584 research outputs found

    Técnicas de Adquisición y Procesamiento de Señales Electrocardiográficas en la Detección de Arritmias Cardíacas

    Get PDF
    The development of ambulatory monitoring systems and its electrocardiographic (ECG) signal processing techniques has become an important field of investigation, due to its relevance in the early detection of cardiovascular diseases such as the arrhythmias. The current trend of this technology is oriented to the use of portable equipment and mobile devices such as Smartphones, which have been widely accepted due to the technical characteristics and common integration in daily life. A fundamental characteristic of these systems is their ability to reduce the most common types of noise by means of digital signal processing techniques.  Among the most used techniques are the adaptive filters and the Discrete Wavelet Transform (DWT) which have been successfully implemented in several studies. There are systems that integrate classification stages based on artificial intelligence, which increases the performance in the process of arrhythmias detection. These techniques are not only evaluated for their functionality but for their computational cost, since they will be used in real-time applications, and implemented in embedded systems. This paper shows a review of each of the stages in the construction of a standard ambulatory monitoring system, for the contextualization of the reader in this type of technology.El desarrollo de sistemas de  monitoreo  ambulatorio  y  sus  técnicas  de  procesamiento  de  la  señal  electrocardiográfica (ECG) se han convertido en un importante campo de investigación, debido a su relevancia en la detección temprana de enfermedades cardiovasculares, tales como arritmias. La tendencia actual de esta tecnología está orientada al uso de equipos portátiles y dispositivos móviles como los Smartphones, que han sido ampliamente aceptados debido a sus características técnicas y a su integración, cada vez más común, en la vida diaria. Una característica fundamental de estos sistemas es su capacidad de reducir los tipos más comunes de ruido mediante técnicas de procesamiento de señales digitales. Entre las técnicas más utilizadas se encuentran los filtros adaptativos y la Transformada Discreta Wavelet (DWT, por sus siglas en inglés), los cuales han sido implementados exitosamente en diversos estudios. Así mismo, se reportan sistemas que integran etapas de clasificación basadas en inteligencia artificial, con lo cual se aumenta el rendimiento en el proceso de detección de arritmias. En este sentido, estas técnicas no solo son evaluadas por su funcionalidad, sino por su costo computacional, debido a que deben ser utilizadas en aplicaciones en tiempo real, e implementadas en sistemas embebidos. Este documento presenta una revisión del estado del arte de cada una de las etapas en la construcción de un sistema de monitoreo ambulatorio estándar, para la contextualización del lector en este tipo de tecnologías

    Personal Heart Health Monitoring Based on 1D Convolutional Neural Network

    Get PDF
    The automated detection of suspicious anomalies in electrocardiogram (ECG) recordings allows frequent personal heart health monitoring and can drastically reduce the number of ECGs that need to be manually examined by the cardiologists, excluding those classified as normal, facilitating healthcare decision-making and reducing a considerable amount of time and money. In this paper, we present a system able to automatically detect the suspect of cardiac pathologies in ECG signals from personal monitoring devices, with the aim to alert the patient to send the ECG to the medical specialist for a correct diagnosis and a proper therapy. The main contributes of this work are: (a) the implementation of a binary classifier based on a 1D-CNN architecture for detecting the suspect of anomalies in ECGs, regardless of the kind of cardiac pathology; (b) the analysis was carried out on 21 classes of different cardiac pathologies classified as anomalous; and (c) the possibility to classify anomalies even in ECG segments containing, at the same time, more than one class of cardiac pathologies. Moreover, 1D-CNN based architectures can allow an implementation of the system on cheap smart devices with low computational complexity. The system was tested on the ECG signals from the MIT-BIH ECG Arrhythmia Database for the MLII derivation. Two different experiments were carried out, showing remarkable performance compared to other similar systems. The best result showed high accuracy and recall, computed in terms of ECG segments and even higher accuracy and recall in terms of patients alerted, therefore considering the detection of anomalies with respect to entire ECG recordings

