogen(OH) g(r), Oxygen-Oxygen (OO)
g(r), Presssure (P) and Energy (E) as obtained using MN, PC, PC+MN
compared with TIP4P and Experimantal data. 64

viii

List of Figures

1.1 Optimization methods . 12

3.1 MW software implementation . 31
3.2 MW architecture. 33
3.3 Rosenbrock function. 34
3.4 Function Value vs time for MN algorithm (left) and Anderson al-

gorithm (right) with five different inputs. Each input tested with
k=2,3,4,5 for MN algorithm and k1=20, 210, 220, 230 for Anderson al-
gorithm . 40

3.5 Performance of (a) MN vs. DET (b) PC vs. MN, and (c) PC+MN vs.
PC, at three different noise levels (σ0 = 1, 100, 1000), averaged over
100 different initial simplex states for Rosenbrock optimization. . . . 45

3.6 Performance of (a) MN vs. DET (b) PC vs. MN, and (c) PC+MN vs.
PC, at three different noise levels (σ0 = 1, 100, 1000), averaged over
100 different initial simplex states for Powell function optimization. . 47

3.7 Performance of PC for K=1 vs K=2, at noise level σ0 = 1000, averaged
over 100 different initial simplex states for Rosenbrock optimization. . 47

3.8 Performance of PC when considering error bar only in condition 1 (c1)
compared to only condition 6 (c6), at noise level σ0 = 1000, averaged
over 100 different initial simplex states for Rosenbrock optimization. . 48

3.9 Performance of PC algorithm when considering error bar in condition
1 (c1) only and comparing with a strict implementation considering
error bar in all conditions (c1-7), at noise level σ0 = 1000, averaged
over 100 different initial simplex states for Rosenbrock optimization. . 48

3.10 Performance of PC algorithm when considering error bar in condition
2 only and comparing with a strict implementation considering error
bar in all conditions (c1-c7), at noise level σ0 = 1000, averaged over
100 different initial simplex states for Rosenbrock optimization. . . . 49

3.11 Performance of PC algorithm when considering error bar in condition
3 only (c3) and comparing with a strict implementation considering
error bar in all conditions (c1-7), at noise level σ0 = 1000, averaged
over 100 different initial simplex states for Rosenbrock optimization. . 49

ix

3.12 Performance of PC algorithm when considering error bar in condition
4 only (c4) and comparing with a strict implementation considering
error bar in all conditions (c1-7), at noise level σ0 = 1000, averaged
over 100 different initial simplex states for Rosenbrock optimization. . 50

3.13 Performance of PC algorithm when considering error bar in condition
5 only (c5) and comparing with a strict implementation considering
error bar in all conditions (c1-7), at noise level σ0 = 1000, averaged
over 100 different initial simplex states for Rosenbrock optimization. . 50

3.14 Performance of PC algorithm when considering error bar in condition
6 only (c6) and comparing with strict a implementation considering
error bar in all conditions (c1-7), at noise level σ0 = 1000, averaged
over 100 different initial simplex states for Rosenbrock optimization. . 51

3.15 Performance of PC algorithm when considering error bar in condition
7 only (c7) and comparing with a strict implementation considering
error bar in all conditions (c1-7), at noise level σ0 = 1000, averaged
over 100 different initial simplex states for Rosenbrock optimization. . 51

3.16 Performance of PC algorithm when considering error bar in condition
1 only and comparing with stricter implementation considering error
bar in conditions 1, 3, 6, at noise level σ0 = 1000, averaged over 100
different initial simplex states for Rosenbrock optimization. 52

3.17 Performance of PC algorithm when considering error bar in condition
1, 3, 6 only and comparing with stricter implementation considering
error bar in all conditions, at noise level σ0 = 1000, averaged over 100
different initial simplex states for Rosenbrock optimization. 52

3.18 MW Scale-up . 54
3.19 TIP4P water molecule model with parameters 57
3.19 Oxygen-oxygen radial distribution functions (RDFs) for TIP4P wa-

ter models with (a) non-optimal parameters, (b)parameters obtained
using the MN algorithm, and (c) parameters obtained using the PC
algorithm (d) parameters obtained using PC+MN algorithm, com-
pared with RDFs obtained from experiment[1] and the standard TIP4P
model[2]. 59

3.20 g(r) curves for water model with parameters obtained from various
stages of simplex optimization. 60

4.1 Directory structure created by user 67
4.2 Directory structure after one simulation 68
4.3 MW architecture . 73

x

Chapter 1

Introduction

In scientific and engineering research, parameter estimation and model cali-

bration are common problems and requires rigorous simulations to understand the

behavior of real systems. There is an increasing demand to design software to per-

form automatic optimization of some derived quantity known as objective function, a

measure of “fitness” of the design. The computation of this objective function value

is often an extremely computationally intensive process which must be performed

numerous times to find the optimum parameters. An ability to deploy the parallel

and distributed computing resources that form the basis of contemporary high perfor-

mance computing architectures would be a distinct advantage in making automatic

optimization a practical tool in the engineering design process [3] [4].

The best set of parameters which minimizes a cost function can be obtained

by a number of optimization techniques. Thses optimization methods are broadly

categorized as local optimzation methods and global optimization methods. The

local optimization methods use the information from the neighborhood of the cur-

rent approximation and always converge to the nearest local extremum close to the

starting spproximation. The local optimization algorithms are further categorized

1

as gradient-independent such as downhill simplex or Powell and gradient-based algo-

rithms such as least-squares fitting, steepest descent and Newton-Raphson methods.

The global optimization methods can be classified as detereministic, stochastic and

heuristic. The most successful deterministic optimization algorithms are inner ap-

proximation, outer approximation [5] and branch and bound [6, 7]. Stochastic opti-

mization algorithms incorporate some probabilistic element in the objective function

or the algorithm implementation. Some popular stochastic optimization algorithms

are simulated annealing, stochastic tunneling and parallel tempering. The most popu-

lar global optimization algorithms are heuristic and metaheuristic algorithms, which

includes evolutionary algorithms (genetic algorithms and evolutionary strategies),

swarm-based optimization algorithms (particle swarm optimization and ant colony

optimization) and tabu search.

However, all these methods have their intrinsic drawbacks. For example, the

linear least-squares fitting method has many disadvantages when applied to parame-

ter estimation for molecular dynamics simulations. These include poor extrapolation

properties, limitation in the shapes that linear models can assume over long ranges,

and sensitivity to outliers. Gradient-based methods are useful if the molecular prop-

erties in question are direct functions of the potential parameters. Unfortunately,

in molecular simulations, the dependence of the cost function on the individual pa-

rameter values typically does not admit to analytical study, which prevents the use

of gradient-based optimization methods. The genetic algorithms (GAs), an example

of heuristic, stochastic optimization methods, are sometimes used by computational

chemists to solve minimization problems such as conformational search, and molecu-

lar docking. The drawback of GA is that it can only be used for a parameter space

with few dimensions and the best solution may not be chemically reasonable.

One class of algorithms to solve the optimization problems is direct search

2

algorithms. Direct search methods represent unconstrained optimization techniques

that do not use derivatives. These algorithms include Nelder-Mead simplex algorithm,

the multidirectional search methods and the Hook-Jeeves algorithm. The study of

optimization methods that do not require the knowledge of gradients is an active re-

search research area. The downhill (Nelder-Mead) simplex algorithm [8], a powerful

and robust optimization method, is widely used for parameterization and has the ad-

vantage of being gradient-free. It belongs to a class of direct search methods [9, 10],

i.e., methods that do not use derivatives. Simplex is advantageous as it requires eval-

uation of function at d + 1 points in a d dimensional parameter space, while other

direct search methods evaluate function at more than d+1 points. It also has the ad-

vantage of being easily parallelized at levels distinct from cost function evaluation [11]

. The parallel simplex has been implemented by various scientists in different ways

for various applications [12, 13, 14]. The Nelder-Mead simplex method is a popular

direct search method and it has been included as a standard featues in many commer-

cially available software libraries incuding NAG, IMSL, and Matlab [15]. This method

was successfully implemented by Faller et al. [16] for parameterization of molecular

simulation force fields. Norrby and Liljefors [17] have also successfully used simplex

with Newton-Raphson optimization to develop force-field parameters. Gaiddon et al.

performed mono-objective and multiobjective optimization using simplex [18].

In many simulations, the observed outcome of the simulation includes a con-

tribution from noise due to sampling error; a typical example would be molecular

dynamics simulations of a thermodynamically averaged property. Because the sam-

pling errors are non-systematic and independent, the variance of this noise in any

averaged property decreases over time, so that the measurement gets more reliable

with continued sampling. Thus the observed value of the objective function can be

viewed as a deterministic, underlying value (that which would result from infinite

3

sampling), plus some incremental noise whose variance decreases with time. Thus,

although the objective function can be very noisy and non-continuous, the underlying

(noise-free) surface is relatively smooth.

The optimization technique used to find a combination of input parameters

that generate the optimal value for an objective function that has random noise in

the measurement is known as stochastic optimization [19]. There are various methods

that can be used to solve the problem of optimization with noise in the function eval-

uation. One such approach is response surface methodology [20]. Box and Wilson [21]

used this strategy to minimize a quadratic objective function perturbed by random

noise of constant strength. Many researchers derived new optimization startegies us-

ing response surface methodology as a foundation. Barton and Ivey [22] implemented

variation of the Nelder-Mead algorithm to deal with noisy function evaluations. Fan

et al. implemented a stochastic response surface optimization via an enhanced Nelder-

Mead simplex search procedure [23]. These authors tested Nelder-Mead variants on a

suite of test problems using a stochastic noise term sampled from a truncated normal

distribution which is added to the underlying function. Another famous approach to

deal with noise in the objective function is stochastic approximation. This approach

is used by Gilmore and Kelly [24] for an implicit filtering algorithm. Spall [25] [26]

used a similar approach for stochastic approximaton algorithm development.

There are two approaches to understanding the behavior of optimization strate-

gies: theoretical and empirical [27]. Theoretical study is concerned with obtatining

proof of convergence under certain general conditions. This type of investigation is

certainly useful, but often provides very little information for practitioners to choose

one algorithm or the other. As demonstrated by Powell [28], there is hardly any cor-

relation between the algorithms that enjoy guranteed convergence in theory and the

algorithms that are actually used by practitioners. Empirical investigations eveluate

4

the performance of optimization algorithm on various standard objective functions,

including discontinuous and multimodal functions. Factors like the initial state of the

system and termination criterion can play an important role in the outcome of the

optimization process.

The optimization process is computationally intensive and hence requires an

automated procedure. During the last decade there has been considerable progress

in the development of distributed computer systems using the power of multiple

processors to efficiently solve complex, high-dimensional computational problems.

The master-woker paradigm is the most popular environment used for parallel and

distributed computing. In this design, a master process distributes the data sets to

the workers for processing and workers return the result to the master. This design

can be used with a wide variety of applications and is easy to manage.

1.1 Problem Statement

We consider the optimization of functions when each function evaluation is

subject to a random noise. The precision of the function evaluation depends upon

the time devoted to it, as additional computational efforts can be used to reduce

the amount of noise through averaging. This may require thousands of CPU hours

of simulations for some applications. An example is molecular modeling applications

involving a model or force field. It is a common problem in computational chemistry to

find the set of parameters that best describe the chemical and physical properties for

a particular class of molecular system. The simulations that measure these properties

are often sampling calculations, and thus are subject to a considerable degree of noise.

The objective function (that we also call the cost function) value at a point

Λk in parameter space is thus assumed to be the sum of an underlying deterministic

5

function f(Λk) and a random noise ϵk(tk),

g(Λk) = f(Λk) + ϵk(tk), (1.1)

where ϵk is distributed normally with mean zero and decreasing variance σ2
k(tk) =

(σ0
k)

2/tk, such that

P (ϵ, t) =

√
t

2πσ2
e

−tϵ2

2σ2
k (1.2)

where tk is the amount of time that the vertex Λk has been sampled. The inherent

variance (σ0
k)

2 may depend on the location in parameter space (some models may be

noisier than others) but there is no expectation that this variance is known ahead of

time.

The purpose of performing any simulation is mostly to calculate one of more

physical properties of a system. Often, these properties correspond to experimentally

observable physical properties of the system, such as pressure, density, temperature,

diffusion coefficient, etc. The property p is calculated from the result of a simulation

T , with results depending on the parameters Λk : p[T (Λk)]. In order to compare the

calculated and experimantal properties, we define a cost function g(Λ):

g(Λ) =

Np∑
i=1

1

w2
i

[pi(Λ)− p0i]

(p0i)
2

(1.3)

Where wi represents the weight for the property pi. Practitioners often choose fitting

targets that are noiseless, easy and cheap computationally rather than choosing fitting

targets which are more physically relevant but may be hard and expensive to investi-

gate. Unfortunately, there is a random noise in the meaurement of cost function due

to computer simulations and physical system measurement that alters the optimiza-

tion process as the underlying algorithm gets the misleading information. There have

6

been very few efforts to study optimization algorithms in noisy environment[29].

Unlike classical deterministic problems where perfect information (and deriva-

tives) is available about the cost function, there are many practical problems with no

or little a priori information about the structure of the cost function as a function of

parameter values.

The cost function is a highly non-linear function of parameter values and hence

requires highly robust optimization techniques. A typical parameterization problem

consists of regions of parameter space that deliver bad property values and highly

sensitive regions where a slight change in parameter values results in large deviations

in the cost function.

