376 research outputs found

    Terahertz integrated antenna arrays for imaging applications

    Get PDF
    Terahertz is the portion of the spectrum that covers a frequency range between 300 GHz - 3 THz. This frequency band has proven its potential for imaging applications thanks to the good compromise between spatial resolution and penetration; however, this push towards high frequencies contains many technological difficulties in all the subsystems involved in the signal generation, transmission and detection. The power budget restrictions and high losses that sources and receivers currently suffer at these frequencies require systems with a high level of integration among all the devices and components of the systems and subsystems. Therefore, the antennas needed for these systems require to be integrated within the same fabrication processes and technologies as the sensing and power converting devices that are used at their terminals. This doctoral thesis has focused on the development of integrated antenna arrays at Terahertz frequencies for imaging applications, for both near-field and focal-plane geometries, with a special emphasis on the technologies and the fabrication capabilities that can be potentially used and are currently available. The current imaging systems require large arrays of antennas in order to achieve the high-speed image acquisition that is required in most THz applications. This fact increases considerably the difficulty and complexity to achieve highly integrated and efficient antennas. This thesis has characterized and analyzed these difficulties and provided solutions to the development of antenna arrays at millimeter and submillimeter wave frequencies. The first part of this thesis has focused on the study of a planar antenna array, called retina, for a specific near-field imaging system based on the Modulated Scatterer Technique (MST) at millimeter and submillimeter-wave frequencies. This system has been selected for its capabilities to perform high-speed imaging and because it does not require a high frequency distribution line network. However, it is hindered by many technological difficulties: the selection of an antenna geometry that achieves high efficiency, the selection of the adequate active element and its integration with the antenna. In this thesis, these challenges have been addressed and studied in-depth, and a design methodology that integrates all the different aspects of the system has been developed. Because planar antennas at millimeter and submillimeter wave frequencies suffer from high losses due to the surface wave modes inside substrate, these losses have been analyzed and quantified for different antennas, and an antenna geometry that reduces significantly this problem has been developed. Different switching technologies currently or potentially available at these high frequencies have been considered in order to study and analyze their capabilities and their integration possibilities: PIN diodes, Schottky diodes and RF-MEMS. These technologies have been studied through the development of three retina prototypes, which have been fabricated using high precision fabrication processes such as laser micromachining and photolithographic. Different measurement set ups were fabricated and assembled to validate the different premises presented. The second part of the thesis is devoted to the study of integrated Focal Plane Arrays (FPA). The development of FPA at submillimeter wave frequencies is highly on demand due to the enormous progress in designing integrated heterodyne receivers. These receivers integrate arrays of submillimeter-wave diode-based mixers and multipliers with Monolithically Integrated Circuit (MIC) amplifiers on the same wafer stack. For this stackable multi-pixel terahertz camera technology to work, a leaky wave antenna with silicon micro-lenses has been developed, which allows wafer level integration compatible with silicon micro-fabrication techniques for bulk array manufacturing and has high directivity in order to illuminate a reflector efficiently. Detailed and thorough design guidelines for this antenna are presented. Two antenna prototypes were built in order to evaluate the two fabrication possibilities: advanced laser micro-fabrication and photolithographic fabrication. A study of the aberrations of the lens has been developed in order to evaluate the performance of the lens profile fabricated. Moreover, a set of radiation pattern measurements of the fabricated prototypes was performed in order to evaluate the performance of the antenna and its possibilities to be used as a FPA