    HEART RHYTHM CLASSIFICATION FROM STATIC AND ECG TIME-SERIES DATA USING HYBRID MULTIMODAL DEEP LEARNING

    Get PDF
    Cardiovascular arrhythmia diseases are considered as the most common diseases that cause death around the world. Abnormal arrhythmia diseases can be identified by analyzing heart rhythm using an electrocardiogram (ECG). However, this analysis is done manually by cardiologists, which may be subjective and susceptible to different cardiologist observations and experiences, as well as to noise and irregularities in those signals. This can lead to misdiagnosis. Motivated by this challenge, an automated heart rhythm diagnosis approach from ECG signals using Deep Learning has been proposed. In order to achieve this goal, three research problems have been addressed. First, recognize the role of each single-lead of a 12-lead ECG to classify heart rhythms. Second, understanding the importance of static data (e.g., demographics and clinical profile) in classifying heart rhythms. Third, realizing whether the static data can be combined with the ECG time series data for better classification performance. In this thesis, different deep learning models have been proposed to address these problems and satisfactory results are achieved. Therefore, using this knowledge, an effective hybrid deep learning model to classify heart rhythms has been proposed. As per knowledge obtained from relevant literature, this is the first work to identify the importance of individual lead and combined lead as well as the importance of combining static data with ECG time series data in classifying heart rhythms. Extensive experiments have been performed to evaluate this algorithm on a 12-lead ECG database that contains data from more than 10,000 individual subjects and obtained a high average of accuracy (up to 98.7%) and F1-measure (up to 98.7%). Moreover, in this thesis, the distribution of heart rhythms from the database based on heart rhythm type, gender, and age group have been analyzed, which will be valuable for further improvement of classification performance. This study will provide valuable insights and will prove to be an effective tool in automated heart rhythm classification and will assist cardiologists in effectively and accurately diagnosing heart disease

    Brief review on electrocardiogram analysis and classification techniques with machine learning approaches

    Get PDF
    Electrocardiogram captures the electrical activity of the heart. The signal obtained can be used for various purposes such as emotion recognition, heart rate measuring and the main one, cardiac disease diagnosis. But ECG analysis and classification require experienced specialists once it presents high variability and suffers interferences from noises and artefacts. With the increase of data amount on long term records, it might lead to long term dependencies and the process become exhaustive and error prone. Automated systems associated with signal processing techniques aim to help on these tasks by improving the quality of data, extracting meaningful features, selecting the most suitable and training machine learning models to capture and generalize its behaviour. This review brings a brief stage sense of how data flows into these approaches and somewhat techniques are most used. It ends by presenting some of the countless applications that can be found in the research community.info:eu-repo/semantics/publishedVersio