Furthermore, if the number of parameters to be optimized is large, the in-

creased dimensionality of the optimization space requires a large amount of compu-

tational resources and computer time. Most practitioners make use of coarse-grained

parallel structure by running multiple simulations as independent simulations on dif-

ferent processors. The parallel communication in this informal approach takes place

via human intervention by manually evaluating the cost function for each simulation

and restarting simulations again with different parameters.

Several difficult features of the optimization problem prevent the application

of more sophisticated and automated optimization algorithms These include a cost

function that is a well defined function of parameters, typically very expensive to

evaluate, and whose cost can vary dramatically depending on the order of points

evaluated.

7

1.2 Research Approach

We modifed the Nelder-Mead simplex algorithm for use in the optimization

studies. The Nelder-Mead algorithm or simplex algorithm is well known algorithm for

multidimensional unconstrained optimization. Though it is robust and does not need

derivative information, still it is not accurate for optimizing the function containing

noise. In a stochastic context, simplex can terminate inappropriately at a solution

very far from the true optimum. Some researchers have developed new algorithms for

stochastic optimization by modifying simplex [30].

We have developed stochastic variants of the simplex implementation to deal

with the noise factor. We call these algorithms maxnoise and point-to-point com-

parison algorithm. As discussed in chapter 2, the maxnoise algorithm improves the

precision of simplex in the late stages of optimization when the the vertices of simplex

are close together both in parameter space as well as function value and the noise con-

tribution becomes significant. The point-to-point algorithm improves the parameters

by comparing the function values of only those vertices that have significant effect

on the outcome of the simplex transformations. Each decision by this algorithm is

made at a high statistical level of confidence by incorporating the expectation value

of the noise in the comparison of function values. These new algorithms are compared

with one existing stochastic algorithm and the original Nelder-Mead method in the

computational study in chapter 3.

In our approach, we enhanced the master-worker (MW) framework developed

at the University of Wisconsin [31] to handle communication between the vertices of

simplex. MW is an object- oriented C++ library that helps users to develop master-

worker type parallel applications easily for computational grids. The MW framework

has already been used in the MetaNEOS project [32] to implement many grid based

8

parallel optimization solvers[33] [34] [35]. We added one more level to MW hierarchy

by enabling each worker further initiate one MPI job leading to client-server type

environment. All the complexity associated with performing heterogeneous simula-

tions is handeled at the client-server level, leaving the job of decision making for the

simplex with the master at the top level. Full details of the parallel implementation

are provided in chapter 3. Using MPI for communication among the nodes provides a

convenient, high-level abstraction at both the MW and client-server levels. The mas-

ter collates the cost function g(Λ) computed by the workers corresponding to each

simplex vertex and decides the next transformation of the simplex. However, human

input is still required to the extent of providing the initial set of parameters that

initialize the vertices of the simplex before the subsequent optimization. The total

cost of the optimization can depend dramatically on the initial state of the simplex,

so it is not advisable to automate this step [22].

The portable programming framework MW was enhanced for parallel imple-

mentation of modified simplex to increase the efficiency. It has been shown that many

scientific applications can be parallelized quiet efficiently for a grid setup by using

the master worker paradigm[36] [37]. Moreover, Low communication between master

and workers results in insignificant overhead. The framework and modifed simplex

algorithms were tested by optimizing the Rosenbrock function. The results of these

test are described in Chapter 3. Finally, the framework was used for TIP4P water

model parameterization.

9

1.3 Optimization Methods

Optimization refers to the process of finding the best solution from a set of

possible alternatives. The goal of optimization is to solve problems that seek to

minimize or maximize an objective function by systematically choosing the values of

input variables from within an allowed set. The objective function to be optimized

may be a single objective function or a multi-objective function. In a single objective

function optimization, an optimum is either a minimum or maximum, depending

on our requirements. We generally define optimization problems as minimization

problems and if the function is subject to maximizations,we simply minimize the

negative of the function. Real world problems are not limited to finding the minimum

or mamimum of single objective function but they are applied to a set of objective

functions, each representing one criterion to be satisfied. Algorithms designed for such

optimization problems are called multi-objective. One of the primary applications of

optimization studies is to devise a theoretical model that accurately describes the

behaviour of physical systems.Optimization then allows us to fit the parameters of

such a model so that it is in a close agreement with the experimental results.

The optimization algorithms can be categorized on the basis of various fea-

tures as described below:

1.3.1 Method of operation

Optimization algorithms are generally classified as deterministic or probabilis-

tic algorithms. Deterministic algorithms do not use random number to decide the

next step from the current state. There exists at most one way to proceed, otherwise

the algorithm terminates. Deterministic algorithms always generate the same output

10

when the input is the same. Probablistic algorithms or randomized algorithms con-

tains at least one instruction that acts on random numbers. With these algorithms,

the specific output depends on the instantiation of a random process, as well as the

inputs.

1.3.2 Properties

We can also distinguish optimization methods on the basis of time contraints,

i.e. the required speed of the optimization algorithm. Online optimization refers

to problems that require optimization in a time span between few millisecond to a

few minutes. The optimum solution in this optimization may be sacrificed for speed

gains. Robot localization and load balancing are examples of online optimization.

The online optimization tasks are performed repetitively. Offline optimization does

not impose strict time constraints on the task completion and hence optimization

process may take even days to deliver a optimial or near-optimal solution.

1.3.3 Heuristic Methods

Heuristic algorithms represent a class of optimization algorithms that use the

information currently gathered by the algorithm to decide which solution candidate

should be tested next or how next candidate can be generated. Some popular heuristic

algorithms are discussed below:

1.3.3.1 Genetic Algorithms

Genetic algorithms (GA) are a subclass of evolutionary algorithms that mimic

the process of nature evolution. In a genetic algorithm, a population of strings also

11

Figure 1.1: Optimization methods

known as chromosomes or a genotype encodes candidate solutions (phenotypes) to an

optimization problem, and evolves towards the optimum solution. In other words, the

value of the objective function is computed on the basis of phenotypes in the problem

space generated by genotype-phenotype mapping. The solutions are generally repre-

sented in binary strings of 0s and 1s. The fitness of a member of the population is

detemined by the objective function value. The members of population are subjected

to selection, reproduction, crossover, and mutation [38]. It requires evaluation of

several generations before a significant improvement in the objective function is seen.

Genetic algorithms are popular for their robustness in searching complex sur-

12

faces and find application in image processing, neworking and communication, eco-

nomics and finance, combinatorial optimization, etc.

1.3.3.2 Evolutionary Strategies

Like GA, evolutionary strategies (ES) are based on the principles of natural

evolution to solve parameter optimization problems. The first ES algorithm used a

simple mutation-selection scheme called two-membered ES or (1+1)-ES [39]. The

algorithm consisted of one parent producing one offspring by adding standard nor-

mal random variates. The better of parent and offspring becomes the parent for

next generation. The algorithm stops when the termination criteria is met which in-

cludes the number of generations, elapsed CPU time, and absolute or relative progress

per generation. The multinumbered ES, also known as (µ + 1)-ES, has two parents

randomly selected from a populaton of µ > 1 parents, producing one offspring. Re-

searchers have developed a hybrid GA-ES algorithm to solve multimodal continuous

optimization problem [40].

1.3.3.3 Particle Swarm Optimization

Particle swarm optimzation (PSO) is a population-based stochastic optimiza-

tion technique which simulates the behavior of biological social systems like a flock of

birds or a school of fish. PSO shares many similarities with genetic algorithms (GA).

In a PSO algorithm implementation, each particle keeps track of its coordinates in

the problem space corresponding to the best solution it has obtained so far. It also

keeps track of the best value obtained so far by any particle in the neighbourhood of

this particle. When the particle considers the entire population as its neighbour then

the best value is global best. PSO is an efficient global optimizer for continuous vari-

able problems and can easily be implemented with few parameters to fine-tune. It can

13

easily be parallelized for concurrent execution. Though PSO has been successfully ap-

plied to various optimization problems like neural networks, structural optimization,

and shape topology optimization, it suffers from the disadvantage of slow convergence

in refined search stages, i.e. it has weak local search ability [41, 42, 43, 44, 45].

1.3.3.4 Simulated Annealing

Simulated annealing (SA) [46] is a global optimization method that can be

applied to arbitrary search and problem spaces. Each step in SA replaces the cur-

rent solution by an arbitary nearby solution, selected with probability that dependes

upon the difference between the corresponding function values and also on a global

parameter T , the temperature. The current solution changes randomly when T is

large and moves downhill as T approaches zero. The ability of SA to move uphill

saves the method from being stuck in local minima. One of the main reasons for

the popularity of simmulated annealing algorithms, particularly for single objective

optimization, is the existence of convergence proofs for this method. SA performs

well on combinatorial problems and has several versions [47].

1.3.3.5 Tabu Search

Tabu search (TS) [48, 49] is a local search optimization method. TS algorithm

marks all the coordinates that have already been visited as tabu. These solutions are

not visted again thus reducing the chances of getting stuck in a local minima. This

approach can be implemented using a list, which stores all the candidate solutions

that have already been visited. If the newly created phenotype is found in this list,

it is rejected. The list has maximum length n and any n + 1 solution candidate is

added by removing the first element in the list. The simple Tabu Search is very

similar to simulated annealing. Some example in which tabu search has been applied

14

are combinatorial optimization, machine learning, biochemistry, operation research,

networking and communication.

1.3.3.6 Ant Colony

A recently proposed metaheuristic optimization approach called Ant Colony

optimization (ACO), is used for hard combinatorial optimization problems [50, 51].

Ant colony optimization(ACO) is a probabilistic technique for problems that can be

reduced to finding optimal paths through graphs [52]. ACO is based on the metaphor

of ants that wander randomly in search of food and lay down a trail of pheromones.

Once the ant has found some food, it can track its way back and also reinforce it with

another layer of pheromones. Each ant that finds this path will follow it with certain

probability and also excrete some pheromenes. The more longer the path, the more

time pheromones have to evaporate. A short path gets traversed faster and thus

pheromone density remains high. Many researchers have successfully implemented

ACO using coarse-grained parallelization schemes [53, 54].

1.3.3.7 Response surface methodolgy

Response surface methodology (RSM) is a well known approach for modeling

and analyzing engineering problems using statistical and mathematical models [55].

It is based on fitting a series of regression models to the output parameters of a sim-

ulation model and optimizing the regression model. The process is initiated with a

first order regression and steepest ascent or descent search method and in the neigh-

bourhood of the optimum, higher degree regression models are used. RSM is based

on basic concepts of choosing an approximate model and the plan of experiments

where the response has to be evaluated. RSM requires fewer number of simulation

experiments as compared to many gradient-based algorithms.

15

1.3.4 Stochastic optimization

Stochastic optimization refers to finding the deterministic input parameters

that generate the optimal value for a function that has random noise in the measure-

ment [19]. Noise may be caused in the optimization problem because of measurement

limitations, limited accuracy, or sampling errors in the simulation process. Stochas-

tic optimization algorithms find a wide range of application in science, engineering,

transportation, statistics and business [56]. Specific applications include industrial

processes (making investment decisions in order to increase profit), aerospace engi-

neering (running simulations to refine the design of a projectile or aircraft), medicine

(running simulations to extract the maximum information about the efficacy of a

new drug), and traffic engineering (controlling the timing for the signals in a traffic

network).

The effects of noise in the optimization has been studied by many scientists

including Miller and Goldberg [57] [58] , Lee and Wang [59], Sigrn Andradttir [60].

1.3.5 Direct search methods

The Direct search methods involve the comparision of each trial solution with

the best available solution at that time. They do not require a numerical function

value; the relative rank of function values is sufficient [61]. In other words, the direct

approach needs less measurement data as the data becomes unnecessary. The direct

search methods are also known as “derivative-free” as these methods never compute

or approximate derivatives. These methods are recommended in a situation where

the measurement of data is expensive or time consuming and data is contaminated

by significant noise [27]. The direct search methods are easily parallelizable and

have advantages of achieving global convergence in some problems where standard

16

Newton-like methods fail [62]. The Pattern search algorithm [63] and the downhill

Nelder-Mead algorithm represent two different examples of direct search methods.

1.3.5.1 Simplex method

The downhill simplex algorithm for finding a local minimum of a function of

several parameters was devised by Nelder and Meade [8]. The simplex itself is defined

by d+ 1 vertices Λ1, . . . ,Λd+1, i.e. one more than the d dimensions of the parameter

space (a triangle in two dimensions, a tetrahedron in three dimensions, etc).

The simplex is moved iteratively through the parameter space based on the

values of the objective function at each vertex. This is done by discarding one vertex

and adding a new one using simple geometrical transformations: reflection, extension,

contraction and collapse.

The simplex algorithm is widely used in many fields, especially in chemistry

and chemical engineering [64]. It does have some inherent disadvantages that includes

premature termination at the local minimum, high sensitivity to initial points and in-

ability to cope with noisy systems. Though the original simplex method was designed

to find the local minima of a real-valued convex function, it has also been used for

finding the global minima of non-convex functions. This is done either by restarting

the simplex or by using it as a local search subroutine with in a metaheuristic method

[65, 66, 67, 68, 69, 70].

1.4 Document Organization

The document is organized as follows: Chapter 2 explains the simplex method

and the proposed algorithms. Chapter 3 elaborates performance measurement of the

proposed algortithms with other existing algorithms and also with each other. It also

17

explains the scale-up studies for optimizing the Rosenbrock function using simplex

with the MW framework. We also discuss the application of simplex embedded in

enhanced MW framework to TIP4P water model parameterization in this Chapter.

Chapter 4 provides an overview of the work we have completed, software implemen-

tation of enhanced MW, and directory structure required to perform the simulations.

Chapter 5 summarizes the work we have done and further scope of this research.

