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Abstract 

Smart grid is the key enabler of the main conceptual framework for Smart Home (SH) 

concept. The emergence of SH yields Home Energy Management Systems (HEMS) to 

enhance residential energy solutions. HEMS are capable of creating an automation network to 

provide many energy saving applications and customer comfort facilitation through Appliance 

Load Monitoring and Diagnosis (ALMD) technologies. ALMD enables load decomposition 

at the appliance level. An appliance-Ievel analysis can bene fit both customers and utilities by 

improving energy efficiency and subsequently reducing the electricity cost. 

The ALMD system accounts for two main procedures of load identification and fauIt 

detection that lie at the root of this study. The former is offered by load monitoring phase. 

This phase can be executed by use of intrusive and non-intrusive methods. Nevertheless, 

due to different issues related to the first technique, the non-intrusive mechanism has been 

promoted. On the other side, the latter is realized through anomal y detection manners. These 

manners exploit the results of load monitoring step to detect any deviation in appliances' 

normal behavior. Consequently, the anomalous appliances are analyzed to be diagnosed in 

terms of either faulty or abnormal. 

Accordingly, this essay commences with the first phase, in the context of Non-intrusive 

Load Monitoring (NILM). NILM entails essential prerequisites in order to realize a fruitful 

structure. These essentials generally vary based on customer's choice of appliances, their 

electrical characteristics, and environ mental conditions. For example, in Quebec, Canada, 

where this study is conducted, the Electric Space Heaters (ESH) and Electric Water Heaters 
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(EWH) explain a significant share of household electricity consumption. As a worldwide 

uncommon case, this can bring about particular case studies of NILM. Therefore, the in­

vestigation into the prerequisite necessities that can notably affect the feasibility of a load 

recognition process through NILM techniques should be highly concerned. In accordance 

with this matter, an extensive discussion is provided that subsequently results in practical 

suggestions with regard to NILM's essential necessities. Furthermore, this analysis yields a 

serni-synthetic data generation approach that is proposed to assist with the demonstration of 

the importance of NILM's prerequisites. Particularly, the creation of this tool is motivated by 

the lack of appropriate data for Appliance Load Monitoring (ALM) studies in regions like 

Quebec. The statistical modeling methods and whole building energy simulators are employed 

to develop the data generation too!. The results demonstrate the capability of the developed 

tool to generate useful electricity consumption data for ALM researches. 

According to NILM analytical process of load identification, many machine learning 

algorithms have been utilized. Generally, the choice of algorithms has been made based on 

important features related to targeted appliances and available information. However, the 

diagnosis capability is another element that should be considered in the method candidate due 

to the fact that the eventual ambition of an ALMD is not only load recognition. In addition, 

the chosen algorithms have mainly considered a time-invariant modeling structure that utilizes 

the static information of underlying databases to construct the models through exhaustive 

off-line training phases. These restrictions have motivated this research study to intend an 

appliance-Ievelload modeling system in order to en able the diagnosis capacity of NILM. From 

this perspective, a framework is suggested that is capable of capturing the dynarnic nature of . 
power consumption by exploiting individual hou ses data. The suggested framework ai ms at a 

time-variant load modeling system by developing an adaptable on-line learning mechanism 

that is formulated in the context of an unsupervised machine learning method. Accordingly, 

this dissertation proposes the approach of adaptive on-line unsupervised household database 

construction of energy-intensive appliances to provide real-time appliance-Ievel information 

and manipulate high-energy demands. This approach considers the specific case of Quebec 

by analyzing the data of EWH. The results demonstrate that the proposed data construction 

method is able to create and collect valid models of energy-expensive devices. 
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The diagnosis of anomalous appliances is another important application of household 

ALMD systems. Anomaly detection is an inevitable step towards decision making on the type 

of irregular eJectricity consumption. NevertheJess, this phase, particularly in the context of 

NILM has not been fairly taken into consideration. In fact, due to the tedious task of Joad 

disaggregation, the state-of-art NILM techniques are inadequate to enable effective anomaly 

detection services at the aggregate-level. Therefore, this argumentation recommends the 

idea of operation-time anomaly detection by providing an in-depth analysis of the nature of 

anomaly in household energy-intensive appliances as well as energy consumption behavior of 

a set of devices candidate. Such an extensive investigation assists with the development of 

efficient anomaly detection methods based on general electrical features of loads applicant. 

As a result, an on-li ne appliance-level anomaly detection system is proposed that is capable 

of continuously monitoring of energy consumption and providing in-operation information 

for diagnosis algorithms. This suggestion is further bolstered by improvements in cost­

efficient smart plugs' technology. The results, obtained from actual experimentation on several 

case studies demonstrate that the proposed approach, performed by a set of straightforward 

techniques has a robust structure. Important remarks are elaborated within this study that can 

assist with future ambitions of aggregate-level anomaly detection. 



Acknowledgment 

1 would like to express my sincere gratitude to my research supervisor, Professor Kodjo 

Agbossou, the faculty member of Department of Electrical and Computer Engineering of 

UQTR for his invaluable research support, outstanding advice, patience, and motivation. He 

taught me how to conduct scientific research, how to present a scientific study, and how to 

write a scientific manuscript. His endless guidance and immense knowledge helped me in all 

the time of my research studies. 1 wou Id also like to extent thanks to my research advisor, 

Professor Sousso Kelouwani, the faculty member of Department of Mechanical Engineering 

of UQTR for his continuous help, cooperation, and inspiration. His professional support 

and precious scientific knowledge have made a deep impression on me. His dedication to 

providing high-quality research credits him with an excellent scientist ex ample to follow and 

goal to strive to. 1 am deeply indebted to Professor Alben Cardenas, the faculty member of 

Department of Electrical and Computer Engineering of UQTR for his endless research support 

and academic advice. His extensive personal supports and professional inputs shall always be 

remembered. 1 am also grateful to be associated with Dr. Nilson Henao for his continuous 

encouragement during all my studies. 1 am truly thankful for financial support and assistance 

of Hydro Quebec's Laboratory of Energy Technologies (LTE), The Natural Sciences and 

Engineering Research Council of Canada (NSERC), The Hydrogen Research Institute (IRH), 

and The UQTR's Foundation. This study might have never come to life without them. 

Last but not least, 1 owe a huge debt of gratitude to my family, my father, Harnid and my 

mother, Masoomeh, and my friends for their spiritual support, immense love, and patience. 



Abstract 

Acknowledgment 

Contents 

List of Figures 

List of Tables 

List of Acronyms 

Chapter 1 - Introduction 

1.1 General context 

1.2 Motivation... 

1.3 Appliance-level monitoring . 

1.4 Problem statement . .... 

Contents 

1.4.1 The proficiency of database 

1.4.2 The feasibility of ALM . . . 

1.4.3 The diagnosis of anomalous appliances 

iv 

v 

ix 

xi 

xi 

1 

1 

3 

4 

8 

9 

9 

Il 

1.S Objectives and contributions 12 

1.6 Methodology . . . . . . . . lS 

1.6.1 Research hypothesis 17 

1.7 Manuscript organization 17 

Chapter 2 - State-of-the-art 19 

2.1 Introduction to ALM . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19 



VI 

2.2 Feature extraction . . . . . . 20 

2.2.1 Steady-state features 21 

2.2.2 Transient features . 21 

2.2.3 Harmonie features 22 

2.3 Load identification .... 23 

2.4 Appliance-level modellearning approaches 25 

2.4.1 Supervised NILM .. 25 

2.4.2 Unsupervised NILM 26 

2.4.3 Real-timè concept 27 

2.5 Anomaly detection .... 28 

Chapter 3- Article-based statement of the results 30 

3.1 Introduction . . . . . . . . 30 

3.2 Data generation approach . 30 

3.2.1 Background . 30 

3.2.2 Methodology 31 

3.2.3 Outcomes . . 32 

3.3 Household database construction approach . 49 

3.3.1 Background . 49 

3.3.2 Methodology 49 

3.3.3 Outcomes . . 50 

3.4 On-line anomaly detection approach 65 

3.4.1 Background . 65 

3.4.2 Methodology 66 

3.4.3 Outcomes .. 67 

Chapter 4- Discussion and future opportunities 86 

4.1 Introduction . . . . . . . . 86 

4.2 Data generation approach . 86 

4.3 Household database construction approach . 89 

4.4 On-line anomaly detection approach 93 

Chapter 5- Conclusions 97 



Bibliography 

Appendices 

A Electrically similar appliances identification. 

B Résumé .. ...... . 

B.l Introduction 

B.2 Motivation . 

B.3 Problématique de thèse 

B.3.1 Intégralité de la base de données 

B.3 .2 Apprentissage en ligne de systèmes de surveillance 

B.3.3 La détection d 'anomalies . 

B.4 Objectifs et contributions 

B.5 Méthodologie . . . . . . 

B.5.1 Hypothèse de recherche 

B.6 Description des résultats publiés 

B.6.1 Introduction ... . .. . 

B.6.2 Approches pour la génération de données 

B.6.2.1 Contexte. 

B.6.2.2 Méthodes 

B.6.2.3 Résultats . 

B.6.2.4 Discussion 

B.6.3 Construction en ligne de la base de données 

B.6.3. 1 Contexte . 

B.6.3.2 Méthodes 

B.6.3.3 Résultats . 

B.6.3.4 Discussions 

B.6.4 Détection en ligne d 'anomalies . 

B.6.4.1 Contexte. 

B.6.4.2 Méthodes 

B.6.4.3 Résultats. 

