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Abstract 

Finding solutions to a constraint satisfaction problem is known to be an NP-complete problem 
in general, but may be tractable in cases where either the set of allowed constraints or the graph 
structure is restricted. In this paper we identify a restricted set of contraints which gives rise to a 
class of tractable problems. This class generalizes the notion of a Horn formula in propositional 
logic to larger domain sizes. We give a polynomial time algorithm for solving such problems, and 
prove that the class of problems generated by any larger set of constraints is NP-complete. 

1. Introduction 

Combinatorial problems abound in artificial intelligence. Examples include planning, 
temporal reasoning, line-drawing labelling and circuit design. The Constraint Satisfaction 
Problem (CSP) [ 141 is a generic combinatorial problem which is widely studied in 
the AI community because it allows all of these problems to be expressed in a natural 
and direct way. Reduction operations [ 10,121 and intelligent search methods [4,18] 

developed for the CSP have been applied with success to many different practical 

problems. 
Finding solutions to a constraint satisfaction problem is known to be an NP-complete 

problem in general [ 121 even when the constraints are restricted to binary constraints. 
However, many of the problems which arise in practice have special properties which 

allow them to be solved efficiently. 
The question of identifying restrictions to the general problem which are sufficient 

to ensure tractability has been discussed by a number of authors. Such restrictions may 
either involve the structure of the constraints, in other words which variables may be 
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ccmxtraincd by which other variables. or they may involve the nature of the constraints, 
in other words which combinations of values may be allowed for variables which are 

mutually constrained. Examples of the lirst approach may be found in [ 4.6,8, 14, IS] 
i SW 1 3 ] Ihr ;I survey) and cxamplcs of the second approach may be lbund in [ 1, I I. 
13. I%21 1, 

In this paper uc take the second approach, and carefully consider what restrictions 
must hc imposed on the nature of’ the constraints in order to ensure that all the problems 

involving those constraints can bc bolved cfficicntly. We identify a particular class of 
constraints, .U. which has the following properties: 

I I ) Any constraint satist’action problem with the constraints chosen l’rom M can bc 
\olvctl in polynomial time. ( Section 4. ) 

I 2) When the domain 01.each variable in the problem is {False. True}. Al is precisely 
the set of constraints which are definable by conjunctions of Horn clauses. 
I Section 5. I 

i 3 ) For any constraint (‘ not rn .M. the class of problems generated by &f CJ {C) is 
NP-complctc. (Section (3. ) 

In summary. thi\ paper idcnti tic\ a gcner_aliLation of the notion of Horn formulae 
to larger domain Gles. which provides ;I new maximal class of tractable problems. 
The relationship between this new class and earlier tractable classes which have been 

identilicd in the litcraturc is described in Section 3. 

2. Definitions 

Definition 2.1. A c~otrsttutttt .~otisftrctiotr prohletrt. P, consists ot 
l ;I finite set 01 variabk W, idcntitied by the natural numbers I. 2.. 1 II. 
0 ;I domain 01‘ values. I). 
l ;I list (11’ constraints ( (‘t .S, ). C’f .S? I. (‘I S, J ) ; each S, is an ordered subset 01‘ 

the variables. and each constraint C’( S, i is a set of tuples indicating the mutually 
consistent values for the variables in S,. 

A .\olrrriott IO ;I constraint xatistaction problem is an assignment 01‘ values to the 

variables which is consistent with all of the constraints. 

The length 01‘ the tuplcs in a given constraint will be called the “arity” of that 

constraint. In particular, unary constraints specify the allowed values for a single vari- 

able, and hinary constraints specify the allowed combinations of values for a pair 01 
variables. 

It is convenient to make USC of the ihllow~ng operations from relational algebra [ 131. 

Definition 2.2. Let S be any ordered set 01‘ I‘ variables and let C(S) bc a constraint on 

s. 

I;or any ordered subset S’ : S. Ict ( il, in.. . ik ) be the indices of the elements 01‘ S’ 
i II .Y. Iklinc the prc!jrc~tiott of’ (I’( S) onto S’. denoted 7rsl (C(S) 1, as follows 

TTI.(C‘(S)! = {(.U,,.~\,,. \,, ) -it \I. +.. ..\,) c C(S)}. 
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Definition 2.3. For any constraints C(Sl) and C(&), the join of C(S,) and C(&), 
denoted C (S1) w C (S2) is the constraint on S1 U SZ containing all tuples t such that 

rs, ({t}) C C(&) and ~({t}) C C(S2). 

