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Abstract

Providing the user with appliance-level consumption data is the core bfexsrgy ficiency system. To that end, non-intrusive
load monitoring is employed for extracting appliance specific consumpéstmat a low cost without the need of installing separate
submeters for each electrical device. In this context, we propose inapér g novel non-intrusive appliance recognition system
based on (i) detecting events in the aggregated power signal using laandveowerful scheme, (ii) applying multiscale wavelet
packet tree to collect comprehensive energy consumption feaamdgjiii) adopting an ensemble bagging tree classifier along
with comparing its performance with various machine learning schemesedver, to validate the proposed model, an empirical
investigation is conducted on two real and public energy consumptionetstasamely, the GREEND and REDD, in which
consumption readings are collected at low-frequencies. In additimmprehensive review of recent non-intrusive load monitoring
approaches has been conducted and presented, in which theirtetiatias, performances and limitations are described. The
proposed non-intrusive load monitoring system shows a high applisoogmition performance in terms of the accuracy, F1
score and low time complexity when it has been applied fiedint households from the GREEND and REDD repositories, in
which every house includes various domestic appliances. Obtaindtsriesve described, e.g., that average accuracies of 97.01%
and 96.36% have been reached on the GREEND and REDD dataspéstiedy, which outperformed almost existing solutions
considered in this framework.
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1. Introduction

Energy dficiency is considered as a demanding research topic and mentéi@n is paid to it recently due to the
benefits that can bring to the environment and society [1feRestudies have been reported that the best method to
achieve higher energy savings in households is throughtorarg each home appliance separately. However, this can
be very costly, especially when using separate plug powéennéor each domestic appliance[2, 3]. In this regard,
the best alternative solution is to use non-intrusive loaahitoring (NILM) procedures that can separate aggregated
power signal of a household or other buildings into the comsion of each specific appliance independenitly [4].
This is can be a very fruitful strategy due to the fact thawvlimg individual power consumption of each appliance
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cannot only incentivize consumers to use less electrioakp{t], however, it further supplies them with indicators
about practical know-how and even molféens specific perceptions of the context and activities ofesets|[5, [7].

Furthermore, NILM techniques are generally divided int@ twmain categories of non-event-based and event-
based|[8]. The former, it is mainly devoted on the use of &tiatil models, while the latter, which is the purpose
of this framework, focalizes on three main challenges ajnain[9]: (1) detecting events and transition changes, (2)
extracting a set of characteristics tfhi@ently discriminate between various devices and captnigue properties
of each one in regard to the use context, given that everypgobulevices has its specific electrical consumption
signature, environment and use scenario (e.g. house, ragabailding, factory, etc.) [[10]; and (3) selecting the
appropriate learning architecture to classify appliarz@sed on the extracted features [11]. Overall, both caitegjor
have the same final purpose that aims at splitting an aggregatrgy consumption signal into multiple fine-grained
energy records and thereby recognizing the appliance @atef each individual fingerprint [12].

In consequence, the appliance recognition or identifinatisk is an essential step in the NILM system. Conse-
guently, performing a device recognition through the eleat network results in an automatic identification of each
appliance from its power consumption signall [13]. Furtlieleads also into collecting fine-grained consumption
signatures of domestic electrical devices (such as airitiondr, TV, fridge, céfee machine, dishwasher, etc.) [14].
Hence, they are a stepping-stone into decreasing powek wsadj promoting energyffeciency through providing
the user with consumption statistics of each appliance [W&jreover, the appliance identification task allows other
important applications, among them the identification afrgg hungry devices [16], determination of suspicious-elec
tricity consumers [17], fault and anomaly detection [18], B@cupancy detection [20, 121], detection of suspicious or
unidentified appliances and eventually helps in developétigble energy disaggregation systems [22, 20].

To that end, in this paper, we propose a novel NILM architectiased on the following contributions: (1) a
powerful event detection scheme is introduced, which workke frequency-domain and deploys a filtering process
in the Cesptrum space to reduce the noise generated by tigaakdevices, resulting then in a better detection of
transitional changes occurred in the power signals; (2)facient feature extraction approach is introduced that is
based on the multi-scale wavelet packet tree (MSWPT). It ishwmoting that, to the best of our knowledge, this is the
first framework that discusses the use of MSWPT for NILM pugadshe MSWPT is a good candidate for analyzing
stationary and even non-stationary signals. This is becdigsmultiscale time frequency examination provides &larg
dimensional quantity of data and thereby supplying moreitdstn the detected events and capturing the peculiarities
of every appliance through removing irrelevant noise festuies; and (3) an ensemble bagging tree classifier (EBT)
is introduced, which is designed téfieiently classify appliances based on the features extidoben the detected
events. The use of the MSWPT is validated using a compretegsmparison with reference to several machine
learning algorithms. In addition, an extensive survey a$taxg NILM techniques has been conducted and presented,
in which their properties, performances and drawbackseaired. Following, a profound performance investigation
is managed using two large-scale and realistic databastte@ the GREEND|[23] and REDD [24] datasets. The
former contains daily load profiles of more than 30 appliang®ups, which are collected from siXfdirent houses.
Each device is monitored for a long period ranging from 4-Iéhths. However, the latter contains consumption
fingerprints of more than 20 appliance classes gatheredeséution of 13 Hz.

In addition, the possibility of developing the proposed Nillsystem as an industrial application is assessed,
where the time complexity of proposed system versus otheM®MEbased machine learning solutions has also been
investigated. Further, validating the proposed NILM sgsten the GREEND and REDD datasets, in which the
consumption data are gathered at low frequency (1 Hz #BdH2, respectively), has two main advantages; first, it
can economize the power usage and data storage withoutrimigdee recognition task. Second, good recognition
performances are achieved in terms of various benchmanrk@tgcs at a low computational complexity.

The rest of this paper is structured as follows. Sedfion 2ems various recent schemes pertaining to the two
main categories of NILM systems that are event-based aneewemnt-based. A comparison is performed between
technigues belonging to both groups, their limitations dravbacks are highlighted as well. Secfidn 3, explains the
steps required to implement the proposed NILM system, irciwvthorough explanations have been presented about
the proposed event detection scheme, MSWPT-based feattaieteon approach and ensemble bagging tree classifier.
After that, a deep performance investigation carried oaiccordance to various metrics is presented in Settion 4 on
both the GREEND and REDD datasets. Finally, conclusionsderappliance recognition study investigated in this
paper are drawn in Sectidh 5 on the basis of the output asadysl therefore the principal orientations for future
works are identified as well.
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2. Related works

Overall, NILM systems could be divided into two main catégsiof non-event-based and event-based. The first,
focuses on methods that are not dependent on training in @fispleuilding and could separate energy traces of
individual appliances from the aggregate load [25]. Ondnefrhethods that have been commonly investigated in this
domain is the use of statistical models such as Hidden Makkoglels (HMMs), probabilistic models and higher-
order statistics (HOS). The second, refers to techniquasidientify changes in the appliance state by using event
detection, classification, and then an approach for cdlogl@nergy consumption for individual appliances [26].

2.1. Non-event-based NILM schemes

This class is mainly based on the use of statistical modatiding HMMs, probabilistic models and HOSs to
segregate the aggregated power signals into applianeédata. In fact, the NILM issue represents a time dependent
problem in which statistical models are greatly targetec asitable solution. Recently, HMMs-based methods
have been receiving increasing attention. Various NILMtegues, adopting the HMMs as the central part of their
architecture, have been proposed in the literature.

