9,671 research outputs found

    Multi-Stage Resource Allocation in Hybrid 25G-EPON and LTE-Advanced Pro FiWi Networks for 5G Systems

    Get PDF
    The 5G vision is not restricted solely to the wireless domain and its challenging requirements cannot be fulfilled with- out the efficient integration of cutting-edge technologies in all portions of the telecommunications infrastructure. The promoted architectures for next generation telecommunications systems involve high capacity network domains, which operate flexibly and seamlessly to offer full Quality of Experience to all types of subscribers. The proliferation of highly demanding multimedia services and the advanced features of modern communication devices necessitate the development of end-to-end schemes which can efficiently distribute large amount of network resources anywhere and whenever needed. The paper introduces a new resource allocation scheme for cutting-edge Fiber-Wireless networks is introduced that can be applied in the fronthaul portion of 5G-enabled architectures. The adopted technologies are the forthcoming 25G-EPON for the optical domain and the 5G-ready LTE-Advanced Pro for the wireless domain. The proposed scheme performs allocation decisions based on the outcome of an adjustable multi- stage optimization problem. The optimization factors are directly related to the major considerations in bandwidth distribution, namely priority-based traffic differentiation, power awareness, and fairness provision. The conducted evaluations prove that this approach is able to ensure high efficiency in network operations

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Architectures and dynamic bandwidth allocation algorithms for next generation optical access networks

    Get PDF

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems

    A survey on smart grid communication system

    Get PDF
    published_or_final_versio

    Distribution automation applications of fiber optics

    Get PDF
    Motivations for interest and research in distribution automation are discussed. The communication requirements of distribution automation are examined and shown to exceed the capabilities of power line carrier, radio, and telephone systems. A fiber optic based communication system is described that is co-located with the distribution system and that could satisfy the data rate and reliability requirements. A cost comparison shows that it could be constructed at a cost that is similar to that of a power line carrier system. The requirements for fiber optic sensors for distribution automation are discussed. The design of a data link suitable for optically-powered electronic sensing is presented. Empirical results are given. A modeling technique that was used to understand the reflections of guided light from a variety of surfaces is described. An optical position-indicator design is discussed. Systems aspects of distribution automation are discussed, in particular, the lack of interface, communications, and data standards. The economics of distribution automation are examined
    • …
    corecore