B.6.4.4 Discussion 

Vll 

101 

112 

113 

120 

120 

121 

122 

122 

123 

124 

124 

126 

128 

129 

129 

129 

129 

130 

131 

132 

133 

133 

133 

134 

135 

135 

135 

136 

136 

137 



Vlll 

B.7 Conclusion .. .. .. ... . ... .. .. .. .... . ..... .. .. .. 138 



List of Figures 

1-1 World and Canada electricity generation by main resources and consumption 

by main sectors [4], [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2 

1-2 The realization of an enhanced Appliance Load Monitoring (ALM) system 

by deploying different smart technologies [ 14]. . . . . . . . . . . . . . . .. 4 

1-3 A comparison between the electricity consumption of the deferrable appliances 

in Quebec homes and typical homes, presented by different transparency of 

the same colors [25], [26]. . .. ........................ 6 

1-4 Annual energy saving potentials of household load monitoring in different 

consumption levels [30] . . 7 

1-5 The research methodology 16 

2-1 Non-Intrusive Load Monitoring (NILM) procedure of load identification and 

energy services' provision ........................... 20 

2-2 Aggregated power profiles of Ca) ECO house number 2 and (b) REDD house 

number 1 combined with an EWH profile . . . . . . . . . . . . . . . . . . 21 

2-3 Household appliances' classification based on active power operation states 23 

2-4 General structure of NILM training processes . . . . . . . . . . . . . . .. 28 

3-1 The block diagrams of (a) definite semi-synthetic data generator and (b) its 

simulation structure . .. . .......................... 31 



x 

3-2 Block diagram of Appliance Database Constructor (ADC) in accordance with 

the proposed approach of household database construction. . . . . . . . 50 

3-3 Block diagram of the on-li ne appliance-level anomaly detection system. 66 

B.1 Production d'électricité dans le monde et au Canada par principales ressources 

et consommation par principaux secteurs [4], [5]. 121 

B.2 La méthodologie de recherche . . . . . . . . . . 127 

B.3 Les schémas (a) du générateur de données semi-synthétiques et (b) de sa 

structure de simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 

B.4 Diagramme de ADC pour l'approche proposée pour la construction de bases 

de données. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 

B.5 Diagramme du système de détection en ligne des anomalies au niveau des 

appareils électroménagers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 



List of Tables 

2-1 The information space of NILM practices, employed in the literature . . . .. 23 



Notation 

ADC 

ALM 

ALMD 

AMI 

ANILM 

ANN 

BEopt 

DA 

DL 

DOR 

DR 

DSM 

DT 

List of Acronyms 

Description 

Appliance Database Constructor. 

Appliance Load Monitoring. 

Appliance Load Monitoring and Diagnosis. 

Advanced Metering Infrastructure. 

Advanced Non-Intrusive Load Monitoring. 

Artificial Neural Network. 

Building Energy Optimization. 

Deferrable Appliances. 

Deep Learning. 

Diagnostic Odds Ratio. 

Demand Response. 

Demand-Side Management. 

Decision Tree. 

DTA Deferrableffhermostatic Appliances. 

ECO Electricity Consumption and Occupancy. 

EDHMM Explicit-Duration Hidden Markov Models. 

ESH Electric Space Heaters. 

EWH 

FHMM 

Electric Water Heaters. 

Factorial Hidden Markov Models . 



Notation 

FSM 

HEMS 

HMM 

HSMM 

loT 

ITCS 

k-NN 

KDE 

MES 

NILM 

PDF 

PEY 

Pol 

REDD 

REFIT 

SH 

SM 

SVM 

VA 

VT 

Description 

Finite State Machine. 

Home Energy Management Systems. 

Hidden Markov Models. 

Hidden Semi Markov Models. 

Internet of Things. 

Intelligent Thermostatic Control Systems. 

k-Nearest Neighbor. 

Kernel Density Estimation. 

Medium Energy Storage. 

Non-Intrusive Load Monitoring. 

Probability Density Function. 

Plug-in Electric Vehicles. 

Patterns of Interest. 

Reference Energy Disaggregation Data Set. 

Personalised Retrofit Decision Support Tools For 

UK Homes Using Smart Home Technology. 

Smart Home. 

Smart Meters. 

Support Vector Machine. 

Virtual Appliances. 

Viterbi Training. 

Xll1 



Chapter 1 Introduction 

1.1 General context 

Electricity is an essential secondary source to society for supplying energy demands. The 

households and companies ' needs for electricity are increasing due to digitalization and 

electrification of the global economy. The steady growth in electricity demand causes its share 

in final energy consumption to rise from 19% today to 29% in 2050. On the demand side, 

worldwide consumers today spend $2.5 trillion on electricity, almost twice the amount in 

2000. This accounts for 40% of their energy expenses, 8% more than it was in 2000, whilst oil 

stocks is portioned out less than 50% of their costs. On the supply side, global expenditure 

on electrical infrastructures in 2017 grew to $750 billion, more than accumulated funding on 

oil and gas industries, in which two-third of this investment belonged to renewables in the 

generation sector [1]. Likewise, in Quebec, Canada, where this study is conducted, electricity 

needs are projected to grow by 2026. Quebec people are among the largest consumers of 

electricity around the world. This is due to the huge amount of energy requirement for heating 

systems, specifically during severe winters as weIl as the low cost of electricity. Every time 

that the temperature faUs by one degree in win ter, the electricity use in Quebec rises by around 

400 MW. Therefore, power shortages because of a substantial quantity of energy demand at 

peak periods is urgently concemed in Quebec. In fact, in this region , power usage is growing 

by 100 to 200 MW per year that can bring about a shortage of 1000 MW by 2025 . Quebec's 

goal is to supply this demand through cheaper and more environmental solutions [2]. 

Accordingly, the provision of a reliable and secure supply of inexpensive electricity, while 

maintaining environmental ambitions is becoming the backbone of energy policy at the root of 

the 21st-century economy [1]. In order to obtain this arrangement, four principal manners can 

be intended: performing a more flexible power generation, performing a more flexible demand, 
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utilizing energy storage, and enhancing the electricity grids. The latter can be enabled through 

the smart grid concept. The smart grid is the key enabler of the main conceptual framework 

for smart energy consumption in the future. In fact, the smart grid is an inevitable solution 

towards revolutionary electric power systems [1], [3]. 

Particularly, the expansion of smart grid technologies in demand-side sectors can assist 

with buildings' energy management as a decisive element of future electric grids. Buildings 

share the largest demand among all end-use sectors, as it can be seen in Figure 1-1 . The 

residential sector in buildings has the highest share of electricity consumption. It should be 

noted that only appliances 1 consume more than 20% of overall global electricity demand today. 

Besides, in Canada, the sixth-Iargest electricity consumer with the highest per capita electricity 

demand of 15000 kWh around the world, buildings account for the highest share of electricity 

consumption, as shown in Figure 1-1. Residential sector shares %33 of Canada's electricity 

1 Appliances category includes large devices such as washing machines and small ones such as TV and 
excludes space heating, space cooling, water heating, and lighting. 

World Electricity Facts 

Non-Hydro 
renewables 

Canada Electricity Facts 
------------------------------------ /------------------------------------

Figure 1-1 World and Canada electricity generation by main resources and consumption by main 

sectors [4], [5] 
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demand. In fact, buildings, particularly residential part, as an important driver of global 

electricity consumption increase, play a significant role in new energy policy scenarios [1], [6], 

[7]. Therefore, smart grid opportunities from one side and large electricity demand from the 

other side brings about a significant interest in deploying new energy research programs in the 

residential part. In this context, the research studies on load monitoring processes, especially 

in real-time, receive significant attention. By enabling load identification, these systems can 

facilitate energy-saving awareness and load diagnosis services that define the motivation of 

this essay, detailed in the following. 

1.2 Motivation 

The emergence of smart grid technologies in the residential sector enables the creation of Smart 

Home (SH). The SH concept promotes the Home Energy Management Systems (HEMS) by 

providing an automation network capable of substantially managing the ftexibility of demand 

through enhanced Appliance Load Monitoring (ALM) [8], [9]. ALM can yield many energy­

saving applications and customer comfort facilitation through the exploration of residential 

dynamic power usage [10], [ Il ]. Real-time ALM can en able accurate tracking, effective 

evaluation, and augmented diagnosis of household energy consumption. The development 

of smart technologies in the context of residential ALM systems can result in an active load 

diagnosis and control of different household end-uses. It should be noted that the share of 

improved automation, monitoring, and control technologies in smart grid investments has 

grown to $33 billion in 2017 [1]. 

ALM is practiced in the context of intrusive and non-intrusive techniques. However, 

due to expensive sub-metering installations and difficult upgrade settings that impede the 

former and electrical and computer engineering technologies that promote the latter, the 

non-intrusive approach is favored [12], [13]. In fact, Non-Intrusive Load Monitoring (NILM) 

is acknowledged as an applicable approach to achieve the idea of residential smart energy 

usage by contributing advanced energy feedbacks. From this perspective, Smart Meters 

(SM) are a principal element in NILM realization and cost-effective opportunities recognition. 

Nevertheless, low-cost smart plug technologies are also favored due to their capability in 

offering direct load diagnosis and control of household energy-intensive appliances in terms 



4 

of an intrusive approach [1 1]. Figure 1-2 illustrates the utilization of smart technologies to 

create an advanced ALM system for realizing the 'smart readiness' of the household. In this 

framework, smart metering technologies are employed to perform ALM in order to provide 

appliance-level information that can be further used to manage energy-expensive loads [ 1], 

[ 14]. 

