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Abstract  

 

The lack of devices suitable for acquiring accurate and reliable measures of patients' physiolog-

ical signals in a remote and continuous manner  together with the advances in data acquisition technol-

ogies during the last decades, have led to the emergence of wearable devices for healthcare. Wearable 

devices enable remote, continuous and long-term health monitoring in unattended setting. In this con-

text, the Swiss Federal Laboratories for Material Science and Technology (Empa) developed a wearable 

system for long-term electrocardiogram measurements, referred to as textile belt. It consists of a chest 

strap with two embroidered textile electrodes. The validity of Empa’s system for electrocardiogram 

monitoring has been proven in a clinical setting. This work aimed to assess the validity of the textile 

belt for electrocardiogram monitoring in a home setting and to supplement the existing system with 

sensors for respiratory monitoring. Another objective was to evaluate the suitability of the same weara-

ble, as a multi-sensor system, for activity monitoring. 

A study involving 12 patients (10 males and 2 females, interquartile range for age of 48–59 

years and for body mass indexes of 28.0–35.5 kg.m-2) with suspected sleep apnoea was carried out. 

Overnight electrocardiogram was measured in a total of 28 nights. The quality of recorded signals was 

assessed using signal-to-noise ratio, artefacts detection and Poincaré plots. Study data were compared 

to data from the same subjects, acquired in the clinical setting. For respiratory monitoring, optical fibre-

based sensors of different geometries were integrated into the textile belt. Signal processing algorithms 

for breathing rate and tidal volume estimation based on respiratory signals acquired by the sensors were 

developed. Pilot studies were conducted to compare the different approaches for respiratory monitoring. 

The quality of respiratory signals was determined based on signal segments “sinusoidality”, evaluated 

through the calculation of the cross-correlation between signal segments and segment-specific reference 

waves. A method for accelerometry-based lying position recognition was proposed, and the proof of 

concept of activity intensity classification through the combination of subjects’ inertial acceleration, 

heart rate and breathing rate data, was presented. Finally, a study with three participants (1 male and 2 

females, aged 21 ± 2 years, body mass index of 20.3 ± 1.5 kg.m-2) was conducted to assess the validity 

of the textile belt for respiratory and activity monitoring. 

Electrocardiogram signals acquired by the textile belt in the home setting were found to have 

better quality than the data acquired by the same device in the clinical setting. Although a higher artefact 

percentage was found for the textile belt, signal-to-noise ratio of electrocardiogram signals recorded by 

the textile belt in the home setting was similar to that of signals acquired by the gel electrodes in the 

clinical setting. A good agreement was found between the RR-intervals derived from signals recorded 

in home and clinical settings. Besides, for artefact percentages greater than 3%, visual assessment of 

Poincaré plots proved to be effective for the determination of the primary source of artefacts (noise or 

ectopic beats).  

Acceleration data allowed posture recognition (i.e. lying or standing/sitting, lying position) with 

an accuracy of 91% and positive predictive value of 80%. Lastly, preliminary results of physical activity 

intensity classification yielded high accuracy, showing the potential of the proposed method.  

The textile belt proved to be appropriate for long-term, remote and continuous monitoring of 

subjects’ physical and physiological parameters. It can monitor not only electrocardiogram, but also 

breathing rate, body posture and physical activity intensity, having the potential to be used as tool for 

disease prediction and diagnose support.  

 

 

 

Keywords: long-term electrocardiogram; respiratory monitoring; fibre optic sensing; activity 

monitoring; home monitoring. 



 

v 

 

Resumo  

 

Contexto: A falta de dispositivos adequados para a monitorização de sinais fisiológicos de um modo 

remoto e contínuo, juntamente com avanços tecnológicos na área de aquisição de dados nas últimas 

décadas, levaram ao surgimento de wearable devices, i.e. dispositivos vestíveis, no sector da saúde. 

Wearable devices possibilitam a monitorização do estado de saúde, de uma forma remota, contínua e de 

longa duração. Quando feito em ambiente domiciliar, este tipo de monitorização (i.e. contínua, remota 

e de longa duração) tem várias vantagens: diminui a pressão posta sobre o sistema de saúde, reduz 

despesas associadas ao internamento e acelera a resposta a emergências, permitindo deteção precoce e 

prevenção de condições crónicas. Neste contexto, a Empa, Laboratórios Federais Suíços de Ciência e 

Tecnologia de Materiais, desenvolveu um sistema vestível para a monitorização de eletrocardiograma 

de longa duração. Este sistema consiste num cinto peitoral com dois elétrodos têxteis integrados. Os 

elétrodos têxteis são feitos de fio de polietileno tereftalato revestido com prata e uma ultrafina camada 

de titânio no topo. De modo a garantir a aquisição de sinais de alta qualidade, o cinto tem nele integrado 

um reservatório de água que liberta vapor de água para humidificar os elétrodos. Este reservatório per-

mite a monitorização contínua de eletrocardiograma por 5 a 10 dias, sem necessitar de recarga. A vali-

dade do cinto para a monitorização de eletrocardiograma em ambiente clínico já foi provada. 

 

Objetivo: Este trabalho teve por objetivo avaliar a validade do cinto para a monitorização de eletrocar-

diograma em ambiente domiciliar e complementar o sistema existente com sensores para monitorização 

respiratória. Um outro objetivo foi analisar a adequação do cinto, como um sistema multisensor, para 

monitorização da atividade física. 

 

Métodos: Um estudo com 12 pacientes com suspeita de apneia do sono (10 homens e 2 mulheres, am-

plitude interquartil de 48–59 anos para a idade e de 28.0–35.5 kg.m-2 para o índice de massa corporal) 

foi conduzido para avaliar a qualidade do sinal de eletrocardiograma medido em ambiente domiciliar. 

O sinal de eletrocardiograma dos pacientes foi monitorizado continuamente, num total de 28 noites. A 

qualidade dos sinais adquiridos foi analisada através do cálculo da razão sinal-ruído; da deteção de ar-

tefactos, i.e., intervalos RR com um valor inviável de um ponto de vista fisiológico; e de gráficos de 

Poincaré, um método de análise não linear da distribuição dos intervalos RR registados. Os dados ad-

quiridos neste estudo foram comparados com dados dos mesmos pacientes, adquiridos em ambiente 

hospitalar.  

Para a monitorização respiratória, sensores feitos de fibra óptica foram integrados no cinto. Al-

gorítmicos para a estimar a frequência respiratória e o volume corrente dos sujeitos tendo por base o 

sinal medido pelas fibras ópticas foram desenvolvidos neste trabalho. As diferentes abordagens foram 

comparadas através de estudos piloto. Diferentes métodos para avaliação da qualidade do sinal adquirido 

foram sugeridos.  

Um método de reconhecimento da postura corporal através do cálculo de ângulos de orientação 

com base na aceleração medida foi proposto. A prova de conceito da determinação da intensidade da 

atividade física pela combinação de informações relativas á aceleração inercial e frequências cardíaca e 

respiratória dos sujeitos, é também apresentada neste trabalho. Um estudo foi conduzido para avaliar a 

validade do cinto para monitorização da respiração e da atividade física. O estudo contou com 10 parti-

cipantes, dos quais 3 vestiram o cinto para monitorização da respiração (1 homem e 2 mulheres, idade 

21 ± 2 anos, índice de massa corporal 20.3 ± 1.5 kg.m-2). 

 

Resultados: O estudo feito com pacientes com suspeita de apneia do sono revelou que os sinais eletro-

cardiográficos adquiridos pelo cinto em ambiente domiciliar foram de melhor qualidade que os sinais 

adquiridos pelo mesmo dispositivo em ambiente hospitalar. Uma percentagem de artefacto de 2.87% ± 
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4.14% foi observada para os dados adquiridos pelos elétrodos comummente usados em ambiente hospi-

talar, 7.49% ± 10.76% para os dados adquiridos pelo cinto em ambiente domiciliar e 9.66% ± 14.65% 

para os dados adquiridos pelo cinto em ambiente hospitalar. Embora tenham tido uma maior percenta-

gem de artefacto, a razão sinal-ruído dos sinais eletrocardiográficos adquiridos pelo cinto em ambiente 

domiciliar foi semelhante á dos sinais adquiridos pelos elétrodos de gel em ambiente hospitalar. Resul-

tados sugerem uma boa concordância entre os intervalos RR calculados com base nos eletrocardiogra-

mas registados em ambientes hospitalar e domiciliar. Além disso, para sinais com percentagem de arte-

facto superior a 3%, a avaliação visual dos gráficos de Poincaré provou ser um bom método para a 

determinação da fonte primária de artefactos (batimentos irregulares ou ruído).  

 A monitorização da aceleração dos sujeitos permitiu o reconhecimento da postura corporal (isto 

é, deitado ou sentado/em pé) com uma exatidão de 91% e valor preditivo positivo de 80%. Por fim, a 

classificação da intensidade da atividade física baseado na aceleração inercial e frequências cardíaca e 

respiratória revelou elevada exatidão, mostrando o potencial desta técnica. 

  

Conclusão: O cinto desenvolvido pela Empa provou ser apropriado para monitorização de longa-dura-

ção de variáveis físicas e fisiológicos, de uma forma remota e contínua. O cinto permite não só monito-

rizar eletrocardiograma, mas também frequência respiratória, postura corporal e intensidade da atividade 

física. Outros estudos devem ser conduzidos para corroborar os resultados e conclusões deste trabalho. 

Outros sensores poderão ser integrados no cinto de modo a possibilitar a monitorização de outras vari-

áveis fisiológicas de relevância clínica. Este sistema tem o potencial de ser usado como uma ferramenta 

para predição de doenças e apoio ao diagnóstico. 
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1. INTRODUCTION 

 

1.1. Project scope and research plan  

The lack of devices suitable for acquiring accurate and reliable measures of patients' physiological 

signals in a remote and continuous manner together with the advances in data acquisition technologies 

during the last decades, has led to the emergence of wearable devices for healthcare. Within this field, 

the use of textile-based sensors is valuable as it enables unobtrusive and comfortable means of meas-

urement, while allowing long-term monitoring. 

Remote, continuous health monitoring in unattended setting has many advantages: decreases pres-

sure on health systems, reduces expenses associated with inpatient care and accelerates the response to 

emergencies while enabling early detection and prevention of chronic conditions. However, the lack of 

confidence in the quality of the signal acquired and its clinical relevance, the need to acquire and process 

large amount of data as well as the need to combine simplicity of use and robustness against artifacts 

while ensuring acceptable integration in user's daily life, data security and data privacy, are some of the 

main challenges within this field.  

Long-term health monitoring also requires systems with low power consumption and high energy 

efficiency and, when done by means of wearable sensors, the durability and signal integrity of the sen-

sors with time and cleaning process must be ensured. Most of the proposed systems consider only a 

specific physiological signal or parameter. However, the use of several wearable devices to monitor 

different physiological parameters is neither practical nor ergonomically sound; therefore, developing 

multi-sensor monitoring systems is desirable.  

With that knowledge in mind, the Swiss Federal Laboratories for Material Science and Technology 

(Empa) aim to develop a wearable monitoring system that enables continuous and non-invasive moni-

toring of multiple vital parameters, fulfilling accuracy requirements to be used in clinical settings. At 

this point, the system consists of a textile belt with integrated sensors combining own technologies, such 

as embroidered electrodes with Silver/Titanium coating for ECG monitoring [1] and optical fibre-based 

sensor for respiratory monitoring [2], with commercially available sensors, giving rise to the concept of 

"lab on the belt".  

The parameters of interest are respiratory rate; electrocardiogram (ECG) and RR-intervals based on 

the former; body posture, physical activity, movement patterns and energy expenditure; and, lastly, 

blood oxygen saturation (SpO2), since all these parameters can be measured from the skin surface. 

Respiratory rate, also called breathing rate, is one of the four classic vital signs, crucial to determine 

subjects' health status. It is used in the diagnosis of sepsis/ septic shock, sleep related breathing disorders, 

such as sleep apnea, and many other conditions. Likewise, ECG is essential in the diagnosis of cardio-

vascular diseases, the main cause of death globally according to the World Health Organization (WHO). 

Additionally, continuous ECG monitoring is used in intensive care unit (ICU) to monitor critically ill 

patients. Thus, due to their clinical relevance, these two parameters will be our focus of research. 

Furthermore, body posture and physical activity is taken into account, since it has been shown its 

suitability not only for fall detection in elderly care, but also for assistance of patients suffering from 

neurodegenerative disorders, motor diseases and cancer.  