In [27], a hierarchical method that can model various des/ighin the same category using a Bayesian consid-
eration of HMMs is proposed. A specific device consumptiordetas then generated through the combination of
the various HMMs settings. In this regard, a completely newiak model is designed to represent an appliance class
form 3-6 device examples. In [28], a HMMs-based classiftgats implemented on temporal power consumption
sequences to segregate aggregated load profiles. It ailjndetiecting device states at a low resolution and (ii) adopt
ing these features to model appliance categories and fyiagscandidate devices. In [29], Makonin et al. propose
an energy segregating technique based on the use of a safpEeHMMSs and Viterbi model, hence allowing a better
reliance between appliance signatures and an easy digagjgre of multi-state energy consumptions. The Viterbi
scheme is used tdfectively estimate the sparse arrays used to perform the Néd.

The problem of energy disaggregation is solved based onollait of the Viterbi decoding process by Kong
et al. [30]. This decoding is particularly deployed to potdhe probable sequences of the hidden conditions of
HMMs in regard to the observation sequences| In [31], virstrechastic sensors and hidden non-Markovian models
(HnMM) are employed to abstract electrical device sigreguwhile considering the precise period of switching on
every device. In[[32], the NILM problem is solved using HOShieh are implemented on separate appliance energy
consumption signals. 1n[33], power consumption pattefresach electrical device are identified based on estimating
the probability of events occurred for a set of electricalides using a mixture of Bernoulli distributions. [n [34het
additive factorial approximate maximum a posteriori (AFAW) is used to extract power signatures from electrical
devices using recursive fuzzy c-Means and HMMs.

In [35], two ML models based on unsupervised occurrencechdséection and Markov chain device energy
consumption modeling are combined in order to implement kMNramework. The latter enables a fast and on-line
domestic device identification using consumption patteimf36], a combination of NILM and load profiling process
is implemented to collect appliance-level consumptiondipgnts at a low sampling rate of 15 min. This technique
focuses on using the HMMs algorithm to model consumer behnaeitracting load usage profiles and statistical
patterns adequately and finally generating device-levesamption footprints.

In [37], an additive factorial HMMs is deployed to develop l[diLM solution based on the combination of ac-
tive/reactive power data. In this context, a bivariate HMMs isdusemodel each device consumption model while the
emitting signatures are simply the combination of a¢te@ctive power usage. In [38], a fusion of the factorial HMMs
and recurrent sub-sequence dynamic time warping (SDTW)ésated to design an NILM with a low complexity.
The factorial HMMs are used to extract the preliminary repreation of consumption trajectories while the recurrent
SDTW is deployed to classify the appliances based on a distastimation. In [39], the fference factorial HMMs
(DFHMMSs) along with the Kronecker process are used to dgvaloNILM system that can retrieve appliance-level
consumption patterns, especially in the case of electdcespeaters (ESH). This framework has a good robustness to
noise generated by other unknown appliances._In [40], agdwer records are utilized to model domestic electrical
devices as factorial HMMs. In addition, an aggregated-aongion modeling approach is introduced. Time windows
are then investigated using the probabilistic computinggjgture correct parameter settings that help in achietiag t
power disaggregation.
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Table 1: An overview of the existing NILM systems based otigtiaal models.

Work Category Sub-category  Architecture # appliances Resolution raAcgu
(Hz) (in %)

7[27] unsupervised HMMs Bayesian HMMs 5 181 N/A

[2€] un-supervised HMMs temporal sequenrnceiMMs N/A 1/600 75.25

[29] supervised HMMs super-state HMM4/iterbi model 6 160 94.86

[30] supervised HOSs ANN 2nd and 4th order statistics 11 15.36 97

[31] supervised HnMMs virtual stochastic sensors (VSS) 11 12 k 94

[32] un-supervised HMMs iterative k-Means /AN 1/3 85

[33] un-supervised Probabilistic ~ Bernoulli distributions /AN 1 80

[34] un-supervised AFAMAP recursive fuzzy c-Mean$iMMs 6 1/600 79

[35] un-supervised HMMs Markov chairmean-shift clustering 5 /@ 74.4

[3€] un-supervised HMMs activity Markov chain 8 /900 NA

[37] un-supervised HMMs additive Factorial HMMs 5 /6D 76.76

[3€] semi-supervised HMMs factorial HMMs recurrent SDTWA SDTW 11 ¥60 61

[40] un-supervised HMMs factorial HMMs 6 /120 NA

[39] un-supervised HMMs dierence factorial HMMs KA 1 95

[41] un-supervised HMMs variant of factor HMMs 7 /N 92.78

[42] supervised HMMs viterbi decoding HMMs 12 13 96

In [41], an NILM framework based on factor HMMs is introducethere the devices’ current records are con-
sidered as the power consumption features. A statisticalefrie then established to fit the aggregated current and
specific currents of multiple devices. Following, a factdMMs based approach is used to capture operation states of
every electrical device that help segregating the aggeedatd. Inl[42], HOSs pulled from current signals are used
to model electrical appliance signatures.

Table[1 presents a comprehensive comparison betwdéenetit statistical models according tdfdrent parame-
ters, including the adopted architecture, number of moait@appliances, frequency resolution and achieved acgurac

2.2. Event-based NILM schemes

This type of methods is mainly categorized based on two itapbmodules participating in their development,
the feature extraction process and learning models. Toaditcategories of NILM systems are mainly focusing on
the extraction of steady-states and transient-statesl lchseacteristics and on the use of traditional machinaiegr
(ML) algorithms. However, new techniques have been praghoseently relying on other new trends of power signal
analysis. This category of schemes is considered as norectional NILM systems.

2.3. Feature extraction

To categorize recent feature extraction schemes, threectasises are highlighted as follows:
a. Graph signal processing (GSP) featur€3SP is a popular research topic that aims at representingidbobastic
properties of signals using graphs. Inl[59], an event-basagh scheme is proposed to design signatures of power
consumption signals and also to minimize the training timér@duce computational complexity of traditional graph-
based approaches. In_[60],fldirent graph-based multi-label approaches are introduzediéntifying electrical
appliances with a semi-automatic manner.In [61], the NIL&fprmance is improved using a generic GSP-based
scheme that relies on applying graph-based filters, whinthedp in detecting gioff occurrences through mitigating
the noise generated from electrical appliances.
b. Time-frequency analysishis kind of analysis is among the well-know methods comeldico extract features in
many other research fields. In the case of NILM, it can be usesblve the overlapping issue and provide more
resolution about the power consumption footprints. In [@B}e-frequency signatures are captured using a multireso
lution S-transform. In [63], wavelet analysis is performidlowed by a power spectrum extraction from the wavelet
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Table 2: An overview of the existing NILM systems based onpdeeural networks

Work Category Sub-category  Architecture # appliances  Resolution rAcgu
(Hz) in (%)