We shall assume, for simplicity, that each variable is subject to at least one constraint. 

Hence, the set of all solutions to a constraint satisfaction problem P, denoted Sol(P), 
is simply the join of all the constraints [S] 

Sol(P) = C(Sl) w C(S2) w . . . w C(S,). 

The decision problem for a constraint satisfaction problem is to determine whether or 
not this join is non-empty. 

The class of problems in which the constraints all belong to some class C will 
be denoted CSP(C). In an earlier paper [ l] we characterize precisely the classes of 
constraints C which give rise to tractable problem classes CSP(C), in those cases where 
the constraint set C is closed under permutations of the domain D. 

In what follows, we shall assume that the domain D is a totally-ordered set. This 
assumption is not unreasonable, since in many applications the domain may be consid- 
ered to be a subset of the natural numbers, or the real numbers. By making use of this 
additional ordering property of the domain we are able to define new sets of constraints 
which give rise to tractable problems. 

As a consequence of assuming that the domain is ordered, we may define the following 
operation on the elements of any constraint. 

Definition2.4.LetCbeaconstraintandlett=(x~,x2,...,x,)andt’=(x~,x~,...,x~) 
be elements of C. 

The maximum of t and t’, denoted t U t’ is defined as follows: 

t U t’ = (max(xl,x{),max(x2,xi), . . . ,max(x,,xL)). 

The minimum of t and t’, denoted t n t’ is defined as follows: 

t n I’ = (min(xl,x’,),min(x2,xi), . . ,min(x,,xi)). 

Using these operations on tuples, we now define the following property of constraints. 

Definition 2.5. A constraint C is said to be max-closed if, for all t, t’ E C, 

t u t’ E c. 

Similarly, C is said to be min-closed if, for all t, t’ E C, 

tnt’ E c. 

Lemma 2.6. All unary constraints are max-closed. 

Proof. Since the domain D is assumed to be totally ordered, we know that for any 
unary constraint C, and any (x),(x’) E C, (x) U (x’) = (max(x,x’)) = (x) or (x’), 
so (x) U (x’) E C. Hence, C is max-closed. 0 
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Rg. I. Exarrlplea of binary max-closed constraints. 

Example 2.7. Fig. 1 shows some examples of binary max-closed constraints. In this 
figure the constraints are shown diagrammatically by drawing a single point for each 

possible value for one variable on the left, and a single point for each possible value 
for the other variable on the right, and then connecting two points if the corresponding 
combination of values is allowed by the constraint. (The values are drawn in ascending 
order from bottom to top in the figure.) 

Example 2.8. The constraint programming language CHIP incorporates a number of 
constraint solving techniques for arithmetic and other constraints. In particular, it pro- 
vides a constraint solver for a restricted class of constraints over natural numbers, 
referred to as basic constraints [ 2 11. These basic constraints are of two kinds, which 
are referred to as “domain constraints” and “arithmetic constraints”. The domain con- 
straints described in [ 2 1 ] are unary constraints which restrict the value of a variable to 
some specified finite subset of the natural numbers. The arithmetic constraints described 
in 121 ] are binary constraints which have one of the following forms: 

aX # 0, 

LIX = bY + L’. 

nX < bY + c’. 

OX 3 bY + c. 

where variables are represented by upper-case letters, and constants by lower case letters, 
all constants are positive and a is non-zero. 

All of these constraints are max-closed ( and also min-closed). Hence, any system of 
constraints of this restricted type can be solved efficiently using the algorithm described 
below. 

Other (non-binary) arithmetic constraints which are also max-closed, and could there- 
fore be added to this set without losing this property, include 

L1i X, + U?X2 + + +x,- 3 bY + C’. 

LIX, X2 t ‘X,. 3 bY + c’. 

(a,X, > 0, ) v Cn2Xz Z 02 ) v ( a,Xr > b,) v (aY < b) (see Theorem 5.2). 

Further important examples of non-binary max-closed constraints will be discussed in 
Section 5. 
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3. Related work 

Van Beek [ 191 introduced the notion of “row-convex” constraints, which can be 
defined as follows: 

Definition 3.1. A binary constraint C over an ordered domain D is said to be row- 

convex if, for all w, x, y, z in D, 

[((w,x) E c> A ((w,z> E C) A (x < y < z)l =+ ((W,Y) E c>. 