1.3 Appliance-level monitoring 

The increase in end-users' monitoring and diagnosis capabilities of the variable loads, con­

nected to the grid has resulted in load identification using ALM [ 15]. As mentioned, due to 

the challenges related to the intrusive approach of ALM, the non-intrusive one is promoted to 

HEMS 

Smart Meter 

Information Technologies 

Customer Usage & co st 
decision information 

.... ----- Home display "'~r-------

Smart Home 
Smart devices 

~-----l Smart thermostat ~ __ ~ 

Smart plug 

Control Technologies 

System 
Operator 

Figure 1-2 The realization of an enhanced ALM system by deploying different smart technologies 
[ 14]. 
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identify the appliances' load. In fact, NILM facilitates the analysis of residential appliance­

level information [8], [ Il ]. From a technical viewpoint, NILM refers to any combination of 

physical hardware, metering equipment, and software with the explicit intention of being used 

to disaggregate the electricalload of a home from a single metering point. NILM can provide 

significant HEMS applications by using aggregated load data from smart meters [16], [ J 7], 

expressed as below : 

• Energy usage regulation: NILM can be utilized to apply innovative energy-saving solu­

tions in households considering their significant share of total electricity consumption 

[18]. It can benefit customers not only by providing valu able energy feedback of indi­

vidual appliances but also by enabling their participation in home energy management 

and power grid services [12], [19]. 

• Faultlabnormal usage detection: NILM can provide effective load diagnosis services. 

It can facilitate the diagnosis of excessive building energy consumption and help with 

component-Ievel faulty operation detection [20]. NILM can be used for the recognition 

of potential health issues of electricalloads in the early stages. Generally, the diagnosis 

capacity of ALM can potentially save a major repair cost and minimize the operational 

downtime [21 ]-[23]. 

• Elderly surveillance and intrusion detection: NILM can present security services through 

remote monitoring and control of elderly surveillance as wel1 as probable intrusion [22], 

[24]. 

• Novel electric bills: NILM can offer nove] electric bills with beneficial information 

about appliances' energy usage and their consumption patterns since the bills nowadays 

are blind to detailed information on customers' electricity use. This can assist customers 

with acquiring proper knowledge about their energy consumption and thus effectively 

managing their usage behaviors [24]. 

Moreover, NILM can assist utilities to provide high-Ievel Demand Response (DR) and 

flexible Demand-Side Management (DSM) programs [ 10], [27]. Particularly, household 

appliance-level information stimulates power system stakeholders to utilize the potential 
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of deferrable loads (like Electric Space Heaters (ESH) and Electric Water Heaters (EWH)) 

monitoring in order to contribute to energy savings. For example, as stated by EU Energy 

Label regulation, temperature con trois can boost the energy efficiency of a space heater up to 

%5 [1]. On the other side, EWH possess a notable capability in load control strategies and 

ancillary services that offer incentives to customers and dynamic power dispatch to utilities 

[28], [29]. The influence of deferrable appliances on energy-saving scenarios rises specifically 

in regions with cold climates like Canada due to their larger demand. The amount of electricity 

consumption that a household in Quebec allocates to ESH and EWH is around % 14 more 

than a typical home, as depicted in Figure 1-3 [25], [26]. It is worth mentioning that NILM 

concept can be valuable for any situation without physical access to individualloads because 

of specific locations such as submarine positions or emergency conditions like high releasing 

radiation [22], [24]. Accordingly, NILM is acknowledged as an applicable load monitoring 

approach to achieve the notion of residential smart energy usage [Il ]. 

Generally, appliance-Ievel feedback can result in a higher saving compared to aggregate 

feedback. This has been demonstrated in Figure 1-4 through providing the possible energy 

savings in household different electricity consumption levels. It can be observed that real-time 

- Heating & air 
cond ition i ng - Hot water - Lighting - Other - Appliances 

Figure 1-3 A comparison between the electricity consumption of the deferrable appliances in 
Quebec homes and typical homes, presented by different transparency of the same colors [25], 

[26]. 
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appliance-level information, amplified with the personalized proposition (plus) can meet the 

highest savings [30]. Consequently, it can be comprehended that acquiring energy information 

at the most disaggregated level is the main ambition for any effective load monitoring system. 

Although NILM is the preferable method, this ambition gives importance to future low-cost 

smart plugs. 

, , 

, , , , , 

Figure 1-4 

~e~ _ 
, 1 \ .• -

cEl!1 
1----1 

. , , , , , , , 

>12.0% ... , , , 
• Annuai energy saving percentage 
----------------------------------------------------~ 

Smart 
metering 
systems 

Annual energy saving potentials of household load monitoring in different consump­
tion levels [30] 
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1.4 Problem statement 

Regarding residential high electricity consumption, the first step in any improvement to 

energy solutions and potential savings is to understand how energy is utilized. Therefore, the 

examination of electrical energy usage is the fundamental matter of any ALM system, through 

which energy-saving awareness as the main ambition is targeted. This ambition is realized 

by two major services, accounting for quantification and diagnosis of electricalloads' energy 

consumption. The latter is primarily a procedure that exploits the information, provided by 

the former in the context of a load monitoring phase. Accordingly, the whole mechanism that 

offers the operation performance control (energy saving awareness) of household appliances 

can be explained in terms of an Appliance Load Monitoring and Diagnosis (ALMD) system. 

In order to accomplish a fruitful ALMD, not only an effective load monitoring algorithm as 

the main focus of the literature is required but also a competent information space and a feasible 

anomaly detection method is desired [1 1 J, [31 J, [32]. With regard to the former, a flexible 

ALM system, specifically non-intrusive one, capable of capturing the dynamic of the power 

consumption in an on-li ne context is lacked. Although such a system is necessary to enable 

significant services of ALM such as diagnosis, it has been overlooked in the related studies. 

With regard to the latter, two significant matters need further attention. First, the provision 

of proficient data of energy-extensive loads in exceptional regions should be considered. In 

fact, the residential cases in these regions like Quebec can have significant potentials for 

energy improvements that sig nif y ALM analysis. However, the public1y available data is not 

even limited but also related to common cases in the US and European countries. Second, an 

oriented load monitoring structure for practical anomaly detection and load diagnosis should 

be explored. Indeed, examining ALM systems capabilities for important applications such 

as anomaly detection is necessary after many years of developing a variety of monitoring 

methods. Nevertheless, the corresponding studies in both aggregate-level and appliance-Ievel 

load monitoring have neglected to contribute related adequate research. The above concerns 

lie at the roots of the problematic of this study that targets the household energy-expensive 

appliances, particularly two-state loads. These issues are discussed in details below in terms 

of three essential elements of ALM. 
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1.4.1 The proficiency of database 

An ALMD process is applied to a set of electrical and non-electrical information, extracted 

from their relevant data that is stored in a database. Therefore, the proficiency of a database 

is a critical prerequisite to achieve a successful ALMD since load monitoring algorithms 

require useful information to deliver appropriate results [33], [34]. A proficient database 

should comprise a real-world data that its characteristics account for aIl probable elements 

that influence the performance of energy estimation methods. However, coIlecting such a 

database is a costly, time-expensive, burdensome task due to the variety of household electrical 

appliances with different type/manufacture, which results in various electrical features and 

operation al behaviors [35], [36]. The issue increases on the grounds that the choice of in-use 

devices is affected by the geographical properties that necessitates a measured database to be 

pertinent to individual regions. As demonstrated in Figure 1-3, in Quebec, ESH and EWH 

account for more than 70% of electricity consumption because of cold weather conditions. Not 

only these appliances are crucial for energy solutions but also they can bring about challenging 

load monitoring circumstances. Nevertheless, there are no publicly available databases to 

describe such a situation and majority of these databases neglect the measurements of the 

type of loads related to the exceptional geographical cases. It should be mentioned that 

geographical conditions can also define the necessity of non-electric information utilization to 

improve the energy-saving potentials. The above restrictions signify the idea of data generation 

that can be utilized for exceptional cases with diverse electricity consumption scenarios [10], 

[11 ]. Indeed, the proficiency of database is acknowledged through analyzing the adequacy 

of the information space as prerequisite necessity of an effective analytical process. Such an 

examination is another issue of developing useful ALMD systems that has been neglected in 

relevant studies. 

1.4.2 Thefeasibility of ALM 

The viability of a load monitoring framework is essentiaIly concerned with NILM systems. 

Generally, NILM has been faced basic matters during many years of analysis that can be 

summarized as follow: 
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- Problem to track appliances with electronic control devices such as electrical heaters, 

which repeatedly execute very short ON cycles [37]. 

- Failure to discover appliances with continuously-variable power consumption that 

present an infinite number of states with a continuous range of operating power levels 

[22], [37]-[39]. 

- Inadequacy to distinguish low-power and continuously-variable appliances in the com­

pany of major loads [38]-[40]. 

- Challenges to recognize appliances within spatial or temporal overlapping conditions 

related to identical power usages or same time operations, respectively. [22], [24], [38], 

[41 ]. 

- Insufficiency to define appliances with similarity in electrical characteristics, which 

requires extracting more electrical signatures to disassociate them. [38], [39]. 

In Appendix A, this dissertation presents a study that demonstrates NILM significant 

issues related to the identification of household appliances with similar loads (the last item). 

It can be deduced that due to the NILM fundamental issues, an effective household load 

monitoring scenario should target the appliance-Ievel analysis of loads with major power 

demands that their energy decomposition and estimation can intend notable energy savings 

and cost reductions [42]. The appeal for providing customers and utilities with feasible 

individualload information signifies the idea of appliance-Ievel modeling. Appliance-level 

load modeling engages supervised and unsupervised methods, for which the former has been 

generally preferred due to the complexity of the latter [ 17], [23], [24]. Accordingly, in NILM, 

the efficient studies rely on a set of previously learned models of known appliances' load that 

are captured through an exhaustive training phase [ 19], [36], [43], [44]. In fact, they create 

time-invariant load models with fixed parameters by exploiting an off-line database with static 

information. These models provide an invariable examination of appliances' behavior over 

aIl the time and thus, are indifferent to changes in household total signal due to appliances 

characteristics' varüition. Therefore, they are not sufficiently feasible to interpret the actual 
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behavior of power consumption and en able diagnosis potentials. The following items add 

more insights into the aforementioned restrictions in details . 