" [43]  supervised RNN LSTM 18 1 NA
[44] supervised Gated CNN gated linear unit (GLU) 6 /31 N/A
[45] supervised CNN RelLu variational autoencoder 6 /a N/A
[4€] supervised CNN CNN with gradient descent /18 30,44k 77.65.4
[47] supervised CNN denoising autoencoder 5 /3,1/6, /60 NA
[4€] supervised CNN elliptical Fourier features 12 30 k 80.4
[49] semi-supervised CNN BIiLSTM temporal ensembling CNN 4 /a4 97.45
[50] supervised CNN background filtering 4 /61 96.92
[51] supervised Causal CNN 1D CNNdilated causal layers 20 /a0 94.7
[52] supervised CNN ResNetDCRN 5 Y6 96.67
53] supervised CNN CNN with Dierential Input 3 1 XA
[54] supervised CNN CNN with residual unit 21 4k 97.9
[55] supervised CNN scale- and context-aware network 3 /31 83
[5€] supervised CNN RelLw data augmentatigpre-processing 2 M 76.83
[57] supervised CNN siamese neural networks /151 30,44 k 9(B5
58] supervised CNMRNN ReLu+ GRU 4 13, 1/6 7682

codficients based on the Parseval's theorem, whilé in [64] theggrnef wavelet patterns at multiple decomposition
levels is used to represent appliances. Welikala et 2l.U68]a recursive deployment of the Karhunen-Loeve process
to collect a robust and fine-grained spectrum. Moreoveggtjsegation of power consumption footprints is realized
using deconvolution approach. |n [66], two classificatiechiniques, namely RAKEL and MLKNN, experiencing time
and wavelet domain analysis, are used to collect power ctaistics. In|[6/7], a time-related non-event-based tech-
nigue is proposed to detect if an appliance is on mode switdih@ugh using a sliding window and thus extracting
unique signature for each device. lIn|[68], two TD featuredza® picked up using the nonactive-current wave and the
voltage-nonactive current shape. lIni[69], a two-step featollection approach is proposed where candidate events
are firstly selected, then a filtering process is performetilato extract power fingerprints. Inl[8], a linear time-
invariant method is proposed to describe aggregatgatfoevents of each device. In[70], a spatio-temporal analysis
is conducted to retrieve multivariate time-series chamggtics of load usage. In [71], an empirical mode decomposi
tion (EMD) based feature extraction scheme is proposectrAtitaining the intrinsic mode functions (IMFs) patterns
using the EMD, the pertinent features are extracted viayamg their time-frequency space. In [72], shapelet fea-
tures are extracted from time-series current envelopeghvare already determined from initial current trajeaeri
through capturing and connecting peak points of every sanipladdition to the aforementioned works, a statistical
feature extraction technique for normalized current daearoposed in [73]. Supervised classifiers are then applied
to detect each appliance class. lIn|[74], Jimenez et al. gwpo NILM system using the S-Transform to extract
appliance features that are then fed into an SVM classifiee¢ognize each electrical device. The performance of
the S-Transform has been compared to a wavelet packet tre&)(WPwhich only 3 level of decompositions are
used. however, this is not Sicient to extract pertinent appliance features. Howevehimframework, the proposed
MSWPT is used using 7 level of decomposition and a featuretetein each sub-band to construct the final feature
vector. This leads to a better performance in terms of tharacy and F-score.

2.4. Deep neural network (DNNSs)

One of the popular and recent learning solution focuses @nsle of deep neural networks (DNNs). Three main
architectures are mostly investigated in the state-ofatthedeep convolutional neural network (CNN), recurreninal
networks (RNN) and denoising autoencoder (dAE). In addjti@rious variants of these architectures are proposed
as well.
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Figure 1: Flowchart of the proposed appliance recognitiatesn based on MSWPT and EBT.

Learning models can also be classified based on the natuhe dfdining process required for their implemen-
tation, and hence it can be either supervised or unsupédrviiehough the supervised models are the most targeted
techniques, unsupervised solutions have also attractealarg attention because the training of NILM frameworks
is usually avoided. Thus, unsupervised learning modelgiredess &ort from the end-user compared to the super-
vised solutions [75].

In [27,128], conventional CNN-based architectures witHouas kernels is proposed to solve the NILM problem.
Mauch et Yang [30] propose a supervised NILM technique basexideep recurrent long short-term memory (LSTM)
network. In [31], a CNN with gradient descent architectigaused to train voltage-current (V-I) trajectories and
classify appliances in an NILM system. In [44], a gated CNNhisoduced to segregate aggregated power signals.
Specifically, the gated-linear-unit (GLU) was deployed ameolutional layers for classifying the activations ofger
devices in each time interval. In_[55], to address the cdntiependencies of load usage footprints, Chen et al.
design an improved CNN architecture on a scale-and-coaigate network, which helps enhance the disaggregation
accuracy in comparison with traditional CNN. In_[56], a dé&N architecture based on the rectified linear units
(ReLU) with a data augmentation and preprocessing apprisagioposed to disaggregate electricity consumption
signals. Authors in [58], proposed an NILM system based oMNGINd gated recurrent unit (GRU) with the object
of classifying appliances’ states and estimating powesgoiption. A semi-supervised multi-label CNN system was
introduced in|[49] to draw high-level power consumption &ngrints using bidirectional LSTM (BILSTM).

In [45], an NILM system is implemented using a CNN based Vel autoencoder (VAE) with the ReLU as the
activation function. Inl[50], synthetic aggregated pattavere used to train a CNN algorithm based on AlexNet archi-
tecture, then background filtering was also introduced teegete data to further train the CNN to collect appliance-
level footprints. In|[51], a causal 1D CNN based on wavelet aaural networks (WaveNet) architecture is presented
to reduce the complexity and achieve a better energy disggtion performance. In_[48], a CNN is trained using
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elliptical Fourier features of devices’ V-I trajectoridet are represented as images. In [52], a CNN based NILM sys-
tem was developed using a dilated-convolution residualoidt (DCRN). The latter is used with a view of facilitating
the network-optimization task and further solving the gaimg gradient issue. 1n_[76], the authors train a group of
autoassociative neural networks (AANNS) in the way thatewetwork is adjusted using the features of a specific
household device. After that, the AANNs are implementeddrafel architecture where a candidate device can be
recognized through making a competition between the AANINglich the closest identification is approved./In [47],
the NILM process was considered as a noise mitigation issdeaadenoising autoencoder structure was deployed.
Specifically, the authors attempted to reconstruct disgied signals (appliance-level data) from their aggeebat
representation (considered as the noisy signal).

Table[2 summarizes the characteristics of the aforemesdi@NNs-based NILM systems and specifies a useful
comparison in terms of their accuracy performances and o#ievant parameters such as the adopted architecture,
number of monitored appliances and frequency resolution.

Although the presented DNNs-based NILM architectures lheen deeply investigated in the literature, they still
sufer from several drawbacks and limitations that (i) hindereli@ping robust NILM systems, (ii) make itficult
to implement real-time solutions and further most of themmehaot yet been overcome. Moreover, one of the main
drawbacks of DNNSs is their high computational complexithieh makes it diicult to implement real-time NILM
systems based on these algorithms.

For non-event NILM models, although they can be considesesl promising concurrent solution to event-based
techniques, their major limitation is related to the faetttimost of them still have a low identification performance, i
which most of them have an accuracy below 90%. Thereforegthpproaches still need deep investigations in order
to improve their accuracy. Further, since they rely maintycomplex probabilistic estimation and prediction, their
implementation on embedded systems tfdlilt, even impossible. From another side, it is worth nothrag in most
of existing NILM frameworks, large-scale datasets witliatent sampling rates are adopted with selective specific
houses, devices and time periods, making empirical pegoom outputs very flicult to reproduce.