18

Chapter 2

Algorithms

2.1 Simplex Algorithm

The downhill simplex algorithm (Algorithm 1) due to Nelder Mead in d di-

mensions consists of d+ 1 vertices. A d-dimensional simplex is denoted with vertices

Λi, i = 1, ..., d+ 1. The value of the objective function at Λi is represented by g(Λi).

Let Λmax, Λsmax, Λmin represent the vertices with highest, second highest, lowest

objective function value respectively. Λcent denotes the centroid of all the vertices

except Λmax. The simplex algorithm uses several transformation operations including

reflection, expansion, and contraction to determine a new vertex to replace Λmax.

The algorithm replaces the worst vertex Λmax with a new vertex generating a smaller

function value after one of the possible operations. If none of these operations gener-

ate a vertex better than Λmax then simplex will collapse towards Λmin. The simplex

operations are defined as follows:

• Reflection: Λref = (1+α)Λcent−αΛmax with α the reflection coefficient (α = 1).

• Expansion: Λexp = γΛref −(1−γ)Λcent with γ the expansion coefficient (γ > 1).

19

• Contraction: Λcon = βΛmax + (1 − β)Λcent with β the contraction coefficient

(0 < β < 1).

For optimal performance of simplex α, β, γ are typically set to 1, 0.5, 2 respectively.

input : Initialize simplex Λi, 1 ≤ i ≤ d+ 1
output: Minimum function value g(Λmin)
while termination condition not fullfilled do1

get Λmax, Λmin, Λsmax , Λcent2

Λref = 2 Λcent - Λmax ; /* Reflection */3

if g(Λref) < g(Λmin) then4

Λexp = 2Λref - Λcent ; /* Expansion */5

if g(Λexp) < g(Λref) then6

Λmax = Λexp7

else8

Λmax = Λref9

end10

else11

if g(Λref) < g(Λmax) then12

Λmax = Λref13

else14

Λcon = 0.5Λmax + 0.5 Λcent ; /* Contraction */15

if g(Λcon) < g(Λmax) then16

Λmax = Λcon17

else18

do i = 1, d+ 119

if i ̸= min then20

Λi = 0.5Λi + 0.5Λmin ; /* Collapse */21

end22

end23

end24

end25

end26

Algorithm 1: Deterministic simplex (DET)

20

Complexity of simplex

Since the ordering of vertices is performed in each step,the complexity of the simplex

algorithm is O(d log d). Let c(d) represents the number of operations required to

calculate the objective function value g(Λ), then the reflection, contraction, expan-

sion expressions can be calculated in O(c(d)). Thus the total number of operations

are bounded either by the ordering step or by c(d). If the shrinking operation is

performed then d is the number of operations performed in each iteration and the

complexity is O(d.c(d))

Evaluating the objective function value at a given point requires exactly O(d) opera-

tions while the worst-case complexity for each NM iteration is greater than or equal

to O(d2). So ordering d+1 points is always less time consuming than calculating the

objective function. Researcher are less focused on reducing the complexity of sorting

step, rather more emphasis is given to reducing the function evaluations required for

finding the objective function.

2.2 Max noise algorithm

Our goal for the optimization procedure is to find the minimum of the objective

function,

Λ∗ = min{g(Λ)|Λ ∈ Rn}. (2.1)

As in Anderson et al.[71] we note that the size of the simplex, whether defined

as a hypervolume or a “diameter”

D(Λ) = max
j,k=1,2,..d+1

|Λj − Λk|, (2.2)

21

is always a multiple 2−l of the size of the initial simplex. Contraction steps halve the

size of the simplex, incrementing the “contraction level” l by one, while expansion

steps double the size of the simplex, decrementing l by one. Reflection steps leave

the size and l unchanged, while collapse operations increase l by d. Tracking the size

of the simplex is relevant because when the simplex is large, the objective function

values {g(Λk)} are likely to be quite different, and the effect of the noise on the motion

of the simplex is small. On the other hand, when the simplex size is small, the points

are close together both in parameter space and in function value, and the noise has a

greater effect on the ordering of the vertices. Noise ϵk is distributed normally (eq 1.2)

with mean zero and decreasing variance σ2
k(tk) = (σ0

k)
2/tk , where tk is the amount

of time that the vertex Λk has been sampled. The simplex algorithm has tendency

to make wrong decisions in the presence of noise. Suppose the current decision based

on the noise free underlying surface g(Λ), is to reject Λmax and replace it with the

reflection, Λref . However, because of the noise g(Λref) > g(Λmax), and reflection is

rejected.

We introduce an additional condition in the simplex algorithm (Algorithm 1)

to develop a new algorithm named max noise (Algorithm 2) (MN). The condition

max
i=1,...,d+1

(σ2
i (ti)) > k(g(Λi)− g)2, (2.3)

is intended to postpone the decision of simplex transformation until the noise at each

of the vertices is small compared to the internal variance of the vertices, which allows

the simplex to avoid making wrong decision due to noise in the objective function .

Here g represents the average of g(Λi) over all the vertices and k is a constant. All

the notations used in Algorithm 2 have the same meaning as in Algorithm 1.

22

input : Initialize simplex Λi, 1 ≤ i ≤ d+ 1
output: Minimum function value g(Λmin)
while termination condition not fullfilled do1

get Λmax, Λmin, Λsmax, Λcent2

Λref = 2 Λcent - Λmax ; /* Reflection */3

while maxi=1,...,d+1(σ
2
i (ti)) > k(g(Λi)− g)2 do4

/*noisiest vertex has a variance too much
larger than the internal variance of the
vertices themselves */

Wait5

end6

if g(Λref) < g(Λmin) then7

Λexp = 2Λref - Λcent ; /* Expansion */8

if g(Λexp) < g(Λref) then9

Λmax = Λexp10

else11

Λmax = Λref12

end13

else14

if g(Λref) < g(Λmax) then15

Λmax = Λref16

else17

Λcon = 0.5Λmax + 0.5 Λcent ; /* Contraction */18

if g(Λcon) < g(Λmax) then19

Λmax = Λcon20

else21

do i = 1, d+ 122

if i ̸= min then23

Λi = 0.5Λi + 0.5Λmin ; /* Collapse */24

end25

end26

end27

end28

end29

Algorithm 2: Max noise (MN)

23

This approach has the benefit that simulations run only for a short amount of

time in the early stages of the optimization, where accurate sampling is not needed in

order to reject poor parameter values, decreasing computational cost. On the other

hand, in the late stages of the optimization, simulations are allowed to run as long

as needed in order to distinguish between closely clustered parameter values, so that

accuracy is not limited.

This algorithm is compared to a similar approach used by Anderson et al.[71],

in which it is required that the standard deviation of the noise at each vertex be less

than a cutoff which becomes more stringent as the simplex gets smaller,

σ2
i (ti) < k12

−l(1+k2), ∀i (2.4)

where k1 and k2 are arbitrary constants that must be specified.

The Anderson algorithm differs from the standard NM simplex approach. It

operates on a set of m points and this set of points is known as structure.The size of

strcture S is defined as

D(S) = max
j,k=1,2,..m

|xj − xk|, (2.5)

New structures are generated from a given structure S with reflection or expansion

around a point x, operations that differs from the similarly named operations on a

simplex:

REFLECT (S, x) = {2x− xi|xi ∈ S} (2.6)

EXPAND(S, x) = {2xi − xi|xi ∈ S} (2.7)

The expansion operation doubles the size of a structure while the contraction opera-

24

tion which reduces the size of structure to half and is defines as:

CONTRACT (S, x) = {0.5(x+ xi|xi ∈ S} (2.8)

Note that the algorithm originally presented by Anderson et al. is a direct

search optimization approach that differs from the Nelder-Mead simplex algorithm;

here we evaluate their convergence criterion (eq. 2.4), but do not adopt the other

features of their method.

2.3 Point-to-point comparison algorithm

One of the drawbacks associated with the proposed maxnoise algorithm is that

if one vertex has large noise, the internal variance of the function values of vertices

may still be small causing the simplex to wait for a very long time due to the additional

condition in max noise algorithm (line 4). The vertex that has large noise may not

be one of those (lowest, highest, second high) that actually affect the motion of the

simplex. One solution is to compare the significant vertices, i.e. vertices that actually

move the simplex, one by one rather than requiring convergence at all vertices. Thus

we modified the implementation of the downhill simplex algorithm by introducing

such a point-to-point comparison of function values among the vertices of simplex. As

in algorithm 1 , the objective function value at a point is given by equation 1.1. Each

simplex decision is made at a higher confidence level by including the expectation

value (one standard deviation away from mean) σ of the noise contaminating the

function value contaminated by noise. In other words, comparison between function

values in the simplex algorithm is is made more strict by requiring not just that

g(Λi) < g(Λj), but that g(Λi)+kσi < g(Λj)−kσj , where σi is the (expectation value

25

of the) statndard deviation of the noise at the vertex σi. That is, we require not just

that the new vertex be lower but also that its kσ confidence interval not intersect

that of the vertex against which it is tested. Sampling proceeds until the point where

the simplex transformation can be made at the chosen accuracy.

The value of σ decreases as the square root of time (
√
t) and hence the conver-

gence criterion can be satisfied with additional sampling. Algorithm 3 describes the

full procedure, in which σmax, σsmax, σmin represent the value of σ at vertices with

the highest, second highest and lowest objective function values, respectively.

The comparision of simplex vertices in this inplementation is performed at

seven different stages of the simplex transformation. The algorithm can be optimized

by investigating the different combination of comparison conditions. A complex imple-

mentation of this algorithm has point-to-point comparision with certain probabilities

at all seven different stages while the most basic implementation requires point-to-

point comparison at only one stage. These variations are considered in section 3.3.

The point to point comparison algorithms can be modified by requiring the compar-

ison to be made at varying confidence levels by adjusting the interval widths, i.e. by

choosing the different values of k. This is considered in section 3.3. A variant of point-

to-point comparison algorithm is implemented by allowing simplex decision made at

even higher confidence level by including the expectation value (two standard devi-

ation away from mean) σ of the noise containing the function value contaminated by

noise.

One possible disadvantage of this method is that in cases where two vertices

are coincidentally nearly identical, long sampling time will be required to determine

which is lower, even though the eventual result may not depend strongly on the

outcome.

26

input : Initialize simplex Λi, 1 ≤ i ≤ d+ 1
output: Minimum function value g(Λmin)
while termination condition not fullfilled do1

get Λmax, Λmin, Λsmax, Λcent2

Λref = 2 Λcent - Λmax3

if g(Λref) + k ∗ σref < g(Λsmax) − k ∗ σsmax then /* condition4

1 */
if g(Λref) − k ∗ σref > g(Λmin) + k ∗ σmin then /* condition5

2 */
Λmax = Λref6

else7

Λexp = 2Λref − Λcent8

if g(Λexp) + k ∗ σexp < g(Λref) − k ∗ σref then9

/* condition 3 */
Λmax = Λexp10

else if g(Λexp) − k ∗ σexp ≥ g(Λref) + k ∗ σref then11

/* condition 4 */
Λmax = Λref12

else13

resample vertices and repeat until condition 3 or 4 is14

satisfied
end15

end16

else if g(Λref) + k ∗ σref ≥ g(Λsmax) − k ∗ σsmax then17

/* condition 5 */
Λcon = 0.5Λmax + 0.5 Λcent18

if g(Λcon) + k ∗ σcon < g(Λmax) − k ∗ σmax then19

/* condition 6 */
Λmax = Λcon20

else if g(Λcon) − k ∗ σcon ≥ g(Λmax) + k ∗ σmax then21

/* condition 7 */
do i = 1, d+ 122

if i ̸= min then23

Λi = 0.5Λi + 0.5Λmin24

end25

else26

resample vertices and repeat until condition 6 or 7 is satisfied27

end28

else29

resample vertices and repeat until condition 1 or 5 is satisfied30

end31

end32

Algorithm 3: Point-to-point comparison algorithm(PC)

27

2.4 Point-to-point with maxnoise

We also tested an algorithm which combined the maxnoise and point-to-point

comparison algorithms (PC+MN) as shown in Algorithm 4. Here, both the maxnoise

condition (Eq. 2.3) as well as the individual point-to-point comparisons must be sat-

isfied in order for a simplex move to proceed. This implementation imposes stricter

conditions on the movement of the simplex, slowing down the convergence but hope-

fully improving the accuracy of the algorithm.

2.4.1 Termination Criterion

We used two termination criteria in determining whether the simplex has con-

verged sufficiently to be stopped. In the first of these, the simplex is terminated when

all function values are within a predefined tolerance,

max
i

|g{Λi} − g{Λmin}| ≤ δ (2.9)

In the second termination condition, the optimization was terminated if the total

walltime exceeded a predetermined limit. If either termination condition was satisfied,

the simplex was stopped.