    A High Performance Micromachined Sub-Millimeter-Wave Radar Technology

    Full text link
    Motivated by the recent interest in high millimeter-wave (MMW) and sub-MMW radar sensors for applications ranging from navigation and mapping in autonomous systems to public safety and standoff detection of concealed weapons, this work presents the technology in support of a novel sub-MMW radar with minimal Size, Weight, and Power consumption (SWaP). This includes development of novel design, microfabrication, and measurement methods and techniques to develop the passive RF front-end of the radar system operating at 240 GHz. The sub-MMW radar system is designed for navigation and mapping applications in autonomous systems. The salient features of the proposed radar are its ultra-lightweight (less than 5 grams), compact form factor (2 cm3), low power consumption (6.7 mW for 1 fps), and ease of scalability to higher frequencies (up to 1 THz). This work introduces novel components and sub-systems for the RF front-end of the radar system. This includes developing high performance radar antenna systems as well as the chip packaging and integration technology with the associated transitions for realization of the radar system. In order to satisfy the requirements for high resolution and wide field of view for this imaging and navigation radar sensor, frequency scanning beam-steering antennas are developed to achieve ±25˚ of beam steering with a very narrow beam of 2.5˚ in the direction of scan. The designed array antenna has over 600 radiating elements and exhibits a radiation efficiency of over 55% and a gain of over 30 dBi over the entire operation frequency range. Additionally, for polarimetry applications, two versions of the antenna with both co- and cross-polarizations are developed to allow full-polarimetry imaging at sub-MMW frequencies. Another contribution of this work is development of a novel chip packaging methodology with the associated biasing network for sub-MMW integration of active and passive MMICs in the RF front-end. The packaging method offers a compact, low-loss, and wideband integration solution in the sub-MMW to terahertz (THz) frequency band which can be standardized for reliable and repeatable integrations at such frequencies. Due to the small wavelength at MMW to THz frequency band, fabrication of sub-MMW components requires high fabrication tolerances and accuracies, which is costly and hard to achieve with the standard machining techniques. To overcome this problem, in this work novel silicon micromachining methods are developed to enable reliable fabrication of complex structures, such as the radar RF front end, with low mass and low cost. The fabrication method allows seamless realization of the entire radar RF front-end on a single silicon block with a compact form factor and high level of integration. Repeatable and reliable characterization of sub-MMW components and sub-systems is a very challenging task and one major contribution of this dissertation pertains to development of novel measurement techniques to enable reliable on-wafer characterization of such devices in the MMW to THz band. This includes development of a novel waveguide probe measurement technique along with specially designed probes and the associated transitions for on-wafer S-parameter measurements at sub-MMW frequencies. Additionally, a novel on-wafer near-field measurement method is developed to allow pattern and power characterization of the antennas at sub-MMW frequencies. These methods are employed to perform full on-wafer characterization of the micromachined RF front-end components, including the antennas as well as the chip packaging, where excellent agreement of designed and measured results are shown.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/140879/1/arminjam_1.pd

    New developments in the THz field for imaging applications

    Get PDF
    Con esta tesis se pretende avanzar en el desarrollo de la tecnología de terahercios (THz) dentro del campo de las aplicaciones de imagen. Actualmente, los THz se presentan como un rango frecuencial muy interesante para la obtención de imågenes, tal y como se ve reflejado en los numerosos trabajos presentes en la literatura. Por otro lado, aunque se han obtenido cuantiosas imågenes en este rango, aun no es posible identificar el material que compone la muestra. Es por esto que uno de los objetivos de esta tesis es completar las bases de datos de materiales existentes actualmente. Para ello, se han implementado diferentes sistemas que permiten la caracterización electromagnética de diferentes materiales en el rango de los THz.The aim of this thesis is to go a step forward in the use of terahertz (THz) technology within the field of imaging applications. Nowadays, THz radiation appears as a very interesting frequency range to obtain images, as related in the numerous publications. Conversely, although there are several examples of imaging in this range, it is still not possible to identify the material that it is imaged. That is why one of the objectives of this thesis will be to add new materials to the actual database. Thus, several systems have been implemented to characterize materials in the range of THz for this dissertation.Programa Oficial de Doctorado en Tecnologías de las Comunicaciones (RD 1393/2007)Komunikazioen Teknologietako Doktoretza Programa Ofiziala (ED 1393/2007

    Polymer-Based Micromachining for Scalable and Cost-Effective Fabrication of Gap Waveguide Devices Beyond 100 GHz