3. Proposed system

Under this section, an elaborate description of the prapd8eM is presented. The main steps used to develop
the proposed architecture are explained in the followingsections, including data pre-processing, event detecti
feature extraction based on a MSWPT descriptor and applialassification using an EBT classifier. The block
diagram of the proposed NILM system is depicted in Elg. 1.

3.1. Data pre-processing

The raw data collected from the GREEND and REDD experimas#aipaigns are incomplete and they cannot
be fed to the event-detection and feature extraction meadiitectly without preliminary processing. Consequeritly,
may be required to clean the data through checking for ngssliservations (NaN samples) and thus replacing them
by zeros. Moreover, up to 80000 samples are recorded froly elaérgy consumption of each electrical device. A
re-sampling process is performed in all power consumpiigmegures and thereby fingerprints with a length of 30000
patterns are then used under this framework.

3.2. Event detection

Event detection contributes significantly in developinglbust NILM system because it aims at accurately detect-
ing state-transitions of electrical devices (events) femggregated power signals collected in household enviratsne

In this framework, the event detection task is performedgisi simple yet fective technique, which works in
the frequency-domain and uses a Cepstrum filtering to sapphe noise that can hinder detecting transition changes
effectively. The main advantage of this scheme is that no aahditinformation about electrical devices is needed,
and further nor training tests are required. The event tetesteps are summarized in Algorittith 1 and Elg. 2.
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Algorithm 1: The event detection algorithm used in the proposed NILMesyst

Result Qy: events detected from the aggregated power consumptioalsig

a. Divide the aggregated power sigisél) into M windowsw™(i), wherem=1,2,---, M ; while m< M do
1. Transform the window™ = {s, S,1, ..., S+n} t0 the frequency-domain via the Fourier transform

n .
WK = 3 wij]e#™In 0<k<n 1)
=1
2. Convert the obtained frequency information to the quedyelomain as

1 N-1 .
A =g 2 log;o(IWM[KI)e”™™ /N, 0<n<N )

using the Fourier transform

WKl = 3 FLja"jle > M, 0<k<n @)
j=1
where
F[)1=1-051-cos(Zj/n), 0<j<n 4)

This leads to the suppression of all the components excepfetty low and high frequencies, which
correspond to steady-state and step change in the timehdomspectively.
4. Convert the frequency components to a decibel (dB) space

WLIK] = 20 log o(WMK]) 5)

5. Detect if an event is present by checking the frequencypcorents as follows:

QK] = { é if mln(V(\e/f:(gk]) >T ©)
end
s(i) WIk] q(n) Wik] Wasfk]

~» DFT | b abs | log | IDFT }—»%}—ﬂ DFT | % 20log | »

F(n)

Figure 2: Flowchart of the event detection scheme.

3.3. Feature extraction using multi-scale Wavelet Packe¢ T

In order to recognize the events detected in the previoys atpowerful feature extraction should be used that
can easily discriminate betweerffdrent events pertaining toftérent appliance classes, and on the other hand helps
correlate between events pertaining to the same appliategaries. Multi-scale analysis of the MSWPT is regarded
pertinent for exploring and extracting features from simgignals. It manifests proper frequency resolution a$ wel
as a finite temporal resolution, and thereby it can easilyeset low frequency elements (approximation) and specify
high frequency samples (detail). Further, the MSWPT is imgleted through disseminating the liaison among the
multi-resolution approximations and wavelet filters.
Using the MSWPT, the event spafeextracted using the Algorithid 1 from each electrical powignal is split

8

3. Smooth the Cepstrum components using a fitteFollowing, transform them back to frequency domain
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Figure 3: Example of the MSWPT splitting 0y o into tree structured subspaces.

into lower frequency cd@cientsLj,; (approximation) and high frequency d¢beientsH;,; (details). Wherg is the
decomposition level (scale resolution) anid the index of the sub-band. The splitting process is redlizy breaking
up the orthogonal basesf(t — 2'J)}icz of Qi ; (whereQ - 0,0 is the initial event space) into two novel orthogonal
bases §i.1(t — 2+13)} iz Of Qir125 and {pi 1 (t - 2413)}iez Of Qir12j+1, While ¢() is the function used for resizing and
¢() represents the wavelet filters, they are given as

40 = \/%4%) @
i) = =27 ®

Jal

It is worth noting that the parametet 2presents the resizing criteria and it defines the rate mipcession or
resizing.

The main dfference between MSWPT and conventional wavelets is that MSWIRS the low frequency samples
as well as the high frequency dieients using a quadrature mirror filter (QMF) bank. The openas then restarted
| times, withl < log, N, andN represents the length of the original event. ConsequeinttyN observations are
obtained. Therefore, at decomposition stafe = 1,2, ...,1), the tree producebl/2 observations. This recursive
splitting scheme creates the MSWPT structure, which is fipdavith various frequency localization properties. Fig.
depicts a three level splitting process using the MSWPT. Whenlesired scaleis reached, the pertinent features
are finally extracted by combining the first half of samplesyfreach band. Consequently, a feature veGtbaving
half the length of the initial event vect@lgg is constructed. After applying the MSWPT process to all appe
power signals in a specific dataset, the feature vectoraaett will be then used to train the EBT classifier in the next
step.

3.4. Ensemble bagging tree classifier

A detailed description of the EBT algorithm used in undes tliamework is given in this section. EBT is a
machine learning architecture where various weak learagrsised in the training process to fix similar issue and
then fused to obtain better prediction performance [77].
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3.4.1. Bagging theory
For a classification problem, a prediction functig(w, G) forecasts a classe {I, 2,3, ..., C}

J(cv) = P(g(v.G) = ¢) 9)
J(c| x) can be interpreted as: for several independent duplicéditde learning grougs, g forecasts the class tag
j for the inputv with proportional occurrenc8(c | v). Also, if P(c/v) stands for the probability, the observation
triggers the class. Afterward, the probability of properly classifying thegoluced event atis

> 5(eM)PEN) (10)

and the total probability of accurate classification isreated according to

Te = [ SemPev]Pv(ey (12)

wherePy (dv) depicts the probability distribution af Also, by considering Eq._10, it is worth to mention that for
everyJ(c|v), we have

Z J(cv)P(clv) < mcaxP(c|v) (12)
Cc
and the equality is reached only if
1 ifP(clv) = maxP(ilv
S (ch) = maxP(ilv) 13
0 else

Interpretingd(clv) means that the conditional probability under the prediciass can reach the global accuracy
according to formulaZ1. The total probability of true ciéisation is given as

T, = f maxP(clv)Py(v) + f [Z | (Ka(v) = ©) P(c|v)] Py(V) (14)
ves © veS' [ “Z
where S represents the total set of inputwhereK is order-correct. As a consequence, if a classifier has good
performance in the direction of being order-correct for @trall inputsv, accordingly the aggregation helps turn it
into a roughly optimal classifier.