Row-convex constraints include all “functional” constraints (which are binary con- 
straints where each value for either variable is compatible with at most one value for 
the other variable), and all monotonic constraints, which are defined as follows: 

Definition 3.2. A binary constraint C over domain D is said to be monotonic if, for all 

w,x,y,z in D, 

[((-Gz) EC)A(W>X) A (Y < z>l* ((W,Y) EC). 

It is shown in [ 191 that any constraint satisfaction problem which is path-consistent 
and contains only row-convex constraints can be solved in polynomial time. 

In general, however, the class of problems UP(C) may be NP-complete, even when C 
contains only row-convex constraints, since the transposition of a row-convex constraint 

is not necessarily row-convex, and the composition of two row-convex constraints is not 
necessarily row-convex. 

The class of O/l/all constraints introduced in [l] (and independently in [ 111) is a 
subclass of the row-convex constraints (which includes all functional constraints). It is 
shown in [ l] that CSP(C) is solvable in polynomial time whenever C contains only 
O/ 1 /all constraints. It is also shown that CSP(C) is NP-complete whenever C contains 
all O/ 1 /all constraints over some fixed domain together with any constraint which is not 

011 /all. 
The max-closed constraints introduced in this paper are not a subclass of the row- 

convex constraints, even when restricted to binary constraints, as the following example 

illustrates. 

Example 3.3. Consider the binary constraint C over domain D = {a, b, c, d} defined 

by 

C={~u,u>,~u,b>,~u,~~,(u,d),~b,u~,~b,b~,~~,u~,~c,c~,~d,u~,~d,d~}. 

This constraint corresponds to the first constraint shown in Fig. 1 (Example 2.7). 
If the domain is ordered such that u > b > c > d, then C is max-closed but not row- 

convex. Furthermore, it cannot be made row-convex by reordering the domain values in 
any way. 

Note also that problems containing only binary max-closed constraints can be solved 
by establishing arc-consistency, as indicated by Theorem 4.2 below, whereas problems 



involving row-convex constraints require path-consistency in general [ IY]. 
On the other hand, there is considerable overlap between the two classes of constraints, 

as the following result indicates. 

Proposition 3.4. 

a An! binary cortstruirrt which is both mu-closed and min-closed is row’-convex. 
. ,&IJ, binary corrstraint ~~hich is morwtorlic is both max-closed and min-closed. 

The binary constraints described in Example 2.8 are all both max-closed and min- 
closed, hence they arc also row-convex. 

The convcrscs of the statements in Proposition 3.4 do not hold. For example, the 
second binary constraint shown in Fig. 1 is row-convex and max-closed but not min- 
closed. The third binary constraint shown in Fig. 1 is both max-closed and min-closed 

but not monotonic. 

4. Solving problems with max-closed constraints 

The class of all max-closed constraints over some fixed domain D will be denoted 

.2/1,,. The following propertics of .M [I follow directly from the above definitions. 

Proposition 4.1. 

l ,/lu is closed under the joirr operatio~l. ItI other words, ,for any pair of constraints 

C(SI ,.C’CS,, t M,j. 

C(S,) w CC&) c Ad,,. 

l Mu is closed wider- projection. In other words, for any constraint C(S) E ML) 
artd any subset S’ 2 S. 

The next result is a generalization 01’ Thcorcm 35 from [ 2 I ] A constraint satisfaction 
problem is said to be “pair-wise consistent” 19, 131 if for any pair of constraints C( S, ) 
and C(S21, r5 ,,,, s.(C(SI )) = z-,: ,s.(C(.S~I 1. 

Theorem 4.2. AH! P E CSP( MI, ) \lhich i.s pair-wise corlsistent either has a solution 
or has an empty umstruirit. 

Proof. Assume that P has no empty constraints. For each variable i. let si be the 
maximum value allowed for that variable by some constraint C( s,) such that i t S;. 

We claim that (XI. .x2. . .Y,) ) is I solution to P. 
To establish this claim, consider any constraint C(S) of P, where S = (iI, iz, . , i,-). 

and any i, E S. By the choice of the x,. and pair-wise consistency, WC must have some 
tuple t,) E C(S) whose jth coordinate is .Y,,. Since C(S) is max-closed, the maximum 

of all these tuples must belon g to C ( S). but again by the choice of x,, this must be 
(.Y,, . x7. ,x,, ). Hence ( _YI . .vJ.. . _Y,,) satisfies C(S), and the claim follows. 0 
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Corollary 4.3. The time complexity of solving any P E CSP( Mo) which has c con- 
straints of maximum cardinality t is 0( c’t’). 