28

input : Initialize simplex Λi, 1 ≤ i ≤ d+ 1
output: Minimum function value g(Λmin)
while termination condition not fullfilled do1

get Λmax, Λmin, Λsmax, Λcent2

while maxi=1,...,d+1(σ
2
i (ti)) > k(g(Λi)− g)2 do3

/*noisiest vertex has a variance sufficiently larger
than the internal variance of the vertices
themselves */

Wait4

end5

Λref = 2 Λcent - Λmax6

if g(Λref) + σref < g(Λsmax) − σsmax then /* condition 1 */7

if g(Λref) − σref > g(Λmin) + σmin then /* condition 2 */8

Λmax = Λref9

else10

Λexp = 2Λref − Λcent11

if g(Λexp) + σexp < g(Λref) − σref then /* condition 3 */12

Λmax = Λexp13

else if g(Λexp) − σexp ≥ g(Λref) + σref then /* condition14

4 */
Λmax = Λref15

else16

resample vertices and repeat until condition 3 or 4 is satisfied17

end18

end19

else if g(Λref) + σref ≥ g(Λsmax) − σsmax then /* condition 5 */20

Λcon = 0.5Λmax + 0.5 Λcent21

if g(Λcon) + σcon < g(Λmax) − σmax then /* condition 6 */22

Λmax = Λcon23

else if g(Λcon) − σcon ≥ g(Λmax) + σmax then /* condition 724

*/
do i = 1, d+ 125

if i ̸= min then26

Λi = 0.5Λi + 0.5Λmin27

end28

else29

resample vertices and repeat until condition 6 or 7 is satisfied30

end31

else32

resample vertices and repeat until condition 1 or 5 is satisfied33

end34

end35

Algorithm 4: Point-to-point with Maxnoise algorithm (PC+MN)

29

Chapter 3

Work Completed

3.1 Work Completed

In our parallel implementation of the downhill (Nelder-Mead) simplex algo-

rithm in d dimensions, objective function evaluations must be kept active on each

of the d + 1 vertices until it is certain that they are no longer needed. In addition,

prospective objective function evaluations are also needed at the reflection or contrac-

tion, and perhaps also an extension, before it is known which vertex will be discarded.

Thus a maximum of d+ 3 vertices may be active at any one time.

Computationally, the parallel communications are implemented using a master-

worker (MW) architecture, in which the computation is broken up into a collection of

independent tasks, which are assigned to individual worker processes by the master

process. The master process is logically associated with the simplex object, and per-

forms all of the decision making for the optimization, while each worker is logically

associated with a vertex object, and the tasks correspond to the evaluation of an

objective function value at each point in parameter space. Tasks and workers do not

communicate with one another directly, but report results to, and receive instructions

30

from the master. The master has the ability to direct a cessation of work at one point

in parameter space and the initiation of new simulations at a different point. We use

a modified version of the MW code developed by the University of Wisconsin [31] to

coordinate the communication. This is an object-oriented set of C++ libraries that

Figure 3.1: MW software implementation

provides abstraction to master, worker and task entities. We re-implemented three

major classes of MW, namely MWDriver, MWWorker, and MWTask (Figure 3.1).

The MWDriver manages a set of workers to execute the tasks. MWWorker class func-

tions execute worker tasks, compute results, report results back, and wait for another

task. MWTask stores the data describing the task and the results computed by the

workers. It is the abstraction of one unit of work. These three abstract base classes

hide the difficulties associated with the metacomputing and allow rapid development

31

of the scientific computing application. The communication functionality between the

master and worker is implemented using abstract class MWRMComm virtual func-

tions: pack(⟨type⟩ array, int size), unpack(⟨type⟩ array, int size), send(int to-whom,

int message-tag), and recv(int from-whom, int message-tag). The MW program has

the capability of using multiple different communication protocols, including sockets,

file I/O, Condor/PVM and MPI. In our implementation, we use MPI communication

between master and workers.

Each evaluation of an objective function is itself best treated as a parallel

process. This is because a number of simulations may be needed in order to determine

all of the properties needed to evaluate a given set of parameters. For example,

separate simulations may be needed to evaluate the room-temperature energy, the

isothermal compressibility, and the high-temperature properties of a given model,

and these sampling simulations themselves can each be run in parallel. Consequently,

each of the workers corresponding to one vertex of the simplex is logically identified

with a second (server) process running in a completely different MPI environment.

The workers and their corresponding servers communicate via file I/O (Figure 3.2).

Each of the Ns simulations associated with the vertex runs as its own (client)

processes, in the same MPI environment as its server. These simulations can be

efficiently implemented in parallel as there is no inherent correlation among them.

We use the terminology of servers and clients at this lower level of implementation

to distinguish these processes from those at higher level of simplex implementation.

Communication between the server and its own clients occurs via MPI.

The parallel parameterization algorithm thus consists of 1 master communi-

cating via MPI with d + 3 workers at the simplex level. At the vertex level, each of

these d + 3 vertices initiates Ns + 1 processes forming an MPI job: 1 server and Ns

clients. Thus in total there are d + 4 MPI jobs and dNs + 3Ns + 2d + 7 processes

32

Figure 3.2: MW architecture.

(representing the 1 master, d+ 3 workers, d+ 3 servers, and (d+ 3)Ns clients). The

maximum number of cores consumed in this implementation is dNs + 3Ns + 2d + 7.

Since most of the CPU cycles are consumed by the simulation rather than the simplex

logic as bookkeeping operations an efficient and advanced implementation could use

as few as (d+ 3)Ns cores without affecting the throughput significantly. This would

require a considerably more complex code and is not an approach used in the current

implementation of the parallel parameterization.

33

3.2 Performance Measurement of MN algorithm

The performance of MN algorithm was compared with the method of Anderson

et al. [71]. In this phase of testing, we used the Rosenbrock “banana” function

(Figure 3.3) in three dimensions [72] as a test case to evaluate the performance of the

extensions of the simplex algorithm in the presence of noisy data. This function is a

common choice for testing local optimization algorithms, because it discriminates well

between different methods: there is a long, narrow, banana-shaped valley in which

the minimum is located, and making progress along this valley can be difficult.

Rosenbrock Function

(1-x)**2 + 100*(y - x**2)**2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x-1

-0.5

 0

 0.5

 1

 1.5

 2

y

 0.01
 1

 100
 10000

Z axis

Figure 3.3: Rosenbrock function.

34

The function values for this test were directly computed from

f(Λ) =
2∑

i=1

(1− Λi−1)
2 + 100(Λi − Λ2

i−1)
2, (3.1)

which has a local minima at f(1,1,1)=0. Artificial Gaussian noise was added, with a

variance inversely proportional to the duration for which the vertex had been active,

as described in Eq. 1.2. In order to ensure that the optimization progress was limited

by the level of noise, the parameter σ0 was chosen so that simplex updates would

occur on timescales of ∼ 104 seconds in the late stages of the optimization. We

studied both the algorithms with five different initial states generated by a random

number generator, such that each of the three coordinates for each of the four vertices

was uniformly distributed over [6,−3].

Table 3.1: Results of optimization using MN algorithm with controlled noise.

input N R D
k=2 k=3 k=4 k=5 k=2 k=3 k=4 k=5 k=2 k=3 k=4 k=5

1 76 323 183 103 1.15 1.68 1.82 1.22 1.43 1.63 1.65 1.47
2 126 142 326 169 8.08 7.90 7.97 7.88 5.19 5.05 5.09 5.00
3 115 569 175 99 2.23 2.9 2.88 2.50 1.79 1.90 1.92 1.86
4 95 187 441 70 .42 3.4 2.21 .15 1.02 1.92 1.79 .90
5 97 68 298 193 .02 .05 .079 .01 .51 .44 .49 .13

We optimized the algorithms themselves by evaluating four different values of

the parameters k in eq 2.3 and k1 in eq 2.4, while the value of Anderson’s k2 was

always set to zero. Following Anderson, we used three separate performance measures

to evaluate the success of the stochastic optimization procedures[71]. These are:

35

Table 3.2: Results of optimization using Anderson algorithm with controlled noise.

input N R D
k1=20210 220 230 k1=20 210 220 230 k1=20 210 220 230

1 18 38 152 96 5.06 2.23 1.30 1.35 1.34 1.69 1.50 1.52
2 25 46 88 167 46.7 8.03 7.90 8.02 5.07 5.09 5.09 5.09
3 18 43 60 275 14.86 3.00 2.90 2.98 2.17 1.93 1.91 1.93
4 29 50 149 285 22.4 0.36 .12 .24 .32 .92 .58 .78
5 20 42 116 206 2.8 .14 .11 .126 1.22 .55 .60 .54

(1) The average number of iterations (N) required to reach convergence, (2) The

mean error in the function value at convergence (R), and (3) The average distance of

the lowest point in the simplex to the solution at convergence (D).

From the results shown in Table 3.1 and Table 3.2 we conclude that the accu-

racy of the optimization (given by R) under the MN algorithm is independent of the

parameter k and is comparable to Anderson algorithm in the limit of large k1. Also

for Anderson algorithm we noticed that overly small values of parameter k1 generate

large errors (R). As shown in Figure 3.4 for the Anderson algorithm (RHS subfig-

ures), for very small value of k1, Anderson algorithm finds minimum values very far

from the true minimum. This is attributed to the looser criterion for advancing the

simplex, leading to too much contraction and premature convergence, as indicated by

the smaller number of iterations, N . For large values of k1, the Anderson algorithm

is comparable to the MN algorithm (LHS subfigures). It is also obvious from these

subfigures that for large values of k1 both the algorithms take equal time to converge

to a minimum. Since the the outcome of the objective function value is affected by

value of k1, Anderson algorithm requires that some additional computational efforts

36

be invested to tune the algorithm for every new problem. Thus method of Anderson

et al. has the disadvantage that it must be parameterized separately for each new

surface to be optimized, in order to find the factor needed to convert the simplex di-

ameter to function noise such conversions are not needed in the MN algorithm. Also,

for the MN algorithm, value of k does not affect the outcome of the algorithm. It only

controls the speed of convergence. A small value of k in the range 1 to5 is appropriate.

In case of Anderson algorithm, a small value of k1 generates large error due to strict

criterion while very large value of k1 makes the size of simplex irrelevant and hence

there is a possibility of high errors. The values of k1 shall be proportional to the intial

simplex size. A small k1 for smaller simplex and large k1 for larger simplex.

37

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

F
u

n
c
ti
o

n
 V

a
lu

e

Time(s)

k=2
k=3
k=4
k=5

(a)

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

F
u

n
c
ti
o
n

 V
a

lu
e

Time(s)

k1=20

k1=210

k1=220

k1=230

(b)

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

F
u

n
c
ti
o

n
 V

a
lu

e

Time(s)

k=2
k=3
k=4
k=5

(c)

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

F
u

n
c
ti
o

n
 V

a
lu

e

Time(s)

k1=20

k1=210

k1=220

k1=230

(d)

Figure 3.4

38

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

F
u

n
c
ti
o

n
 V

a
lu

e

Time(s)

k=2
k=3
k=4
k=5

(e)

 1

 10

 100

 1000

 10 100 1000 10000 100000 1e+06

F
u

n
c
ti
o
n

 V
a

lu
e

Time(s)

k1=20

k1=210

k1=220

k1=230

(f)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000

F
u

n
c
ti
o

n
 V

a
lu

e

Time(s)

k=2
k=3
k=4
k=5

(g)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06

F
u

n
c
ti
o

n
 V

a
lu

e

Time(s)

k1=20

k1=210

k1=220

k1=230

(h)

Figure 3.4

39

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

F
u

n
c
ti
o

n
 V

a
lu

e

Time(s)

k=2
k=3
k=4
k=5

(i)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

F
u

n
c
ti
o
n

 V
a

lu
e

Time(s)

k1=20

k1=210

k1=220

k1=230

(j)

Figure 3.4: Function Value vs time for MN algorithm (left) and Anderson algorithm
(right) with five different inputs. Each input tested with k=2,3,4,5 for MN algorithm
and k1=20, 210, 220, 230 for Anderson algorithm

3.3 Performance Measurement of PC and PC+MN

We also tested the DET, MN, PC, and PC+MN algorithms by optimizing the

Rosenbrock function (eq 3.2) and the Powell function (eq 3.3) in 4 dimensions. The

function values for this test were directly computed from the Rosenbrock function

f(Λ) =
4∑

i=2

(1− Λi−1)
2 + 100(Λi − Λ2

i−1)
2, (3.2)

which has a local minimum at f(1,1,1,1)=0 and the Powell function

f(Λ) = (Λ1 + 10Λ2)
2 + 5(Λ3 − Λ4)

2 + (Λ2 − 2Λ3)
4 + 10(Λ1 − Λ4)

4 (3.3)

40

Artificial Gaussian noise was added to the Rosenbrock function and Powell

function, with a variance inversely proportional to the duration for which the vertex

had been active, as described by Eq. (1.2). In order to ensure that the optimization

progress was limited by the level of noise, the parameter σ0 was chosen so that simplex

updates would occur on timescales of many thousands of seconds in the late stages

of the optimization. Three different values (σ0 = 1, 100, and 1000) were examined

to study the effect of noise. For each noise level, each of the three algorithms was

evaluated with 100 different initial simplex states generated by a random number

generator, such that each of the four coordinates for each of the five vertices was

uniformly distributed over [5,−5).

The perfomance of these algorithms is compared in figure 3.5 and figure 3.6 for

Rosenbrock and Powell function optimization respectively, which shows a distribution

of the ratios of the minimum function value (g(Λ)) obtained by a pair of methods.

These ratios are presented on a logarithmic scale, so a value of zero means that the

two methods performed equally, and negative values mean that the method in the

numerator of the ratio came closer to the minimum function value (of zero). For

example, Fig. 3.6a shows that at low levels of noise, the maxnoise (MN) algorithm

performs comparably to the standard deterministic simplex algorithm (DET) in the

majority of cases, as the distribution is centered around zero. However, at higher

noise levels the distribution acquires a progressively bigger tail at negative values,

indicating that the MN algorithm avoids converging prematurely and attains a min-

imum function value that is lower by a factor of 10 to 104 in a significant minority

of cases. By making some attempt to make simplex moves only when the noise level

is small compared to the difference between vertices, the MN algorithm makes fewer

incorrect moves and converges closer to the true minimum.