    Improving Maternal and Fetal Cardiac Monitoring Using Artificial Intelligence

    Get PDF
    Early diagnosis of possible risks in the physiological status of fetus and mother during pregnancy and delivery is critical and can reduce mortality and morbidity. For example, early detection of life-threatening congenital heart disease may increase survival rate and reduce morbidity while allowing parents to make informed decisions. To study cardiac function, a variety of signals are required to be collected. In practice, several heart monitoring methods, such as electrocardiogram (ECG) and photoplethysmography (PPG), are commonly performed. Although there are several methods for monitoring fetal and maternal health, research is currently underway to enhance the mobility, accuracy, automation, and noise resistance of these methods to be used extensively, even at home. Artificial Intelligence (AI) can help to design a precise and convenient monitoring system. To achieve the goals, the following objectives are defined in this research: The first step for a signal acquisition system is to obtain high-quality signals. As the first objective, a signal processing scheme is explored to improve the signal-to-noise ratio (SNR) of signals and extract the desired signal from a noisy one with negative SNR (i.e., power of noise is greater than signal). It is worth mentioning that ECG and PPG signals are sensitive to noise from a variety of sources, increasing the risk of misunderstanding and interfering with the diagnostic process. The noises typically arise from power line interference, white noise, electrode contact noise, muscle contraction, baseline wandering, instrument noise, motion artifacts, electrosurgical noise. Even a slight variation in the obtained ECG waveform can impair the understanding of the patient's heart condition and affect the treatment procedure. Recent solutions, such as adaptive and blind source separation (BSS) algorithms, still have drawbacks, such as the need for noise or desired signal model, tuning and calibration, and inefficiency when dealing with excessively noisy signals. Therefore, the final goal of this step is to develop a robust algorithm that can estimate noise, even when SNR is negative, using the BSS method and remove it based on an adaptive filter. The second objective is defined for monitoring maternal and fetal ECG. Previous methods that were non-invasive used maternal abdominal ECG (MECG) for extracting fetal ECG (FECG). These methods need to be calibrated to generalize well. In other words, for each new subject, a calibration with a trustable device is required, which makes it difficult and time-consuming. The calibration is also susceptible to errors. We explore deep learning (DL) models for domain mapping, such as Cycle-Consistent Adversarial Networks, to map MECG to fetal ECG (FECG) and vice versa. The advantages of the proposed DL method over state-of-the-art approaches, such as adaptive filters or blind source separation, are that the proposed method is generalized well on unseen subjects. Moreover, it does not need calibration and is not sensitive to the heart rate variability of mother and fetal; it can also handle low signal-to-noise ratio (SNR) conditions. Thirdly, AI-based system that can measure continuous systolic blood pressure (SBP) and diastolic blood pressure (DBP) with minimum electrode requirements is explored. The most common method of measuring blood pressure is using cuff-based equipment, which cannot monitor blood pressure continuously, requires calibration, and is difficult to use. Other solutions use a synchronized ECG and PPG combination, which is still inconvenient and challenging to synchronize. The proposed method overcomes those issues and only uses PPG signal, comparing to other solutions. Using only PPG for blood pressure is more convenient since it is only one electrode on the finger where its acquisition is more resilient against error due to movement. The fourth objective is to detect anomalies on FECG data. The requirement of thousands of manually annotated samples is a concern for state-of-the-art detection systems, especially for fetal ECG (FECG), where there are few publicly available FECG datasets annotated for each FECG beat. Therefore, we will utilize active learning and transfer-learning concept to train a FECG anomaly detection system with the least training samples and high accuracy. In this part, a model is trained for detecting ECG anomalies in adults. Later this model is trained to detect anomalies on FECG. We only select more influential samples from the training set for training, which leads to training with the least effort. Because of physician shortages and rural geography, pregnant women's ability to get prenatal care might be improved through remote monitoring, especially when access to prenatal care is limited. Increased compliance with prenatal treatment and linked care amongst various providers are two possible benefits of remote monitoring. If recorded signals are transmitted correctly, maternal and fetal remote monitoring can be effective. Therefore, the last objective is to design a compression algorithm that can compress signals (like ECG) with a higher ratio than state-of-the-art and perform decompression fast without distortion. The proposed compression is fast thanks to the time domain B-Spline approach, and compressed data can be used for visualization and monitoring without decompression owing to the B-spline properties. Moreover, the stochastic optimization is designed to retain the signal quality and does not distort signal for diagnosis purposes while having a high compression ratio. In summary, components for creating an end-to-end system for day-to-day maternal and fetal cardiac monitoring can be envisioned as a mix of all tasks listed above. PPG and ECG recorded from the mother can be denoised using deconvolution strategy. Then, compression can be employed for transmitting signal. The trained CycleGAN model can be used for extracting FECG from MECG. Then, trained model using active transfer learning can detect anomaly on both MECG and FECG. Simultaneously, maternal BP is retrieved from the PPG signal. This information can be used for monitoring the cardiac status of mother and fetus, and also can be used for filling reports such as partogram

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    Continuous monitoring of vital parameters for clinically valid assessment of human health status