• Underlying databases: The off-line databases, used to extract the model parameters 

encompass a specific set of appliances' signatures of different features. Therefore, 

the elementary models can be either utilized for the same hou ses or generalized to the 

individual ones with similar appliances' characteristics [19], [44]. This aspect undergoes 

further issues related to the information proficiency of the exploited databases, described 

in the previous section. Nonetheless, a sufficient database, used to derive the load models 

can be still inadequate due to the lack of extensibility to consider newly manufactured 

appliances, presented in different houses . 

• On-li ne operation: The on-line application of appliance-level modeling has been taken 

into consideration due to its necessity for the creation of an advanced NILM. Neverthe­

less, load disaggregators have mainly utilized an off-line training phase and the on-line 

aspect has been suggested for only an on-line disaggregation [31 ]. It is worth to mention 

that on-li ne application has been confused in sorne studies with the real-time concept 

due to the lack of a factual definition [43], [45]-[49]. Notwithstanding this confusion, 

real-time systems (one can read on-line) do not necessarily need to be fast [49], [50]. 

Actually, there is a wide-spread notion that these systems have to be executed in a short 

time. However, this strongly depends on their specific applications regarding targeted 

appliances, time intervals of energy feedback provision, and power grid stakeholders' 

(i.e. customers or utilities) priorities, which define the deadlines [50]. 

Indeed, utilizing an off-line training phase, constraining a flexible load disaggregation, and 

restricting 10ad modeling scalability can decline NILM capability to capture the dynarnic 

behavior of the energy consumption. Subsequently, this can bring about further issues related 

to aggregated-Ievelload diagnosis potentials [51 ]. 

1.4.3 The diagnosis of anomalous appliances 

ALM can ease the inspection of individual appliances' behavior in total energy demand, 

particularly their faulty/abnormal usage. Indeed, household electrical appliances can face 
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operation al conditions that jeopardize their normal operation and define them as anomalous 

[52], [53]. Appliances' anomaly detection is stimulated from the perspective ofboth customers 

to reduce the energy costs and utility to enable energy efficiency improvements [54], [55]. Ef­

fective anomaly detection seeks a framework capable of continuous monitoring of appliances' 

consumption (at the most disaggregated level) in order to capture their dynamjc behavior for 

the diagnosis algorithm's applications. Such a mechanism can be targeted by means of ALMD 

systems in the context of both intrusive and non-intrusive [31 ], [56]. Although, the monüoring 

aspects of these systems have been intensely investigated, their diagnosis capability has not 

been decently taken into consideration. Considering NILM, only the proficiency of load 

disaggregation methods for diagnosis services have been noticed in a few studies [32], [57]. 

In fact, due to the tedious practice of load disaggregation, it has been the focal point of NILM 

researches. Nonetheless, state-of-the-art NILM methods are not adequate to provide efficient 

load diagnosis services [31 ], [57]. The dynamjc stochastic nature of anomaly in electrical 

appliances, an expensive complication due to the wide range of appliances with different 

operating features, and the limüed instances of loads' anomalous data can be acknowledged 

as the main reasons that undermine the diagnosis capacity of NILM [36], [52]. Therefore, an 

appliance-Ievel anomaly detection approach is signified that examines a targeted-appliance 

in-depth and subsequently suggests an efficient diagnosis method. This concept is ad ver­

tised by the inadequacy of aggregate-Ievel anomaly detection methods and improvements in 

cost-efficient smart plugs technology [58]. 

1.5 Objectives and contributions 

Our main purpose is to address the drawbacks that have been described withln three essential 

elements in the previous section. In fact , the investigation into ALMD systems based on these 

aspects has led to an ameliorated understating of their actual opportunities and challenges. 

The novelty of this study is to propose applicable approaches with regard to these components, 

which their relevant issues can hinder a practical utilization. These approaches are described 

through the following specific objectives. Generally, the essence of our suggestions targets an 

on-line appliance-levelload monitoring and anomaly detection of household energy-expensive 

loads. 
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1. An investigation is aimed to define the essential prerequisite of ALM systems in order 

to uncover their key requirements for a prosperous implementation with regard to 

energy-intensive devices. Furthermore, a mechanism is intended to demonstrate the 

complication of energy-expensive appliances' load monitoring in exceptional cases 

specifically, Canadian households. Consequently, the development of a serni-synthetic 

data generation tool is proposed to address these intentions. 

2. With a focus on energy-demanding devices, an autonomous appliance-levelload mod­

eling framework is designated. By means of this structure, a flexible process capable 

of appliances' model management, in-operation information provision, and energy 

quantization is purposed. In fact, intending a NILM with diagnosis ability is the main 

motivation for developing such an architecture. As a result, an adaptive on-line database 

construction approach is proposed to realize the targeted procedure. 

3. A thorough analysis is focused to examine ALM potentials for anomaly detection in 

aggregate and appliance levels. Accordingly, an appliance-Ievel anomaly detection 

procedure is intended to effectively capture any operation deviation from normality. As 

a consequence of an in-depth examination, an on-line operation-time anomaly detection 

approach is proposed to efficiently utilize ALM for load diagnosis purposes. 

Due to their significance for energy solutions, household energy-intensive appliances 

are the focal point of this study. Furthermore, this work attempts to utilize straightforward 

algorithms with regard to actual implementation. The essence of the provided analyses mainly 

signifies the unsupervised machine learning methods albeit their complexity. As a result, 

the following contributions in accordance with the specified concerns and intended goals are 

proposed. 

• Data generation approach: Due to the lack of information about exceptional appliances, 

specifically Canadian energy-expensive loads, a simulation framework for household 

energy consumption analysis is established that contributes: i) A database development 

tool capable of generating synthetic data of Quebec energy-intensive appliances, account­

ing for ESH and EWH; ii) A structure capable of creating appealing time-extended load 
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monitoring and control scenarios by using random schedules of appliances operation, 

which can be conditioned by non-electric information like outside temperature . 

• Household database contraction approach: Due to the time-varying behavior of house­

hold power consumption, an autonomous household database construction approach is 

proposed in terms of: i) a flexible load modeling framework that is designed by a set of 

straightforward algorithms with no prior information; ii) a recurrent pattern recognition 

process that is able to detect and maintain probable load models; iii) an adaptable 

procedure that is capable of realizing an on-line load modellearning mechanism; iv) a 

load model construction of major appliances that their parameters are directly extracted 

from the aggregated signal. 

• On-line anomaly detection approach: Through a comprehensive study on the concept 

of anomaly in households, a full appliance-specific load monitoring and anomaly 

detection approach is suggested that presents: i) an on-li ne operation-time anomaly 

detection system with generalization ability that is dynamic to capture any deviation 

from normality in terms of faulty and abnormal operations; ii) a robust structure that 

is performed by reliable electrical information and requires minimum intrusion, least 

amount of information, and low-resolution data (highly compatible with current metering 

technologies) ; iii) an efficient modeling process of the normal behavior of appliances 

candidate that is developed with application to operation-time anomaly detection 

After 30 years of investigation into mainly one aspect of ALM systems, particularly 

load disaggregation in the context NILM, the innovation of this study is to tackle other 

aspects of such systems due to their multi-facet nature. Such an intention has resulted in 

extensive investigations with the aim of an operative ALM that also targets the recognition of 

abnormality through employing the routine power consumption information. Furthermore, 

this aim has necessitated the development of different procedures that require their specific 

accuracy metrics for a careful evaluation. As a result, a thorough analysis with regard to each 

objective has been developed. 
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1.6 Methodology 

The methodology of this dissertation is outlined in three common phases regarding Figure 1-5. 

Firstly, a comprehensive review is conducted to characterize the opportunities and challenges 

of ALMD studies in the literature. This examination aids in specifying the objectives and 

their necessities. Secondly, state-of-the-art methods are explored in order to define useful 

mechanisms with regard to the prescribed goals. These mechanisms are defined by inves­

tigating the existing algorithms and tools whose properties can present a good opportunity 

for effective and feasible propositions. Consequently, relevant approaches are proposed and 

their requirements are satisfied. Thirdly, analytical simulation and actual experimentation 

are employed to examine the suggested manners by use of real-world data of either public 

databases or laboratory measurements. For this matter, an experimental house with a func­

tional acquisition system has been constructed to supply the actual data related to different 

experimental tests. Subsequently, the performance, simplicity, applicability, and limitation of 

every proposition are thoroughly analyzed and compared with the relevant researches. Indeed, 

for the examination of each ALMD study, a rigorous evaluation process is exploited. In the 

following, the methodology steps are detailed in accordance with each proposition, described 

in the previous section . 

• Data generation approach: In order to develop a useful tool for simulating real-world 

scenarios, important features of publicly available databases are probed. Accordingly, by 

means of statistical analysis, the actual data of household appliances from a well-known 

database are explored in order to model their consumption schedules. In addition, whole­

building simulators are investigated to identify an appropriate simulation structure for 

generating the synthetic data of targeted loads (in our case ESH and EWH). Afterward, 

a post-processing method is studied to modulate the artificial data of these loads and 

create their ON/OFF load profiles. 