Within this framework, this master thesis project intended to answer the following questions: 

1) How accurate is the ECG data recorded without supervision in home setting? 

2) Is it possible to accurately and continuously monitor breathing through the integration of optical 

fibre into the belt? 

a. If yes, is it possible to measure respiratory rate? 

b. And tidal volume? 
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3)  Is it possible to accurately recognize lying positions/ body postures/ activities/ activity patterns 

from accelerometry data? 

 

1.2. State of the art 

Devices currently used in clinical practice for the assessment of patients’ health status enable accu-

rate measurement of physiological parameters, yet they are not suitable for continuous ambulatory mon-

itoring. Even though continuous monitoring of vital signs, such as ECG and breathing rate, is applied to 

patients in ICUs, the vital signs of patients that are not in a critical condition are measured intermittently. 

However, patients’ health status may degrade in the time between measurements. Standard medical de-

vices used for diagnosis provide a “snapshot in time”[3] of patients’ health status. Nevertheless, relevant 

events may not occur during the examination, as might be the case in patients suffering from rare occur-

ring arrhythmias [4]; and the presence of a healthcare professional may induce changes in patients vital 

signs, as happens in white coat effect (i.e. increase in blood pressure associated with clinical visit [5]). 

Therefore, there is a need for medical devices enabling long-term, remote and continuous monitoring. 

The suitability of wearable devices for remote, continuous and long-term monitoring of physiolog-

ical parameters makes of such a technology the focus of study of many researchers, especially nowadays. 

Over the past decades, it has been observed a gradual increase in life expectancy worldwide simultane-

ously with declining birth rates. This phenomenon results in population aging, which requires a consid-

erable economic investment in order to provide the assistance needed to elderly, especially concerning 

healthcare [6].   

Wearable devices are any device a subject can “wear without encumbering daily activities or re-

stricting mobility” [3]. Sensors have been integrated in clothes (T-shirts, bras, socks, pants), watches, 

chest straps, elastic bands, patches, tags, glasses etc., ensuring continuous monitoring with the maximum 

wear comfort and minimum interference in subjects’ daily activities [3]. There is a wide range of appli-

cation fields of wearable devices [3], [6]–[9]: 

 

▪ Healthcare: monitoring for disease prediction, anomaly detection, recovery, rehabilitation, 

diagnosis support; 

▪ Assistive living; 

▪ Surveillance and security: monitoring of subjects in risky situations (e.g. solders, firefight-

ers or astronauts); 

▪ Fitness/Sport: monitoring of physical and physiological parameters to improve performance 

or increase wellness; 

▪ Human computer interaction and robotics. 

 

To be used in healthcare, wearable devices must satisfy various medical and ergonomic require-

ments. They must be of small dimension, comfortable, its components should be flexible, chemically 

inert, nontoxic, and hypoallergenic to the human body. For the successful commercialization, it should 

also be low-cost, lightweight, user-friendly, unobtrusive (should not require the user to wear many sen-

sors), non-invasive and, additionally, the whole system should not require user interaction too often [6], 

[8], [9]. 

Depending on their application, wearable devices can be used to monitor healthy subjects and pa-

tients, in home or clinical environment. Data can be stored locally on the wearable device (in the data-

logger unit) or be transmitted, via Bluetooth, Wi-Fi, ZigBee or long range radio, to receiving devices 

where it is displayed in real-time, or even to a remote monitoring center. While offline monitoring is 

adequate for disease prediction and diagnose support, it is not appropriate for activity monitoring or 
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anomaly detection (e.g. fall, seizure, or cardiac arrest detection), as both require real-time feedback (e.g. 

alarms) to medical staff and wearer [3], [10].  

The monitored bio signals and physiological parameters include ECG, heart rate (HR), electroen-

cephalogram, electromyogram, gait patterns, minute ventilation, breathing rate, breathing pattern, air 

quality, physical activity, arterial oxygen saturation, blood pressure, blood glucose, skin perspiration, 

galvanic skin response, capnography and  body temperature [3], [6], [10], [11]. The sensor most widely 

used in wearable devices is the accelerometer [11].  

A huge number of wearable devices are available on the market; however, the reliability, accuracy, 

safety and efficacy of the vast majority has not been proved. In fact, only an extremely reduced fraction 

of existing wearable devices are CE (Conformité Européenne) or  FDA (Food and Drug Administration) 

approved [3]. CE [12] and FDA [13] definitions of medical devices clearly include wearable devices for 

healthcare applications. Thus, most commercially available wearable devices cannot be commercialized 

as medical devices, as they do not have a mark of conformity. 

Wearable devices market has been constantly growing, being estimated that its total worth is over 

$50 billion this year [14]. Wearables for lifestyle, fitness and sport applications are predominant in this 

market. The market of wearable devices for healthcare applications is also growing, however, the lack 

of confidence in the quality of the acquired signal on the part of clinicians as well as the requirements 

in terms of device certification have been hindering its growth [10], [11].  

A summary on the standard devices as well wearable devices used for ECG, breathing and physical 

activity monitoring is presented in the following sections. 

 

1.2.1. ECG monitoring  

The surface ECG is a continuous record of voltage changes, generated as a response of cardiac 

muscles to electrical impulses generated by pacemaker cells [15]. In this way, the ECG reflects the 

cyclic electro-physiologic events in the myocardium, revealing the condition of heart’s electrical func-

tion [16].  It has a preponderant role in detection of heart defects and cardiac diseases such as auricular 

or ventricular hypertrophy, myocardial infarction (heart attack), arrhythmias and pericarditis. It also 

allows the analysis of heart rate variability (HRV), a straightforward way to study the autonomic nervous 

system activity. ECG signals are acquired by means of electrodes. 

Today’s gold standard for ECG recording are the gel electrodes. However, these electrodes have a 

limited application period, i.e. one or maximum two days, since they tend to run dry as the moisture 

content evaporates, and cause skin irritations on long-term use, apart from being uncomfortable for users 

[1], [17].  

Generally, biopotential electrodes can be categorized in three groups: wet, dry and non-contact elec-

trodes. Wet electrodes are the most common type, being the gold standard for clinical applications. Gel 

electrodes belong to this class. They consist of a metal (e.g. silver or gold) surrounded by a wet or solid 

hydrogel that is coupled to the skin (galvanic coupling). Dry electrodes operate without the use of an 

explicit moisturizing substance. Instead, the metal in the electrode directly contacts the skin using only 

some degree of moisture coming from the environment or emitted from the body (e.g. sweat). Their 

performance usually increases over time with increasing moisture between the electrode and the skin, 

as it reduces the electrode-skin impedance. There are also dry contact electrodes with capacitive cou-

pling, in which a thin dielectric layer is used to form an insulated contact with the body. Such electrodes 

measure electric surface potentials on the skin by the principle of electrostatic induction. The non-con-

tact electrodes are a particular case of dry electrodes. They function without being in direct contact with 

skin. Non-contact electrodes enable data acquisition through an insulation layer such as clothing [17].  

Although dry electrodes enable long-term ECG monitoring, to be used for clinical purposes their per-

formance must match that of gel electrodes.  
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Textile electrodes, made from textile fibers with conductive properties, have also been used as an 

alternative to gel electrodes.  They are flexible, adjusting easily to body topography, and can be unob-

trusively integrated into a garment. Additionally, air and moisture can pass through the porous textile 

electrodes, decreasing the risk for skin inflammation and increasing users’ comfort. However, data ac-

quired by textile electrodes is more susceptible to motion artefacts as electrodes can easily move relative 

to the skin. Ensuring electrodes integrity and durability as well as cope with the electric performance 

variation of such electrodes are among the greatest challenges in the field of textile electrodes for ECG 

monitoring [18]. 

The most popular device for long-term, ambulatory monitoring of ECG is the HolterTM ECG Re-

corder. It is a 12-lead wearable device that allows remote and continuous ECG monitoring up to 3 days 

[11], [19]. However, Holter monitors use conventional gel electrodes. Efforts have been made to develop 

wearable systems using different types of electrodes and with fewer leads, thus increasing comfort and 

unobtrusiveness, while increasing the monitoring time. Several wearable systems for long-term ECG 

monitoring, mainly chest straps, t-shirts and adhesive patches [10], have been proposed.  

 Table 1.1 presents some of the existing wearable devices for ECG monitoring. From the systems 

presented, the first four are commercially available, while the other four were proposed in literature. 

Zio, developed by iRhythm, is a patch able to monitor ECG for up to two weeks. Nuubo is a chest strap 

with integrated textile electrodes for long-term ECG-monitoring. Both are currently in use for clinical 

applications. Zoll LifeVest is a wearable cardioverter defibrillator that monitors ECG. It has been used 

to monitor patients at risk of sudden cardiac death.  
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Table 1.1. Wearable devices for remote, continuous and long-term ECG monitoring. CF: compact flash; LE: low energy; GMS: 

Global System for Mobile communications; ANT: Adaptive Network Topology. 

System/  

Proposition 

Number of 

electrodes 

Electrode 

type 

Sensors 

Placement 
Battery Life Connectivity 

Market 

Clearance 

Holter Recorder 

[19] 
12 

Wet  

electrodes 

Ventral 

Trunk 
3 days CF card 

FDA and 

CE 

Zio Patch [20] 2 
Hydrogel 

electrodes 
Chest 14 days Wireless FDA 

Zoll LifeVest 

[21] 
2 

Dry  

electrodes 
Chest 1 day Wireless FDA 

Nuubo [22] 2 
Textile  

electrodes 
Chest 5 days 

Wireless 

(Bluetooth LE) 

FDA and 

CE 

Sensorized T-

shirt and textile 

belt [23] 

3 
Dry textile 

electrodes 
Chest - 

Wireless 

(Bluetooth LE) 
- 

Wearable mo-

bile electrocar-

diogram moni-

toring system 

[24] 

3 
Dry foam 

electrodes 
Chest - 

Wireless 

(Bluetooth and 

GSM) 

- 

Wireless, porta-

ble capacitive 

ECG sensor 

[25] 

3 

Capacitive 

electrodes 

with cotton 

insulator 

Ventral 

Trunk 
- 

Wireless (ANT 

protocol) 
- 

Flexible capaci-

tive electrodes 

for reducing 

motion artifacts 

[26] 

2 

Flexible  

capacitive 

electrodes 

Chest - 
Wireless 

(Bluetooth) 
- 

 

 

1.2.1.1. Textile Belt for Long-Term ECG monitoring 

Empa developed a system for long-term ECG measurements. It consists of a textile belt (Unico 

Swiss Tex GmbH, Alpnachstad, Switzerland) with two embroidered textile electrodes from polyeth-

ylene terephthalate yarn, which are plasma coated with silver and with an ultra-thin titanium layer on 

top. The belt has stretchable parts and trims to ensure good electrode-skin contact for different body 

sizes, as shown in Figure 1.1. 

Since it was proved that humidification improves the signal quality in motion, electrodes are mois-

turized with a very low amount of water vapor from an integrated reservoir [1]. The integrated reservoir 

is composed of a wetting pad made from polyester that is impermeable to liquid water but allows the 

passage of water vapor. The wetting pad is connected to a flexible water tank and releases a small amount 

of water that evaporates mainly due to body heat of the wearer. The water vapor permeates the mem-

branes of the wetting pad thus creating a favorable silver-titanium-water electrode chemistry due to a 

high relative humidity atmosphere. This atmosphere prevents artifacts that results from the friction be-

tween electrode and skin, allowing the acquisition of good quality signal with baseline stability even 

when there are large body motions during the measurement. The water reservoir allows continuous ECG 

recording over 5-10 days without a refill. 
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Figure 1.1. Textile belt connected to data logger (red device). Front (top) and back (bottom) view. 

 

Electrodes measures are stored in a data logger. The validity, reliability and clinical relevance of 

this system are being tested by means of experiments with volunteers and clinical trials [27], [28]. 

 

1.2.2.  Respiratory Monitoring 

At present, respiratory rate monitoring is done in a continuous manner only in ICUs. On general 

hospital wards, nurses measure it intermittently only. They do it manually, counting the number of 

breaths, based on patient's chest movement, during a minute. Apart of being a time-consuming task, it 

is hard to apply this methodology to non-cooperative patients. Consequently, breathing rate is the most 

neglected vital sign and its value is sometimes simply estimated or even guessed [29], [30]. 

