51 research outputs found

    Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree

    Get PDF
    open access articleProviding the user with appliance-level consumption data is the core of each energy efficiency system. To that end, non-intrusive load monitoring is employed for extracting appliance specific consumption data at a low cost without the need of installing separate submeters for each electrical device. In this context, we propose in this paper a novel non-intrusive appliance recognition system based on (i) detecting events in the aggregated power signal using a novel and powerful scheme, (ii) applying multiscale wavelet packet tree to collect comprehensive energy consumption features, and (iii) adopting an ensemble bagging tree classifier along with comparing its performance with various machine learning schemes. Moreover, to validate the proposed model, an empirical investigation is conducted on two real and public energy consumption datasets, namely, the GREEND and REDD, in which consumption readings are collected at low-frequencies. In addition, a comprehensive review of recent non-intrusive load monitoring approaches has been conducted and presented, in which their characteristics, performances and limitations are described. The proposed non-intrusive load monitoring system shows a high appliance recognition performance in terms of the accuracy, F1 score and low time complexity when it has been applied to different households from the GREEND and REDD repositories, in which every house includes various domestic appliances. Obtained results have described, e.g., that average accuracies of 97.01% and 96.36% have been reached on the GREEND and REDD datasets, respectively, which outperformed almost existing solutions considered in this framework

    Energy Data Analytics for Smart Meter Data

    Get PDF
    The principal advantage of smart electricity meters is their ability to transfer digitized electricity consumption data to remote processing systems. The data collected by these devices make the realization of many novel use cases possible, providing benefits to electricity providers and customers alike. This book includes 14 research articles that explore and exploit the information content of smart meter data, and provides insights into the realization of new digital solutions and services that support the transition towards a sustainable energy system. This volume has been edited by Andreas Reinhardt, head of the Energy Informatics research group at Technische Universität Clausthal, Germany, and Lucas Pereira, research fellow at Técnico Lisboa, Portugal

    Non-parametric modeling in non-intrusive load monitoring

    Get PDF
    Non-intrusive Load Monitoring (NILM) is an approach to the increasingly important task of residential energy analytics. Transparency of energy resources and consumption habits presents opportunities and benefits at all ends of the energy supply-chain, including the end-user. At present, there is no feasible infrastructure available to monitor individual appliances at a large scale. The goal of NILM is to provide appliance monitoring using only the available aggregate data, side-stepping the need for expensive and intrusive monitoring equipment. The present work showcases two self-contained, fully unsupervised NILM solutions: the first featuring non-parametric mixture models, and the second featuring non-parametric factorial Hidden Markov Models with explicit duration distributions. The present implementation makes use of traditional and novel constraints during inference, showing marked improvement in disaggregation accuracy with very little effect on computational cost, relative to the motivating work. To constitute a complete unsupervised solution, labels are applied to the inferred components using a Res-Net-based deep learning architecture. Although this preliminary approach to labelling proves less than satisfactory, it is well-founded and several opportunities for improvement are discussed. Both methods, along with the labelling network, make use of block-filtered data: a steady-state representation that removes transient behaviour and signal noise. A novel filter to achieve this steady-state representation that is both fast and reliable is developed and discussed at length. Finally, an approach to monitor the aggregate for novel events during deployment is developed under the framework of Bayesian surprise. The same non-parametric modelling can be leveraged to examine how the predictive and transitional distributions change given new windows of observations. This framework is also shown to have potential elsewhere, such as in regularizing models against over-fitting, which is an important problem in existing supervised NILM

    Knowledge Distillation and Continual Learning for Optimized Deep Neural Networks

    Get PDF
    Over the past few years, deep learning (DL) has been achieving state-of-theart performance on various human tasks such as speech generation, language translation, image segmentation, and object detection. While traditional machine learning models require hand-crafted features, deep learning algorithms can automatically extract discriminative features and learn complex knowledge from large datasets. This powerful learning ability makes deep learning models attractive to both academia and big corporations. Despite their popularity, deep learning methods still have two main limitations: large memory consumption and catastrophic knowledge forgetting. First, DL algorithms use very deep neural networks (DNNs) with many billion parameters, which have a big model size and a slow inference speed. This restricts the application of DNNs in resource-constraint devices such as mobile phones and autonomous vehicles. Second, DNNs are known to suffer from catastrophic forgetting. When incrementally learning new tasks, the model performance on old tasks significantly drops. The ability to accommodate new knowledge while retaining previously learned knowledge is called continual learning. Since the realworld environments in which the model operates are always evolving, a robust neural network needs to have this continual learning ability for adapting to new changes

    Machine learning techniques implementation in power optimization, data processing, and bio-medical applications

    Get PDF
    The rapid progress and development in machine-learning algorithms becomes a key factor in determining the future of humanity. These algorithms and techniques were utilized to solve a wide spectrum of problems extended from data mining and knowledge discovery to unsupervised learning and optimization. This dissertation consists of two study areas. The first area investigates the use of reinforcement learning and adaptive critic design algorithms in the field of power grid control. The second area in this dissertation, consisting of three papers, focuses on developing and applying clustering algorithms on biomedical data. The first paper presents a novel modelling approach for demand side management of electric water heaters using Q-learning and action-dependent heuristic dynamic programming. The implemented approaches provide an efficient load management mechanism that reduces the overall power cost and smooths grid load profile. The second paper implements an ensemble statistical and subspace-clustering model for analyzing the heterogeneous data of the autism spectrum disorder. The paper implements a novel k-dimensional algorithm that shows efficiency in handling heterogeneous dataset. The third paper provides a unified learning model for clustering neuroimaging data to identify the potential risk factors for suboptimal brain aging. In the last paper, clustering and clustering validation indices are utilized to identify the groups of compounds that are responsible for plant uptake and contaminant transportation from roots to plants edible parts --Abstract, page iv