3.4.2. Ensemble bagging tree

In practice, the EBT is founded upon the bagging theory. Biiisrently, it is based on extracting a large amount
of variables from initial data samples, organizing themanious sets, and thus a specific technique is implemented
to every bootstrap set. After that, a straightforward vatecpss for classification is used to fuse the outputs. [Big. 4
describes the implemented EBT algorithm.

Towards this regard, considerimd@ sub-groups of the feature gro@extracted using the MSWPT amd weak
decision tree classifie®,, m = 1,2,---, M, and allowing the classifiers makincycles of training. Every cy-
cle group compounds an ensemble of primary training patfevhich are randomly drawn from training variables.
Subsequent to primary training, variables appearing pialtimes in each subset training cycle provide finally a
succession of prediction functios, C,, Cs, ..., Cy. Therefore, the total predictiod(V) has been just the fusion of
these predictions using a voting process.

10
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From the initial training group G, initialize M sub-groups Gm,
Initialize M decision tree classifiers (Dm) and M unknown classes (uCm )

S pY

no

ye

v

D=

(7]

] e

yes ye

v

(2]

Majority voting rule ‘

v

c(v)

Figure 4: Flowchart of the EBT Algorithm used to classify typliances.

Table 3: Description of the appliances monitored in eactsbbald

Household # appliances Period

Appliance description

(days)

0 6 242 Cdtee machine, radio, fridgeMreezer, dishwasher, kitchen lamp, TV.

1 3 474 Fridge, dishwasher, microwave.

2 5 258 network attached storage (NAS), washing machiner, dlishwasher,
coffee machine.

3 3 412 fridge wo freezer, computer, TV

4 5 225 Total outlets, fridge pfreezer, electric oven, computey acanner and
printer, washing machine.

5 5 340 Lamp, stove, iron, LCD TV, fridgeMreezer.

6 3 258 Plug 1 (Total ground and first floor), Plug 2 (total garded shelter)
and plug3 (total third floor)

7 6 138 TV w decoder, fridge Wireezer, kitchen TV, ADSL modem, freezer,

laptop w scanner and printer.

4. IV. Experimental results

In order to help energy researchers and scientists testaigalgorithms and solutions under realistic conditions,
a set of publicly accessible databases has been propodeel litetature for dierent applications and using various
sampling frequencies. As it can be found in literature, thtasets that are collected at low sampling rates are the
most popular nowadays since they can economize the powge wsal data storage even if they hinder the recog-
nition task. However, in this study, we will prove that by déng the low sampling rate consumption patterns, the
proposed solution can not only capture the most prominatitifes of each device, but also provides a high appliance
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recognition rate in addition to saving storage and poweth@bend, two datasets, namely the GREEND and REDD
are considered in this work to evaluate the proposed NILMesys

4.1. Evaluation metrics

The selection of criteria for evaluating an appliance redtign system is utmost importance given that this choice
impacts the measure and comparison of the recognition sehEne accuracy (acc) and F1 score are considered in this
study. Further, the confusion matrix is considered as alsiygt dficient measure that may deserve to be inspected
when treating a classification question. In fact, this faptovides a valuable synthesis of how good the classificatio
architecture is performing. As such, it represents a usaidl needful evaluation metric for any classification sys-
tem. In addition, we have also used the normalized cros®ladion (NCC) for measuring the similarity of the raw
events and MSWPT features extracted from the original evéigs normalized correlation can be represented as the
computation of the cosine of the anglamong two signals (or feature vectorsandy:

Xy XX

MY~ VS % VS

NCC = Cog#) = ~1<NCC<1 (15)

4.2. Dataset description

In the first stage of the evaluation, the GREEND [23] datasebnsidered to investigate the performance of the
proposed NILM system. The GREEND repository encompassesriglity consumption profiles (in Watts) measured
at the appliance level during an experimental campaignémphted in 8 dferent households in Austria and Italy.
This database is collected for a period ranging from 4 to 18thwat a sampling frequency of 1 Hz. The performance
validation over this framework is managed using the six gmgshouse configurations, which are selected randomly:

e Household 0: represents a separate domestic residenidingltwo floors in the region of Spittal an derDrau
(Austria). This house was occupied by a retired couple thansnearly all of their time on household labor.

e Household 1: describes an apartment dwelling containitg ame floor in the region of Klagenfurt (Austria).
It was inhabited by a couple, expending most of their timekivay, especially on weekdays, while at the
weekends they were mainly being at the house.

e Household 2: is a separate residence villa containing twardlon the region of Spittal an derDrau (Austria).
This home included three occupants, a husband that worltetinfie, a housewife and a 28 year old son that
spent most of the time working.

e Household 4: represents a dwelling apartment containir@fl@ors in Udine (Italy). This apartment was
inhabited by a young working couple, passing almost of tligie outside, they were just being indoors at
nights and weekends.

e Household 5: describes an apartment dwelling a separatestimmesident encompassing two floors in Col-
loredo di Prato (Italy). This house was occupied by 3 persam&mployed husband, a housewife and an adult
son that worked and spent most of the time outside.

e Household 7: stands for a separate villa incorporating taar in the region of Basiliano (ltaly). This resident
was occupied by a retired couple that spent almost of thgiighd time in the household.

Furthermore, each house contains a set of appliances thatolserved for a period of more than four months
and less than 13 months. The monitored appliances in eacledliecnbuilding are reported in Tallé 3. As it can
be shown, each household contains at least thiféerelint devices. Since the GREEND dataset includes apptiance
level consumption fingerprints, the exaggerated signa¢ssimed to be the aggregation of energy consumed by the
component appliances in each household as explained i7§23In this regard, ifN devices are considered in each
house, and for every device the power signal at tinedescribed aSi; = (S1,S.2,,S7), Wheres; € R+. The
aggregated power consumption is represented asZiNzl St + &, Whereg; is a noise term. The main object of the
NILM, is to recover the unknown signa%; given only the observed aggregated readind3 €].
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Table 4: Impact of the threshold variation on the perforneamitthe proposed event detection scheme.
GREEND REDD

Threshold (r) 5 10 15 20 25 30 5 10 15 20 25 30
Home 1 96.13 97.59 99.07 98.31 97.67 97.0] 97.36 97.96 98.53 98.14 97.6 97.01
Home 2 97.55 98.37 99.42 98.11 97.43 96.22 97.51 98.22 98.68 97.83 97.49 97.17
Home 3 96.25 97.14 97.86 96.88 96.38 95.77 95.95 96.76 97.31 96.88 96.10 95.64
Home 4 97.59 98.30 98.73 98.12 97.35 96.42 96.86 97.58 98.20 97.71 97.16 96.40

Table 5: Average performance of proposed event detectidhadevith reference to other detectors.

Dataset GREEND REDD

Detector ¥>  Sobel On-& Hybrid Our | ¥*> Sobel On-& Hybrid Our
pairing pairing

F-score (%)| 98:06 87.89 97.07 98.81 98.9397.17 83.42 96.23 97.75 98.01

Time (sec) | 12.7 4.11 41.1 577.8 0.37| 9.8 3.34 39.7 5724 0.32

On the other hand, the REDD dataset [24] is also used in thmdwork to mainly compare the performance
of the proposed NILM system with state-of-the-art. In thigaset, power consumption fingerprints of sifatient
households are collected at the appliance-level and aggegircuit. A sampling rate of 3 seconds has been adopted
for a duration of 3—-19 days to record consumption data.