Respiratory rate is an early indicator of patient's health status deterioration since the compensatory 

mechanisms normally first increase heart and respiratory rates. It is valuable to recognize acute changes 

in patients' condition, especially when measured in a continuous manner, as patient's health status can 

drastically change in the gaps between measurements when an intermittent methodology is followed. 

Respiratory rate increases in hypovolemia and increased respiratory rate can be an early marker of aci-

dosis. Additionally, abnormal respiratory rate is common prior to cardiac arrest [29].  Measuring tidal 

volume is also important when it comes to respiratory monitoring. Tidal volume is the volume of air 

that is inhaled and exhaled with each breath. Abnormalities in its value are related with asthma, pneu-

monia and chronic obstructive pulmonary disease.  

Respiratory rate and tidal volume are calculated from the respiratory signal acquired through differ-

ent techniques. The clinical standard techniques for respiratory monitoring include capnography, spi-

rometry, impedance pneumography, and respiratory inductive plethysmography (RIP). Capnography, 

also called end-tidal CO2 monitoring, is the standard for respiratory monitoring in ICUs and in the op-

erating room. It is the measurement of CO2 concentration in exhaled air over time [31]. Spirometry is 

the gold standard for tidal volume measurement [32]. Even though it is an accurate method, it is also 

invasive. During spirometry, the patient must breathe through a tube while wearing a nose clip or a face 

mask. Thus, such device is not suitable for continuous monitoring. It is uncomfortable and alters pa-

tient’s natural breathing behaviors.  

Impedance pneumography consists in measuring changes in transthoracic impedance as a function 

of respired volume using superficial thoracic electrodes [33], [34]. Pairs of electrodes (usually one or 

two [35]), one injecting current and other measuring voltage changes, are placed on the subject’s thorax 

to measure its impedance. Research has been conducted to find the optimal electrodes configuration, 

increasing accuracy and reducing obtrusiveness [36]. It is the clinical standard for electronic breathing 
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rate measurement [37].  It has been used during overnight polysomnography (PSG), the gold standard 

for the diagnosis of sleep related disorders [38], to monitor respiratory effort.  

RIP enables non-invasive respiratory monitoring by measuring the movement of the chest and ab-

dominal wall. Two inductance sensors (coils) integrated into elastic bands, one placed at the level of 

nipples and other at the level of umbilicus, are deployed to monitor respiratory movements.  Respiratory 

movements cause changes on the surface encircled by the sensors, altering the current induced by mag-

netic field in the coils [39], [40]. Output signal must be calibrated to measure volume. RIP devices are 

standard in clinical environment. Due to their portability, ambulatory RIP has been proposed [39][41], 

however body posture changes invalidate calibration. Thus, for volume measurement, recalibration is 

required each time subjects’ body position changes.  Brüllmann et al.[40] proposed an accelerometry-

based approach to solve the recalibration problem. Another study suggest that ambulatory RIP is a reli-

able method for respiratory monitoring [42].  

A review on the existing contact methods for measuring respiratory rate is presented in by Massaroni 

et al. [35]. They categorized the sensing principles for respiratory monitoring in seven groups: 

1) Respiratory airflow: measurement of the volume or velocity of inhaled and exhaled air using 

flowmeters. This method enables accurate breathing rate estimation but is intrusive, as usu-

ally implies use of face mask. 

2) Respiratory sounds: recording of respiratory sounds using microphones. This approach en-

ables monitoring with reduced encumbrance, being suitable to be applied in wearable de-

vices. However, its use is not recommended as microphones can easily record sounds that 

are not related to breathing. 

3) Air temperature: measurement of the difference between the temperature of inhaled and 

exhaled air, as inhaled air is at ambient temperature, while exhaled air is warmer. Thermis-

tors, thermocouples, pyroelectric sensors and optical fibres have been used for this purpose. 

This approach is sensitive to environmental factors, intrusive and not suitable for ambula-

tory monitoring. 

4) Air humidity: measurements of the water vapor content of inhaled and exhaled air, as ex-

haled air has higher humidity. Capacitive and resistive sensors are often used for humidity 

measurements. Optical fibres have also been employed. Although this approach is robust 

against motion artefacts, it is invasive and may require the use of a face mask. Air humidity 

sensors have been used in ICUs. 

5) Air components: measurement of level of carbon dioxide in inhaled (0.04%) and exhaled 

(6%) air, termed capnography, using infrared sensors and fiber optic sensors. It is an accu-

rate technique but also intrusive due to the high number of cables and connections. Capno-

graphy enables continuous monitoring of respiratory, however usually requires use of face 

mask. This is the approach commonly used in ICUs.  

6) Chest wall movements: respiratory monitoring based on the recording of respiratory mus-

cles movement. Strain sensors (i.e. resistive, capacitive, inductive and fiber optic sensors) 

have been used for detection of chest wall movements. Additionally, transthoracic imped-

ance sensors and movement sensors (i.e. accelerometers, gyroscopes and magnetometers) 

have also been deployed. Those sensors enable continuous recording of respiratory wave-

forms, being easily integrated into clothes and garments. This technique is unobtrusive, 

however, sensitive to motion artefacts. 

7) Modulation cardiac activity: extraction of respiratory signal from ECG or photoplethys-

mography (PPG), based on the respiratory modulation of cardiac signals.  The main ad-

vantage of this approach is that ECG and PPG sensors are already in use in clinical and 

home settings. This method is unobtrusive, but sensitive to motion artefacts. 
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Respiratory monitoring through non-contact methods have also been proposed [32], [43]. 

As the reader may notice, fiber optic sensors (FOSs) have been widely explored for respiratory 

monitoring purposes. Due to their good metrological properties, small size, flexibility and immunity 

from electromagnetic field, they are suitable to monitor patients remote and continuously, even in mag-

netic resonance imaging (MRI) environments, where standard electronic sensors cannot be deployed 

[44]. 

In FOSs, the optical fibre can be the sensing element (intrinsic sensors) or it can simply be used as 

a medium to transport light (extrinsic). There are two main types of FOSs employed in smart textiles for 

health monitoring: Fiber Bragg grating (FBG) technology based and intensity-based sensors [44]. Fun-

damentally, FBG sensors are a short segment of fiber optic, with usually 3 mm to 6 mm, which reflects 

a narrow range of wavelengths of the input light and transmits all the others due to exposure of the fibre 

core to an intense optical interference pattern. The wavelength range in which light is reflected is sensi-

tive to temperature and strain. Thus, those sensors enable temperature and strain estimation. They have 

been used to monitor stroke volume, blood pressure, heartbeats as well as respiration. Similar to FBG, 

long period granting (LPG) sensors enable measurement of several parameters. LPG “consists of a pe-

riodic change in the refractive index profile along the fiber” [45]. Characteristics of the attenuation bands 

enable the measurement of strain, bending, load and temperature.  

On the other hand, the working principle of intensity-based sensors is that the intensity of the light 

emitted by one fibre and conveyed into other fibre in close proximity to the first, is an indirect measure 

of the distance between the two fibres, and consequently of other parameters that influence this distance. 

A subtype of these group, macro-bending sensors, are based on the loss of light when the optical fibre 

is bent. Different bent radius result in different intensity modulations of the light transmitted by the fiber. 

Intensity-based sensors are used to monitor pressure and temperature. They have been proposed to meas-

ure intravascular and intracranial pressure. Macro-bending FOSs are mainly applied in respiratory 

movement monitoring. Table 1.2 presents some examples of sensors for respiratory monitoring based 

on optical fibres. Other approaches are presented in [44]. 

The sensor proposed by Krehel et al. [2] was developed by Empa researchers. They developed an 

optical fibre-based sensor that measures force or pressure applied to the sensor based on the light loss 

induced by changes in wave guiding properties due to changes in fibre’s geometry [44].  
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Table 1.2. Optical fibre-based sensors for respiratory monitoring. MRI: magnetic resonance imaging. 

System/ Proposition Sensor 
Working 

Principle 

Number of 

sensors 

Sensor 

Placement 
Features 

An Optical Fibre-Based 

Sensor [2] 

Intensity 

modulated 

FOS 

Respiratory 

movements 
1 Torso Non-invasive 

Smart textile embedding 

Optical fibre sensors [46] 

FBG FOS, 

Macro-bend-

ing FOS 

Respiratory 

movements 
2 

Thorax, 

Abdomen 

Non-invasive, 

MRI compatible 

Respiratory Sensors Using 

Plastic Optical Fiber [47] 

Intensity 

modulated 

FOS 

Airflow, 

Respiratory 

movements 

2 
Nose, 

Abdomen 

Non-invasive, 

MRI compatible 

Respiratory function 

monitoring using a real-time 

three-dimensional 

fiber-optic shaping sensing 

scheme based upon fiber 

Bragg gratings [48] 

FBG FOS 
Respiratory 

movements 
40 

Thorax, 

Abdomen 
Non-invasive 

Respiratory monitoring us-

ing long-period fiber grating 

sensors [45] 

LPG FOS 
Bending of 

the chest 
1 Chest Non-invasive 

 

Several commercially available wearable systems include sensors for respiratory monitoring. Some 

examples are shown in Table 1.3. The vast majority monitors breathing rate based on respiratory move-

ments as this is the working principle more appropriate for data acquisition outside clinical setting [35].  

 

Table 1.3. Wearable devices for remote, continuous and long-term respiratory monitoring. BR: breathing rate; TV: tidal 

volume, RIP: Respiratory inductive plethysmography; bpm: breaths per minute. 

System Wearable Sensor 
Working  

Principle 

Respiratory 

Parameters 

EquivitalTM EQ02 

LifeMonitor [49], [50] 
Chest strap RIP sensors 

Respiratory 

movements 

BR (0 to 70 

bpm) 

LifeShirt® [51] 
Elastic garment 

(Shirt) 

RIP 

sensors 

Respiratory 

movements 

BR, TV, minute 

ventilation 

ZephyrTM BioHarnessTM 

[52], [53] 
Chest strap 

Capacitive sen-

sors 

Respiratory 

movements 

BR (3 to 70 

bpm) 

 

Hexoskin® [54] 

Smart garment 

(Shirt) 
Inductive sensors 

Respiratory 

movements 

BR, TV, minute 

ventilation 

The Spire [55] Tag Force sensors 
Respiratory 

movements 
BR 
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1.2.3. Activity monitoring 

In the last decades, the importance of physical activity not only for fitness but also for wellbeing 

and health has called the attention of health providers and scientists. Several studies show its relevance 

on the progress and impact of many conditions such as cancer [56], [57], cardiovascular diseases [58], 

pulmonary diseases, diabetes and obesity, as well as on the outcome of several medical interventions 

[59], [60].  

The standard for physical activity and functional ability assessment in healthcare are questionnaire 

tools, validated functional tests, observations among other approaches. However, these methods are "ei-

ther time consuming and expensive, requiring access to specialized equipment and a dedicated labora-

tory set-up, or they are subjective and rely on clinician observation or patient recall"[61]. Furthermore, 

a short-term assessment does not always reveal the condition of the patient in his/her familiar environ-

ment. 

Objective measurement of subject's physical activity in home environment is possible through wear-

able sensors for activity monitoring. A significant part of the wearable devices for healthcare applica-

tions monitor activity. According to Mukhopadhyay [8], the most commonly used activity sensors are 

accelerometers, HR sensors, temperature sensors, and wearable ECG sensors. Even though gyroscopes, 

magnetometers, pressure sensors, microphones,  and camera- and depth-based systems have also been 

employed [7]. Among these, accelerometers, due to their simplicity and cost-effectiveness, are the most 

common.  

Continuous monitoring of users acceleration allows [6]–[8], [62]:  

▪ Activity recognition; 

▪ Classification of activity level; 

▪ Fall prediction and detection; 

▪ Posture recognition and analysis; 

▪ Balance assessment; 

▪ Metabolic expenditure estimation; 

▪ Gait/walking patterns assessment; 

▪ Sleep assessment. 

Additionally, accelerometers are often integrated into wearable devices to use their data in algorithms 

for motion artifacts removal from physiological signals, such as ECG [63].  

There are many wearable devices with integrated accelerometers suitable for measurements lasting 

several days, but there is no standard for activity monitoring in healthcare. Activity monitoring in home 

environment can be conducted in three modes [61]: clinical assessment, event monitoring and longitu-

dinal monitoring. 

1) Clinical assessment: Supervised, short-term monitoring. It aims to provide an objective clin-

ical examination of the subject's particular movements, in home environment. The acquired infor-

mation may be used as a complement to other physical activity and functional ability assessment 

approaches. 