• Household database contraction approach: As the fundamental of appliance load mod­

eling in aggregate level, household load disaggregation mechanisms are extensively 

analyzed. Particularly, probabilistic methods are examined due to their capability to 

provide a sensible interpretation of appliances' physical behavior. This examination 
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focuses on the manners that are good fit for on-li ne unsupervised learning of finite-state 

load models. Additionally, clustering algorithms are studied in order to find effective 

techniques for classifying appliances operation. Specifically, non-parametric statistical 

means of clustering are evaluated because of their competence in unsupervised frame­

works. Moreover, adaptive procedures are assessed to find out their abi1ity to manage 

recurrent patterns and models upgrade of the loads. Different accuracy metrics are ana­

lyzed in order to define a set of efficient ones for a careful exarnination of both pattern 

recognition and model construction phases, necessitated by the proposed approach . 

• On-li ne anomaly detection approach: A thorough research is focused on the means 

of household appliances' anomaly detection in both aggregate and appliance levels. 

An overview is carried out to determjne the anomaly nature of household electrical 

devices, the anomalous behavior of major ones (whom have a finite-state load), and 

their readily available electrical features for actual experimentation. Consequently, a set 

of appliances candidate, located in an experimental hou se in our lab are chosen for a 

practical study. For these devices, different anoma1y scenarios are exercised to analyze 

Problem explication 

" 
Limits recognition ... r Literature review of 

and objectives definition 
..... 

l state-of -the-art knowledge 

" 
Investigation into the choice of Performance evaluation 
methods, algorithms, and tools and method comparison 

" 
Approach proposition ... Study on numerical simulation 

and problem characterization 
.. 

and physical experiment 
l 

Figure 1-5 The research methodology 
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their behavior via continuous monitoring. Furthermore, machine-Iearning methods are 

studied to define practical techniques that are suitable for real implementation. This 

analysis ai ms straightforward algorithms for normal behavior modeling and anomalous 

operation detection. Subsequently, several diagnostic tests are considered to evaluate 

the performance of the anomaly detection mechanism. 

1.6.1 Research hypothesis 

With regard to the proposed approaches and utilized methods of this research, the following 

hypotheses are considered for both load monitoring and anomaly detection analyses. 

- Regarding smart metering capabilities, methods that enable a low-frequency steady-state 

analysis are considered. A sampling rate is desired that can pro vide a sufficient edge 

detection of appliances' operation changes. 

- Targeted appliances are finite-state periodic/regular loads such as refrigerator/stove with 

high power demands that can notably affect household energy consumption and thus; 

crucial to both customers and utility. 

- The low power/irregular devices such as low-power compact fluorescent/iron and con­

tinuously variable appliances like power electronic controlled loads are not in the scope 

of the investigation. Actually, most of ALMD have ignored these loads since they are 

not normally among household appliances with major power consumption. 

- The analyzing aggregate/appliance-Ievel time series are considered to carry out a sta­

tionary process. 

1.7 Manuscript organization 

The rest of this document is organized as follows . 

• Chapter 2 provides a literature review of state-of-the-art approaches to ALMD. In fact, 

this manuscript is written based on the articles. Each article comprises an in-depth study 

into the prior art, principally corresponding to its subject. Accordingly, the articles 
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offer an extensive background that covers all the matters, targeted by this document. 

Therefore, in this chapter, a general description of the multi-facet nature of ALM is 

provided that is further followed by specific explanations in each article. 

• Chapter 3 presents the articles that have been dedicated to each objective. It consists of 

three papers for each of which, a complete study that targets an important problematic, 

a set of contributions, a numerical/experimental analysis, and an eventual discussion 

are devoted. The first work is an exhaustive study for which, its algorithmic aspects are 

supported by supplementary research. This research develops the idea of data generation 

tool. The second manuscript details the approach of adaptive on-line household database 

construction. The third paper presents the suggested on-line operation-time anomaly 

detection system. It should be noted that each article is preceded with a brief description 

that outlines its content. 

• Chapter 4 prepares an in-depth discussion on the ALMD concept as a consequence of 

the analyses, provided in the previous section. Through this discussion, new oppor­

tunities and challenges that can be investigated in terms of further research subjects 

are emphasized. From a realistic viewpoint, this section aims to elaborate remarks on 

essential elements of a usable ALMD that have their roots in related discussions, laid 

out throughout each article. 

• Chapter 5 conclu des this thesis. Considering the key objectives, this document has 

attempted to develop an exhaustive analysis to fulfill its ambitions within several studies. 

The no veit y of these researches is their proposition to other aspects of ALM that are 

not only feasible but also interesting considering many years of mainly focusing on the 

fundamental challenges of ALM in the context of NILM 



Chapter 2 State-of-the-art 

2.1 Introduction to ALM 

Household ALM is the key platform to acquire appliances' information that is supplied to 

customers and utilities for their specific energy-saving matters . Particularly, the acquired 

knowledge can enable the diagnosis of anomalous appliances by providing the essentials for 

diagnostic estimation algorithms. In fact, the recent interest in enabling the diagnosis ability 

of ALM systems has necessitated a further exarnination of its anomaly detection requirements 

in both intrusive and non-intrusive aspects [31 ], [57]. Accordingly, this section provides an 

investigation into important features of load monitoring and anomaly detection as the essential 

elements of ALMD. Specifically, the literature focuses on NILM system by exploring its 

different procedures and their characteristics. Furtherrnore, the basis of anomaly in household 

electrical appliances is examined from different perspectives. Since this document is presented 

by manuscripts for each a detailed prior art has been contributed, this section provides a 

general description of important ALMD principals [10], [ Il ], [31 ], [42]. 

Due to installation ease, overall monitoring capability, and efficient costs, NILM approach 

is promoted to facilitate a flexible foundation for obtaining appliances' in-operation infor­

mation. NILM realizes a perfect structure for the identification of targeted devices through 

the ability to relate the monitored electrical waveforms to individual appliances operation 

[31 ], [59]. NILM concept proposed by Hart [60] in 1992, is the practice of disaggregating 

household total electrical load measured at a single point into individual appliances signal, 

using the combination of an electrical acquisition system and signal processing algorithms 

[ Il ], [17], [60]. From ALM standpoint, NILM technology has been studying for a long time, 

however, it requires more progression in terrns of employed load disaggregation algorithrns as 

well as required essential prerequisites to be regarded as a sol ved problem [6 1]. Figure 2-1 
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shows NILM structure by describing the load identification process and its common learning 

mechanisms. These mechanisms are discussed in details below. Furthermore, Figure 2-2 

exemplifies the aggregated power profiles of two typical houses from ECO [17] and REDD 

[62] as common publicly available databases that are combined with an EWH load profile 

regarding the Quebec case. 

2.2 Feature extraction 

In this step, the electrical characteristics, considered for the NILM analysis are execrated from 

the aggregated signal. These properties can be generally c1assified into three categories as 

follows. 
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Figure 2-2 Aggregated power profiles of (a) ECO house number 2 and (b) REDD hou se number 
1 combined with an EWH profile 

2.2.1 Steady-state features 

The primary approach to feature extraction utilizes steady-state properties that are derived 

from stable electrical conditions of appliances' operating states [22]. This method principally 

detects either power levels or changes of an appliance's operation states in the context of a 

power-based analysis. In addition, this category accounts for waveform-based techniques that 

exploit the CUITent and voltage trajectories of appliances in terrns of V-I curves [40]. The 

steady-state based approaches are more feasible from the perspective of smart meters since 

they measure and transmit active power at relatively low sampling rate i.e. 1 Hz [37], [63], 

[64]. Furthermore, they are a more suitable choice from the viewpoint of customers. The 

additive ability of steady-state signatures allows simultaneous events to be properly analyzed 

[22]. These signatures are much easier to detect that support cost-effective ALM methods [22], 

[65]. On the other hand, the steady-state power changes can be inftuenced by temperature 

rise during the appliance's operation [65], [66]. In addition, this approach can face challenges 

related to both spatial and time overlapping of particularly, appliances with low-power usage 

[40], [66], [67]. 

2.2.2 Transientfeatures 

These features are derived from transition states of appliances' operation. The parameters that 

explain transients are their size, duration, and time [22], [65], [67]. Transient characteristics can 
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provide useful information that assists with a steady-state analysis. For example, appliances 

having similar steady-state signatures can have very different transient turn-on information 

[22], [65]. Furthermore, they undergo less overlapping conditions [38], [40], [66]. The 

transients information can be considered as supplementary knowledge in the lack of other 

general properties such as reactive power [66]. 

2.2.3 Harmonie features 

Harmonics are usually employed as additional features to active and reactive power consump­

tion information [40]. In fact, a spectral envelope analysis can aid in identifying appliances 

that can not be detected by their macroscopic features [40], [68], [69]. Harmonics can be 

explored by using both steady-state and transient signaIs. They can aid in the identification 

of non-linear loads with non-sinusoidal current waveform [66]. Although harmonic-based 

methods can benefit appliances' operation detection, they experience difficulties in measuring 

energy consumption as an essential goal of NILM systems. They can require excessive training 

and face robustness issues in the presence of new loads [66], [70]. Furthermore, these features 

can be inftuenced by electromagnetic interference and electrical wiring [66]. 

Indeed, the choice of electrical characteristics for the feature extraction phase is notably 

affected by database proficiency, mainly appliances candidate and sampling frequency of data 

[ J 1]. Therefore, in the first step, an explicit choice has to be carried out on targeted appliances. 

This has resulted in different load classifications, represented in numerous researches based 

on their technical notions of proposed NILM analysis [71 ], [72]. Normally, appliances 

are classified according to the number of their steady-state operations. Figure 2-3 explains 

household appliances classification based on their operation states. 