4.3. Event detection performance

In this section, we first discuss the selection of the thrieshe= 10 used in the proposed event detection scheme
(Algorithm 1). In practice, when Cepstrum dheients are used, filerent threshold values can be adopted, e.g.
T = 5,10,15,20,25,30. Consequently, selecting the appropriate thresholaevial an important step that cafiext
the event detection performance and further the final pedoce. To that end, the impact of threshold variation on
the event detection performance in terms of the F1 scoresésasd in Tablg 4. It can be noticed that by increasing the
value of threshold, the F1 score performance improves dawl r = 15 is reached, in which the best performance
is achieved. Following, the performance drops as the vdltreedhreshold has increased more than 15. Consequently,
7 = 15 was selected as the optimal value and hence used in aojjélee results obtained in the rest of this framework.

In order to evaluate the performance of the proposed evédattien scheme with state-of-the-art, a comparison
is conducted with the chi-squared goodness-ofsfit GOF) detector|[79] and the Sobel detector [80]. Tteis
based on detecting the events through the assumption thatdmsecutive timeframes are usually sharing a similar
distribution. Following, ar? statistic is then performed and a positive detection of amneis occurred if the null
hypothesis is rejected. While in_[80], the Sobel edge detdstosed to detect events in the power signals/ In [81],
an unsupervised event detector using an firpairing and k-nearest neighbors (KNN) model is proposed82h, a
hybrid event detection approach is introduced, which ietam three main steps defined as: (i) capturing the events
using a moving average change with time limit; (i) adoptanglerivative analysis to process devices having long
transitions; and (iii) using a filtering process to treatides with a high fluctuation rate.

Through this comparison, for the case of our event detectiodule and as discussed above, the threshold pa-
rameterr = 15 is adopted toféiciently detect the events. Talile 5 presents the averageded and time execution
results of the proposed event detection scheme comparéé {3,tSobel, on- pairing and hybrid detectors under
the GREENDI[23] and REDD [24]. These results are collectethfthe first four houses in each dataset.

It is clearly seen that the proposed Ceptsrum based evestttabet scheme achieves better performance tian
Sobel and on- pairing detectors. Specifically, F1 score rates of 98.93&® @101 have been attained on the GREEN
and REDD datasets, respectively. Moreover, our event tietescheme has a lower time computation in comparison

13



O©CoO~NOOUITAWNPE

/Applied Energy 00 (2020) =24 14

Table 6: Performance investigation of the proposed NILMeysusing the EBT classifier in comparison to various
other machine learning algorithms.

ML Classifier house 0| house 1| house 2 | house 3| house 4| house 5| house 6 | house 7
al go parameters | ac F1 acc F1 acc F1 acc F1 ace F1 ace F1 ace F1 ace F1
SVM Linear Kernel 92.6 90.76 48.28 30.43 88.53 88.24 92.3 91.43 91.39 89.67 90.41 89.33 90.51 89.62 85.39 84.86
SVM Quadratic kernel 91.81 89.77 21.05 10.23 89.32 89.14 91.86 90.1 90.17 89.23 90.61 90.57 90.1 89.68 81.64 72.83
SVM Gaussian kernel 92.63 90.95 76.52 65.63 88.21 88.24 92.08 91.37 88.63 75.94 90.24 89.81 88.64 93.3 79.32 70.24
KNN K=1, Euclidean dist 80.47 77.86 88.71 87.9 89.90 89.57 83.69 80.97 54.17 54.32 74.09 71.36 74.39 72.54 82.57 81.54
KNN K=10, Weighted 69.38 65.2 70.34 65.98 87.16 86.02 76.28 74 91.49 74.7 719 66.78 73.49 71.26 85.28 84.69
Euclidean dist
KNN K=10, Cosine dist 88.43 87.69 92.48 91.93 89.71 89.08 92.63 88.47 76.08 70.3 88.65 86.19 88.12 87.36 85.26 85.73
DT Fine, 100 splits 87.22 87.1 91.8 90.11 88.66 87.30 88.11 86.35 91.78 91.36 86.39 85.74 88.65 87.73 85.31 84.74
DT Medium, 20 splits 87.71 68.98 92.71 92.16 54.78 50.14 88.23 85.94 91.05 91.16 88.61 87.58 89.91 87.82 84.15 84.03
DT Coarse, 4 splits 67.55 62.83 92.55 92.29 89.35 88.2 77.25 74.03 80.34 80.68 72 70.24 74.23 71.36 68.17 63.6
DNN 10 hidden layers 87.33 85.07 89.67 88.3 91.23 90.95 89.67 87.2 90.28 89.96 89.37 88.09 88.74 88.2 89.91 88.64
EBT 30 learners, 42 k 97.65 97.54 98.23 98.09 95.73 95.61 97.91 97.75 96.69 96.61 95.84 95.88 97.8 97.51 96.23 96.15
splits

to the other detectors, in which time executions of 0.37 set@32 sec have been reported on the GREEND and
REDD datasets, respectively. Moreover, it is worth mertigrthat the hybrid detection scheme has a comparable
performance with our detector, however it shows the higtiest computation, where up to 577.8 sec and 572.4 sec
execution times have been reported under the GREEND and REDd3ets, respectively.

4.4. Investigating machine learning algorithms

After conducting the event detection stage, a vector withrgth of 16384 samples is obtained. The latter is
then fed to the MSWPT descriptor that results in another vestth 8192 samples. More specifically, when the
MSWPT is considered, moving from a level to the next one, the dee split into two parts, one is considered as base
frequencies and the second refers to high frequencies wetsipossible with the use of low-pass and high-pass filters.
The operation is repeated until the desired leved {7) is reached. Finally, 128 vectors of 128 samples are odxdain
while 64 of them refer to base frequencies and the other 6#sept high frequencies. The pertinent features are
finally extracted by combining the first 64 samples from eaattar, in which the pertinent features of each subband
are spread. In this context, the final MSWPT feature vectdr 84192 samples is constructed.

Through this subsection, the recognitidfi@ency of the EBT together with various machine learningeseés,
including KNN, deep neural network (DNN), SVM, decisiondréDT), is reported in terms of the classification
accuracy, F1 score and confusion matrix. As pointed out aii®#3.4, the EBT classifier fuses the classification rates
of many separate DT classifiers trained using bagging tree classifier parameters are adjusted empirically through
varying the number of the weak learners and root splits, had bbserving the output performance. Following, the
parameters showing the higher accuracy and F1 score ratéinally set as the personalized parameters for this case
study. Consequently, in this framework, we combine 30 weakners using 42 k splits in bagging tree and thus a
final robust decision is collected through the combinatibthese decisions.

Table[® depicts a comparison between the EBT and the othdringalearning algorithms with fferent classifi-
cation parameter settings in terms of the accuracy and Fé&.sco

Overall, it can be witnessed that the EBT scheme has shownigirg performances in comparison with the
other machine learning algorithms. And by the way, it ouirens all of them in terms of accuracy and F1 score
percentages for the six households assessed in this study.
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Table 7: Performance investigation of the proposed NILMaysbased on the MSWPT feature extraction vs. other
descriptors using the EBT classifier.