    Get PDF
    The terahertz (THz) frequency bands have gained attention over the past few years due to the growing number of applications in fields like communication, healthcare, imaging, and spectroscopy. Above 100 GHz transmission line losses become dominating, and waveguides are typically used for transmission. As the operating frequency approaches higher frequencies, the dimensions of the waveguide-based components continue to decrease. This makes the traditional machine-based (computer numerical control, CNC) fabrication method increasingly challenging in terms of time, cost, and volume production. Micromachining has the potential of addressing the manufacturing issues of THz waveguide components. However, the current microfabrication techniques either suffer from technological immaturity, are time-consuming, or lack sufficient cost-efficiency. A straightforward, fast, and low-cost fabrication method that can offer batch fabrication of waveguide components operating at THz frequency range is needed to address the requirements.A gap waveguide is a planar waveguide technology which does not suffer from the dielectric loss of planar waveguides, and which does not require any electrical connections between the metal walls. It therefore offers competitive loss performance together with providing several benefits in terms of assembly and integration of active components. This thesis demonstrates the realization of gap waveguide components operating above 100 GHz, in a low-cost and time-efficient way employing the development of new polymer-based fabrication methods.A template-based injection molding process has been designed to realize a high gain antenna operating at D band (110 - 170 GHz). The injection molding of OSTEMER is an uncomplicated and fast device fabrication method. In the proposed method, the time-consuming and complicated parts need to be fabricated only once and can later be reused.A dry film photoresist-based method is also presented for the fabrication of waveguide components operating above 100 GHz. Dry film photoresist offers rapid fabrication of waveguide components without using complex and advanced machinery. For the integration of active circuits and passive waveguides section a straightforward solution has been demonstrated. By utilizing dry film photoresist, a periodic metal pin array has been fabricated and incorporated in a waveguide to microstrip transition that can be an effective and low-cost way of integrating MMIC of arbitrary size to waveguide blocks

    The Third International Symposium on Space Terahertz Technology: Symposium proceedings

    Get PDF
    Papers from the symposium are presented that are relevant to the generation, detection, and use of the terahertz spectral region for space astronomy and remote sensing of the Earth's upper atmosphere. The program included thirteen sessions covering a wide variety of topics including solid-state oscillators, power-combining techniques, mixers, harmonic multipliers, antennas and antenna arrays, submillimeter receivers, and measurement techniques

    TERASENSE: THz device technology laboratory: final summary

    Get PDF
    The use of THz frequencies, particularly W and G band allows reaching higher resolution and deeper penetration in emerging applications like imaging, sensing, etc. The development of those new applications lays on reliable technologies, background of expertise and know-how. The CDS2008-00068 TERASENSE CONSOLIDER project has given the opportunity to extent upwards in frequency the previous background of the microwaves research group partners. This article summarizes the developments of the TERASENSE work package “THz Device Technology Laboratory”.This work was supported by the Spanish Ministerio de Ciencia e Innovación through the CONSOLIDER-INGENIO 2010 program reference CSD2008-00068 TERASENSE