2) Event monitoring: Unsupervised and long-term monitoring; real-time data processing. It aims 

to accelerate the response to emergencies. Thus, this mode of monitoring requires triggering an 

alarm each time an abnormal event is detected (e.g. fall or absence of movement). 

3) Longitudinal monitoring: Unsupervised, long-term monitoring. It aims to predict or prevent 

certain conditions. In this mode, parameters that quantitatively measure activity are monitored. 

Those parameters can be movement specific (for example step rate, postural sway and rise time) or 

not, which is the case for metabolic energy expenditure, amount of time spent resting and other 

general parameters of movement. In the first case, it is necessary to recognize the activity before 

measure the parameter, while in the latter there is no need for activity classification.  
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Wide ranges of physical activity parameters have been monitored [61]. Metabolic energy expendi-

ture; physical activity; posture; time in activity, total sleep/awake time; walking cadence (i.e. steps/mi-

nute); variability and intensity of activity are some examples. The most common is the metabolic energy 

expenditure.   

Although one of the main purposes of physical activity monitoring is to monitor physical activity, 

there is no consensus on the acceleration-derived parameters that should be used to this end. The most 

common parameters are step count [64]–[66] (i.e. number of steps), activity counts [67] (calculated after 

filtering, rectifying and aggreging acceleration over a time window [68], defined by the activity monitor 

manufacturer [69]), mean acceleration vector magnitude [70] (i.e. the average length of the acceleration 

vector) and vector magnitude units [71] (i.e. the vectorial sum of activity counts in three orthogonal 

directions), all calculated in 1 minute intervals. A study [72] used posture allocation to analyze sedentary 

behavior and inactivity. 

Apart from measuring physical activity, it is important to know its distribution (at which time of 

day/day of the week?), frequency (how many times?), duration (time in activity) and intensity in order 

to analyze the activity pattern. Thus, the acquired data must have the necessary time resolution.  

Some of the parameters proposed for the assessment of activity pattern based on acceleration are: 

a) Gini coefficient [65], [72]: very often used for comparing patterns of accumulation (i.e. how 

the total value was achieved), this coefficient measures inequality among values; ranges 

from 0 (complete equality, i.e. all values are the same; e.g. activity bouts contribute equally 

to the total activity time) to 1 (complete inequality, e.g. total activity time is due to a few 

long activity bouts); 

b) Intensity gradient [73]: measures physical activity distribution; it is the gradient of a sub-

ject's log-log linear regression which relates the activity intensity and the time accumulated 

at that intensity; 

c) Physical activity aggregation [64]: measures activity distribution over the monitoring pe-

riod, ranges from 0 (low aggregation, i.e. well spread over the monitoring period) to 1 (max-

imal temporal aggregation); 

d) Coefficient of variation [66] : measures the variability of activity, i.e. the dispersion or 

spread of physical activity, 𝐶𝑉 = 100 × 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛/𝑚𝑒𝑎𝑛; 

e) Approximate entropy [66]: measures the randomness of activity fluctuations, ranges from 

0 (short sequences of data points are perfectly repeatable) to 2 (any repeating sequences of 

points occur by chance alone); 

Since there is no standard method, there is still space for new approaches to quantitatively evaluate 

activity patterns.  

The majority of population-based studies that monitor physical activity for healthcare purposes [65], 

[67], [70] applied a longitudinal monitoring mode, with measurements lasting several days. The recom-

mended duration [71] is at least 7 days to ensure the reliability of the measurement. Wearing an activity 

monitor can lead subjects to, intentionally or not, increase their activity level. This effect, however, tends 

to decrease with increasing monitoring time. Moreover, subjects' routine may greatly vary from day to 

day, but it is more or less constant from week to week. 

Determining the "valid" monitoring period is also part of physical activity monitoring. One [64] can 

define the potential time of activity as the time in which the subject is awake. Thus, only data acquired 

while the subject was awake is taken into account in the activity pattern assessment. Others [64], [70] 

may consider that every time the subject can be active and so, all the data acquired while the subject 

wore the activity monitor is considered in the analysis. In the first case it is necessary a criterion to 

define sleeping periods and, in the second, a criterion must be set to determine the wearing time.  
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Accelerometer based physical activity monitoring is a very promising approach although it has also 

some limitations. One of them is that it is not suitable for monitoring activities such as resistance train-

ing, swimming or cycling. When the accelerometer is placed in central body location (e.g. waist or 

chest), information regarding movement of body extremities cannot be acquired. On the other side, soft 

tissue movement or external vibrations imposed on the body, for example while travelling in a motor 

vehicle, may add noise to the signal. A joint effort is needed to further explore this topic. 

ActiGraph, Axivity and GENEActiv accelerometers are the ones most often used in large global 

surveys [73]. Several companies, such as Fitbit [74], launched smart watches with integrated accelerom-

eters to monitor activity, recognize exercises and assess sleep quality. 

 

1.2.4. Multi-sensor monitoring systems 

The use of several wearable devices to monitor different physiological parameters is neither practi-

cal nor ergonomically sound, thus several multi-sensor systems have been proposed for continuous, 

long-term and remote health monitoring. However, almost none of those systems is already approved 

for clinical applications. Thus, they are being used for fitness or wellness purposes, while waiting for 

FDA and/or CE clearance. The approval of such devices will prompt advances in Telemedicine, begin-

ning a new phase in healthcare. 

VITALITI [75], develop by Cloud DX, is a wearable vital sign monitor that measures ECG, HR, 

oxygen saturation, respiration rate, core body temperature, blood pressure, movement, steps and posture. 

It enables 72 hours of continuous recording and is now undergoing FDA clearance for medical use.  

ZephyrTM BioHarnessTM [52], [53] is a multisensory chest strap “intended to monitor adults in the 

home, workplace and alternative care settings” [76]. The system monitors HR, breathing rate, activity 

level, subject orientation, skin temperature, blood pressure (optional external sensor) and blood oxygen 

saturation (optional external sensor).  It has been used for sports and academics/research purposes as 

well as to monitor first responders (e.g. firefighters), solders and astronauts. ZephyrTM BioHarnessTM is 

FDA-approved (510(k)). Its battery lasts 18 to 24 hours.  

Hexoskin® [54] is a smart shirt that monitors ECG, breathing rate, tidal volume, minute ventilation 

and tri-axis acceleration-derived parameters (activity intensity, peak acceleration, steps, cadence posi-

tions and best sleep tracker). The system has 12 to more than 30 hours battery life. The battery life was 

increased to 48 hours with Astroskin, a system developed by the same company to monitor astronauts. 

Astroskin monitors blood pressure, pulse oximetry, 3-lead ECG, breathing (RIP), skin temperature, and 

tri-axis acceleration (activity). Both systems have been used for academic and research purposes, first 

responders monitoring, defense, industrial, space and aerospace applications. 

Another example is EquivitalTM EQ02+ LifeMonitor [50], a device “intended for monitoring of 

adults (16-65 years) in hospital care facilities, the home, workplace, and alternate care settings” [76]. It 

is a wearable system that monitors ECG, HR, interbeat interval, respiratory rate, skin and core temper-

ature, galvanic skin response, oxygen saturation, PPG, and activity/body position through a tri-axis ac-

celerometer. The system has two components, the sensor electronics module and the sensor chest belt. 

It has FDA 510(k) clearance and is CE marked. This system was designed to provide "real-time mobile 

human data to keep healthy people healthy” [50]. It enables up to 48 hours of recording without recharge 

the battery and has been used to monitor people in extreme environments, i.e., soldiers, firefighters, 

athletes, miners etc.  

A summary of those four systems characteristics is presented in Table 1.4. Many more wearable 

systems have been proposed in the literature. Even though they are not yet applied for clinical applica-

tions, they already show the great potential of wearable technology in remote, continuous and long-term 

monitoring of physiological signs. 

 



 

13 

 

Table 1.4. Multi-sensor wearable devices for remote, continuous and long-term monitoring. HR: heart rate; BR: breathing 

rate; TV: tidal volume. 

System Wearable Parameters 
Battery 

Life 
Connectivity 

Market 

Clearance 

VITALITI [75] 
Chest and 

ear device 

HR, oxygen saturation, 

BR, core body tempera-

ture, blood pressure, ac-

celeration 

72 hours Wireless In process 

ZephyrTM Bio-

HarnessTM [52], 

[53] 

Chest strap 

HR, BR, skin temperature, 

blood pressure, blood oxy-

gen saturation, accelera-

tion 

18 to 24 

hours 

Wireless 

(Bluetooth), 

USB 

FDA 

510(k) 

Hexoskin® [54] 

Smart gar-

ment 

(Shirt) 

ECG, BR, TV, minute 

ventilation, acceleration  

12 to 48 

hours 

Wireless 

(Bluetooth) 
In process 

EquivitalTM 

EQ02 LifeMon-

itor [49], [50] 

Chest strap 

ECG, HR, interbeat inter-

val, BR, skin and core 

temperature, galvanic skin 

response, oxygen satura-

tion, PPG, and accelera-

tion 

Up to 48 

hours 

Wireless 

(Bluetooth), 

SD card 

FDA 

510(k) and 

CE 

 
 

This work aimed to assess the validity of the textile belt for electrocardiogram monitoring in a home 

setting and to supplement the existing system with sensors for respiratory monitoring. Another objective 

was to evaluate the suitability of the same wearable, as a multi-sensor system, for activity monitoring. 

The thesis is organized as follows: in Chapter 2 we assess the validity of Empa’s textile belt for ECG 

monitoring in a home setting through a study involving patients with suspected sleep apnoea; the inte-

gration of optical fibre-based sensors into the textile belt for respiratory monitoring is discussed in Chap-

ter 3 and, in Chapter 4, the proof of concept of an algorithm for activity monitoring using the data 

recorded by the textile belt (i.e. breathing rate, HR and tri-axis acceleration), as a multi-sensor system, 

is provided. Accelerometry-based body posture recognition is also discussed in the Chapter 4. A study 

was conducted to assess the validity of the textile belt for respiratory and activity monitoring. It is de-

scribed in Chapter 5. Finally, the general conclusion and future prospects of the project are presented in 

Chapter 6. 
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2.  ECG MONITORING 

The surface ECG is a continuous record of electrical signals, generated as a response of cardiac 

muscles to electrical impulses generated by pacemaker cells [15]. In this way, the ECG reflects the 

cyclic electro-physiologic events in the myocardium, revealing the condition of heart’s electrical func-

tion [16].   It has a critical role in detection of heart defects and cardiac diseases such as auricular or 

ventricular hypertrophy, myocardial infarction (heart attack), arrhythmias and pericarditis. ECG has also 

been used for emotion recognition and biometric identification [77], [78]. Figure 2.1 shows a typical 

ECG signal of a healthy subject. 

 

Figure 2.1. Example of ECG wave of a healthy subject. Image adapted from [79]. 

 

The ECG is characterized by its waves, segments and intervals [15]. The P wave corresponds to the 

atrial myocardium depolarization, the QRS complex (composed by Q, R and S waves) to the ventricular 

myocardium depolarization, the T wave to the ventricular myocardium repolarization and the U wave, 

unseen under normal conditions, in thought to be related with endocardial structures repolarization or 

ventricular myocardium depolarization [15], [80].  

One of the most relevant ECG features is the RR-interval, the time between consecutive R peaks. It 

is also called heart beat interval [81]. The analysis of HRV, i.e. the fluctuations in RR-intervals, is a 

straightforward way to study the autonomic nervous system activity.  Disease induced changes on HRV 

have been used for the diagnosis of several diseases, among them is sleep apnoea [82], [83]. 

Sleep apnoea syndrome is a disorder characterized by repetitive cessation of respiratory airflow 

during sleep. An apnea (Greek word which means “without breath” [84]) episode is the cessation of 

breathing for at least 10 seconds [85]. Apneas are classified as central or obstructive based on the ab-

sence or presence of respiratory effort (abdominal and chest wall movement), respectively. Mixed ap-

neas are periods of absent airflow that are initially associated with an absence of respiratory effort and 

that persist upon resumption of respiratory effort indicating upper airway obstruction [86].  Conse-

quently, sleep apnea is classified as central, obstructive or mixed according to the type of detected ap-

neas. In central sleep apnea the brain fails to send the appropriate signal to the breathing muscles, re-

sulting in cessation of the airflow. Obstructive sleep apnoea, in turn, is the obstruction of the upper 

airway due to pharyngeal collapse. It is more likely to occur when a supine posture is present since in 

this position gravitational effects are exerted on the tongue base and soft palate [87]. Partial occlusion 

of the upper airway is termed hypopnea. Apneas and hypopneas usually last 10 to 50 seconds, although 

hypopneas lasting several minutes may occur in rapid eye movement sleep [86]. 