Feature house 0 | housel | house2 | house3 | house4 | house5 | house6 | house7 | Time
extraction (sec)
acc F1 acc F1 acc F1 acc F1 acc F1 acc F1 acc F1 acc F1

Raw data 51.43 46.11 51.97 47.08 49.27 44.66 50.19 46.35 50.81 47.1 49.87 46.42 51.13 47.63 50.8 47.22 /
RMSF 90.74 89.07 92.32 91.19 89.78 88.2 90.92 89.27 90.4 89.77 88.93 88.49 90.15 88.76 89.52 89.04 0.41
MADF 89.32 88.19 90.70 90.22 89.07 87.45 88.93 88.64 89.67 89.14 88.71 86.86 90.27 89.7 89.4 88.56 0.24
WLF 85.16 84.3 85.76 84.79 83.80 83.43 84.87 84.37 83.91 81.58 83.50 82.46 84.07 83.23 83.96 82.67 0.29
ZCF 76.18 75.28 77.23 76.11 73.32 71.37 76.49 76.03 75.41 74.65 73.3 70.98 74.44 73.8 75.81 74.6 0.37
SSC 86.57 86.24 86.90 86.51 84.97 84.39 86.89 86.72 85.51 84.83 85.27 83.71 85.94 85.2 85.33 84.65 2.6
ARF 91.25 89.76 91.7 90.28 89.69 89.19 91.28 90.5 90.91 88.73 89.84 89.9 91.77 91.38 90.5 90.29 13.52
DWTF 92.31 90.78 92.84 91.17 91.06 89.85 92.97 91.3 90.46 90.32 91.12 90.71 91.77 90.6 91.09 89.74 0.33
S-Transform 95.34 95.28 96.17 95.49 93.6 93.44 95.25 95.08 94.58 93.97 94.05 93.86 95.85 95.52 93.96 94.12 0.20
MSWPT 97.65 97.54 98.23 98.09 95.73 95.61 97.91 97.75 96.69 96.61 95.84 95.88 97.8 97.51 96.23 96.15 0.21

4.5. Comparison with other descriptors

In addition, the proposed MSWPT-based feature extracti@omspared to other well-known descriptors, which
are based on extractingffrent kind of power characteristics, including root meauesg features (RMSF), absolute
deviation features (MADF), zero crossing features (ZCR\e&form length features (WLF), slope sign change features
(SSCF), auto-regressive feature (ARF), discrete wavedestorm features (DTWF) [83] and S-Transform. Tdble 7
depicts the comparison outputs in terms of the accuracycétiesand execution time. It can be clearly seen that the
proposed MSWPT outperforms the other descriptors on all thusdholds considered in the evaluation in terms of
the three evaluation metrics. Furthermore, the S-Transfeerforms well under all the 8 houses considered in the
evaluation, its performance is lower than the MSWPT by anagenf 2-3% in terms of the accuracy and F1 score.
In terms of time complexity, the MSWPT has the best perforreahowever the S-transform has almost the same
execution time with a very slight fierence of 0.01 sec.

4.6. Correlation study

To easily comprehend why the proposed feature extractipnoagh based on MSWPT can achieve good per-
formance for appliance recognition as compared to the atbkitions, the normalized correlation between power
consumption signals belonging to the same class is expioriis section. To that end, six power consumption sig-
nalssl, 2, - - -, s6 are selected randomly from each class and thereby thdatarecodficients between the various
signals are thus measured to illustrate how the MSWPT candoetplate between the signals pertaining to the same
class.

Fig. [T illustrates the NCC matrices estimated between theasi signals and the respective MSWPT descriptions
from four appliance classes, includingfig®e machine, fridge jMreezer, radio and Dishwasher. As it is shown, the
plots at the left side of Fig[]5 portrays the correlation kesw the original power signals. It can clearly be seen
that NCC values are very low and change randomly when comgpdnio signals, there is no specific interval that
can limit NCC measures. This results in a higfidulty to classify raw signals. However, for the case of MSWPT
descriptions on the right of Fid] 5, the NCC values clearlypedorms those obtained from the raw power signals.
More specifically, NCC values for MSWPT descriptions are mben 0.5, 062, 0.53 and 0.45 forfé@e machine,
fridge w/ freezer, radio and Dishwasher appliance classes, reegptitherefore, this leads to better results when the
MSWPT is adopted because it can increase the correlatiorebatwower signals belonging to the same appliance
class.
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Figure 5: Correlation matrices measured between: (a) ramts\pertaining to the same appliance classes and (b)
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s1 s2 s3 s4 s5 s6 s1 s2 s3 s4 s5 s6
1 0.011 | -0.005 | 0.003 | -6e-04 | -0.019 | s1 1 0.512 | 0.506 0.5 0.512 | 0.508
1 0.0107 | -0.005 | 0.0036 | 0.002 s2 1 0.519 | 0.507 | 0.518 | 0.507
1 -0.008 | -0.001 | -0.008 | S3 1 0.503 | 0.515 | 0.517
1 0.0037 | -0.008 | 4 1 0.515 | 0.518
1 -0.002 | s5 1 0.512
1 s6 1
(a) (b)
() Coftfee machine
s1 s2 s3 s4 s5 s6 s1 s2 s3 s4 s5 s6
1 -0.019 | -0.011 | -6e-04 | 0.0126 | 0.002 | s1 1 0.664 | 0.629 | 0.656 | 0.659 | 0.653
1 -0.007 | -0.005 | 0.0084 | 0.005 s2 1 0.629 | 0.651 | 0.649 | 0.647
1 7e-04 | 0002 | -0.016 | S3 1 0.627 | 0.644 | 0.647
1 -0.002 | -0.016 | 4 1 0.659 | 0.644
1 0.007 | s5 1 0.66
1 s6 1
(a) (b)
(I) Radio
s1 s2 s3 s4 s5 s6 s1 s2 s3 s4 s5 s6
1 -0.26 -0.108 0.347 0.0404 | -0.243 s1 1 0.575 0.532 0.591 0.55 0.555
1 0.464 | 0.053 | -0.301 | 0.009 s2 1 0.584 | 0.584 | 0.567 | 0.593
1 0.186 | -0.624 | 0.11 s3 1 0.564 | 0.589 | 0.581
1 -0.424 | 0.11 s4 1 0.571 | 0.555
1 -0.12 s5 1 0.589
1 s6 1
(a) (b)
(1) Fridge w/ freezer
s1 s2 s3 s4 s5 s6 s1 s2 s3 s4 s5 s6
1 2e-04 0.01 8e-04 | 9e-04 | 0.002 s1 1 0.509 | 0.506 0.455 0.511 0.512
1 -0.028 | -4e-04 | 0.0091 | 0.01 s2 1 0.495 | 0.465 | 0.515 | 0.508
1 -0.01 0.004 | 0.01 s3 1 0.459 0.51 0.505
1 0.0059 | 0.01 s4 1 0.469 | 0.455
1 0.001 s5 1 0.51
1 s6 1
(a) (b)

their MSWPT features.

