35 research outputs found

    ILP-based approaches to partitioning recurrent workloads upon heterogeneous multiprocessors

    Get PDF
    The problem of partitioning systems of independent constrained-deadline sporadic tasks upon heterogeneous multiprocessor platforms is considered. Several different integer linear program (ILP) formulations of this problem, offering different tradeoffs between effectiveness (as quantified by speedup bound) and running time efficiency, are presented

    Algorithms and Complexity Results for Persuasive Argumentation

    Get PDF
    The study of arguments as abstract entities and their interaction as introduced by Dung (Artificial Intelligence 177, 1995) has become one of the most active research branches within Artificial Intelligence and Reasoning. A main issue for abstract argumentation systems is the selection of acceptable sets of arguments. Value-based argumentation, as introduced by Bench-Capon (J. Logic Comput. 13, 2003), extends Dung's framework. It takes into account the relative strength of arguments with respect to some ranking representing an audience: an argument is subjectively accepted if it is accepted with respect to some audience, it is objectively accepted if it is accepted with respect to all audiences. Deciding whether an argument is subjectively or objectively accepted, respectively, are computationally intractable problems. In fact, the problems remain intractable under structural restrictions that render the main computational problems for non-value-based argumentation systems tractable. In this paper we identify nontrivial classes of value-based argumentation systems for which the acceptance problems are polynomial-time tractable. The classes are defined by means of structural restrictions in terms of the underlying graphical structure of the value-based system. Furthermore we show that the acceptance problems are intractable for two classes of value-based systems that where conjectured to be tractable by Dunne (Artificial Intelligence 171, 2007)

    Cohérences basées sur les valeurs en échec

    Get PDF
    International audienceNon disponibl

    Tractable constraints on ordered domains

    Get PDF
    AbstractFinding solutions to a constraint satisfaction problem is known to be an NP-complete problem in general, but may be tractable in cases where either the set of allowed constraints or the graph structure is restricted. In this paper we identify a restricted set of contraints which gives rise to a class of tractable problems. This class generalizes the notion of a Horn formula in propositional logic to larger domain sizes. We give a polynomial time algorithm for solving such problems, and prove that the class of problems generated by any larger set of constraints is NP-complete

    Solving Integer Linear Programs by Exploiting Variable-Constraint Interactions: A Survey

    Get PDF
    Integer Linear Programming (ILP) is among the most successful and general paradigms for solving computationally intractable optimization problems in computer science. ILP is NP-complete, and until recently we have lacked a systematic study of the complexity of ILP through the lens of variable-constraint interactions. This changed drastically in recent years thanks to a series of results that together lay out a detailed complexity landscape for the problem centered around the structure of graphical representations of instances. The aim of this survey is to summarize these recent developments, put them into context and a unified format, and make them more approachable for experts from many diverse backgrounds

    Lower Bounds for Subgraph Detection in the CONGEST Model

    Get PDF
    In the subgraph-freeness problem, we are given a constant-sized graph H, and wish to de- termine whether the network graph contains H as a subgraph or not. Until now, the only lower bounds on subgraph-freeness known for the CONGEST model were for cycles of length greater than 3; here we extend and generalize the cycle lower bound, and obtain polynomial lower bounds for subgraph-freeness in the CONGEST model for two classes of subgraphs. The first class contains any graph obtained by starting from a 2-connected graph H for which we already know a lower bound, and replacing the vertices of H by arbitrary connected graphs. We show that the lower bound on H carries over to the new graph. The second class is constructed by starting from a cycle Ck of length k ? 4, and constructing a graph H ? from Ck by replacing each edge {i, (i + 1) mod k} of the cycle with a connected graph Hi, subject to some constraints on the graphs H_{0}, . . .H_{k?1}. In this case we obtain a polynomial lower bound for the new graph H ?, depending on the size of the shortest cycle in H ? passing through the vertices of the original k-cycle
    corecore