Proof. Pair-wise consistency may be achieved in O(c2t2) time by using an associated 
binary representation [ 91. 

Since the resulting problem may also be obtained by performing a succession of join 
and projection operations, it is still an element of CSP( Mo) by Proposition 4.1. Hence. 
by Theorem 4.2 it either has an empty constraint or a solution. 

This solution may be obtained in O(ct) time, by inspecting each remaining tuple in 
each constraint and recording the maximum value allowed for each variable. Ll 

Equivalent results clearly also hold for min-closed constraints. 
For a given problem instance over a domain D which is not in CSP( MD), it will 

sometimes be possible to reorder D in such a way that all of the constraints become 
max-closed. To check whether a particular reordering achieves this, it is sufficient to 
check every pair of tuples in every constraint, to ensure that Definition 2.5 is satisfied. 
The time required to check an ordering is therefore 0( ct*), and for any fixed domain 
size, the number of possible reorderings is constant. 

There exists an even broader class of problem instances in which it is possible to 

choose a separate ordering of the domain at each variable in such a way that all of the 
constraints become max-closed. Whether there is an efficient algorithm to find such a 

combination of orderings when it exists is currently an open question. 

5. Horn clauses 

A Horn clause is a logical expression consisting of a disjunction of propositional 

variables, at most one of which is unnegated. A Horn formula is a conjunction of Horn 
clauses. 

The importance of Horn formulae is illustrated by the fact that the satisfiability 

problem for Horn formulae (HORNSAT) is P-complete [ 161. Hence every polynomially 
solvable decision problem may be reduced to HORNSAT in logarithmic space. 

In this section we give an alternative description of min-closed constraints and show 
that Horn clauses are a special case of such constraints. 

In order to express a constraint C(S) as a formula in first-order logic we intro- 
duce variable symbols ~11~~12,. . . , u, to denote the variables in S, and constant symbols 

~11~~12,. . and bl, b2,. . . to denote fixed elements of the domain D. 

Lemma 5.1. Any constraint may be expressed as the conjunction of expressions of the 

fo t-m 

?[(a] < 01) A (a2 Gu2) A...A (a, < b> 

A (c, < b,) A(U~ < b2) A.../‘, (u, 6 h-)1. (1) 
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Proof. Straightforward, since each constraint C(S), where S = { 1,2,. . , T-} is the 
conjunction of the negations 

Theorem 5.2. A constraint is rnin-closed if and only if it is logically equivalent to a 

conjunction of disjunctions of the ,following,form 

Proof. (=c-) If C(S) is min-closed, then by Lemma 5.1 we may express C(S) as a 
conjunction of expressions of the form given in Eq. ( 1). 

Now consider any conjunct, y. in this expression 

y=-[(al ~L’l)A(LL?~L’~jA”‘~\(fL,~I’,) 

A ( l’, < b, ) ‘\ ( i‘? tr_ b2 ) ,1 +, ( l’r < b,) 1. 

In order to satisfy y, every tuple in C(S) must falsify at least one of the conjuncts in 
y. In other words, every tuple in C(S) must break at least one of the bounds specified 

by y. 
Let A c C(S) be the set 01‘ tuples in C( S) which satisfy all of the lower bounds in 

For any tuple r C= A let B( t 1 $= (hl, b2.. 1 11~) be the upper bounds which t breaks. 
By the argument above, B ( t) must be non-empty. 

Since C(S) is min-closed, if A contains any pair of tuples t, t’, then it also contains 
the tuple tnt’. But B(tFlt’) =B(r) iiB(t’) so we have, for all t,t’E A 

B(r) TiB(t’) f ti 

Repeating this argument we obtain 

n B(t) f 0. 
/GA 

Hence there is at least one upper bound b, in y which is broken by all tuples t satisfying 
the lower bounds. This implies that the conjunct y may be replaced with 

without allowing any additional elements in C(S). This expression is clearly equivalent 
to the expression in the theorem. 

( x=) Conversely, we shall now show that any constraint which satisfies an expression 
of the form given in the theorem must be min-closed. 

Assume, for contradiction, that ri = (x.1. .x2,. .x,) and t2 = (~1, ~2.. ,y,) satisfy 
a conjunction of expressions of the form given in the theorem, but tl fl t2 does not. 
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This implies that tr n t2 fails to satisfy some conjunct y of this expression which is 
logically equivalent to the following 

But, by definition of tl n t:! this means that aj < min(xj, yj), j = 1,2,. . . , r, and 
min(,r;, yi) < bi. Hence either tl or t2 also fail to satisfy y, which contradicts the 

choice of tl and t2. 0 

Corollary 5.3. Zf the domain of values for the variables is {True,False}, with False < 
True, then a constraint is min-closed if and only if it is logically equivalent to a 

conjunction of Horn clauses. 