(IV) Dishwasher
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Figure 7: Impact of varying the event detection threshodah the final performance of the proposed NILM system in
terms of the: (a) Accuracy and (b) F1 score.

three aggregated power signals from three houses, wheneheasehold includes a set of electrical appliances. The
NILMTK, the open sourced non-intrusive load monitoring lkab[84], has been used to clean up the null records.
Moreover, our models have been trained using the first weeklt#cted footprints from every household for making
sure that ONOFF events of each electrical device are captured at least on

Fig.[8 illustrates a comparison between the proposed MSWB&didILM method and other systems built using
different descriptors described previously in Sedfioh 4.5letirty seen that the proposed MSWPT keeps promising
performance under the REDD dataset, in which it outperfoother descriptors. Specifically, accuracy levels of
95.61%, 96.86% and 95.97% are obtained on house 1 (18 déd2€ekours), house 2 (9 devices, 258 hours) and
house 3, respectively. Moreover, it is worth noting thatadkerage performance under the REDD dataset (accuracy
= 96.36 %, F1 score: 95.84%) has been slightly dropped in comparison to thatimédaon the GREEND dataset
(accuracy= 97.87% and F1 score 97.83%). This can be justified by the fact that the aggregdsd used in
the REDD dataset are collected directly from the main supipbyvever, in the GREEND, the aggregated data are
gathered through summing the individual appliance foatpri Furthermore, the S-Transform performs well on the
REDD dataset, in which their accuracy and F1 score perfocemare less than those of the MSWPT by 2-3.5% .
For example, accuracies values of 93.39%, 93.89%, 93.18k Aiscores of 92.97%, 93.67% and 92.71% have been
achieved on house 1, house2 and house 3, respectively.

4.11. Comparison with existing NILM systems

In addition to investigations executed in the aforememtbgections, a comparative study with other state-of-the-
art NILM systems has been conducted in this subsection. i$cefifect, a comparative analysis is managed in terms
of the classification accuracy with reference to the useli@ature, number of monitored appliances and the nature
learning model (supervised or unsupervised). Table 9 suimatathe comparison outputs. It is clearly seen that the
proposed system has better performances than almost ¢eelsntonsidered in this study. Only the performance of
the framework proposed in [76] outperforms the performasfagur NILM system. However, it is worth noting that
the work presented in_[V6] can only identify 5 appliancesantrast to our NILM model, in which up to 20 electrical
devices are recognized under the REDD dataset.

4.12. Hardware implementation and its time complexity

To clarify the time complexity of our approach via the expeent, we have implemented the MSWPT-EBT on a
Raspberry P14 (RP14) model B [87] and Jetson TiX1 [88]. Thetarhas a 64-bit quad-core processor and up to 4GB
of RAM, while the latter has an NVIDIA Maxwell graphics pra=ng unit (GPU) with 256 NVIDIA CUDA Cores
and 16 GB, hosted on an Ubuntu environment. The overall RE&tBsgt has been used to evaluate the training and
test times.
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Figure 8: Accuracy and F1 score performance of the proposiell Nystem using the MSWPT feature extraction vs.
other descriptors under the REDD dataset: (a) House 0, (b¥&lt and (c) House 2

Table[I0 presents the training and test times (in sec) of thpgsed NILM system on the RPI4 model B and
the Jetson TX1 using multicore central processing unit (C&tdl GPU. It can be clearly seen that PRI4 model has
the highest time execution for the training and test procesgiuin which the training has been executed in 133.68 sec
while the test has been achieved in 0.58 sec. However, bydaritgy the Jetson TX1 the execution time has been

|

3IIIIIIIIY,

Accuracy

EXERRR)

ORI

Accuracy

53333553

BIIIIYY

Accuracy

/Applied Energy 00 (2020) [=24

(c)

20

T
IRININRY

EXRRRR)

RNy

R
¢ )l)l)l,l’l 4

F1 score

20

O Raw data
RMSF

& MADF

m WLF

E4ZCF

SSCF

ARF

B DWTF

B S-Transfrom
2= MSWPT

[0 Raw data
RMSF

E MADF

m WLF

3 ZCF

B3 SSCF

7l ARF

B DWTF

= S-Transfrom
= MSWPT

[ Raw data
RMSF

B MADF

m WLF

B ZCF

SSCF

A ARF

B DWTF

£ S-Transfrom
= MSWPT



O©CoO~NOOUITAWNPE

/Applied Energy 00 (2020) =24 21

Table 9: Performance comparison of the proposed solutitim ether state-of-the-art approaches under the REDD
dataset.

Work Architecture Learning # device  Accuracy
scheme classes (%)
[88] Bayesian Hidden Semi-Markov Models  un-supervised 4 81.5
[8€] Karhunen Loéve supervised /N 87
[32] HMMs + Iterative k-Means un-supervised /AN 85
[7€] AANN supervised 5 98.7
58] CNN + RNN supervised 20 77.1
Our MSWPT+ EBT supervised 20 96.36

Table 10: Time complexity of the MSWPT-EBT using the hardwarglementation

Training Test
RPI14 Model B Jetson TX1 RPI4 Model B Jetson TX1
CPU GPU CPU GPU
133.68 4511 9.37 0.58 0.231 0.039

widely reduced, especially when the multicore GPU is usedhik case, the training has been executed in 9.37 sec,
while the test has been achieved in 0.039 sec, i.e. to igaemtitndidate appliance, only 0.039 sec is required on the
Jetson TX1 with multicore GPU, which is much lower than thengling frequency of the REDD datset/8lsec).
This proves that the proposed algorithm can be used fottiraalNILM applications.

5. Conclusion

This framework reports a powerful non-intrusive load moriitg system designed based on (1) using a powerful
frequency-based technique relying on a Cepstrum filtelongdetect appliance events, (2) introducing a novel multi-
scale wavelet packet tree descriptor to extract relevaitifes from detected transition changes, and (3) applying
an improved architecture of the ensemble bagging tree tatifgeclectrical devices. The empirical evaluation is
conducted on two well-known realistic datasets, namelyGREEND and REDD, which are gathered at 1 Hz and
1/3 Hz, respectively. In addition, an extensive survey of nee®n-intrusive load monitoring techniques has been
conducted, in which their characteristics, performancesdxawbacks are presented.

The proposed non-intrusive load monitoring system accistng$ very satisfying appliance recognition perfor-
mances in terms of the accuracy, F1 score and computationglexity. Specifically, up to 29 domestic appliances
are well identified with an average accuracy of 97.87% in tmemf the GREEND dataset. Whereas, up to 96.36%
of the accuracy is achieved on the REDD dataset, in which plaaqze groups are considered in the evaluation study.
Consequently, this ascertains thHBaency and applicability of the solution presented oves framework.

A limitation of the proposed NILM system that will be addredsn our future work is mainly the identification
of unknown appliances (that do not pertain to any class inréfierence dataset). Specifically, because we use a
supervised classifier, if an unknown appliance appeardlib&iaffected to one of the classes in the reference dataset.
In this context, it will be a false negative detection. Toolee this problem, another identification stage could be
deployed to check the similarity of the unknown appliancdee with all the features in the reference dataset and
then a threshold parameter can be set to decide whether Gareyepdfectively belongs to one of the classes in the
reference dataset.

Additionally, other challenges still need to be investighin future works, among others developing an automatic
recommendation system for reducing wasted energy basdtearse of the proposed non-intrusive load monitoring
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system, which provides specific appliance consumptiorsraldnerefore, analyzing those data helps detecting ab-
normal or anomalous consumption, and hence appropriabenreendations can be generated to promote end-users
adopting an energyfigciency behavior.
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