Likewise, Fig. 3.6b shows that the point-to-point comparison (PC) algorithm

41

ties or outperforms MN about 90% of the time. Particularly as the noise level in-

creases, the PC algorithm is able to find minimum function values that are a factor

of 10 or more better than those found by MN in the nearly half of the cases. This

improvement results from the fact that the PC algorithm converges each vertex well

enough to be confident in the specific simplex moves required, without overconverging

unnecessarily.

The distribution in Fig. 3.5c is more symmetric, indicating that the PC+MN

and PC methods are comparable. The distribution gets broader as the noise level

increases, indicating that the behavior of the algorithms gets less predictable as the

noise becomes stronger. The PC+MN algorithm performs slightly better at all noise

levels, but only by a small margin. Although the end results are similar, the PC+MN

algorithm is more effective in the sense that achieves this result with fewer simplex

steps. This is evident from the fact that the PC+MN algorithm required 178 simplex

steps on average at the high noise level, and 167 simplex steps at the intermediate

noise level, compared to 900 (high) and 1082 (intermediate) for the PC algorithm,

under the same termination criteria. By imposing stricter conditions on the motion

of the simplex, the PC+MN algorithm spends more time sampling each vertex and

takes fewer steps, but achieves a slightly more accurate minimum as a result.

The performance of the PC and PC+MN algorithms can be optimized by

fine tuning which of the seven conditional comparisons in these algorithms use the

stricter comparison criterion. This is done by letting the simplex make a decision by

including the expectation value of noise (σ) for some of its transformation operations

while ignoring it for all other operations.

Also both PC and PC+MN algorithms can be tested by forcing simplex to

make a transformation with even higher confidence. This is done by choosing k = 2

in PC algorithm implementation. As a consequence of this implementation, we expect

42

simplex to make fewer incorrect transformations towards the optimum with higher

confidence as it spends more time waiting for the noise to drop lower. This advantages

may be mitigated to some extent because simplex may not make a move as the

conditions become diffucult to satisfy and it may get stuck in one of the stages of PC

algorithm.

We tested the variations of PC algorithms by choosing different combinations

of comparisons to use the stricter (noise-aware) , using the Rosenbrock function. The

optimization was performed with σ0 = 1000. Results are shown in Figures 3.8 - 3.17.

The following conclusions can be drawn from these tests:

1) By increasing the confidence interval level (k = 2) in the PC algorithm implemen-

tation, no substantial change in the performance was observed for the Rosenbrock

optimization as evident from Figure 3.7.

2) When the expectation value is considered only in condition 1 (c1) i.e. reflection

step or condition 6 (c6) i.e. contraction step, one at a time, and compared with each

other, the PC algorithm performs better in former as shown in Figure 3.8. This

further leads to conclusion that when choosing only one condition, the choice of con-

dition does make a difference on the simplex convergence i.e. all conditions are not

equal.

3) All conditions imposed together (c1-7) are too strict and include some harmful

comparisons as is obvious from Figures 3.9 - 3.15. Any single condition is better than

c1-7.

4) All are good, but c1, c2, and c3 are best, c4, c5, c6, and c7 are just moderate

improvement over c1-7.

5) Combining a few key conditions, i.e. c136 (reflection, expansion and contraction)

can also be better than c1-7 (Figure 3.17) but not as good as single condition only

(Figure 3.16).

43

 0
 20
 40

-8 -6 -4 -2 0 2 4 6 8

C
o
u
n
t

log(Min MN/ Min DET)

Noise=1

 0

 10

 20

C
o
u
n
t

Noise=100

 0

 10

 20
C

o
u
n
t

Noise=1000

(a)

 0
 20
 40

-8 -6 -4 -2 0 2 4 6 8

C
o
u
n
t

log(Min PC/ Min MN)

Noise=1 0

 10

C
o
u
n
t Noise=100

 0

 10

C
o
u
n
t Noise=1000

(b)

44

 0
 20
 40

-8 -6 -4 -2 0 2 4 6 8

C
o
u
n
t

log(Min (PC+MN)/ Min PC)

Noise=1
 0

 10

 20

 30

C
o
u
n
t

Noise=100

 0

 10

C
o
u
n
t

Noise=1000

(c)

Figure 3.5: Performance of (a) MN vs. DET (b) PC vs. MN, and (c) PC+MN vs.
PC, at three different noise levels (σ0 = 1, 100, 1000), averaged over 100 different
initial simplex states for Rosenbrock optimization.

45

 0

 10

-8 -6 -4 -2 0 2 4 6 8

C
o
u
n
t

log(Min MN/ Min DET)

Noise=1
 0

 10
 20
 30
 40
 50

C
o
u
n
t

Noise=100

 0
 10
 20
 30
 40
 50

C
o
u
n
t

Noise=1000

(a)

 0

 10

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5

C
o
u
n
t

log(Min PC/ Min MN)

Noise=1
 0

 10

C
o
u
n
t Noise=100

 0

 10

 20

 30

C
o
u
n
t

Noise=1000

(b)

46

 0

 10

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

C
o
u
n
t

log(Min (PC+MN)/ Min PC)

Noise=1
 0

 10

C
o
u
n
t Noise=100

 0

 10

 20
C

o
u
n
t

Noise=1000

(c)

Figure 3.6: Performance of (a) MN vs. DET (b) PC vs. MN, and (c) PC+MN vs.
PC, at three different noise levels (σ0 = 1, 100, 1000), averaged over 100 different
initial simplex states for Powell function optimization.

 0

 10

 20

 30

 40

 50

-10 -8 -6 -4 -2 0 2 4 6

Co
un

t

log(Min K1/ Min k2)

Noise=1000

Figure 3.7: Performance of PC for K=1 vs K=2, at noise level σ0 = 1000, averaged
over 100 different initial simplex states for Rosenbrock optimization.

47

 0

 10

 20

-9 -7 -5 -3 -1 1 3 5

Co
un

t

log(Min c1/ Min c6)

Noise=1000

Figure 3.8: Performance of PC when considering error bar only in condition 1 (c1)
compared to only condition 6 (c6), at noise level σ0 = 1000, averaged over 100 different
initial simplex states for Rosenbrock optimization.

 0

 10

 20

-10 -8 -6 -4 -2 0 2 4

C
ou

nt

log(Min c1/ Min c1-7)

Noise=1000

Figure 3.9: Performance of PC algorithm when considering error bar in condition
1 (c1) only and comparing with a strict implementation considering error bar in all
conditions (c1-7), at noise level σ0 = 1000, averaged over 100 different initial simplex
states for Rosenbrock optimization.

48

 0

 5

 10

 15

 20

-10 -8 -6 -4 -2 0 2 4

Co
un

t

log(Min c2/ Min c1-7)

Noise=1000

Figure 3.10: Performance of PC algorithm when considering error bar in condition
2 only and comparing with a strict implementation considering error bar in all con-
ditions (c1-c7), at noise level σ0 = 1000, averaged over 100 different initial simplex
states for Rosenbrock optimization.

 0

 5

 10

 15

-10 -8 -6 -4 -2 0 2 4

Co
un

t

log(Min c3/ Min c1-7)

Noise=1000

Figure 3.11: Performance of PC algorithm when considering error bar in condition
3 only (c3) and comparing with a strict implementation considering error bar in all
conditions (c1-7), at noise level σ0 = 1000, averaged over 100 different initial simplex
states for Rosenbrock optimization.

49

 0

 10

 20

-10 -8 -6 -4 -2 0 2 4

Co
un

t

log(Min c4/ Min c1-7)

Noise=1000

Figure 3.12: Performance of PC algorithm when considering error bar in condition
4 only (c4) and comparing with a strict implementation considering error bar in all
conditions (c1-7), at noise level σ0 = 1000, averaged over 100 different initial simplex
states for Rosenbrock optimization.

 0

 10

 20

-9 -7 -5 -3 -1 1 3 5

Co
un

t

log(Min c5/ Min c1-7)

Noise=1000

Figure 3.13: Performance of PC algorithm when considering error bar in condition
5 only (c5) and comparing with a strict implementation considering error bar in all
conditions (c1-7), at noise level σ0 = 1000, averaged over 100 different initial simplex
states for Rosenbrock optimization.

50

 0

 10

 20

 30

-9 -7 -5 -3 -1 1 3 5

Co
un

t

log(Min c6/ Min c1-7)

Noise=1000

Figure 3.14: Performance of PC algorithm when considering error bar in condition
6 only (c6) and comparing with strict a implementation considering error bar in all
conditions (c1-7), at noise level σ0 = 1000, averaged over 100 different initial simplex
states for Rosenbrock optimization.

 0

 10

 20

-9 -7 -5 -3 -1 1 3 5

Co
un

t

log(Min c7/ Min c1-7)

Noise=1000

Figure 3.15: Performance of PC algorithm when considering error bar in condition
7 only (c7) and comparing with a strict implementation considering error bar in all
conditions (c1-7), at noise level σ0 = 1000, averaged over 100 different initial simplex
states for Rosenbrock optimization.

51

 0

 10

 20

-10 -8 -6 -4 -2 0 2 4

Co
un

t

log(Min c1/ Min c136)

Noise=1000

Figure 3.16: Performance of PC algorithm when considering error bar in condition 1
only and comparing with stricter implementation considering error bar in conditions
1, 3, 6, at noise level σ0 = 1000, averaged over 100 different initial simplex states for
Rosenbrock optimization.

 0

 10

 20

-10 -8 -6 -4 -2 0 2 4

Co
un

t

log(Min c136/ Min c1t7)

Noise=1000

Figure 3.17: Performance of PC algorithm when considering error bar in condition
1, 3, 6 only and comparing with stricter implementation considering error bar in all
conditions, at noise level σ0 = 1000, averaged over 100 different initial simplex states
for Rosenbrock optimization.

52

3.4 Scale Up

Table 3.3: Processor allocation for Rosenbrock optimization using MW framework.

Dimensions
(d)

No. of
workers
(d+ 3)

No. of
servers
(d+ 3)

No. of
clients
(d+3)Ns

Total no of
cores (dNs +
3Ns + 2d+ 7)

20 23 23 23 70

50 53 53 23 160

100 103 103 23 310

In many parameter optimization applications, scalability is a desired property,

in which a growing parameter space can be handled in a graceful manner, without

drastic performance degradation. We tested the MW design by optimizing the Rosen-

brock function in d=20, 50, and 100 dimensions using 70, 160, and 310 processors,

respectively, as shown in table 3.3. The Rosenbrock optimization using MW requires

one master processor starting d+3 workers, and each server communicates with only

one client executing the Rosenbrock function, such that the number of simulations

running within each client-server framework is Ns = 1.

As the dimensionality of the problem increases, more steps are required (Figure

3.18b) by the simplex to converge to a minimum, as expected, hence requiring more

time (Figure 3.18a). The increase in the time taken by the simplex to move a single

step represents the performance degradation; this is minor (Figure 3.18c), and is

attributed to the I/O at the simplex and vertex levels.

53

(a) function value vs time

(b) function value vs steps

(c) Time/step vs dimensions

Figure 3.18: MW Scale-up

54

3.5 Application

High performance computing is an indispensable tool for research in a domain

like molecular dynamics. Molecular dynamics simulations are used to describe the

chemical system using a numerical model. These simulations are extremely computa-

tionally intensive requiring significant resources. The numerical model is generally a

potential that determines the physical or chemical properties of a system under con-

sideration. The potential is further described by a list of parameters that characterize

the model.

As an application of the MN, PC, PC+MN algorithms and the MW framework

to a complex and realistic scientific application, we aimed to optimize the force field

parameters {Λi} = (σ, ϵ, qH) for TIP4P model of water [2], where ϵ and σ parameterize

the Lennard-Jones interactions acting at the oxygen site, and qH is the partial charge

on the hydrogen atoms (Figure 3.19).

Thsese simulations consist of multiple phases though still considered to be a

single simulation. An initial configuration is used to perform an MD equilibration in

the NV T ensemble. The output of this simulation is used to perform a production

run in the NV E ensemble. All these simulations require only an initial configuration,

a fully parameterized potential and the description of the algorithm. The purpose

of performing these simulations is to find the physical properties of the system like

pressure, diffusion coefficient, temerature, density, etc. that are controlled by the

parameter set Λ defining the potential V . TIP4P is among the most commonly used

models for simulating liquid water, with well-studied properties, which makes it a

good benchmark against which to compare our optimization algorithm. Note that

TIP4P is already a very well optimized model; any errors in properties predicted by

this model are primarily due to to assumptions in the functional form of the model

55

(Lennard-Jones and point-charge electrostatics) and the choice of model geometry,

rather than errors in the model parameters. Our goal was not to improve the param-

eterization of the TIP4P model, but to use this well studied model as a convenient

benchmark for the performance of our algorithms. The MW framework was used

to perform a modified simplex optimization with both the PC and MN algorithms,

while the client processes associated with each vertex performed a canonical ensemble

(NVT) molecular dynamics (MD) simulation at 298 K in order to equilibrate the sys-

tem, followed by a microcanonical ensemble (NVE) production run from which pair

correlation functions and thermodynamic properties were evaluated.