Sleep apnoea syndrome severity is measured by the apnea-hypopnea index (AHI), which is the 

number of apneas and hypopneas per hour of sleep [4]. The gold standard for sleep apnea diagnosis is 

overnight PSG in a sleep laboratory. PSG incorporates recording of electroencephalogram, electro-
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oculogram, chin electromyogram, snoring (microphone), oronasal airflow (thermistor), ECG, pulse ox-

imetry and tibialis anterior electromyogram [82]. Due to the high cost of PSG and its obtrusiveness, 

alternative tools for sleep apnoea diagnosis have been explored. Approaches using oxygen saturation 

[88], snoring [89] and HRV analysis have been proposed [90].  

In this context, the applicability of Empa’s textile belt for overnight ECG monitoring was analyzed. 

A clinical study involving 242 patients with suspected sleep apnoea was carried out. Patients wore the 

textile belt while undergoing overnight PSG. RR-intervals derived from ECG signal recorded by the 

textile belt and the gel electrodes were compared. Results revealed that the belt enables RR-intervals 

measurement with high validity [28]. 

In this project, we would like to go a step further and explore the applicability of the same textile 

belt for ECG monitoring in home setting. No reference device was used in this study. Thus, a method to 

assess the quality of the acquired ECG signal, and consequently the validity of the textile belt for ECG 

monitoring in unattended setting, was developed. Existing approaches for ECG signal quality assess-

ment (SQA) are described below, as well as, the method we propose. 

 

2.1. Quality assessment of ECG signal 

The frequency range of diagnostic ECG signal is 0.05 to 100 Hz [91]. Generally, when the ECG 

recording is clean and the heart is in sinus rhythm (i.e. electrical impulse generated by the sinoatrial 

node [92]), QRS complex frequency ranges between 4 and 20 Hz, and P and T waves between 0.5 and 

10 Hz. Most ECG power is contained below 30 Hz [80].  

Real-world ECG signals are often corrupted by various noises. Seven types of noise mainly affect 

ECG signals [80], [81], [93]:  

a) Power line interference: noise caused by “differences in electrodes impedance and to 

stray currents through the patient and the cables” [94]. The noise has a frequency of 50 

or 60 Hz, and an amplitude equivalent to 50% of the peak-to-peak signal amplitude. 

Power line noise can be modeled as sinusoids or combination of sinusoids. 

b) Electrode contact noise: the loss of contact between the electrode and the skin results in 

abrupt baseline shifts which decays exponentially to the baseline value and has a super-

imposed component of 60 Hz. The noise can be permanent or intermittent and its am-

plitude equals the maximum recorded value.  

c) Motion artefacts: changes in electrode-skin impedance caused by subject’s movement 

result in transient baseline changes with a shape similar to one cycle of a sine wave. The 

baseline disturbance is of 500% of the peak-to-peak signal amplitude. 

d) Muscle contraction or electromyography noise: results from the contraction of non-car-

diac muscles. It can be assumed to be transient bursts of zero-mean band-limited Gauss-

ian noise, with a standard deviation of around 10% of the peak-to-peak signal amplitude. 

It has a wide frequency range (DC to 10 kHz). 

e) Baseline wander: baseline drift due to respiratory amplitude modulation. It can be rep-

resented as a low frequency sinusoidal wave (or combination of sinusoidal waves), of 

frequency between 0.15 and 0.3 Hz, and amplitude of 15% of the peak-to-peak signal 

amplitude. Sometimes baseline wander coincides with P and T waves frequencies. 

f) Instrumentation noise: noise arising from electronic equipment used for data acquisition 

and signal processing. 

g) Electrosurgical noise: noise of amplitude equivalent to 200% of peak-to-peak signal 

amplitude and frequency between 100 kHz and 1 MHz. It is produced by other medical 

apparatus used in parallel to ECG recordings. 
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Among them, power line interference and baseline wander are the most common. Although, when it 

comes to wearable devices, motion artefacts are predominant.  

Different approaches have been proposed to assess the quality of ECG signals. In the second chapter 

of a recently published book [91], Orphanidou gives an overview of the existing methods for automatic 

assessment of ECG signal quality, especially of data recorded by wearable devices. Depending on the 

device application, basic quality or diagnostic quality is required. In basic quality ECG signals, R peaks 

are clearly identifiable; the signal enables reliable calculation of HR as well as extraction of HRV infor-

mation. In ECG signals of diagnostic quality, QRS complex, P, if present, and T waves are clearly 

identifiable; the signal can be used for clinical diagnosis.  

In summary, single- and multi-channel SQA approaches have been proposed. Some algorithms are 

based on time domain, while others on frequency domain features obtained from the ECG signal. The 

first step of SQA algorithms is beat detection. Then, feasibility checks are applied to differentiate be-

tween acceptable (i.e. high quality) and unacceptable (i.e. low quality) signal segments. Flat line detec-

tion, amplitude limits and variability, baseline wander, noise power measures and physiological feasi-

bility have been used for SQA.  

Flat signal segments are a sign of a missing lead as ECG signal is never constant. Therefore, the 

detection of zero or constant difference between consecutive points during a predefined time has been 

used for flat line recognition [95]. As mentioned before, several noises (e.g. motion artefacts, power line 

interference and electrode contact noise) affect signal baseline, resulting in a wide amplitude range. 

Thus, amplitude limits are an indicator of signal quality. Thresholds for minimum and maximum am-

plitude are set and, depending on the percentage of the signal outside the acceptable range, a signal 

segment is classified as acceptable or not [96]. Baseline wander (BLW) can be identified using a low-

pass filter. A signal segment is classified as unacceptable if the BLW exceeds an empirically set thresh-

old [97]. 

 Noise-power measures rely on the assumption that the noise is gaussian and the signal stationary, 

which is not always true. Therefore, it is recommended to complement noise-power measures with other 

techniques that can cope with noises that do not meet these criteria. Root mean square power in the 

isoelectric region (i.e. region between the P wave and the QRS complex, thought to be a marker for 0 

V), the ratio between in-band and out-of-band spectral power and the power in the residual after a fil-

tering process, are some of the proposed noise-power measures [98], [99].  

Lastly, signal classification using physiological feasibility relies on the well-defined range and var-

iability of RR-intervals. The average HR (should be between 40 and 180 beats per minute), the maxi-

mum RR-interval (usually set to 1500 ms), the ratio between the maximum and the minimum RR-inter-

vals (e.g. should not exceed 1.1 in a signal segment of 10 second as change in HR over 10% is improb-

able in such a short time period) have been used to reject signal segments with data that is not physio-

logically viable [100]. Care should be taken, however, when using physiological feasibility for SQA as 

it is not possible to differentiate between signal variability arising from noise and from cardiac abnor-

malities, such as ectopic beats (i.e. abnormal beats that are due to unusual impulses [101], they add 

variability to the RR-intervals).  

Given that the heart follows a regular rhythm and that noise can deform ECG wave morphology, 

trend-based methods have been used to search for regularity in signal segments. It is assumed that the 

more regular an ECG segment, the higher its quality and, consequently, the more reliable is the infor-

mation extracted from it. Skewness and kurtosis, which measure the symmetry and shape of a distribu-

tion, have been used to assess the regularity of ECG signal segments [102], [103]. The variability in RR-

intervals, indicated for example by their standard deviation [104], and the correlation between each 

individual QRS complex and the reference QRS complex of the segment (often taken as the average of 

all QRS complexes detected in the segment), termed template matching [100], have also been used as 

signal quality indices.  
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Frequency domain approaches include analyzing the signal’s frequency content in different band-

widths and spectral analysis of the HRV. Noise-power measurement methods, described previously, can 

be considered frequency domain methods. Those methods usually require the use of fast Fourier trans-

form (FFT). The measurement of entropy in the different decomposition levels and other discrete wave-

let transform-based methods have also been proposed for SQA [105], [106]. 

All signal quality indices mentioned before can be combined to provide a more robust SQA ap-

proach. Different measures have been combined through decision rules [107] or machine learning mod-

els [108]. Thresholds are applied individually to measures or classifiers, and the signal segment is clas-

sified as acceptable or not accordingly. Physiological limitations, the expected limits of signal features 

and empirical evidence are used to determine those thresholds. When ECG signal is acquired by multiple 

channels, the correlation, covariance as well as the agreement between QRS complex detected in the 

data from different leads have been deployed for SQA [109], [110].  

We aimed to assess the quality of the ECG signal acquired in a home environment. Since the main 

application of the belt in the context of this study was to provide information regarding HRV for sleep 

apnoea detection, basic quality ECG signal is required (i.e. R peaks are clearly identifiable). 

The most relevant ECG signal features are in the frequency range between 0.5 and 40 Hz [99], 

including the QRS complex. For this reason, ECG signals are often band-pass filtered in this frequency 

range [81].  Given these facts, we categorized the noises according to the frequency of their components: 

low-frequency, i.e. noise of frequency lower than 0.5 Hz, and high-frequency noise, i.e. noise of fre-

quency higher than 40 Hz. BLW is a low-frequency noise, while power line interference, electrode con-

tact noise and electrosurgical noise are considered high-frequency noise.  

We used the signal-to-noise ratio (SNR), a standard measure of signal quality, to evaluate the impact 

of noise on the signal. The ratio between the signal power and the low-frequency noise power, referred 

to as SNRlf, as well as between the signal power and the high-frequency noise power, referred to as 

SNRhf were computed. Low-frequency noise was extracted from the raw ECG signal using a second-

order low-pass FIR filter with cutoff frequency of 0.5 Hz, and high-frequency noise was obtained using 

a high-pass FIR filter of the same order, with cutoff frequency of 40 Hz. The band-pass filtered signal 

was taken as the reference signal. Signal’s BLW was estimated based on the average amplitude of the 

low-frequency noise. 

SNR, however, relies on the assumption that the noise follows a gaussian distribution, which is not 

always the case. To cope with non-gaussian and transient noises, such as motion artefacts, the physio-

logical acceptability of the RR-intervals derived from the raw ECG signal was analyzed. This is because 

the presence of some noises and artefacts in the signal, e.g. motion artefacts, electrode contact noise and 

electrosurgical noise, lead to the appearance of peaks that can be falsely detected as R peaks. Moreover, 

due to BLW, T peaks can be higher than R peaks, leading to same false detection. Finally, this leads to 

the computation of incorrect RR-intervals. Therefore, the physiological acceptability of recorded RR-

intervals is another indicator of the quality of ECG signal. 

 For this purpose, RR-intervals were filtered using the algorithm described by Fontana et al. [28]. 

RR-intervals shorter than 300 ms or longer than 1500 ms were rejected and considered as artefacts. 

Likewise, RR-intervals differing in more than 20% from the median of the ten preceding or following 

RR-intervals were excluded from further analysis as such a difference is not considered to be physio-

logically acceptable. The artefact percentage of each ECG recording was taken as the number of artefacts 

divided by the number of recorded RR-intervals. Artefact percentage was considered with respect to 

subjects lying position to analyze the impact of lateral pressure, which is expected to disrupt the contact 

between the electrodes and the skin, on signal quality. 

Even though SNRlf, SNRhf, BLW and artefact percentage address different types of noise and ena-

bling SQA, none of them allows differentiation between artefacts arising from noise and artefacts arising 

from ectopic beats. Classifying abnormal disease related events, e.g. arrhythmic events, as noise is a 
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common limitation of signal quality indices [111]. Differentiating between ectopic beats related and 

noise related artefacts is especially critical in this study as sleep apnea has been strongly associated with 

arrythmia [112], which increases RR-intervals variability. Therefore, we propose to apply Poincaré plots 

to differentiate between ectopic beats related and noise related RR-Intervals.  

Poincaré plots are a quantitative and visual non-linear method to analyze HRV [15], [113]. It con-

sists in plotting each RR-interval against the previous one. Apart from allowing the analysis of RR-

intervals distribution, the visual assessment of the distribution pattern has been proved to be a tool for 

cardiac dysfunction prediction [114], [115], while enabling immediate recognition of ectopic beats and 

artefacts [115], [116].  A Poincaré plot not affected by cardiac dysfunction or noises is presented in 

Figure 2.2. The pattern for such a representation is called comet-shaped pattern. It reflects low variability 

in short-term (axis 2 direction) and high variability in long-term (axis 1 direction) while showing an 

asymmetry in relation to axis 2.  