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas) Universidade de Lisboa, Faculdade de Ciências, 2019The lack of devices suitable for acquiring accurate and reliable measures of patients' physiolog-ical signals in a remote and continuous manner together with the advances in data acquisition technol-ogies during the last decades, have led to the emergence of wearable devices for healthcare. Wearable devices enable remote, continuous and long-term health monitoring in unattended setting. In this con-text, the Swiss Federal Laboratories for Material Science and Technology (Empa) developed a wearable system for long-term electrocardiogram measurements, referred to as textile belt. It consists of a chest strap with two embroidered textile electrodes. The validity of Empa’s system for electrocardiogram monitoring has been proven in a clinical setting. This work aimed to assess the validity of the textile belt for electrocardiogram monitoring in a home setting and to supplement the existing system with sensors for respiratory monitoring. Another objective was to evaluate the suitability of the same weara-ble, as a multi-sensor system, for activity monitoring. A study involving 12 patients (10 males and 2 females, interquartile range for age of 48–59 years and for body mass indexes of 28.0–35.5 kg.m-2) with suspected sleep apnoea was carried out. Overnight electrocardiogram was measured in a total of 28 nights. The quality of recorded signals was assessed using signal-to-noise ratio, artefacts detection and Poincaré plots. Study data were compared to data from the same subjects, acquired in the clinical setting. For respiratory monitoring, optical fibre-based sensors of different geometries were integrated into the textile belt. Signal processing algorithms for breathing rate and tidal volume estimation based on respiratory signals acquired by the sensors were developed. Pilot studies were conducted to compare the different approaches for respiratory monitoring. The quality of respiratory signals was determined based on signal segments “sinusoidality”, evaluated through the calculation of the cross-correlation between signal segments and segment-specific reference waves. A method for accelerometry-based lying position recognition was proposed, and the proof of concept of activity intensity classification through the combination of subjects’ inertial acceleration, heart rate and breathing rate data, was presented. Finally, a study with three participants (1 male and 2 females, aged 21 ± 2 years, body mass index of 20.3 ± 1.5 kg.m-2) was conducted to assess the validity of the textile belt for respiratory and activity monitoring. Electrocardiogram signals acquired by the textile belt in the home setting were found to have better quality than the data acquired by the same device in the clinical setting. Although a higher artefact percentage was found for the textile belt, signal-to-noise ratio of electrocardiogram signals recorded by the textile belt in the home setting was similar to that of signals acquired by the gel electrodes in the clinical setting. A good agreement was found between the RR-intervals derived from signals recorded in home and clinical settings. Besides, for artefact percentages greater than 3%, visual assessment of Poincaré plots proved to be effective for the determination of the primary source of artefacts (noise or ectopic beats). Acceleration data allowed posture recognition (i.e. lying or standing/sitting, lying position) with an accuracy of 91% and positive predictive value of 80%. Lastly, preliminary results of physical activity intensity classification yielded high accuracy, showing the potential of the proposed method. The textile belt proved to be appropriate for long-term, remote and continuous monitoring of subjects’ physical and physiological parameters. It can monitor not only electrocardiogram, but also breathing rate, body posture and physical activity intensity, having the potential to be used as tool for disease prediction and diagnose support.Contexto: A falta de dispositivos adequados para a monitorização de sinais fisiológicos de um modo remoto e contínuo, juntamente com avanços tecnológicos na área de aquisição de dados nas últimas décadas, levaram ao surgimento de wearable devices, i.e. dispositivos vestíveis, no sector da saúde. Wearable devices possibilitam a monitorização do estado de saúde, de uma forma remota, contínua e de longa duração. Quando feito em ambiente domiciliar, este tipo de monitorização (i.e. contínua, remota e de longa duração) tem várias vantagens: diminui a pressão posta sobre o sistema de saúde, reduz despesas associadas ao internamento e acelera a resposta a emergências, permitindo deteção precoce e prevenção de condições crónicas. Neste contexto, a Empa, Laboratórios Federais Suíços de Ciência e Tecnologia de Materiais, desenvolveu um sistema vestível para a monitorização de eletrocardiograma de longa duração. Este sistema consiste num cinto peitoral