The objective function g(Λ) that we choose to optimize is the weighted sum

of squares of six different residuals,

g(Λ) =
6∑

i=1

w2
i

(pi(Λ)− p0i)
2

(p0i)
2

(3.4)

where the pi(Λ) are the (noisy) equilibrium average properties obtained from sim-

ulation, p0i are the experimental values of these properties, and wi are the weights

assigned to these properties. The weights were chosen subjectively to balance the level

of error in each property. These properties included two thermodynamic properties

(the average internal energy, ⟨U⟩ and average pressure, ⟨P ⟩), one dynamic property

(the self-diffusion coefficient, D), and three structural properties (obtained from the

three radial distribution functions, gOO, gOH, and gHH). All six properties were fit

to experimental values [1, 73, 74]. The radial distribution functions were reduced to

scalars by calculating the root mean square difference from the experimental curve,

for example

pg(r) =

[
1

rmax − rmin

∫ rmax

rmin

[gOO(r)− g∗OO(r)]
2 dr

]1/2
(3.5)

56

for gOO, where g∗OO(r) is the experimental radial distribution function [1]. With this

definition, the experimental (target) value for each pg(r) is zero. We specifically chose

the diffusion coefficient and radial distribution functions as examples of the type of

properties which are not typically fitted directly when developing molecular models,

despite their importance, because they converge too slowly to be conveniently iterated

over in a manual process.

Figure 3.19: TIP4P water molecule model with parameters

57

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12

g
O

O
(r

)

rOO (Angstrom)

experiment
vertex 1
vertex 2
vertex 3
vertex 4

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10 12

g
o
o
(r

)

roo(Angstrom)

experiment
TIP4P

optimized

(b)

58

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10 12

g
o
o
(r

)

roo(Angstrom)

experiment
TIP4P

optimized

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10 12

g
o
o
(r

)

roo(Angstrom)

experiment
TIP4P

optimized

(d)

Figure 3.19: Oxygen-oxygen radial distribution functions (RDFs) for TIP4P water
models with (a) non-optimal parameters, (b)parameters obtained using the MN algo-
rithm, and (c) parameters obtained using the PC algorithm (d) parameters obtained
using PC+MN algorithm, compared with RDFs obtained from experiment[1] and the
standard TIP4P model[2]. 59

Figure 3.20: g(r) curves for water model with parameters obtained from various stages
of simplex optimization.

The simplex was initiated with parameter values (Table 3.4a) that gave poor

and unphysical results, as illustrated by the initial gOO(r) curves in Figure 3.20a. As

the optimization process progressed, parameter values improved and resulted in better

g(r) curves as shown in Figure 3.20. Within 42 simplex steps, the MN optimization

converged with values of ϵ = .1514 kcal/mol, σ = 3.150 Å, and qH = 0.520|e−|

(Table 3.4b). The PC optimization took 56 steps and converged with value of

ϵ = .1470 kcal/mol, σ = 3.160 Å, and qH = 0.523|e−| (Table 3.4c). The PC+MN

algorithm required more than 62 steps and converged with values ϵ = .1470 kcal/mol,

σ = 3.162 Å, and qH = 0.522|e−| (Table 3.4d). These are all similar to the published

60

TIP4P parameters ϵ = .1550 kcal/mol, σ = 3.154 Å, and qH = 0.520|e−|. Even more

encouraging, the gOO(r) pair correlation function provides a slightly better fit to the

experimental data with the MN, PC and PC+MN models than does the original

TIP4P model, as shown in Figure 3.20b, Figure 3.19c, and Figure 3.19d, respectively.

The thermodynamic and dynamic properties are also well reproduced by the

MN, PC and PC+MN models (Table 3.4). The average internal energy of the water

is ⟨U⟩ = −41.69 kJ/mol, −41.72 kJ/mol and −41.80 kJ/mol for the MN, PC and

PC+MN parameterizations, respectively, while the experimental value is −41.5 kJ/-

mol and TIP4P produces −41.8 kJ/mol [73]. All models give a pressure that differs

substantially from the ⟨P ⟩ = 1 atm at the experimental density, but the MN, PC and

PC+MN models give 212 atm, 368.5 atm and 266.8 atm respectively, compared to

373 for TIP4P. The diffusion coefficient improves from 3.29× 10−5 cm2/s for TIP4P

to 3.00 × 10−5 cm2/s with MN, 3.10 × 10−5 cm2/s with PC and 3.01 × 10−5 cm2/s

with PC+MN, compared to the experimental value of 2.27 × 10−5 cm2/s. Thus the

MN, PC and PC+MN algorithms are capable of reproducing a model with properties

equivalent to or better than the published TIP4P model.

61

Table 3.4: Numerical values of initial and final parameters obtained with MN, PC,
and PC+MN algorithms.

(a) Initial parameters

ϵO(
amuÅ2

df2
s

) σO(Å) qH(|e−|)

7.1000× 10−7 3.0 0.54

6.4931× 10−7 3.40 0.45

5.4913× 10−7 3.25 0.52

6.8000× 10−7 2.80 0.60

5.4913× 10−7 3.25 0.60

6.8000× 10−7 2.90 0.65

(b) Final parameters obtained with MN algorithm

ϵO(
amuÅ2

df2
s

) σO(Å) qH(|e−|)

6.345× 10−7 3.153 0.5207

6.348× 10−7 3.153 0.5207

6.344× 10−7 3.153 0.5207

6.347× 10−7 3.153 0.5206

6.347× 10−7 3.153 0.5207

6.343× 10−7 3.153 0.5206

62

ϵO(
amuÅ2

df2
s

) σO(Å) qH(|e−|)

6.137× 10−7 3.169 0.5232

6.140× 10−7 3.168 0.5233

6.163× 10−7 3.166 0.5233

6.129× 10−7 3.168 0.5237

6.146× 10−7 3.167 0.5235

6.142× 10−7 3.168 0.5233

(c) Final parameters obtained using PC algorithm

ϵO(
amuÅ2

df2
s

) σO(Å) qH(|e−|)

6.231× 10−7 3.1610 0.5226

6.203× 10−7 3.163 0.5229

6.215× 10−7 3.163 0.5226

6.235× 10−7 3.160 0.5227

6.241× 10−7 3.161 0.5224

6.182× 10−7 3.164 0.5222

(d) Final parameters obtained using PC+MN algo-
rithm

63

Table 3.4: Property (Pr) values(V) and error (E) : Diffusion constant (D), hydrogen-
hydrogen (HH) g(r), Oxygen-Hydrogen(OH) g(r), Oxygen-Oxygen (OO) g(r), Press-
sure (P) and Energy (E) as obtained using MN, PC, PC+MN compared with TIP4P
and Experimantal data.

Pr MN PC MN+PC TIP4P EXP
V E V E V E V V

D 3.0E-05.50E-053.1E-05 .22E-05 5.06 2.23 1.30 1.35
HH .0284 1.2E-05 .031 3.2E-05 .05 .0002 - -
OH .1015 6.1E-05 .102 .0001 .11 .0001 - -
OO .059 .000 .06 .0004 .09 0.0002 - -
P 212.1 47.1 359.4 67.5 266.8 245 373 1
E -41.69 .041 -41.68 .018 -41.80 .04 -41.80 -41.50

The average potential energy of the water model produced by the pair radial

distribution function goo is also in agreement with the experimental values. The opti-

mized parameters result in an average energy= −41.9 kJ/mol while the experimental

value is −41.5 kJ/mol.

64

Chapter 4

Implementation

4.1 Hardware

The computing facility at Clemson provides the palmetto cluster of 1541 nodes

and is the 80th fastest computer on the December 2010 Top 500 list [75]. Each node

has dual processors and each processor has four cores for a total of 12328 compute

cores.The Intel processors have a clock speed of 2.33GHz and have either 4 or 6 MB

of cache. The Sun X2200 processors have a clock speed at 2.5 GHz and have 6 MB

of cache. Each Intel node provides 12 or 16 GBytes of memory while Sun nodes

have 16 GBytes of memory each. Also, each node has associated local disk, half of

which can be used for temporary storage. The CPUs support both 32 and 64 bit

applications. The cluster can achieve a peak performance of 85.04 TFlops using 1426

compute nodes. All the compute nodes run a 64-bit CentOS-5 Linux distribution with

the 2.6.18-92.1.10.e15 version of the kernel. Palmetto provides a Myrinet Myri-10G

[76] interconnection network between the nodes. The Myrinet 10G network is a high

performance interconnect [77, 78] with low latency message passing and 1.2 GB/s of

sustained network bandwidth . The Myri-10G network can be accessed in two ways:

65

using a low latency 9.8 Gbs IP network or with the Myrinet Express (MX) RDMA

interface capable of achieving full line-rate bandwidth and a message passing latency

of 2.3 µs. The message passing interface (MPI) [79] is the standard for communication

between the nodes with in the parallel communication.

4.2 Software

The parameter optimization requires a number of inputs in order to define

any particular optimization problem. These include the systems to be simulated, the

properties to be calculated, and the cost function to be optimized. The purpose of

this section is to identify how these various inputs are provided to the optimization

program by the user. The user is responsible for providing the starting configuration

for each simulation and the code (together with any other required input) used to

perform the simulation. The initial points in parameter space needed to begin the

optimization are provided by the user, while subsequent points in the parameter space

are determined by the optimization algorithm. The scripts or codes used to perform

property calculations are provided by the user, along with the target values for each

property, and the weights used in the cost function. Details of how these values are

specified by the user are described below.

Root

All user-specified information is provided via files that appear in a directory structure.

The root of this directory structure is provided as an argument to the optimization

program at runtime. All files that are used by the optimization program, or processes

that it launches, are to be found with in this directory tree. Any two simultaneous

instances of the optimization program should be run with distinct, non-overlapping

directory trees, to avoid conflicts in output files. For the purpose of this document, we

66

will refer to the root of the directory tree as $OPTROOT. Figure 4.1 and Figure 4.2

shows the directory structure. The systems directory contains all the files required

for the simulations. Also, the initial set of parameters is provided by the user via an

input file stored in $OPTROOT directory. The first row in the input file provides the

name of d parameters (separated by white space) to be optimized and the follwing

d + 3 rows specify the coordinates (parameters) corresponding to d + 1 vertices of

simplex.

Systems

Figure 4.1: Directory structure created by user

At each point in parameter space, Ns systems must be simulated. Information

about each of these systems is provided in a directory of the form $OPTROOT/sys-

tems/sysname. The subdirectory name sysname can be any valid UNIX directory

67

Figure 4.2: Directory structure after one simulation

name except that it can not match the regular expression par[0-9]*. Every sub-

directory under $OPTROOT/systems that does not match the regular expression

par[0-9]* is assumed to represent a system, and must contain all the files (described

below) needed to run the system. Thus, no subdirectories beneath $OPTROOT/sys-

tems should be created that do not correspond to systems.

Starting Configurations

Each system (Si) requires a starting configuration, (Ri). This configuration is pro-

vided by the user in one or more files in the $OPTROOT/systems/sysname directory.

The format of the configuration files(s) is not specified by the optimization program,

and should be appropriate for whatever program is being used to perform the simu-

lation. Less than Ns different sysname subdirectories can be provided, if more than

68

one system uses the same starting configuration. Simulation Phases

In addition to a starting configuration, a simulation protocol Ti is also needed to fully

specify a system. This simulation may consist of mutiple phases. The user provides

self-consistent computational codes that perform the individual phases of the simu-

lation, begining with the starting configuration file and resulting in the output files

that will be needed to calculate the desired properties. The first phase of the simula-

tion is performed by an executable file named $OPTROOT/systems/sysname/run.sh

. Typically this will be a wrapper script that calls the appropriate executable for

the first-phase calculation, in addition to doing any pre and post-processing. The

user is responsible for making sure that all needed input files are provided, and that

programs write files in the format that will be needed for the subsequent phases or

property calculations.

If there is an (optional) second or later phase of simulation, the user provides

another executable file as $OPTROOT/systems/sysname/phasename/run.sh. I.e.,

this program must appear in a subdirectory of the system directory. The directory

name is not important, except that it must not match the regexp par[0-9] *; any other

subdirectory of the configuration directory is assumed to be a second phase of the

simulation. If there is more than one subdirectory, then more than one second-phase

simulation will be performed with the same starting configuration. Thus it is im-

portant to ensure that no additional subdirectories are created that do not have run

scripts and input files and that do not represent phases of simulation. The second

phase of simulation will be initiated after completion of the first phase. Thus if the

phase is implemented by the user through the use of a wrapper script, the wrapper

script should not exit until the calculations are finished— for example by running the

program in foreground rather than the background. Additional phases (3rd, 4th,.....)

are possible via nested subdirectories.

69

Property Values

The user is also responsible for providing the target values poi for each property.

These are provided in files with the name $OPTROOT/properties/prop*.val. Each

such file contains a single numerical value on the first line of the file, representing the

target value for the property calculated by the corresponding $OPTROOT/proper-

ties/prop*.sh script

The units of the target values should be same as those of the quantities calcu-

lated by the property scripts. These units need not be identified, but they must be

consistent.

Property Weights

In order to evaluate the cost function g from the residuals in the property values

(eq. 1.3), the weights,wi, for each property must be provided. The user provides the

value of wi used in eq. 1.3, for each property pi. When squared, this property is

used as an inverse weight for the squared relative error in the property, as indicated

in eq. 1.3. In practical terms, the wi values can be considered to be a tolerance for

relative error. For two properties pi and p1i , if the value of wi is twice as large as w1
i ,

then a relative error of 10% in pi will contribute the same amount to the cost function

as a relative error of 5% in p1i . Only the relative magnitute of the wi values will affect

the parameter optimization. The absolute scale of the wi values is unimportant, and

determines only the magnitude of the cost function.

Job submission

When the user scripts are placed in appropriate directories, the job is initiated by

submitting a portable batch script (PBS) to the head node on the cluster from the

$OPTROOT directory. The job scheduler then interacts with the cluster Torque re-

source scheduler to determine when the available computing resources are granted

to satisfy the jobs computing requirements. The submitted jobs may be queued for

70

several hours or even days. PBS requests the approriate number of processors on the

cluster. The number of processors required for a system is calculated by the software

using a wrapper script, which scans the directory structure and requests one processor

for each run.sh script found.