Consequently, appliances decision can facilitate a suitable choice of sampling frequency 

with regard to the construction of an efficient database. As mentioned, the feasibility of NILM 

analytical process depends on the quality and sufficiency of sorne crucial factors that should 

be met by properties of the utilized database [11 ]. These factors should be defined based on 

NILM's targeted applications that are regulated in accordance with customer preferences and 

system operator interests. Indeed, specifying the implementations can assist with appliances 

candidate and techniques decision that in turn, enhances the NILM practice [11 ], [40], [73]. It 
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Class Power profile shape Finite-state machine Electrilallharacteristics Example 

Type 1 nnn =4- Two-state operation • Electric base board 
• Electric water heater 

(on/off) 
• Refrigerator 

Type II A • Washing machine 
Multi-state operation • Dishwasher 

• Dryer 

Type III 
No specifie finite- Continuously variable • HVAC system 

(heating, ventilation, 
state model operation 

and air conditioning) 

Type IV G. • Telephone Constant operation 
• Alarm system 

Figure 2-3 Household appliances' classification based on active power operation states 

is noted that energy saving as the foundation of NILM is the mutual concem of both customers 

and system operator and thus; the corn mon application of NILM systems [30]. Table 2-1 

presents the impacts of the targeted set of household loads on the choice of preferred feature 

space and sampling frequency in a general aspect [30], [40], [61 ]. 

TAS LE 2-1 The information space of NILM practices, employed in the litera­
ture 

Household appliances Sampling granularity Electrical features Appliance candidate 

Major loads 
1 h - 15 min P&Q heating/cooling systems 
1 min - 1 sec P&Q refrigerator, electric baseboards 

Smallioads 1.2 - 2 kHz V & 1 waveforms toaster, rnicrowave oyen 
Electronic loads 2 - 40 kHz V & 1 waveforms TV, computer 

Household power tools 2 10 MHz CUITent transient drill 

2.3 Load identification 

The NILM procedure is to disaggregate the total electrical signal in order to identify the existing 

individualloads and consequently, examine their energy consumption. In fact, household 

energy-intensive appliances are finite-state loads that can be treated as a combination of 

two-state devices. Therefore, the Finite State Machine (FSM) of a multi-state load l, resulting 

from its two-state sub-profiles can be expressed by (2-1): 

(2-1) 
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where at discrete time k, Zk is the row vector of the binary representation of operation states, i.e. 

zero for OFF and one for ON state, u is the column vector of sub-profiles power consumption, 

and ek is the noise, which can be attributed to different sources such as measurement system 

and the environment. Accordingly, the aggregated power at k including L finite-state appliances 

can be described by (2-2): 
L 

Yk = I >i+rk+ek 
1= 1 

(2-2) 

that rk is the consumption of non-finite-state loads as residual and ek is the noise. NILM 

methods are provided to optimally infer individual appliances operation by using different 

kind of observations of electrical features and prior knowledge as weIl. 

From the standpoint of different approaches to analytical procedures and mathematical 

algorithms, NI LM has been broadly reported in the literature. Zeifman and Roth [61 ] studied 

NILM with the focus of interest in signature examination for feature extraction as the first step 

of NILM general process. Tabatabaei et al. [74] probed NILM mainly by concentrating on 

computational algorithms consisting of machine learning techniques for load disaggregation 

and classification as the second step of NILM common practice. Zoha et al. [40] reviewed 

NILM whole process by presenting the same viewpoint as [61 ] regarding feature extraction 

step and moreover, discussing mathematical developments of load disaggregation phase. 

As a matter of fact, NILM approaches based on low-rate steady-state load disaggregation 

methods are promoted due to the tendency in designing smart meters that are able to provide 

low-sampling rate data regarding their real-world deployment issues [30]. Appropriately, state­

based approaches are used to effectively explain the aggregated signal as the combination of 

state-changes of individual appliances' sequence. Subsequently, machine leaming algorithms 

specifically, Hidden Markov Models (HMM) are favored due to their capability to provide 

analytical state-based models ofhousehold appliances [40], [61 ], [75]. Henao [76] carried out 

a thorough study on the capability of variants of HMM to describe the total signal, particularly 

in the context of Quebec households with challenging loads of ESH and EWH. In fact, due 

to actual appliances behavior, probabilistic methods such as HMM have been preferred to 

deterministic manners like Support Vector Machine (SVM) [77] and heuristic techniques 

like Genetic Algorithms (GA) [78]. Artificial Neural Network (ANN) [79] and k-Nearest 
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Neighbor (k-NN) [80] have been other methods, used for load disaggregation. ANN is not 

complicated to utilize but at the co st of arbitrary training, possible local maxima convergence, 

and overfitting. In addition, k-NN as a clustering method that uses distance functions can 

be slow and memory expensive in the presence of large number of data. Most recently, 

load disaggregation algorithms, developed by exploiting variants of Markov models in terms 

of supervised and unsupervised approaches have received significant attention [19], [43], 

[44], [75]. In fact, these approaches reftect learning mechanisms that have been utilized for 

appliances' model construction, discussed in what follows. 

2.4 Appliance-level modellearning approaches 

Appliance-Ievel modeling process requires useful information that is supplied by a feature 

space, extracted from raw data. Consequently, these information are utilized to build models 

and recognize appliances [12], [47], [81 ]-[85]. Machine learning, widely used for power 

system applications has been the main learning method for NILM. In order to become more 

distinct in the choice of machine learning techniques, it is essential to notice the following 

machine learning notions [36], [86]. 

• Supervised learning: this aspect utilizes priorsllabeled data to build a model. 

• Unsupervised learning: this concept uses no priorsllabeled data to construct a model. 

• Semi-supervised learning: this notion exploits a small amount of labeled data with a 

large amount of unlabeled data to create a model. 

With regard to machine learning applications for appliance-Ievelload modeling, the main 

NILM approaches can be defined. 

2.4.1 Supervised NlLM 

This idea uses sub-metered appliance data to build a model for load disaggregation. The 

majority of NILM studies are based on this approach that employs a training phase. During 

this phase, the models of known appliances are learned and subsequently, used to identify their 

corresponding loads in the aggregated signal through disaggregation. The learning process 
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can use either sub-metered data of individual appliances [87] or aggregated power signal 

[64]. In the latter, for learning a specific appliance's signature, the algorithm needs to find a 

period of time in the aggregated signal, during which only the targeted appliance is operating. 

Consequently, the efficiency of supervised techniques dec1ines in the presence of unknown 

appliances' load in the aggregated signal. Supervised NILM methods are mainly off-line 

processes in which, load disaggregation problem is analyzed through two separate phases of 

models' learning and loads' recognition. ANN, SVM, and k-NN can be referred to as popular 

NILM supervised techniques. 

2.4.2 Unsupervised NILM 

Although this approach avoids using sub-metered data and maintains the reduction of space 

of information towards an unsupervised solution, it commonly utilizes general appliances 

information and actively adjusts them to specific household appliances. This means that 

unsupervised NILM can be interpreted as a semi-supervised machine learning problem. The 

variants of HMM, combined with c1ustering techniques are common NILM unsupervised 

manners. Unsupervised methods signify a real-time concept since they intend no/less training 

process. Generally, the critical issue with training phase of any method is the short training 

periods that are not sufficient for appliance recognition practice. To be precise, the training 

procedures specifically based on the aggregated signal should take into account the following 

notes [74]. 

• Frequent regular appliances such as refrigerator and freezer are simple to find due to a 

routine periodic operation. 

• Frequent irregular appliances such as TV, stove, and EWH that have short operation can 

bring about a difficult learning phase specifically, with the occurrence of overlapping 

conditions. 

• Infrequent appliances such as washing machines can face challenges with locating an 

isolated period for their train. 

It should be noted that the aforementioned techniques describe common learning concepts. 

There are studies that have intended a completely unsupervised structure on the basis of 
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an unsupervised machine learning method [31 ], [60], [88]. Unsupervised NILM is literally 

challenging due to different reasons, for example inadequate sampling intervals that can cause 

feature lost and identical power signatures that can avoid correct appliance identification. 

Accordingly, any efficient NILM practice requires a level of prior knowledge. General 

information can be either the number of states of a multi-state appliance e.g. a dryer, variations 

in power demand of a domestic usage e.g. an electric water heater, or operation time of a 

household load e.g. a refrigerator. 

2.4.3 Real-time concept 

In addition, the term real-time is another aspect, concemed by NILM studies. It is a wide­

spread myth that real-time systems have to be fast [12], [43], [45], [47]-[49], [89] however, by 

definition, they have to be fast enough to guarantee the required deadlines for processing an 

application [50]. Therefore, in the context of real-time, a late result even correct is interpreted 

as wrong [50]. The term 'late' has to be defined according to the specific applications. As a 

matter of fact, the deadline is the only parameter that expresses the primary difference between 

real-time and non-real-time concepts [50]. This highlights the importance of application 

definition in order to clarify the deadline of a real-time system. Generally, in ALM systems, 

applications can be decided in different contexts related to energy estimation and load diagnosis 

feedback. Furthermore, these contexts should be handled based on the operational behavior 

of appliances candidate. Moreover, the real-time aspect does not necessarily consider either 

an on or off line system [47], [48]. It is probable that a real-time system accounts for static 

ca1culations with cyclic occurrence. Therefore, a real-time framework can consist of off-line 

processes that are executed while no run-time parameters are proceeded [50]. Accordingly, 

Figure 2-4 illustrates the general structure of NILM different learning procedures. The 

framework of a real-time unsupervised NILM includes off-line labeling. It is noted that the 

labeling is not considered in on-line procedure since one of the characteristics of an on-line 

system is to function without human intervention. 