com dois elétrodos têxteis integrados. Os elétrodos têxteis são feitos de fio de polietileno tereftalato revestido com prata e uma ultrafina camada de titânio no topo. De modo a garantir a aquisição de sinais de alta qualidade, o cinto tem nele integrado um reservatório de água que liberta vapor de água para humidificar os elétrodos. Este reservatório per-mite a monitorização contínua de eletrocardiograma por 5 a 10 dias, sem necessitar de recarga. A vali-dade do cinto para a monitorização de eletrocardiograma em ambiente clínico já foi provada. Objetivo: Este trabalho teve por objetivo avaliar a validade do cinto para a monitorização de eletrocar-diograma em ambiente domiciliar e complementar o sistema existente com sensores para monitorização respiratória. Um outro objetivo foi analisar a adequação do cinto, como um sistema multisensor, para monitorização da atividade física. Métodos: Um estudo com 12 pacientes com suspeita de apneia do sono (10 homens e 2 mulheres, am-plitude interquartil de 48–59 anos para a idade e de 28.0–35.5 kg.m-2 para o índice de massa corporal) foi conduzido para avaliar a qualidade do sinal de eletrocardiograma medido em ambiente domiciliar. O sinal de eletrocardiograma dos pacientes foi monitorizado continuamente, num total de 28 noites. A qualidade dos sinais adquiridos foi analisada através do cálculo da razão sinal-ruído; da deteção de ar-tefactos, i.e., intervalos RR com um valor inviável de um ponto de vista fisiológico; e de gráficos de Poincaré, um método de análise não linear da distribuição dos intervalos RR registados. Os dados ad-quiridos neste estudo foram comparados com dados dos mesmos pacientes, adquiridos em ambiente hospitalar. Para a monitorização respiratória, sensores feitos de fibra óptica foram integrados no cinto. Al-gorítmicos para a estimar a frequência respiratória e o volume corrente dos sujeitos tendo por base o sinal medido pelas fibras ópticas foram desenvolvidos neste trabalho. As diferentes abordagens foram comparadas através de estudos piloto. Diferentes métodos para avaliação da qualidade do sinal adquirido foram sugeridos. Um método de reconhecimento da postura corporal através do cálculo de ângulos de orientação com base na aceleração medida foi proposto. A prova de conceito da determinação da intensidade da atividade física pela combinação de informações relativas á aceleração inercial e frequências cardíaca e respiratória dos sujeitos, é também apresentada neste trabalho. Um estudo foi conduzido para avaliar a validade do cinto para monitorização da respiração e da atividade física. O estudo contou com 10 parti-cipantes, dos quais 3 vestiram o cinto para monitorização da respiração (1 homem e 2 mulheres, idade 21 ± 2 anos, índice de massa corporal 20.3 ± 1.5 kg.m-2). Resultados: O estudo feito com pacientes com suspeita de apneia do sono revelou que os sinais eletro-cardiográficos adquiridos pelo cinto em ambiente domiciliar foram de melhor qualidade que os sinais adquiridos pelo mesmo dispositivo em ambiente hospitalar. Uma percentagem de artefacto de 2.87% ±4.14% foi observada para os dados adquiridos pelos elétrodos comummente usados em ambiente hospi-talar, 7.49% ± 10.76% para os dados adquiridos pelo cinto em ambiente domiciliar e 9.66% ± 14.65% para os dados adquiridos pelo cinto em ambiente hospitalar. Embora tenham tido uma maior percenta-gem de artefacto, a razão sinal-ruído dos sinais eletrocardiográficos adquiridos pelo cinto em ambiente domiciliar foi semelhante á dos sinais adquiridos pelos elétrodos de gel em ambiente hospitalar. Resul-tados sugerem uma boa concordância entre os intervalos RR calculados com base nos eletrocardiogra-mas registados em ambientes hospitalar e domiciliar. Além disso, para sinais com percentagem de arte-facto superior a 3%, a avaliação visual dos gráficos de Poincaré provou ser um bom método para a determinação da fonte primária de artefactos (batimentos irregulares ou ruído). A monitorização da aceleração dos sujeitos permitiu o reconhecimento da postura corporal (isto é, deitado ou sentado/em pé) com uma exatidão de 91% e valor preditivo positivo de 80%. Por fim, a classificação da intensidade da atividade física baseado na aceleração inercial e frequências cardíaca e respiratória revelou elevada exatidão, mostrando o potencial desta técnica. Conclusão: O cinto desenvolvido pela Empa provou ser apropriado para monitorização de longa-dura-ção de variáveis físicas e fisiológicos, de uma forma remota e contínua. O cinto permite não só monito-rizar eletrocardiograma, mas também frequência respiratória, postura corporal e intensidade da atividade física. Outros estudos devem ser conduzidos para corroborar os resultados e conclusões deste trabalho. Outros sensores poderão ser integrados no cinto de modo a possibilitar a monitorização de outras vari-áveis fisiológicas de relevância clínica. Este sistema tem o potencial de ser usado como uma ferramenta para predição de doenças e apoio ao diagnóstico
    corecore