Job Scheduling

We use our own scheduling for the MW implementation. PBS makes a copy of the

machinefile ($PBS NODEFILE) in the $OPTROOT directory, which contains the list

of nodes (8 entries for each node) allocated to the job on the cluster. The job sched-

uler allocates one processor to the master and d + 2 processors to the workers from

the machine file in order. Further, each worker starts a client-server job by allocating

the required number of processors next available in the machinefile. When a worker

is restarted by the master; it is restarted on the same processors using the machine-

file. No new request is sent to the cluster for the processor allocation and scheduling

is performed by our program. Also, new simulations due to restarted workers are

carried out in a new directory under the $OPTROOT/systems directory.

4.3 Parallellization and Distribution

Analysis

We performed the analysis of the optimization algorithms to find which parts can be

parallelized. The parallelization techniques can be categorized as coarse-grain and

fine-grained. In a fine-grained implementation, very few data elements are assigned

to one processor and information is exchanged frequently between the processors. On

the contrary, a coarse-grained implementation has larger or sometimes even the entire

data set implemented on a single processor and information exchange is rare. There

are some components of the optimization process whose performance can be improved

71

remarkably by parallelization. The values of the cost function for any parameter set

can be evaluated independently from the rest of the parameter sets. Furthermore for

each parameter set, evaluating the individual cost functions for Ns different systems

is usually a time-consuming part but each can be simulated independently of one

another. Also, the property calculations are computationally inexpensive, but still

they can be performed in parallel. Most practitioners make use of coarse-grained

parallel structure by running multiple simulations as independent simulations on the

different processors. The parallel communication is replaced by a manual process of

calculating the property values from the output of each individual simulation. This

problem generated a need for a formal parallel implementation. In the current imple-

mentation, overhead due to parallel communication is very low since communication

costs are low while computation cost are high.

Distribution

In our research, variations of the downhill simplex algorithm are used to perform the

optimization. This approach has the advantage of being easily parallelized at levels

distinct from the cost function evaluation. In this implementation, each simplex ver-

tex corresponds to a point in the parameter space. For each vertex, Ns simulations

and NM property calculations are performed. At any given time d + 1 vertices are

active performing (d + 1)Ns simulations and calculating at least (d + 1)NM proper-

ties. At the highest level, the optimization algorithm defines d + 3 vertices for a d

dimensional optimization problem. This is implemented using one master process to

implement the modified simplex and d + 3 additional workers, one for each vertex

(Figure 4.3). The master communicates with the wokers via MPI. There is no direct

communication between the worker processes. The optimization algorithm navigates

through the parameter space by performing the tranformation operations frequently

by discarding one vertex and adding a new one as defined in the algorithm 1. Some

72

Figure 4.3: MW architecture

of the simplex operations require trial vertices. For example, sometimes the reflection

of the simplex vertex generating the worst cost function is evaluted. If the reflected

point is better than the original vertex than reflected vertex is kept; if not other op-

erations are tested. Consequently, using more than d+ 1 worker processes, efficiency

can be improved. We are using 2 additional vertices called the trial vertices in this

parallel implementation. Using trial vertices has the advantage that the vertices are

kept active until it is certain that they are no longer required. Thus we used total

d+3 vertices to evaluate the cost function at d+1 workers and 2 trial vertices. Each

of the workers perform Ns simulations that correspond to a single set of parameter

values. These simulations are further performed in parallel using the client-server

architecture. The client-server implementation at this level (vertex level) is different

from the master-worker implementation at higher level (simplex level). Each vertex

has one server process running and Ns client processing. Each client process maps on

73

to a single system. Also, each client runs a simulation starting with a configuration.

These simulations can be done in multiple phases. The server process at the vertex

level communicates with the client processes and coordinates the start and end of

each simulation running on the client side. Server and client processes communicate

via MPI at this level of parallelization. As in the simplex level, server communicates

with each client but clients do not communicate with each other.

All the algorithmic decisions are made by the master at the simplex level

and operations associated with individual simulations, or phases of a simulation are

made by the clients. In this design, servers and workers are logically equivalent

and there is one-to-one correspondance between them. Workers and servers partici-

pate in MPI communicatons upwards (between workers and master) and downwards

(between server and clients), respectively. Workers communicate with their corre-

sponding servers via file I/O.

74

Chapter 5

Conclusions and Discussion

5.1 Conclusions

Automated parameterization methods have the advantage of being faster, more

efficient and more objective than optimization by hand, by reducing the computa-

tional effort, human involvement, and subjectivity. Several of the barriers to au-

tomated parallel parameterization, including the effects of noise on the objective

function and the implementation of a parallel framework have been overcome in this

work. We have developed three simplex based optimization algorithms to address the

stochastic optimization bottleneck. We also developed a framework to automate the

optimization process. We tested our algorithms on this frame work. This study also

establishes that our model can be scaled up for large parameter spaces, and is well

suited for cluster-based architectures.

The MN, PC and PC+MN methods presented here are suitable algorithms for

advancing the simplex in the presence of a noisy objective function. All three algo-

rithms attempt, with different criteria, to rationally decide how long to sample at each

vertex before accepting a simplex move. Each stage in the parameterization process

75

terminates as soon as it can be determined that the parameters are non-optimal, but

continues sampling as long as the parameters remain viable, rather than terminating

at an arbitrary cutoff. All criteria used for advancing the simplex in the presence of a

noisy objective function proved comparable or superior to methods used previously,

with less requirement for problem-specific fine tuning. Our algorithms substantially

outperform the standard deterministic simplex algorithm on the Rosenbrock test func-

tion, where the PC algorithm also outperforms MN, while PC+MN outperforms PC.

The PC+MN algorithm provides results comparable to PC in accuracy, but can do

so with fewer function evaluations.

We have applied the method to fit a potential for liquid water, using MD

simulations and slowly convergent structural properties. In the application to fit

a model for liquid water based on the TIP4P model, MN and PC and PC+MN

algorithms result in a model that slightly improves upon the published model. This

demonstrates that the algorithms can be used for real-world problems in parameter

fitting. Our algorithms were quite robust in optimizing this molecular force field, even

in the presence of a highly nonlinear objective function, and can be easily applied to

other molecular modeling and more diverse parameter fitting applications.

One of the objectives of this work is to provide application developers an API

with useful functionality compatible with a wide range of application codes. We suc-

cessfully developed a programming model by enhacing the existing MW framework.

The programming model enables user to develop the algorithmic features or the ap-

plication code and embed in the framework without worrying about the details of the

underlying framework. The following publications, posters, talks have resulted from

this research:

Steven J. Stuart, Dheeraj Chahal, Sebastian Goasguen and Colin J. Trout, “ Repa-

rameterization of TIP4P water models with automated parallel stochastic opimization

76

methods ” (In preparation).

Dheeraj Chahal, Steven J. Stuart, Sebastian Goasguen and Colin J. Trout, “ Auto-

mated, Parallel Optimization algorithms for Stocastic Functions ”, IPDPS Workshop

on New Trends in Parallel Computing and Optimization, Anchorage, AK, USA, May

2011 (Accepted). [80]

Dheeraj Chahal, Steven J. Stuart, Sebastian Goasguen, Colin J. Trout, “Auto-

mated, Parallel Optimization of Stochastic Functions Using a Modified Simplex Algo-

rithm” e-sciencew, pp.98-103, 2010 Sixth IEEE International Conference on e-Science

Workshops, 2010. [81]

Colin Trout, Steven J. Stuart, Dheeraj Chahal, “Efficient Simplex Methods for

Force Field Parameterization ”, SURP poster session, Clemson University, USA, July

2010. poster [82]

Pierce Robinson, Steve Stuart, Dheeraj Chahal, “Parameterization of Molecular

Dynamics Simulations Using a Downhill Simplex Algorithm”, SURP poster session,

Clemson University, USA, July 2010. poster [83]

Dheeraj Chahal, Sebastien Goasguen, Steve Stuart, “Automated Parallel Parame-

terization Using Simplex Method ”, Workshop on Modeling Advanced Materials and

Systems Biology: Building Capabilities and Collaborations for Cyber-Enabled Dis-

covery, September 20-22,Clemson University, USA, 2010. poster [84]

5.2 Recommendations for Future Research

The suit of test problems to study the algorithms should be enlarged to include

the test problem exhibiting diverse factors like: degree of difficulty, dimenstionality of

system, response surface geometry. Also, one interesting study would be to test the

algorithms under varying degree of dimensionality and different termination criterion.

77

We tested our algorithms for dimensionality d = 2, 3, 4 only, while the MW framework

was tested for Rosenbrock function optimization with upto 100 dimensions.

Simplex has the potential of being used in conjunction with other algorithms

with uphill movement capability. Many researchers have developed new algorihtms

by combining simplex with other stochastic and global optimization algorithms. On

the similar lines, the MN and PC algorithms can be tested with the these algorithms.

For example, particle swarm optimization (PSO) suffers from the disadvantage of slow

convergence in the refined search stages and has weak local convergence algorithm

while the maxnoise, point-to-point and simplex in general lack the ability to converge

to global minimum but converges quickly to a local minimum. An ability to use

PSO with maxnoise and point-to-point may prove to be another step forward in the

development of global stochastic algorithms.

From the results obtained we have proved that the modified simplex converges

better than the classical NM simplex. Future research could include a theoretical

proof of convergence of the modified simplex.

The new MW framework has considerable potential for improved speed-up.

The current version of MW starts a client-server environment for each worker. Though

worker and server are logically similar, they run on different cpus. A number of

processors proportional to the dimension of the system under investigation can be

saved by modifying the architecture and allowing to start the clients to be started

directly from a worker without creating a server. Also, master and worker processes

could easily share a single processor.

There is significant research going on in the development of framework for the

distributed computing. Apache hadoop [85] and mapreduce [86] are popular open-

source software packages for reliable, scalable, distributed computing. Studying new

algoritms with these frameworks would be an interesting study.

78

Bibliography

[1] A. K. Soper. The radial distribution functions of water and ice from 220 to 673
k and at pressures up to 400 mpa. Chemical Physics, 258(2-3):121 – 137, 2000.

[2] William L. Jorgensen, Jayaraman Chandrasekhar, Jeffry D. Madura, Roger W.
Impey, and Michael L. Klein. Comparison of simple potential functions for sim-
ulating liquid water. The Journal of Chemical Physics, 79(2):926–935, 1983.

[3] Andrew Lewis, David Abramson, and Tom Peachey. RSCS: A parallel sim-
plex algorithm for the nimrod/o optimization toolset. Proceedings of the ISPD-
C/HeteroPar’04, IEEE, 2004.

[4] David Abramson, Tom Peachey, and Andrew Lewis. Model optimization and
parameter estimation with nimrod/o. In University of Reading, 2006.

[5] Harold P. Benson. Deterministic algorithms for constrained concave minimiza-
tion: A unified critical survey. Naval Research Logistics (NRL), 43(6):765–795,
1996.

[6] George L. Nemhauser and Laurence A. Wolsey. Integer and combinatorial opti-
mization. Wiley-Interscience, New York, NY, USA, 1988.

[7] I. Quesada and I.E. Grossmann. An lp/nlp based branch and bound algorithm
for convex minlp optimization problems. Computers & Chemical Engineering,
16(10-11):937 – 947, 1992. An International Journal of Computer Applications
in Chemical Engineering.

[8] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The
Computer Journal, 7(4):308–313, 1965.

[9] Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by
direct search: New perspectives on some classical and modern methods. SIAM
REVIEW 2003 Society for Industrial and Applied Mathematics, 45(3), 2008.

[10] Virginia Torczon. On the convergence of pattern search algorithms. SIAM J. on
Optimization, 7(1):1–25, 1997.

79

[11] Abramson D. A., A. Lewis, and T. Peachey. Nimrod/o: a tool for automatic
design optimisation using parallel and distributed systems. In Proceedings of
the 4th International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP 2000), pages 497–508. World Scientific Publishing Co, Sin-
gapore, 2000.

[12] Tsutomu Matsumoto, Hai Du, and Jonathan S. Lindsey. A parallel simplex
search method for use with an automated chemistry workstation. Chemometrics
and Intelligent Laboratory Systems, 62(2):129 – 147, 2002.

[13] Donghoon Lee and Matthew Wiswall. A parallel implementation of the simplex
function minimization routine. Computational Economics, 30:171–187, 2007.
10.1007/s10614-007-9094-2.

[14] Louis Coetzee and Elizabeth C. Botha. The parallel downhill simplex algo-
rithm for unconstrained optimisation. Concurrency: Practice and Experience,
10(2):121–137, 1998.

[15] J. E. Dennis, Jr., and Virginia Torczon. Direct search methods on parallel ma-
chines. SIAM Journal on Optimization, 1:448–474, 1991.

[16] Roland Faller, Heiko Schmitz, Oliver Biermann, and Florian Mller-Plathe. Au-
tomatic parameterization of force fields for liquids by simplex optimization. J.
Comput. Chem, 20:100–9, 1998.

[17] Per-Ola Norrby and Tommy Liljefors. Automated molecular mechanics parame-
terization with simultaneous utilization of experimental and quantum mechanical
data. Journal of Computational Chemistry, 19(10):1146–1166, 1998.

[18] A. Gaiddon, D. D. Knight, and C. Poloni. Multicriteria design optimization of
a supersonic inlet based upon global missile performance. Journal of Propulsion
and Power, 20(3):542–558, 2004.