28 

NILM 
learning procedures 

" " 
Off-line On-line ... 

model construction model construction 

+ + 
Off/On-line On-line 

disaggregation disaggregation 
r--

Supervised system 

~ + 
Off-line 
labeling 

Real-time unsupervised system ,J 
Figure 2-4 General structure of NILM training processes 

2.5 Anomaly detection 

Anomaly detection plays a key role in load monitoring and predictive maintenance [90]. 

Generally, an anomaly detection method is determined based on the nature of anomaly, which 

is categorized into three different classes. The simplest type, known as 'point anomaly', is a 

single data instance that is anomalous due to a large deviation from the rest of the data. The 

second class, expressed as 'contextual anomaly' , refers to a deviation in a particular context 

regarding the structure of the data. For ex ample, unless it is winter, a record of -30°C can be 

anomalous. The third category, defined as 'collective anomaly', implies a data portion that is 

collectively, not necessarily individually, anomalous [52]. The concept of anomaly detection 

has been broadly explored in different research domains su ch as computer networks, image 

recognition, and machine operation [91 ]-[95]. In the context of power systems, this concept 

has been generally studied in the main grid sectors [59], [96]-[98]. 

In the residential zone, electrical appliances can undergo operational conditions that violate 

their normal operation. These abnormal conditions can be attributed to different causes that 

identify an appliance as anomalous. The consumption pattern of an anomalous appliance 
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deviates from its expected behavior that complies with normality [52], [53]. Likewise, machine­

learning techniques have been widely utilized to formulate an anomaly detection problem 

[99], [100]. From this standpoint, the same mechanisms can be defined that account for: 

'Supervised' , that is training a classifier by using labeled classes of both normal and anomalous 

data instances; 'Semi-supervised', that is training only by utilizing a labeled set of normal 

data; and 'Unsupervised', that requires no training set since it groups the data under several 

clusters and defines dissimilar samples as anomaly. It should be noted that the supervised 

techniques simply consider an anomaly detection as a classification problem. On the other 

side, the semi-supervised methods are broadly exploited to separate outliers regarding normal 

samples (especially, when the classes are imbalance) [53]. 

The intention of the above discussion has been to provide a general comprehension of 

ALMD systems that is followed by a detailed investigation into the literature, presented by 

every article. 



Chapter 3 Article-based statement of the results 

3.1 Introduction 

The examination of the intended objectives is presented within the articles in this section. 

Notwithstanding the previous discussions, every article details the contribution, the approach, 

and the prior art regarding the proposed objective. Accordingly, the mathematical methods and 

experimental procedures to achieve the ambitions are described. Subsequently, the evaluations 

and results are reported to demonstrate the efficiency of the developed frameworks in every 

manuscript. The following sections offer the articles. 

3.2 Data generation approach 

3.2.1 Background 

Effective identification of household appliances requires a well-organized NILM. Considering 

the multi-facet nature of NILM, an efficient mathematical process is not the only critical factor. 

The prerequisite necessities and well-defined applications are significant inevitabilities of a 

valid NILM. Therefore, the investigation into the essential prerequisite of a NI LM system has 

been the origin of the following studies. The importance of such an analysis has increased 

with the desire for a publicly available database that can account for exception al electrical 

appliances in regions with specific weather conditions such as Quebec. In our case, these 

particular loads consist of ESH and EWH. The exploration of NILM prerequisites from one 

side and a suitable database from another side has revealed the necessity of a proficient 

database. Therefore, the proficiency of the database is the backbone of the provided analyses. 

This foundation has led to characterize the essential elements of a fruitful NILM from different 
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aspects. In addition, it has resulted in the development of a framework capable of generating 

the synthetic data of appliances, for which real data is not available. 

3.2.2 Me thodology 

The outcomes of the first study have been realized through two main steps. Initially, an exten­

sive investigation into the characteristics of publicly available databases has been conducted. 

Afterward, a semi-synthetic data generator tool has been designated. The proposed procedure 

of semi-synthetic data generation and its simulation structure have been summarized in Figure 

3-1 . The mechanisms to develop this tool have been itemized below. 

Occupants 
number 

/ Weather 
data 

Hot-water 
consumption 

sink&bathroom 

Building specification 
Weather condition 

Time of the use distribution 14----, 

Days of 
the week 

Heating energy 
consumption 

(a) 

Tota l hot-water 
consumption 

Appliances characteristics 
Appliances schedules 

BEopt EnergyPlus Matlab Household se mi 
synthetic data 

(b) 

Figure 3-1 The black diagrams of (a) definite semi -synthetic data generator and (b) its simulation 
structure 
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- The probabilistic schedules of appliances operation are captured by using a circular 

Kernel Density Estimation (KDE), applied to real-world data from a public database. 

- The long-term appliances power profiles are created by utilizing the probabilistic models 

and real active power signatures of the public database. 

- These appliances are located in a house, modeled by Building Energy Optimjzation 

(BEopt) software that consists of two main zones. The modeled house accounts for 

thermal interactions, real weather data, and water consumption schedules from human 

activities like sink and bathroom. 

- EnergyPlus software is utilized to simulate this architecture in order to find total power 

consumption, total heating system demand, and total hot water usage. 

- Subsequently, a post processing phase is employed to generate the ON/OFF power 

profiles of heating appliances, ESH and EWH in this case, by exploiting related models 

of both types of appliances. 

3.2.3 Outcomes 

The study of NILM's essential elements and the exercise of appliances ' synthetic data genera­

tion have brought about the followings. 

- Defirung the necessary features to design a proficient database for ALM studies. 

- Creating effective load profiles of ESH and EWH based on their synthetic data, created 

by the data generation too!. 

- Constructing an ove rail aggregated power profile by use of real appliances load profiles 

and synthetically generated ESH and EWH profiles that is similar to actual power profile 

of Quebec households. 

- Demonstrating the challenges of ALM in Quebec households with the presence of ESH 

and EWH loads through a disaggregation analysis that has used HMM. 
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It is worth to mention that different cases can restrict the developed tool. For instance, 

simplified models of ESH and EWH can undermine their constructed two-state load profiles. 

Furthermore, in our analysis, due to the lack of a public database related to Quebec, appliances 

schedules from ECO database have been utilized. This can affect the practicality of the 

synthetically-generated load profiles of targeted loads because of possible differences between 

in-use devices and occupants ' behavior in Quebec and the region where ECO data has been 

measured. Due to an extensive analysis, the framework of data generator tool is detailed in a 

complementary study. Therefore, the first analysis accounts for two related studies as below. 
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The enhanced utilization of Appliance Load Monitoring (ALM) in customer sites enabled by Home Energy 
Management Systems (HEMS) technologies, offers customized services and enables demand side flexibility in 
power systems. The significant integration of advanced electrical and computer engineering tools makes the 
nonintrusive approach of ALM a technically feasible solution to improve demand side energy utilization in the 
context of HEMS. This paper presents a comprehensive study conducted to reveal significant inevitabilities of a 
weil organized Non-intrusive Load Monitoring (NI LM) that aids Smart Home (SH) idea to be implemented. In 
fact, the viewpoint of this study is to discuss critical issues related to NILM prerequisite necessities, hlndered 
the practical implication of this approach des pite improvements during over 30 years. Accordingly, this work 
presents actual analyses in order to elucidate sorne arguments using state of the art procedures and results of a 
semi-synthetic data generator tool. In addition, with the aim of an achievable NILM, we analyze NILM 
applications from the stakeholders' perspective to assist the choice of employed techniques. Consequently, by 
investigating crucial intentions of an effective NILM considering current standstill and future progression, the 
authors propose the Advanced NILM (ANILM) concept and describe its properties to provide an enhanced 
energy usage system in demand side. In order to meet its ambition, the paper uses a realistic point of view to 
pinpoint major obstacles toward NILM and elaborate various factors that will make it effectively feasible . 

1. Introduction 

Smart grid, as an inevitable solution toward innovative energy 
management systems, is a key enabler for smart energy consumption in 
the future [1,2] . The significant interest in deploying effective energy 
management in demand side, due to national security concerns and 
social and economic benefits has its root in smart grid development, 
carbon dioxide emission reduction purposes, renewable energy re­
sources integration, limited conventional energy resources, and grow­
ing trend of energy priees [3,4]. For instance, United States (US) 
primary energy, and electricity consumption in buildings is more than 
38% and 76% respectively, which can be reduced up to 15-40% using a 
whole building energy management system [5]. 

Smart Home (SH) is the main conceptual arche type for demand 
side smart energy usage enabled by deriving the creation of a Home 
Energy Management System (HEMS) [1,3] . HEMS technologies can 
provide a mutual satisfaction between customers by realizing their 
comfort preferences and the utility by assisting energy saving strategies 
[6,7]. The emergence of an automation network offered by HEMS 
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yields an advanced deployment of Appliance Load Monitoring (ALM) 
as the primary requirement to realize the SH platform [4] . It is noted 
that Department of Energy (DOE) defines SH on the edge of technol­
ogies with wider deployment and cost reduction in the coming years 
[8] . 