    Coherent Receiver Arrays for Astronomy and Remote Sensing

    Get PDF
    Monolithic Millimeter-wave Integrated Circuits (MMICs) provide a level of integration that makes possible the construction of large focal plane arrays of radio-frequency detectors—effectively the first “Radio Cameras”—and these will revolutionize radio-frequency observations with single dishes, interferometers, spectrometers, and spacecraft over the next two decades. The key technological advances have been made at the Jet Propulsion Laboratory (JPL) in collaboration with the Northrop Grumman Corporation (NGC). Although dramatic progress has been made in the last decade in several important areas, including (i) packaging that enables large coherent detector arrays, (ii) extending the performance of amplifiers to much higher frequencies, and (iii) reducing room-temperature noise at high frequencies, funding to develop MMIC performance at cryo-temperatures and at frequencies below 150GHz has dropped nearly to zero over the last five years. This has severely hampered the advance of the field. Moreover, because of the high visibility of < 150GHz cryogenic detectors in astrophysics and cosmology, lack of progress in this area has probably had a disproportionate impact on perceptions of the potential of coherent detectors in general. One of the prime objectives of the Keck Institute for Space Studies (KISS) is to select crucial areas of technological development in their embryonic stages, when relatively modest funding can have a highly significant impact by catalyzing collaborations between key institutions world-wide, supporting in-depth studies of the current state and potential of emerging technologies, and prototyping development of key components—all potentially leading to strong agency follow-on funding. The KISS large program “Coherent Instrumentation for Cosmic Microwave Background Observations” was initiated in order to investigate the scientific potential and technical feasibility of these “Radio Cameras.” This opens up the possibility of bringing support to this embryonic area of detector development at a critical phase during which KISS can catalyze and launch a coherent, coordinated, worldwide effort on the development of MMIC Arrays. A number of key questions, regarding (i) the importance and breadth of the scientific drivers, (ii) realistic limits on sensitivity, (iii) the potential of miniaturization into receiver “modules,” and (iv) digital signal processing, needed to be studied carefully before embarking on a major MMIC Array development effort led by Caltech/JPL/NGC and supported by KISS, in the hope of attracting adequate subsequent government funding. For this purpose a large study was undertaken under the sponsorship and aegis of KISS. The study began with a workshop in Pasadena on “MMIC Array Receivers and Spectrographs” (July 21–25, 2008)1, immediately after an international conference “CMB Component Separation and the Physics of Foregrounds” (July 14–18, 2008)2 that was organized in conjunction with the MMIC workshop. There was then an eight-month study period, culminating in a final “MMIC 2Workshop” (March 23–27, 2009).3 These workshops were very well attended, and brought together the major international groups and scientists in the field of coherent radio-frequency detector arrays. A notable aspect of the workshops is that they were well attended by young scientists—there are many graduate students and post-doctoral fellows coming into this area. The two workshops focused both on detailed discussions of key areas of interest and on the writing of this report. They were conducted in a spirit of full and impartial scrutiny of the pros and cons of MMICs, in order to make an objective assessment of their potential. It serves no useful purpose to pursue lines of technology development based on unrealistic and over-optimistic projections. This is crucially important for KISS, Caltech, and JPL which can only have real impact if they deliver on the promise of the technologies they develop. A broad range of opinions was evident at the start of the first workshop, but in the end a strong consensus was achieved on the most important questions that had emerged. This report reflects the workshop deliberations and that consensus. The key scientific drivers for the development of the MMIC technology are: (i) large angular-scale Bmode polarization observations of the cosmic microwave background—here MMICs are one of two key technologies under development at JPL, both of which are primary detectors on the recently-launched Planck mission; (ii) large-field spectroscopic surveys of the Galaxy and nearby galaxies at high spectral resolution, and of galaxy clusters at low resolution; (iii) wide-field imaging via deployment as focal plane arrays on interferometers; (iv) remote sensing of the atmosphere and Earth; and (v) wide-field imaging in planetary missions. These science drivers are discussed in the report. The most important single outcome of the workshops, and a sine qua non of this whole program, is that consensus was reached that it should be possible to reduce the noise of individual HEMTs or MMICs operating at cryogenic temperatures to less than three times the quantum limit at frequencies up to 150 GHz, by working closely with a foundry (in this case NGC) and providing rapid feedback on the performance of the devices they are fabricating, thus enabling tests of the effects of small changes in the design of these transistors. This kind of partnership has been very successful in the past, but can now be focused more intensively on cryogenic performance by carrying out tests of MMIC wafers, including tests on a cryogenic probe station. It was felt that a properly outfitted university laboratory dedicated to this testing and optimization would be an important element in this program, which would include MMIC designs, wafer runs, and a wide variety of tests of MMIC performance at cryogenic temperatures. This Study identified eight primary areas of technology development, including the one singled out above, which must be actively pursued in order to exploit the full potential of MMIC Arrays in a timely fashion: 1. Reduce the noise levels of individual transistors and MMICs to three times the quantum limit or lower at cryogenic temperatures at frequencies up to 150 GHz. 2. Integrate high-performing MMICs into the building blocks of large arrays without loss of performance. Currently factors of two in both noise and bandwidth are lost at this step. 3. Develop high performance, low mass, inexpensive feed arrays. 4. Develop robust interconnects and wiring that allow easy fabrication and integration of large arrays. 5. Develop mass production techniques suitable for arrays of differing sizes. 6. Reduce mass and power. (Requirements will differ widely with application. In the realm of planetary instruments, this is often the most important single requirement.) 7. Develop planar orthomode transducers with low crosstalk and broad bandwidth. 8. Develop high power and high efficiency MMIC amplifiers for LO chains, etc. Another important outcome of the two workshops was that a number of new collaborations were forged between leading groups worldwide with the object of focusing on the development of MMIC arrays

    Room temperature micromachined microbolometers for W-band (75 GHz-110 GHz) focal plane imaging array

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (p. 80-86).by Ariful Rahman.M.S
    • 

    corecore