[19] David G. Humphrey and James R. Wilson. A revised simplex serach procedure
for stochastic simulation response surface optimization. INFORMS Journal on
Computing, 12(4), Fall 2000.

[20] Andr I. Khuri and John A. Cornell. Response surfaces : designs and analyses.
Marcel Dekker, New York, 1987.

[21] G. E. P. Box and K. B. Wilson. On the experimental attainment of optimum
conditions. Journal of the Royal Statistical Society. Series B (Methodological),
13(1):pp. 1–45, 1951.

[22] Russell R. Barton and Jr. Ivey, John S. Nelder-mead simplex modifications for
simulation optimization. Management Science, 42(7):954–973, 1996.

80

[23] Shu-Kai S. Fan and Erwie Zahara. Stochastic response surface optimization via
an enhanced nelder-mead simplex search procedure. Engineering Optimization,
1:15–36, 2005.

[24] P. Gilmore and C. T. Kelley. An implicit filtering algorithm for optimization of
functions with many local minima. SIAM J. Optim, 5:269–285, 1995.

[25] J.C. Spall. Adaptive stochastic approximation by the simultaneous perturbation
method. Automatic Control, IEEE Transactions on, 45(10):1839 – 1853, 2000.

[26] J.C. Spall. Multivariatestochasticapproximationusingasimultaneouspertur-
bationgradientapproximation. Automatic Control, IEEE Transactions on,
37:332–341, oct. 1992.

[27] Dirk V. Arnold and Hans-Georg Beyer. A comparison of evolution strategies
with other direct search methods in the presence of noise. Comput. Optim.
Appl., 24(1):135–159, 2003.

[28] M. J. D. Powell. Direct search algorithms for optimization calculations. Acta
Numerica, 7:287–336, 1998.

[29] Hans-Georg Beyer. Evolutionary algorithms in noisy environments: theoretical
issues and guidelines for practice. Computer Methods in Applied Mechanics and
Engineering, 186(2-4):239 – 267, 2000.

[30] H.G. Neddermeijer, G.J. van Oortmarssen, N. Piersma, Rommert Dekker, and
J.D.F. Habbema. Adaptive extensions of the nelder and mead simplex method
for optimization of stochastic simulation models. Econometric Institute Report
EI 2000-22/A, Erasmus University Rotterdam, Econometric Institute, 2010.

[31] Jeff Linderoth, Sanjeev Kulkarni, Jean-Pierre Goux, and Michael Yoder. An
enabling framework for master-worker applications on the computational grid.
In Proceedings of the Ninth IEEE Symposium on High Performance Distributed
Computing (HPDC9), pages 43–50, Pittsburgh, PA, August 2000.

[32] The MetaNEOS Project. Metacomputing environments for optimization. Web-
site, 2000. http://www.mcs.anl.gov/metaos.

[33] Qun Chen, Michael C. Ferris, and Jeff T. Linderoth. Fatcop 2.0: Advanced
features in an opportunistic mixed integer programming solver. Annals of Oper-
ations Research, 2000, 1999.

[34] J.-P. Goux and Sven Leyffer. Mixed-integer nonlinear programming on meta-
computing platform. Working Paper, 1999.

81

http://www.mcs.anl.gov/metaos

[35] J. Linderoth and S. Wright. A cutting plane code for stochastic programming
on metacomputers. Invited presentation at the INFORMS National Meeting,
November 1999.

[36] Jean-Pierre Goux, Jeff Linderoth, and Michael Yoder. Metacomputing and the
master-worker paradigm. In Preprint MCS/ANL-P792-0200, Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, 2000.

[37] Jasper A. Vrugt, Breanndn Nuallin, Bruce A. Robinson, Willem Bouten, Ste-
fan C. Dekker, and Peter M.A. Sloot. Application of parallel computing to
stochastic parameter estimation in environmental models. Computers and Geo-
sciences, 32(8):1139–1155, 2006.

[38] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1989.

[39] Hans-Paul Paul Schwefel. Evolution and Optimum Seeking: The Sixth Genera-
tion. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[40] Anuradha Maria. Genetic algorithm for multimodal continuous optimization
problems. PhD thesis, Norman, OK, USA, 1995.

[41] Fang Wang and Yuhui Qiu. Empirical study of hybrid particle swarm optimizers
with the simplex method operator. In Proceedings of the 5th International Con-
ference on Intelligent Systems Design and Applications, ISDA ’05, pages 308–313,
Washington, DC, USA, 2005. IEEE Computer Society.

[42] Fang Wang and Yuhui Qiu. Multimodal function optimizing by a new hybrid
nonlinear simplex search and particle swarm algorithm. In Joao Gama, Rui
Camacho, Pavel Brazdil, Alipio Jorge, and Luis Torgo, editors, ECML, volume
3720 of Lecture Notes in Computer Science, pages 759–766. Springer, 2005.

[43] Fang Wang, Yuhui Qiu, and Yun Bai. A new hybrid nm method and parti-
cle swarm algorithm for multimodal function optimization. In A. Fazel Famili,
Joost N. Kok, José Maŕıa Peña, Arno Siebes, and A. J. Feelders, editors, IDA,
volume 3646 of Lecture Notes in Computer Science, pages 497–508. Springer,
2005.

[44] Fang Wang, Yuhui Qiu, and Naiqin Feng. Multi-model function optimization by
a new hybrid nonlinear simplex search and particle swarm algorithm. In Lipo
Wang, Ke Chen 0001, and Yew-Soon Ong, editors, ICNC (3), volume 3612 of
Lecture Notes in Computer Science, pages 562–565. Springer, 2005.

82

[45] Yuhui Qiu and Fang Wang. Improving particle swarm optimizer using the non-
linear simplex method at late stage. In Richard T. Hurley and Wenying Feng,
editors, IASSE, pages 25–30. ISCA, 2005.

[46] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):pp. 671–680, 1983.

[47] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Readings in computer vision:
issues, problems, principles, and paradigms. chapter Optimization by simulated
annealing, pages 606–615. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1987.

[48] Fred Glover. Tabu search–part i. INFORMS Journal On Computing, 1(3):190–
206, 1989.

[49] Fred Glover. Tabu search–part ii. INFORMS Journal On Computing, 2(1):4–32,
1990.

[50] Marco Dorigo and Gianni Di Caro. The ant colony optimization meta-heuristic,
pages 11–32. McGraw-Hill Ltd., UK, Maidenhead, UK, England, 1999.

[51] Marco Dorigo, Gianni Di Caro, and Luca M. Gambardella. Ant algorithms for
discrete optimization. Artificial Life, 5(2):137–172, 1999.

[52] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. Computational
Intelligence Magazine, IEEE, 1(4):28 –39, 2006.

[53] Martin Middendorf, Frank Reischle, and Hartmut Schmeck. Information ex-
change in multi colony ant algorithms. In Jos Rolim, editor, Parallel and Dis-
tributed Processing, volume 1800 of Lecture Notes in Computer Science, pages
645–652. Springer Berlin / Heidelberg, 2000.

[54] Thomas Stutzle. Parallelization strategies for ant colony optimization. In Pro-
ceedings of PPSN-V, Fifth International Conference on Parallel Problem Solving
from Nature, pages 722–731. Springer-Verlag, 1998.

[55] D.C. Montgomery and G.C. Runger. Applied Statistics and Probability for En-
gineers. John Wiley and Sons, Inc, New York, 1994.

[56] K. Marti. Stochastic Optimization Methods. Springer, 2005.

[57] Brad L. Miller, Brad L. Miller, David E. Goldberg, and David E. Goldberg.
Genetic algorithms, tournament selection, and the effects of noise. Complex
Systems, 9:193–212, 1995.

[58] Brad L. Miller and David E. Goldberg. Genetic algorithms, selection schemes,
and the varying effects of noise. Evol. Comput., 4:113–131, June 1996.

83

[59] Jack Lee and P. Wong. The effect of function noise on gp efficiency. In Xin Yao,
editor, Progress in Evolutionary Computation, volume 956 of Lecture Notes in
Computer Science, pages 1–16. Springer Berlin / Heidelberg, 1995.

[60] Sigrún Andradóttir. Accelerating the convergence of random search methods for
discrete stochastic optimization. ACM Trans. Model. Comput. Simul., 9:349–380,
October 1999.

[61] Robert Michael Lewis, Virginia Torczon, Michael, and Michael W. Trosset. Di-
rect search methods: Then and now. Journal of Computational and Applied
Mathematics, 124:191–207, 2000.

[62] Rafael Rasa, Antonio Vidal, and Vctor Garca. Parallel Optimization Methods
Based on Direct Search, volume 3991 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2006.

[63] Patricia D. Hough, Tamara G. Kolda, and Virginia J. Torczon. Asynchronous
parallel pattern search for nonlinear optimization. SIAM Journal on Scientific
Computing, 23(1):134–156, 2001.

[64] Qiang Xiong and Arthur Jutan. Continuous optimization using a dynamic sim-
plex method. Chemical Engineering Science, 58(16):3817 – 3828, 2003.

[65] Rachid Chelouah and Patrick Siarry. Genetic and nelder-mead algorithms hy-
bridized for a more accurate global optimization of continuous multiminima func-
tions. European Journal of Operational Research, 148(2):335–348, 2003.

[66] Rachid Chelouah and Patrick Siarry. A hybrid method combining continuous
tabu search and nelder-mead simplex algorithms for the global optimization of
multiminima functions. European Journal of Operational Research, 161(3):636 –
654, 2005.

[67] F. Herrera, M. Lozano, and D. Molina. Continuous scatter search: An analysis of
the integration of some combination methods and improvement strategies. Eu-
ropean Journal of Operational Research, 169(2):450 – 476, 2006. Feature Cluster
on Scatter Search Methods for Optimization.

[68] Alejandro Karam, Gilles Caporossi, and Pierre Hansen. Arbitrary-norm hyper-
plane separation by variable neighbourhood search. IMA Journal of Management
Mathematics, 18(2):173–189, April 2007.

[69] Nenad Mladenovic, Milan Drazic, Vera Kovacevic-Vujcic, and Mirjana Can-
galovic. General variable neighborhood search for the continuous optimization.
European Journal of Operational Research, 191(3):753 – 770, 2008.

84

[70] Joaqun Pacheco, Silvia Casado, and Laura Nuez. Use of vns and ts in classifica-
tion: variable selection and determination of the linear discrimination function
coefficients. IMA Journal of Management Mathematics, 18(2):191–206, April
2007.

[71] Edward J. Anderson, Michael, C. Ferris, and Himsworth These Methods. A
direct search algorithm for optimization with noisy function evaluations. SIAM
J. Optim, 11:837–857, 2000.

[72] H. H. Rosenbrock. An Automatic Method for Finding the Greatest or Least
Value of a Function. The Computer Journal, 3(3):175–184, 1960.

[73] M. W. Mahoney and W. L. Jorgensen. A five-site model for liquid water and the
reproduction of the density anomaly by rigid, nonpolarizable potential functions.
J. Chem. Phys., 112:8910–8922, 2000.

[74] D. Eisenberg and W. Kauzmann. The structure and properties of water. Oxford
University Press, London, 1969.

[75] Top500 Supercomputing Sites. http://top500.org.

[76] Myricom Inc. http://www.myri.com.

[77] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson. Effects of
Communication Latency, Overhead, and Bandwidth in a Cluster Architecture.
In Proceedings of the 24th International Symposium on Computer Architecture,
pages 85–97, Denver, Colorado, June 1997.

[78] Brice Goglin. High-performance message passing over generic ethernet hardware
with open-mx. Parallel Computing, In Press, Accepted Manuscript:–, 2010.

[79] Message passing interface forum , MPI: A message-passing interface standard.
Tech. Rep. UT-CS-94-230, 1994.

[80] Dheeraj Chahal, Steven J. Stuart, Sebastian Goasguen, and Colin J. Trout.
Automated, parallel optimization algorithms for stochastic functions. IPDPS
Workshops, IEEE International Conference on, May, 2011.

[81] Dheeraj Chahal, Steven J. Stuart, Sebastian Goasguen, and Colin J. Trout. Au-
tomated, parallel optimization of stochastic functions using a modified simplex
algorithm. e-Science Workshops, IEEE International Conference on, 0:98–103,
2010.

[82] Colin Trout, Steven J. Stuart, and Dheeraj Chahal. Efficient simplex methods
for force field parameterization. SURP poster session, Clemson University, USA,
July 2010.

85

[83] Pierce Robinson, Steve Stuart, and Dheeraj Chahal. Parameterization of molec-
ular dynamics simulations using a downhill simplex algorithm. SURP poster
session, Clemson University, USA, July 2010.

[84] Dheeraj Chahal, Sebastien Goasguen, and Steve Stuart. Automated parallel
parameterization using simplex method. Workshop on Modeling Advanced Ma-
terials and Systems Biology: Building Capabilities and Collaborations for Cyber-
Enabled Discovery, September 2010.

[85] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, 1 edition, June
2009.

[86] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51:107–113, January 2008.

86

	Clemson University
	TigerPrints
	5-2011

	Automated, Parallel Optimization Algorithms for Stochastic Functions
	Dheeraj Chahal
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Research Approach
	Optimization Methods
	Document Organization

	 Algorithms
	Simplex Algorithm
	 Max noise algorithm
	Point-to-point comparison algorithm
	Point-to-point with maxnoise

	Work Completed
	Work Completed
	 Performance Measurement of MN algorithm
	 Performance Measurement of PC and PC+MN
	Scale Up
	Application

	Implementation
	Hardware
	Software
	 Parallellization and Distribution

	Conclusions and Discussion
	Conclusions
	Recommendations for Future Research

	Bibliography