 

 
Figure 2.2. Example of Poincaré plot of a healthy subject. SD1 is the ellipse width (blue line), and SD2 the ellipse length (red 

line). Image adapted from [117].   

 

Poincaré descriptors, SD1 and SD2, are used to quantitatively describe its geometry. When an el-

lipse is fitted to the data, as shown in Figure 2.2, SD1 corresponds to the width of the ellipse and SD2 

to the length of the ellipse. The ratio between SD1 and SD2, SD1/SD2, provides an indicator for the 

randomness of HRV. SD1 and SD2 are calculated using equation 2.1 [118]. It has been proved that SD1 

and SD2 values increase with increasing occurrence of artefacts and ectopic beats [119].   

 

𝑆𝐷1(𝑆𝐷2) =
1

𝑛
∑

((𝑥𝑖−(+)𝑦𝑖)−(𝑥−(+)𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅))2

2
𝑛
𝑖=1                                        (2.1) 

 

x is the vector containing the detected RR-intervals, from the first to the penultimate; and y, the 

vector containing the detected RR-intervals, from the second to the last. n is the number of points in the 

Poincaré plot, which equals the number of detected RR-intervals minus one.  

Poincaré plots showing a very low dispersion of RR-interval in the axis 2 direction are termed Tor-

pedo-shaped; when RR-intervals are dispersed in a very symmetric way in relation to axis 2, the pattern 

is termed fan-shaped pattern; and when RR-interval are grouped in more than one cluster, the pattern is 

called complex, see Figure 2.3. The Torpedo-shaped, the fan-shaped as well as grouping in multiple 
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clusters are considered to be pathological [114]. Since noise is, by nature, uncorrelated and random, the 

presence of noise results in highly dispersed points in the plot [117]. Although Poincaré plots have been 

used to visually assess the quality of recorded ECG [118], the assessment of its pattern for SQA purposes 

has not been fully explored.  

 

 
Figure 2.3. Example of pathological Poincaré plots. B: Torpedo-shaped pattern; D: Fan-shaped pattern; F: Complex pattern. 

Image adapted from [114]. 

 

In summary, we propose the use of SNRlf and SNRhf to assess the quality of the signal in terms of 

gaussian noise, BLW to evaluate the baseline drift, artefact percentage to measure the occurrence of 

artefacts due to any type of noise or physiological abnormality and, finally, Poincaré plots to determine 

the primary source of artefacts, i.e. ectopic beats (physiological abnormality) or noise (device malfunc-

tion). 

 

2.2. Study: ECG monitoring in a home setting 

From the 242 patients that participated in the clinical study, 12 consented to participate in this study. 

A description of the study participants is shown in Table 2.1.  

Patients were asked to wear the textile belt for one to three consecutive nights, having received 

instruction on how to mount the belt during their stay in the hospital. The belt’s data logger (Faros 180◦, 

Bittum Corporation, Oulu, Finland) was activated by study nurses, consequently, subjects’ ECG signal 

was continuously recorded during the whole period of participation in the study.  
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Table 2.1. Description of study participants. Comparison with the clinical study. BMI: body mass index. AHI: apnea-hypopnea 

index. 

 Full data set of the clinical 

study  

Subgroup of this 

study 

n 242 12 

Age (y) 52 [43-61] 54 [48-59] 

male/female 186 / 56 10 / 2 

BMI (kg·m-2) 29 [25.5-32.5] 30.0 [28.0 – 35.5] 

AHI (h-1) 21 [4.4 – 37.6] 14.8 [8.6 – 38.5] 

Type of apnoea Obstructive 156 8 

 Central 5 1 

 Mixed 35 1 

 Unspecified 1 0 

 No apnoea de-

tected 
44 2 

 

Selection of valid monitoring periods 

After completion of data collection, a single ECG recording was obtained for each patient. Thus, 

monitoring periods, i.e. nights, had to be selected from the recordings. The first and last point of moni-

toring periods were determined manually. Since patients were instructed to only wear the belt when 

going to sleep, the starting point of a valid monitoring period was considered  to be the “first ECG signal 

segment clear enough to be recognized as such, after several hours without any recorded ECG signal” 

[27]. Likewise, “the end of each monitoring period was defined as the last ECG signal recorded before 

a long period of signal absence.” [27]. Data recorded by an acceleration module integrated in the ECG 

data logger was considered for the confirmation of selected monitoring periods. ECG data was recorded 

with a sampling frequency of 250 Hz, and tri-axis acceleration with a sampling frequency of 10 Hz. 

Acceleration data was also used to recognize subjects’ lying position. 

 

Signal processing and data analysis 

R peaks were detected using Kubios HRV Premium Software, Version 2.2 (Kubios Oy, Kuopios, 

Finland). RR-intervals were computed by the same software. Signal processing algorithms were imple-

mented in MATLAB R2018a (The MathWorks, Inc., Natick, MA, USA). All statistical analysis was 

carried out using R, version 3.4.3 (R Foundation for Statistical Computing, Vienna, Austria). The author 

used Microsoft Excel (Microsoft Corp., Redmond, Washington, USA) for calculations. A p value of less 

than 0.05 was accepted as the level of statistical significance. Hereafter, data is presented as average 

value ± standard deviation. 

  

2.2.1 Results and discussion 

A total of 28 valid monitoring periods (i.e. nights) were identified, three nights in seven patients, 

two nights in two patients, and one night in three patients. The average duration of nights was 7.7 ± 1.2 

h. The quality of the data acquired by the textile belt in the home setting (ECG-belt home) was assessed 

and compared to the quality of the data acquired by the gel electrodes (Gel electrodes) and the textile 

belt (ECG-belt hospital) during the clinical study.  

The ECG signal acquired in the home setting had a good quality (Table 2.2). SNRlf and SNRhf were 

found to be high showing values similar to those of the data acquired by the gel electrodes in clinical 
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setting. Likewise, BLW of the ECG signals acquired by the belt in home environment is much lower 

than the one of the data acquired by the same device in the hospital, being close to the BLW of the data 

acquired by the gel electrodes. A great improvement was noticed on the data quality acquired by the 

textile belt when compared to the clinical study data, especially in terms of low-frequency noise.  

 
Table 2.2. Comparison of the quality of ECG signals recorded in the hospital (Gel electrodes and ECG-belt hospital) and at 

home (ECG-belt home). 

 SNRlf SNRhf BLW 

Unit dB dB mV 

Gel electrodes 12 ± 5  21 ± 3 0.03 ± 0.02 

ECG-belt hospital 0 ± 5 17 ± 6 0.30 ± 0.43 

ECG-belt home 11 ± 2 21 ± 5 0.05 ± 0.02 

 

In average, 7.49% of the RR-interval derived from the ECG signals acquired by the belt were con-

sidered as artefacts. Even though the artefact percentage was lower than the one of the data acquired in 

clinical environment, it was still higher than the one of the gel electrodes, see Table 2.3.  

 
Table 2.3. Artefact percentage of RR-intervals derived from the ECG recordings. Data of the gel electrodes (Gel electrodes) 

and the ECG-belt (ECG-belt hospital) in hospital and of the ECG-belt in home environment (ECG-belt home). 

 

 

Poincaré plots revealed to be effective for determining the primary source of artefacts, whether ec-

topic beats or noise (Figure 2.4).  

 Gel Electrodes ECG-belt hospital ECG-belt home N 

Average 2.87% 9.66% 7.49% 

12 Median 1.41% 5.38% 2.77% 

SD 4.14% 14.65% 10.76% 
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Figure 2.4. Example of Poincaré plot. A: artefact percentage of 0.2%; B: artefact percentage of 6.2%, artefacts caused by 

pathophysiological issues; C: artefact percentage of 11.3%, artefacts caused by noise. Unfiltered RR-intervals. Image and 

caption taken from [27]. 

 

While in A the low artefact percentage indicates a good ECG signal quality, in C ECG signal was 

corrupted by power line noise, resulting in a high artefact percentage and a consequent highly scattered 

points distribution [117]. In B, the artefact percentage is also high, i.e., higher than 5%. However, Poin-

caré plot distribution shows a complex pattern, indicator of heart disease [120]. Thus, artefacts do not 

arise from low quality ECG signal, but are characteristic of the subject. Interestingly, a similar complex 

pattern was also found for data of the same subject acquired in other two nights (see Figure A11 in 

Appendix A). The suspect of cardiac disease was confirmed, proving once again the potential of Poin-

caré plots for HRV analysis. In line with other works, Poincaré plot descriptors were found to be signif-

icantly correlated with artefact percentage, especially SD1 (see Table 2.4). 
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Table 2.4. Correlation between artefact percentage and Poincaré plot descriptors (SD1, SD2 and SD1/SD2). Filtered RR-

intervals; patient with cardiac disease was excluded. 

 Correlation  p 

SD1 0.80 < 0.001 

SD2 0.47 0.02 

SD1/SD2 0.62 < 0.001 

 
We found that an artefact percentage of 3% or lower was associated with a very clean Poincaré plot, 

i.e. clear pattern with almost no artefacts due to ectopic beats nor noise. Interestingly enough, the aver-

age artefact percentage of the data acquired by the gel electrodes during the clinical study was 2.87%, 

which corroborates our finding. Artefact percentages equal or lower than 3% were found for 15 of the 

28 nights (53.6%). Furthermore, 4 of the 13 nights with artefact percentage higher than 3% had ectopic 

beats as the primary source of artefacts (see Figures A10 and A11 in Appendix A). Thus, the data ac-

quired by the textile belt was found to be of low quality only in 9 of the 28 nights (32.1%). Poincaré 

plots also showed that the RR-intervals filtering algorithm greatly improved the quality of RR-intervals 

data (see Poincaré plots in Appendix A). 

Even though the textile belt is more sensitive to noise than the gold standard (i.e. its data has a higher 

artefact percentage), a mean difference of -32.69 ms was found between the average RR-interval of the 

data acquired in the home setting and the data acquired by the gel electrodes in clinical setting. The 

mean difference increases to -42.45 ms when compared to data recorded by the textile belt in clinical 

setting. Given that home measurements were conducted on different nights in a different environment, 

this difference can be considered as acceptable. Besides, average RR-intervals measured in the different 

settings were found to be highly correlated (Pearson r of 0.78, p = 0.003). It shows good agreement 

between RR-intervals derived from the ECG recordings in home and clinical settings.   

Finally, Figure 2.5 shows the artefact percentage according to subjects lying position. Data was 

considered for analysis only when recordings for subjects remaining more than 1 minute in the same 

position were obtained. In accordance with the conclusions of the clinical study, lying in a lateral posi-

tion is associated with increased artefact percentage. It is thought to be caused by loss of contact between 

electrodes and the skin due to belt deformation induced by lateral pressure.  

 

 
Figure 2.5. Boxplot of artefact percentage according to subjects lying position. Black line indicates the median; gray area 

indicates the interquartile range. Whiskers extended from minimum to maximal values. 
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The results of the SQA of the ECG signal acquired by the textile belt in the home setting were 

published by Fontana et al. [27] including further discussions of the results.  

 

2.2.2 Conclusions 

Our results revealed that ECG signals acquired by the textile belt in the home setting achieved better 

quality than the data acquired by the same device in clinical setting. It has a higher SNR, actually similar 

to the one of ECG signals acquired by the gel electrodes, and a lower artefact percentage. Even though 

the data recorded in the home setting has a higher artefact percentage than the data acquired by the gel 

electrodes, a good agreement was found between the RR-intervals derived from ECG recorded in the 

two settings.  

Poincaré plot analysis showed the suitability of the textile belt to record reliable ECG signals, even 

in a home environment. Visual assessment of Poincaré plots proved to be effective for the determination 

of the primary source of artefacts (noise or ectopic beats). The development of an algorithm for auto-

matic recognition of Poincaré plot pattern would be of great value, as the need of human intervention is 

the main limitation of this technique.  

It is unclear why data recorded in the home setting is of higher quality than the data obtained in 

clinical setting. As a low number of patients were included in this study (pilot study), a follow-up study 

and further research is needed. In this study no information regarding the way patients handled the belt 

neither regarding possible ‘artefacts sources’ present in the monitoring environment was available. A 

deeper analysis must be conducted in order to better understand the behavior of the belt, especially the 

possible sources of artefacts and their effect on signal quality (e.g. wear the belt in a wrong way, pres-

ence of electronic devices near the belt, etc.). Such a study must be conducted in a controlled environ-

ment. The effect of body posture was analyzed; however, it would also be interesting to analyze the 

effect of movement due to posture transitions on signal quality. 