Proof. When the domain of values is {True,False}, with False < True, then the values 
of the Ui’S and hi’s in the expression given in Eq. (2) must be replaced with True or 
False. Simplifying the resulting expression therefore gives an expression of the form 

lUi, V lUiq V ’ ’ ’ V lLli, V Vi 

or 

which are precisely the forms allowed for Horn clauses. 0 

Corollary 5.3 is equivalent to the well-known result that a theory in propositional 
logic may be expressed in Horn formulae if and only if its set of models is closed under 

intersection (see Lemma 4.5 of [ 51). 
By a similar argument we may show that max-closed constraints over this Boolean 

domain are precisely those which may be expressed by conjunctions of disjunctions with 

at most one negated variable. 

6. Intractability of extensions 

In this section we shall demonstrate that any superset of the set of max-closed (or min- 
closed) constraints can generate intractable problems. Hence these sets of constraints 
are both maximal sets of tractable constraints. 

We begin by characterizing max-closed constraints using the following property. 

Definition 6.1. A constraint C(S) is said to be “crossover-closed” if, for all i, j E S, 

For binary constraints, this is equivalent to being max-closed. 

Lemma 6.2. A binary constraint is mux-closed if and only if it is crossover-closed. 



However, for constraints of higher arity. it is possible to be crossover-closed without 
being max-closed, as the following example illustrates. 

Example 6.3. Consider the following constraint, C, consisting of three tuples 

c = {(T,KF),(T,ET),(E7:T)} 

If the domain D is ordered such that F‘ * 7‘. then C is crossover-closed, because the 
projection of C onto any pair of variables is { (7’. T). (T, F), (ET)}. 

However, C is not max-closed because the maximum of any pair of tuples is (T, T, T), 
which is not an element of C. 

We now establish the precise relationship between these properties for constraints of 

any arity. 

Lemma 6.4. A constraint C ( S) is max-closed ij and only ifever) intersection of C ( S) 
with rrrax-closed constraints is c~rossover-closed. 

Proof. ( +) If C( S) is max-closed then. iOr all i. ,j c S, 

I(.Y,..Y,) i;??- i,., ,(CCS,,l ?\I(?‘,..\‘,l’--7r I,.,, CC(S))] 

=+ [(max(.x-,,y,),rllax(.~,.v,)) t rTTI ,.,, (C(S))]. 

Hence, C(S) is crossover-closed. 

Furthermore, the join of C(S) with any max-closed constraint remains max-closed, 
by Proposition 4. I. Hence, C(S) remains crossover-closed no matter what further re- 
strictions are imposed by max-closed constraints. 

Cc=) If C(S) is not max-closed, then there exist tl, t2 E C(S), such that t = tl U 12 $ 
C(S). Let tl = (x.1.x2.. ..r,-) and t: = (~1.y~. . ,y,) and let f = (21, ~2,. ,z,.) 
where ;, = max( X, ~ ~1, ) 

Now impose a further constraint on S which restricts each variable i t S to values less 

than or equal to E,. This additional constraint is clearly max-closed, and the intersection 
of C(S) with this constraint results in a new constraint, which will be denoted C’(S). 

Choose a minimal subset M = {iI,. . i,,!} C S such that r,+,( {t}) $! rr~(C’( S)). 
By the choice of t. we have 2 < 1Ml 6 r. Since M is minimal, for any i, E M we have 

~7iw:j,,/ ({f)) E T.M’,{,,} ( C’(S) ). In other words, for any i,, E M, C’(S) must contain 

a tuple (z,, , . . z,,~ , , zl, z,,, , . . z ,,,, 1 where ;,t f zr,. Since variable i, is constrained 

by C’(S) to take values less than or equal to :,+, it follows that zl < c,,, 
Now choose any two distinct variables i,. ik E M and impose a further constraint on 

the variables in M \ {i,, ik} (if any) which requires each variable i,, to take the value 
L,,,. The intersection of C’(S) with this additional (max-closed) constraint results in a 
new constraint C”(S) such that 

I ( T,,, L:, 1 t Tl,,.,, , (C”( S) ) I I’, I ( ;,:, .$ 1 +b ?7[,),,,) (C”(S) 1 I 

,‘> ( z,, > z,‘, 1 A CL,{ c.. ,,,) A I (z,.:,,) qh-(,,,,,,(C”(S)~l 

Hence C”(S) is not crossover-closed. i-1 
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Using this lemma, we are able to prove the main results of this section. 