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society

    A novel multi-level and community-based agent ecosystem to support customers dynamic decision-making in smart grids

    Get PDF
    Electrical systems have evolved at a fast pace over the past years, particularly in response to the current environmental and climate challenges. Consequently, the European Union and the United Nations have encouraged the development of a more sustainable energy strategy. This strategy triggered a paradigm shift in energy consumption and production, which becoming increasingly distributed, resulted in the development and emergence of smart energy grids. Multi-agent systems are one of the most widely used artificial intelligence concepts in smart grids. Both multi-agent systems and smart grids are distributed, so there is correspondence between the used technology and the network's complex reality. Due to the wide variety of multi-agent systems applied to smart grids, which typically have very specific goals, the ability to model the network as a whole may be compromised, as communication between systems is typically non-existent. This dissertation, therefore, proposes an agent-based ecosystem to model smart grids in which different agent-based systems can coexist. This dissertation aims to conceive, implement, test, and validate a new agent-based ecosystem, entitled A4SG (agent-based ecosystem for smart grids modelling), which combines the concepts of multi-agent systems and agent communities to enable the modelling and representation of smart grids and the entities that compose them. The proposed ecosystem employs an innovative methodology for managing static or dynamic interactions present in smart grids. The creation of a solution that allows the integration of existing systems into an ecosystem, enables the representation of smart grids in a realistic and comprehensive manner. A4SG integrates several functionalities that support the ecosystem's management, also conceived, implemented, tested, and validated in this dissertation. Two mobility functionalities are proposed: one that allows agents to move between physical machines and another that allows "virtual" mobility, where agents move between agent communities to improve the context for the achievement of their objectives. In order to prevent an agent from becoming overloaded, a novel functionality is proposed to enable the creation of agents that function as extensions of the main agent (i.e., branch agents), allowing the distribution of objectives among the various extensions of the main agent. Several case studies, which test the proposed services and functionalities individually and the ecosystem as a whole, were used to test and validate the proposed solution. These case studies were conducted in realistic contexts using data from multiple sources, including energy communities. The results indicate that the used methodologies can increase participation in demand response events, increasing the fitting between consumers and aggregators from 12 % to 69 %, and improve the strategies used in energy transaction markets, allowing an energy community of 50 customers to save 77.0 EUR per week.Os últimos anos têm sido de mudança nos sistemas elétricos, especialmente devido aos atuais desafios ambientais e climáticos. A procura por uma estratégia mais sustentável para o domínio da energia tem sido promovida pela União Europeia e pela Organização das Nações Unidas. A mudança de paradigma no que toca ao consumo e produção de energia, que acontece, cada vez mais, de forma distribuída, tem levado à emergência das redes elétricas inteligentes. Os sistemas multi-agente são um dos conceitos, no domínio da inteligência artificial, mais aplicados em redes inteligentes. Tanto os sistemas multi-agente como as redes inteligentes têm uma natureza distribuída, existindo por isso um alinhamento entre a tecnologia usada e a realidade complexa da rede. Devido a existir uma vasta oferta de sistemas multi-agente aplicados a redes inteligentes, normalmente com objetivos bastante específicos, a capacidade de modelar a rede como um todo pode ficar comprometida, porque a comunicação entre sistemas é, geralmente, inexistente. Por isso, esta dissertação propõe um ecossistema baseado em agentes para modelar as redes inteligentes, onde vários sistemas de agentes coexistem. Esta dissertação pretende conceber, implementar, testar, e validar um novo ecossistema multiagente, intitulado A4SG (agent-based ecosystem for smart grids modelling), que combina os conceitos de sistemas multi-agente e comunidades de agentes, permitindo a modelação e representação de redes inteligentes e das suas entidades. O ecossistema proposto utiliza uma metodologia inovadora para gerir as interações presentes nas redes inteligentes, sejam elas estáticas ou dinâmicas. A criação de um ecossistema que permite a integração de sistemas já existentes, cria a possibilidade de uma representação realista e detalhada das redes de energia. O A4SG integra diversas funcionalidades, também estas concebidas, implementadas, testadas, e validadas nesta dissertação, que suportam a gestão do próprio ecossistema. São propostas duas funcionalidades de mobilidade, uma que permite aos agentes mover-se entre máquinas físicas, e uma que permite uma mobilidade “virtual”, onde os agentes se movem entre comunidades de agentes, de forma a melhorar o contexto para a execução dos seus objetivos. É também proposta uma nova funcionalidade que permite a criação de agentes que funcionam como uma extensão de um agente principal, com o objetivo de evitar a sobrecarga de um agente, permitindo a distribuição de objetivos entre as várias extensões do agente principal. A solução proposta foi testada e validada por vários casos de estudo, que testam os serviços e funcionalidades propostas individualmente, e o ecossistema como um todo. Estes casos de estudo foram executados em contextos realistas, usando dados provenientes de diversas fontes, tais como comunidades de energia. Os resultados demonstram que as metodologias utilizadas podem melhorar a participação em eventos de demand response, subindo a adequação entre consumidores e agregadores de 12 % para 69 %, e melhorar as estratégias utilizadas em mercados de transações de energia, permitindo a uma comunidade de energia com 50 consumidores poupar 77,0 EUR por semana
    corecore