The use of the textile belt in a home setting enables continuous, remote and non-invasive ECG 

monitoring, while ensuring patients’ comfort. It would be valuable not only for the pre-screening of 

patients with suspected sleep apnoea, but also for long-term monitoring of patients  suffering from sleep 

apnoea and other sleep-related disorders that affect HRV as well as the observation of treatment efficacy 

[27].   
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3. RESPIRATORY MONITORING 
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4. ACTIVITY MONITORING 

In recent years, the importance of physical activity for both physical and mental health has been 

proved. Physical inactivity was pointed as the fourth leading risk factor for mortality, following high 

blood pressure, tobacco use and high blood glucose [121]. Several studies have highlighted the crucial 

role of physical activity in the reduction of risk for cardiovascular diseases [122]–[124] and cancer 

mortality [125], [126], as well as for the improvement of mental health [127], [128]. Furthermore, 

physical activity improves the quality of life of patients suffering from different diseases, for example 

fibromyalgia [129] and autoimmune diseases [130], and reduction in activity level is an early sign of 

Parkinson disease [131]. As a result, an effort to increase public awareness on the risk of a sedentary 

lifestyle has been done. Activity monitors play a major role in achieving this purpose. 

A brief discussion on the relevance of physical activity intensity and body posture recognition for 

activity monitoring is presented in this chapter. Algorithms for determining activity intensity and 

recognizing body posture based on the data from the acceleration module integrated in the ECG-belt 

logger are proposed here. 

 

4.1. Physical Activity Intensity 

Given the strong scientific evidences of the benefits of an active lifestyle, in 2010 the WHO 

launched the Global Recommendations on Physical Activity for Health [121]. It aimed to prevent non-

communicable diseases (often called chronic diseases), the leading cause of death worldwide [132], 

through physical activity at population level. In this book, the WHO addresses the recommended level 

of physical activity for adults and children aged 5 years and older. As an example, recommendations for 

adults aged between 18 and 64 years, are the following: 

1. Adults aged 18–64 should do at least 150 minutes of moderate-intensity aerobic physical 

activity throughout the week, or do at least 75 minutes of vigorous-intensity aerobic physi-

cal activity throughout the week, or an equivalent combination of moderate- and vigorous-

intensity activity. 

2. Aerobic activity should be performed in bouts of at least 10 minutes duration. 

3. For additional health benefits, adults should increase their moderate-intensity aerobic phys-

ical activity to 300 minutes per week, or engage in 150 minutes of vigorous-intensity aero-

bic physical activity per week, or an equivalent combination of moderate- and vigorous-

intensity activity.  

4. Muscle-strengthening activities should be done involving major muscle groups on 2 or more 

days a week. [121, p8] 

These recommendations show that a comprehensive description of physical activity, it is important to 

get information about the duration (“For how long”), frequency (“How often”), intensity (“How hard a 

person works to do the activity”) and volume (“How much in total”) [121]. Therefore, any device 

intended to monitor physical activity for healthcare purposes must be able to provide this information. 

Activity duration, frequency and volume, as well as information regarding activity distribution, i.e. time 

of the day/day of the week, simply rely on the acquisition of data with the necessary time resolution. 

However, determining physical activity intensity implies the knowledge of the activity specific energy 

expenditure.  

In [133], [134], the different techniques to measure energy expenditure (EE) are presented. Self-

reporting methods were one of the first approaches used to assess physical activity and are still widely 

used in clinical practice. Nevertheless, self-reporting methods rely on subjects’ memory and perception 

[135], [136]. Thus, in spite of their low cost, these methods have low reliability and accuracy when 

assessing physical activity EE [137]. 
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 The gold standard for measuring total energy expenditure (TEE) is the doubly labeled water 

(DLW). It consists on the ingestion of a known dose of 2H2
18O and 2H2

16O and calculation of the TEE 

based on the difference between the elimination rates of the two isotopes. Elimination rates are 

determined through analysis of urine, saliva or blood samples, collected at different times during the 

measurement period, by mass spectroscopy [138]. DLW enables measuring the average daily TEE under 

free-living conditions with high accuracy and is non-invasive. Despite that, it is expensive, requires 

qualified personnel and implies samples collection.  

Other popular techniques for EE measurement are the direct and the indirect calorimetry. The direct 

calorimetry enables the determination of subjects’ metabolic rate based on the measurement of their rate 

of heat loss using a calorimeter. Subjects must be in an insulated chamber during the measurement. It is 

the most accurate method to measure metabolic rate but is also costly and a burden for participants. The 

indirect calorimetry is the most commonly used technique to measure EE. It is an accurate and non-

invasive method. Weir’s formula is used to calculate EE based on the volume of consumed O2 and 

produced CO2, quantified through the measurement of the concentration of the two gases as well as the 

inspired and expired volumes of both. Douglas bag, canopy or facemask are used to measure gas 

concentration and volume, which makes the procedure impractical, especially in free-living 

environment. 

EE can also be estimated based on physiological variables such as HR [139]–[141], core temperature 

[142] and pulmonary ventilation volume [143], [144]. It is known that HR is linearly related within a 

particular range of EE [145], thus the later can be indirectly measured after finding the linear function 

that describes this relation [145], [146]. Apart of being non-invasive, it is more affordable than the other 

methods and allows free-living measurement of EE using HR monitors. This method has, however, two 

main limitations: the linear relationship between EE and HR varies from subject to subject and it 

deteriorates at sedentary and very intense activities [145]. Despite these limitations, the level of physical 

activity has been determined based on the HR [147], [148]. 

Additionally, motion sensors, such as accelerometers and pedometers have been used to estimate 

EE. Pedometers measure the number of steps a person takes in a certain time interval. They are low cost 

and unobtrusive, yet inaccurate for EE estimation. Even so, the number of steps per minute (cadence) 

has been used to determine physical activity intensity [149]–[151]. Accelerometers measure the 

acceleration exerted upon the sensor with reference to the gravitational force, g (g = 9.81 m/s2), in one 

to three orthogonal directions [133], [152]. They enable long-term activity monitoring in free-living 

populations and provide information regarding the volume, frequency, intensity and duration of physical 

activity [153]. Prediction models have been developed to estimate EE based on acceleration derived 

parameters, though their application is limited [134], [154]. Accelerometer based EE estimation is a low 

cost, reliable, objective and practical method, however studies revealed that the estimation accuracy is 

low for sedentary-to-light activities [155] and that the linear relation between acceleration and EE 

depends on the type of activity performed [156], [157]. 

The most frequently used reference measure of activity intensity is the metabolic equivalent of the 

task (MET) which is expressed as energy expended per body mass and time (1 MET = 1 kcal/(kg body 

mass.h))  or as metabolic power per body surface area (1 MET = 58.2 W/m2). 1 MET represents the 

resting metabolic rate, defined as the energy cost of sitting quietly [158]. Activity intensity is usually 

divided in three levels: light (<3METs), moderate (3-6 METs) and vigorous (>6 METs) [131], [147], 

[149], [154].   

The WHO considers moderate-intensity physical to increase HR above resting HR and vigorous-

intensity physical to substantially increase HR and cause rapid breathing [158]. Given that Empa’s 

textile belt enables HR and  breathing rate (BR) monitoring, and has an acceleration module integrated 

in the ECG logger, the use of all these parameters to determine physical activity intensity was explored. 

 



 

28 

 

4.1.1. Algorithm for physical activity intensity classification 

As mentioned above, HR has been used to determine physical activity intensity. It is done by 

calculating the percentage of the maximal HR (HRmax), called %HRmax. American College of Sports 

Medicine (ACSM) guidelines [147] define light-intensity activities as requiring more than 50% HRmax, 

moderate-intensity as requiring more than 64% HRmax and vigorous-intensity as requiring more than 

77% HRmax. The HRmax is often taken as the age-predicted HRmax, calculated using the formula HRmax = 

220-age [135]. 

In [148], light-intensity activity is associated with a slight increase in BR, moderate-intensity with 

a more notable increase in BR and vigorous-intensity with being more out of breath. In contrast with the 

HR or the oxygen uptake, so far, the BR has not been considered to assess physical activity intensity. 

However, recently a paper entitled “Respiratory Frequency During Exercise: The Neglected 

Physiological Measure” [159] aimed to put the attention to the relevance of BR as a marker of physical 

effort. Nicolò and co-authors listed several advantages of considering BR for training monitoring based 

on the existing scientific evidence. BR response to incremental exercise is approximately linear; BR 

time course has been proved to be related with that of Rating of Perceived Exertion (RPE), which is a 

subjective measure of physical activity intensity; and BR may be an indicator of time to exhaustion. 

Most interestingly, and in contrast with HR and other physiological parameters, BR responds very fast 

to changes in effort which occur due to workload variations. Moreover, the relation between BR and 

physical effort does not depend on the active muscle mass nor on the metabolic requirements of the 

activity. In their paper, Nicolò and colleagues suggest methodologies on how to analyze BR data. They 

propose the normalization of BR by relating it to the maximal BR (BRmax), in a similar way as %HRmax. 

This would handle the great variability of the BR and therefore facilitate data analysis and generalization 

of conclusions. Yet, it implies conducting tests to measure BRmax or take the maximum BR recorded 

during the monitoring period as the BRmax. A first study analyzed the suitability of BR normalized to 

BRmax for the assessment of physical activity effort. Their findings revealed a high correlation between 

the percent of BRmax and RPE [160].  

We propose the use of the ratio between the BR and the resting BR (BRrest) as an indicator of physical 

activity intensity. Even though it does not have a well-defined range of variation as the percentage of 

BRmax, it is easier to measure BRrest than BRmax. Thus, normalization of BR to BRrest, through the formula 

BR/ BRrest, may be another way to normalize BR.  

As the HR, accelerometry has been commonly used for physical activity intensity classification. In 

fact, accelerometers are the sensors most commonly used for activity monitoring, of which ActiGraph 

accelerometers are the most popular. Since the output of ActiGraph accelerometers was not the raw 

acceleration (available for newer ActiGraph accelerometers) but counts per unit time, counts is the most 

used metric of physical activity [68]. Consequently, activity intensity has been widely determined based 

on the number of counts per minute [67], [129], [161]. Nevertheless, since the definition of activity 

count varies among devices, the use of raw acceleration data has been advised to ensure comparability 

between studies. In this way, several studies [73], [162], [163] classified activity intensity based on cut 

points for the average acceleration, usually presented in milligravity (mg).  

Though accelerometry is an objective method to measure physical activity, the same activity may 

require different effort for different subjects since the intensity of physical activity also depends on 

subject's fitness, age and gender, for example. Besides, in the system proposed in this work, the 

accelerometer is placed in the anterior chest. It is a good position to record motions that involve 

displacement of the entire body, yet information regarding movement of body extremities cannot be 

acquired and activities such as resistance training, swimming or cycling cannot be adequately recorded 

[156], [157]. On the other hand, HR and BR vary with physical activity, regardless of the activity type, 

and reflect individual characteristics. However, both change as a body response to emotional, 
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physiological and environmental factors [164]. Therefore, combining HR, BR and acceleration is a 

sound manner to overcome the limitations of each parameter.  

The combination of HR and acceleration to estimate EE has been widely explored, and results 

proved that it improves estimation accuracy when compared to models using HR or acceleration only 

[165]–[167]. In [168], a wearable device that monitors HR through electrocardiography, relative tidal 

volume through impedance pneumography and acceleration from upper and lower limbs is presented. 

A multilayer perceptron neural network model for EE estimation was developed. The model includes 

%HRmax, normalized relative ventilation (i.e. ratio between the sum of the relative tidal volumes 

measured in a short time interval and the maximal relative ventilation) and mean absolute value of wrist 

and thigh acceleration as input features. Results show a good agreement between model estimates and 

reference methods. Preliminary tests of another wearable system for activity monitoring is presented in 

[169]. This wearable device monitors BR, HR and movement cadence by a variable-orifice meter 

combined with a differential pressure sensor, a photoplethysmographic sensor and an IMU unit, 

respectively, in real time. Even though the system was designed for activity monitoring, methods for the 

use of the measured parameters for this purpose were not explored. In [170], EE was estimated based 

on different parameters such as acceleration (activity, acceleration peaks count), HR, BR, chest skin 

temperature, galvanic skin response, arm skin temperature and ambient temperature. Different 

regression models were applied for the different parameters and combined the outputs by calculating 

the median. The combination of the different models resulted in a lower mean absolute percentage error.  