337 

Theorem 6.5. For any domain D, with 1 DI 2 3, and any constraint C not in Mo, 

CSP( Mo U {C}) is NP-complete. 
Furthermore, it remains NP-complete even when Mo is restricted to binary max- 

closed constraints. 

Proof. Any CSP clearly belongs to NP since a solution may be checked against all of 
the constraints of the problem in polynomial time. 

To demonstrate that CSP( MD U {C}) is NP-complete we shall provide a polynomial 
time reduction from the NP-complete problem GRAPH 3-COLORABILITY [ 71. 

To carry out this reduction, we first note that, by Lemma 6.4, since C is not max- 
closed, we may compose C with max-closed constraints to form a constraint C’ which 
is not crossover-closed. In other words, on some pair of coordinate positions, there exist 
values xi, x2. yi , ~2, with XI > yi and x2 < ~2, such that C’ allows the combinations 
(xi, x2) and (yi , ~2) but does not allow the combination (XI, ~2). Without loss of 
generality, we may assume that this holds in the first and last coordinate positions. 

Now let r be the length of the tuples in C and consider the constraint satisfaction 

problem P with variables { 1,2,3,. . . ,2r,2r+ 1,2r+2}, domain D = {a,b,c ,... } 

where (a > b > c), and the following constraints: 

C(1,2,... ,r) = C(r + 1,r + 2,. . . ,2r) = C’, 

C(2r + 1,1) = {( a,xi), (b,xt), (c,xi), (b,yi), (c,yt)}, 

C(2rf2,r) ={(a,y2),(b,~2),(c,~2),(b,x2),(~,~2)}, 

C(2r+l,r+l)={( a,xl),(b,xl),(c,xl),(a,yl),(c,yl)}, 

C(2r+2,2r) = {(a.y2>,(b,y2>,(~,~2),(a,x2),(~,~2)}, 

C(2r+1,2r+2) ={( a,a), (a,b), (b,a), (b,b), (~,a), (a,~), (c,b), (b,c)}. 

The problem P is illustrated in Fig. 2. Note that the additional constraints used in P 
are all max-closed, hence P E CSP(Mo U {C}). 

By explicitly constructing all possible solutions to P, we may show that all possible 
combinations of a, b and c are allowed for the variables 2r + 1 and 2r + 2 except for 

the pairs (a,a>, (b,b) and (c,c). 
But this means that we may reduce any instance of GRAPH 3-COLORABILITY to a 

problem in CSP(Mo U {C}) in polynomial time, by replacing each edge in the graph 
with P and identifying the vertices of the edge with the variables corresponding to 2r + 1 
and 2r + 2. 

Since the above construction uses only binary constraints, this result remains true 
even when Mo is restricted to binary constraints. 0 

For the case of IDI = 2, it is possible to obtain a similar result by construct- 
ing a polynomial time reduction from the NP-complete problem NOT-ALL-EQUAL- 
SATISFIABILITY [ 71. 
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I r 

2r f2 

Fi p. 2. The CSP P used to construct a #-constraint 

Theorem 6.6. f+r cmy domuitt Ll, with lDi = 2. and any constraint C not in MD, 

CSP( ,z/11, lJ {C} ) is NP-complete. 

Furtherttrore, it remains NP-complete even when MD is restricted to ternary max- 
closed cwnsrruinrs. 

Theorem 6.6 may also be proved by using Corollary 5.3, together with Schaefer’s 
characterization of tractable subproblems of the SATISFIABILITY problem, given in 

1171. 
Corresponding results may 01‘ course be obtained for min-closed constraints. 

7. Conclusion 

This paper has demonstrated the significance of the class of constraints which have 

been designated as max-closed constraints. 
These results provide efficient techniques for solving any constraint satisfaction prob- 

lem where the constraints lie within this class. This may be known a priori from some 
feature of the original problem (such as the fact that the constraints are expressed in 

Horn formulae), or it may be achievable by suitable pre-processing. In order words, 
we have identified another possible class of “target” problems, for which an efficient 
algorithm is known, which can be used to provide a possible goal for a general problem 
solving scheme, as in [ 4). 

We have also shown that any class of problems allowing a larger set of constraints is 
NP-complete, so it is unlikely that efficient general solution techniques exist. 
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