The proof of concept for activity intensity classification based on the combination of HR, BR and 

acceleration monitored by the textile belt was developed. The acceleration module of the belt’s data 

logger records acceleration in three orthogonal axes. After data acquisition, the raw data is filtered using 

a third-order elliptical filter (cutoff frequency: 0.3 Hz, passband ripple: 0.1 dB, stopband: −100 dB) 

[171] in order to separate inertial acceleration (ic), associated with body movement, from gravitational 

acceleration, which is related with body posture. For each axis, ic was integrated by calculating the 

Euclidean norm. The inertial acceleration magnitude is given by  

 

𝑖𝑐 = √𝑖𝑐𝑥
2 + 𝑖𝑐𝑦

2 + 𝑖𝑐𝑧
2                                                       (4.1) 

 

The inertial acceleration magnitude is, afterwards, averaged in 30-second epochs, without overlapping. 

BR and HR are averaged in the same manner. HR is derived from the measured RR-intervals, according 

to the formula 

𝐻𝑅 =
60

𝑅𝑅
                                                                  (4.2) 

 

where RR is the RR-interval (in seconds) calculated from the ECG signal. 

The algorithm for activity intensity classification consists of finding the discriminants that enable 

correct classification of activities as light, moderate or vigorous, based on single parameters, and 

combining classifications using four rules. The discriminants for HR [147] and acceleration [70], [73], 

[158] were determined based on the available literature, while the discriminants for the BR were 

empirically determined. All thresholds are presented in table 4.1. 
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Table 4.1. Discriminants for activity intensity classification. 

 Discriminants 

Moderate Vigorous 

%HRmax 64% 77% 

Ratio BRrest 1.5 2 

ic 80 mg 500 mg 

 

Depending on the parameters value of a given 30-second epoch, the activity performed by the 

subject is classified as light, if the value is less than the cut point for moderate-intensity activity; 

moderate, if  the value is equal or higher than the moderate-intensity cut point; and vigorous, if it is 

equal or higher than the vigorous-intensity cut point. 

The different classifications, based on HR (cHR), BR (cBR) and inertial acceleration (cIc) are 

combined using four basic rules: 

1) If the average acceleration over a certain epoch was lower than 20 mg, the epoch is classi-

fied as inactive, and no activity level is assigned to that epoch; 

2) If cHR, cBR, and cIc are equal, the level of activity is the one indicated by all parameters; 

3) If cIc indicates moderate-intensity activity and cHR vigorous-intensity activity, the activity 

intensity is classified as moderate; 

4) If each parameter points to a different activity intensity, the physical activity intensity is 

the one closest to the mean classification. 

The first rule ensures the distinction between active and inactive periods and the third is intended to 

cope with activities that cannot be fully recorded by the accelerometer. In order to calculate a mean 

classification, a numerical index was assigned to each activity level: -1 to inactivity, 0 to light, 1 to 

moderate and 2 to vigorous-intensity physical activity. The flow chart of the proposed algorithm is 

provided in Figure 4.1.  
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Figure 4.1. Flow chart of the algorithm for activity intensity classification.  

 

4.2. Algorithm for body posture recognition 

Another important aspect besides activity monitoring is body posture recognition, particularly for 

general activity assessment and during sleep. Subjects’ sleep position has been proved to have a relevant 

role in many diseases, such as benign paroxysmal positional vertigo [172] and sleep apnea [173], [174]. 

In fact, body position is one of the parameters monitored during PSG, the standard method for the 

diagnosis of sleep-related breathing disorders [174]. Furthermore, body posture is strongly associated 

with sedentary behavior, being a good indicator of how active individuals are [72].  

Accelerometry has been widely used for body posture recognition [175], [176]. The most important 

features for posture recognition based on acceleration are the orientation angles, i.e. the angles between 

the gravity vector and angles of the axes [177]. For example, tilt angle, i.e. the angle between the gravity 

vector and the z axis, is a relevant feature for activity recognition [178] and trunk inclination, i.e. the 

angle between the gravity vector and the x axis, has been used to differentiate lying, sitting and standing 

postures for sensors applied on the trunk [177]. Waist and thigh angles have also been used for posture 

recognition [179]. Apart from the sensor placement, a crucial issue when recognizing body posture 

through the use of orientation angles is to determine threshold limits, i.e. the tolerance angles, for each 

position to be identified [180]. A tolerance angle of 45° has been widely used [176], [179], [180] since 

it allows uniform distribution of body postures in terms of angular range. 

We developed an algorithm for lying position recognition based on the data recorded by the textile 

belt accelerometer. When subjects wear the textile belt, accelerometer’s x-axis points to subjects’ 

vertical direction, y-axis to the mediolateral and z-axis to the anteroposterior direction, see Figure 4.2. 

Therefore, the algorithm calculates the angle between the gravitational acceleration projection onto the 
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yz plane (transverse plane) and the y (β) and z (γ) axes (see equation 4.3) to determine subjects’ lying 

position (supine, prone, left or right).  

 

 
Figure 4.2. Axes directions of the accelerometer integrated in belt’s data logger. 

 
When the gravitational acceleration magnitude in the y (gy) and z (gz) axes are lower than 700 mg, 

the body posture is identified as not lying, i.e. standing or sitting. A tolerance angle of 45° is used for 

all positions. In order to increase the algorithm performance, the use of the inclination angles in the 

mediolateral and anteroposterior directions, i.e. the angle between the gravity vector and the y (taY) and 

z (taZ) axes (equation 4.4), respectively, was investigated. For posture recognition, only the gravitational 

acceleration is considered. For this purpose, the recorded acceleration is filtered using the elliptical filter 

described in the previous section.  

 

𝛽 (𝛾) =  
𝑔𝑦(𝑧)

√𝑔𝑦
2+𝑔𝑧

2
                                                              (4.3) 

 

𝑡𝑎𝑌 (𝑡𝑎𝑍) =  𝑐𝑜𝑠−1(𝑔𝑦(𝑧))                                                    (4.4) 

 

A preliminary study was conducted to test the appropriateness of the textile belt for activity 

monitoring based on the algorithms discussed here. The study is described in the following chapter. 
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5. VALIDATION STUDY 
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6. CONCLUSION AND FUTURE WORK 

This thesis aimed to explore the use of a textile belt developed by Empa as a multi-sensor wear-

able system for long-term, remote and continuous ECG, respiratory and activity monitoring. The textile 

belt consists of a chest strap with two embroidered textile electrodes and an integrated reservoir that 

releases water vapor to moisturize the electrodes. The signals acquired by the textile electrodes are stored 

in a data logger. 

 A study involving patients with suspected sleep apnoea was conducted to explore the suitability 

of the textile belt for ECG monitoring in a home setting. Signal-to-noise ratio, baseline wander, artefact 

percentage and Poincaré plots were used to assess the quality of acquired signals. This signal quality 

assessment approach was found to be effective. Results revealed that the textile belt can acquire 1-lead 

ECG signals of good quality in a home setting. A good agreement was found between the RR-intervals 

derived from ECG recorded in home and clinical settings.  

Data from the acceleration module integrated in the belt’s data logger was used for posture 

recognition based on orientation angles. Our method achieved the accuracy required for such applica-

tions. Additionally, the proof of concept of an algorithm for physical activity intensity classification 

based on inertial acceleration, heart rate and breathing rate was presented. Preliminary results yielded 

high accuracy, showing the potential of combining those three parameters for activity monitoring.  

Additional pilot and clinical studies have to be conducted to corroborate our findings and further 

prove the clinical relevance of data acquired by the textile belt. The use of the textile belt for sleep 

assessment based on accelerometry, or apnoea detection using the signal acquired by the optical fibre-

based sensors, would ensure maximal use of the data recorded by this system. 

The current thesis supports the need for multi-sensor wearable devices for healthcare applica-

tions. The integration of sensors into a textile belt proved to be appropriate for long-term, remote and 

continuous monitoring of subjects’ physical and physiological parameters, having the potential to be 

used as tool for disease prediction and diagnose support.  
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Appendix A. ECG monitoring in a home setting  

 
Table A1. Signal quality indices of the 28 nights.  

Subject Night 
Artefact 

percentage 

SNRhf SNRlf BLW SD1 SD2 SD1/SD2 

dB dB mV ms ms ms 

112 1 1.1% 27 7 0.001 38.8 187.1 0.21 

121 2 11.3% 4 14 0.002 34.8 68.5 0.51 

121 3 7.0% 23 12 0.003 17.8 86.4 0.21 

121 4 4.0% 24 10 0.004 24.0 101.8 0.24 

129 5 2.6% 21 6 0.005 28.0 169.6 0.17 

129 6 0.9% 20 13 0.006 17.2 127.1 0.14 

129 7 1.3% 20 10 0.007 20.5 142.0 0.14 

133 8 0.2% 24 12 0.008 20.5 97.9 0.21 

133 9 0.3% 23 10 0.009 19.0 100.8 0.19 

133 10 0.3% 23 9 0.010 14.1 98.9 0.14 

155 11 1.4% 19 15 0.011 34.4 157.3 0.22 

160 12 47.8% 26 8 0.012 82.5 227.5 0.36 

160 13 27.4% 23 9 0.013 50.8 156.2 0.33 

161 14 0.2% 21 13 0.014 15.5 97.9 0.16 

161 15 0.3% 17 11 0.015 13.9 95.2 0.15 

161 16 0.2% 21 12 0.016 17.2 85.5 0.20 

166 17 0.6% 17 9 0.017 11.4 74.5 0.15 

166 18 6.2% 16 11 0.018 26.9 80.6 0.33 

166 19 5.0% 15 11 0.019 16.4 105.5 0.16 

168 20 0.6% 24 10 0.020 26.9 176.4 0.15 

168 21 0.6% 24 13 0.021 26.3 181.7 0.15 

168 22 0.9% 24 11 0.022 31.4 151.7 0.21 

186 23 12.2% 26 12 0.023 80.0 179.3 0.45 

206 24 7.3% 18 9 0.024 22.1 129.2 0.17 

206 25 6.2% 20 11 0.025 33.4 119.9 0.28 

206 26 10.3% 20 12 0.026 32.8 127.3 0.26 

228 27 15.1% 26 9 0.027 53.7 192.8 0.28 

228 28 15.8% 25 9 0.028 53.6 132.1 0.41 
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Figure A1. Poincaré plot of subject 112. Data acquired by the gel electrodes during the clinical study (left), and data acquired 

in the home setting (right). 

 

 
Figure A2. Poincaré plot of subject 121. Data acquired by the gel electrodes during the clinical study (top, left), and data 

acquired in the home setting (remainder). 
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Figure A3. Poincaré plot of subject 129. Data acquired by the gel electrodes during the clinical study (top, left), and data 

acquired in the home setting (remainder). 

 

 
Figure A4. Poincaré plot of subject 133. Data acquired by the gel electrodes during the clinical study (top, left), and data 

acquired in the home setting (remainder). 
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Figure A5. Poincaré plot of subject 155. Data acquired by the gel electrodes during the clinical study (left), and data acquired 

in the home setting (right). 

 

 

 
Figure A6. Poincaré plot of subject 160. Data acquired by the gel electrodes during the clinical study (top, left), and data 

acquired in the home setting (remainder). 
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Figure A7. Poincaré plot of subject 161. Data acquired by the gel electrodes during the clinical study (top, left), and data 

acquired in the home setting (remainder). 

 

 
Figure A8. Poincaré plot of subject 166. Data acquired by the gel electrodes during the clinical study (top, left), and data 

acquired in the home setting (remainder). 
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Figure A9. Poincaré plot of subject 168. Data acquired by the gel electrodes during the clinical study (top, left), and data 

acquired in the home setting (remainder). 

 

 
Figure A10. Poincaré plot of subject 186. Data acquired by the gel electrodes during the clinical study (left), and data acquired 

in the home setting (right).  
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Figure A11. Poincaré plot of subject 206. Data acquired by the gel electrodes during the clinical study (top, left), and data 

acquired in the home setting (remainder). 

 

 
Figure A12. Poincaré plot of subject 228. Data acquired by the gel electrodes during the clinical study (top, left), and data 

acquired in the home setting (remainder). 
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