ALM can be executed using both intrusive and non-intrus ive 
techniques. However, due to costly sub-metering installations, difficult 
upgrades settings, and customer privacy issues from one side, whieh 
hinder the former, as weil as the integration of enhanced electrical and 
computer engineering tools from other side, which facilita tes the latter; 
the non-intrusive approach is favored from both academie and 
industrial perspectives [9-11] . Non-intrusive Load Monitoring 
(NILM) technology is the practice of disaggregating household total 
electrieal load measured at a single point into individual appliances 
signaIs, using the combination of an electrical acquisition system and 
signal processing algorithms [11,12]. NILM is considered as a high 
tech viable solution to achieve an improved demand side energy usage 
by contributing energy consumption feedbacks and progressive diag­
nosis mechanisms [4,7]. 
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NILM concept proposed by Hart [12] in 1992, has been studying 
for a long time however; it requires more progression to be regarded as 
a solved problem. NILM methods analyze the total signal through a 
routine process including event detection and feature extraction, as 
weil as appliance classification and energy consumption estimation [4]. 
However, the proficiency in NILM techniques is one of the issues, 
which proves that more advanced disaggregating algorithms are 
required. From the standpoint of different approaches to the NILM 
procedures and mathematical algorithms, NILM has been already 
reported in literature. Zeifman and Roth [4] studied NILM with the 
focus of interest in signature examination for feature extraction as the 
first step of the general process. Tabatabaei et al . probed NILM mainly 
by concentrating on computational algorithms consisting of machine 
learning techniques for load disaggregation and classification as the 
second step of the common practice [13] . Zoha et al. reviewed NILM 
whole process presenting the same viewpoint as [4] regarding feature 
extraction step and moreover, discussing mathematical developments 
toward load disaggregation phase [14]. Without surveying NILM 
process, Alahakoon and Yu [1] investigated smart meter technologies 
to establish a data intelligence system in order to primarily realize 
utility concerns. Their study is regarded due to smart meters impor­
tance, as the hardware framework unavoidable for executing a part or 
entire NILM process. As a matter of fact, the revealed studies analyze 
technical and mathematical advances applied to the NILM common 
methods with different focuses. lt is deduced that conducting an 
investigation intended to compare NILM methods and mathematical 
solutions where they are ail case-specific and lack a standard evaluation 
process, is fruitless. However, the need for more efficient algorithms 
remains as a critical subject in order to design NILM systems that aim 
to recognize a wide range of household appliances with different 
electrical characteristics. 

On the other side, there are other issues vital to achieve an adequate 
accuracy in order to design a practical NILM application, which have 
been neither studied nor fairly discussed in literature. Accordingly, in 
this study, we present a comprehensive survey with the aim of 
thoroughly evaluating these issues as significant factors toward realiz­
ing a feasible NILM. Unlike the prior arts, focusing on the methods 
analysis, the origin of this study is based on first, investigating the 
prerequisite necessities of an operative NILM and second, examining 
NILM applications as the fruits of its process to assist the choice of 
techniques. The analysis of these initial and final steps, which have 
been neglected by previous studies, result in comprehension of 
achievable NILM properties, contributed by authors in terms of 
Advanced NILM (ANILM). 

Accordingly, this paper discusses major primary steps required for 
a successful NILM considering both technical and environ mental 
concerns. Particularly, authors' discussion on the multi-faceted nature 
of NILM provides practical analyses to clarify the viewpoints on sorne 
related matters. The analyses are the results of a semi-synthetic dataset 
creator tool recently developed by authors, and NILM contemporary 
algorithms based on probabilistic methods. The semi-synthetic data 
generator platform is capable of deriving appliances probabilistic 
schedules and subsequently, simulating power demands of household 
heatingjcooling systems and electric water heater in a modeled 
building [7] . Moreover, the probabilistic technique for NILM analysis 
is developed using Hidden Markov Models (HMM) as a concrete 
mathematical solution for recurrent pattern recognition and load 
classification [15-17]. Additionally, NILM applications as the end 
products of the NILM task are investigated from the participants i.e. 
the household customers and the system operator outlooks. NILM 
aspect is classified concerning the mutual priorities and interests of the 
stakeholders in order to examine practical approaches and represent an 
accurate detailed view on its applications with various intentions. 
Additionally, through a realistic vision, the authors thoroughly discuss 
noteworthy points regarding NILM to define future progresses. 
Correspondingly, this work prepares remarks, which will make NILM 
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Fig. 1. Total primary energy consumption for building in US; Key: BTU=British Thermal 
Unit [19]. 

practically feasible by presenting the idea of ANI LM and its features. 
The rest of this study is organized as follows : Section 2 introduces 

NILM aspect and discusses critical issues toward an actual NILM using 
a detailed categorization. Section 3 provides the classification of NILM 
applications from the perspective of customer facilities and system 
operator interests. Section 4 analyzes the opportunities and challenges 
regarding the future of non-intrusive essence of ALM systems. The 
ANILM approach is presented in Section 5 followed by the concluding 
remarks in Section 6. 

2. NILM concept 

Population growth and increased standards of living are the main 
driving forces, which have caused an unavoidable growth of energy 
consumption [18,19]. The graph in Fig. 1 indicates the primary energy 
use (including that associates with electric use) of US residential and 
commercial sectors projected out to 2030 [19]. Therefore, the growing 
trend of energy usage necessitates the development of infrastructures 
for energy saving which is reinforced by government incentives and 
goals such as [19-22] : 

• US federal government goal of using no more primary energy in 
2030 than it does in 2008 by implementing a set of governments' 
policies and programs; 

• US DOE goal of market-ready net-zero energy residential and 
commercial buildings in 2020 and 2025 by investing sufficient fund 
in R & D for next generation of building technologies; 

• Canada's CamnetENERGY idea of Net Zero Energy (NZE) housing 
on the time horizon of 4 year research by the goal of drastically 
reducing the cost and risk of NZE technologies, and becoming 
readily available in market place. 

• Canada's Energy Efficiency Regulation program of EnerGuide to 
reduce energy cost and emission by rating the energy efficiency of 
household appliances, heating and cooling equipment, new homes 
and vehicles, and making related information available to the public. 

Accordingly, NILM as the promised type of ALM procedure receives 
a significant interest due to its capability to manage the energy 
consumption in demand side including residential and commercial 
buildings. Information collected from appliances' monitoring also 
assists to cope with more integration of fluctuating energy resources 
[23-25] . Moreover, NILM allows diagnosis and control of different 
loads connected to the grid and aids [24]: 

• Customers to have valuable information of their individual appli­
ances' energy consumption; 

• System operators to analyze the energy flow in electric networks; 
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Fig. 2. Smart grid technologies ' investment with projection to 2017 [5] . 

• Power markets to define public policies and tariffs; 
• Manufactures to outline tl1eir orientation toward advanced appli­

ances. 

NILM approach can be implemented by any combination of 
physical hardware, metering equipment, and software including online 
and offline processes witl1 the explicit intention of load disaggregation 
[26,27]. The online process, which accounts for feature extraction 
generally, includes metering, normalization, and event detection. On 
the other side, the offline practice comprises load modeling and 
identification, as weil as energy evaluation [4,14,27]. Attention to the 
need for a compacted NILM system in the future, smart meters as the 
physical hardware should be defined as a compact entity consisting of 
both a metering device and a computation system [27] . Smart meters 
play a key role in the satisfactory achievements of NILM systems as 
they measure data samples to be utilized for load identification and 
energy estimation processes [15,28]. Advanced metering devices sup­
port two-way communication between the meter and the electricity 
supplier and interface with smart appliances, which in turn, allow 
utilities to better manage peak power demand and assist consumers to 
manage their own building energy use [29-31]. Fig. 2 shows that smart 
grid investment on smart meter technologies would continuously 
increase with a scope of 2017 [5]. Smart meters as the technical and 
actual description of ALM system will make NILM aspect practical in 
near future [32]. 

There are primary issues tl1at can considerably influence botl1 tl1e 
intention of employing NILM and tl1e results of executing NILM metl1ods. 
A successful NILM should have an accu rate and practical approach 
toward tl1ese concems, which are investigated in tl1e following. 

2.1. Technical issues 

Attention to appliances electrical characteristics, tl1e methods of 
sampling their electrical signal, and tl1e relationship between their 
operation patterns with occupants' behavior and environ mental con­
ditions, technical issues can be discussed from two major points that 
are addressed below. 

2.1.1. Appliance classifications 
In tl1e first step, an explicit choice has to be carried out on appliance 

candidates. This has resulted in different load classifications repre­
sented in many researches based on their technical notions of proposed 
NILM analysis [33,34]. Regarding occupants' insights and appliances 
properties, these categorizations can be explained from four different 
points of aspect [33,34]. 

1. Customer perception: the most preferred classification considering 
the consumers' preference is to categorize appliances based on their 
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role in the house, which refers to lighting appliance(s), kitchen/ 
domestic appliance(s), and heating/cooling appliance(s) [10,33,35]. 

2. Operational state: this class reflects tl1e number of appliance's steady 
state operations, which is preferable from the NILM perspective of 
load identification. This category consists of two-state appliances, 
multi-state appliances, continuously variable appliances, and per­
manent appliances. It is noted tl1at active power properties of an 
appliance are utilized in order to define this class [10,14]. 

3. Waveform features: the creation of this category is based on tl1e 
characteristics of voltage/current waveforms which comprises re­
sistive appliances, electronically fed appliances, electronic power 
control appliances, pump-operated appliances, and motor-driven 
appliances [36] . 

4. User interface: self-activated appliances and user-activated appli­
ances are the main subsets of this appliance set [5] . 

On the other side, from a wider and refreshing point of view, 
appliances can be categorized to consider system operator perspectives 
on tl1eir capabilities. Such an aspect, which is compatible witl1 tl1e 
energy management strategies offers tl1e following appliances' practical 
categorization [23,25] : 

1. Non-deferrable appliances: the electrical energy consumed by ap­
pliances in this class cannot be delayed such as lighting, cooking, 
and refrigerator. Although non-deferrable devices consume a con­
siderable portion of energy in buildings, which tl1eir operation 
management can be advantageous to system operator, they are 
unable of providing power grid services due to inflexibility. 

2. Deferrable appliances: this category consists of appliances like 
washing machine, and dryer that their electrical energy require­
ment can be postponed with regard to high energy demand hours. 
Particularly, this category represents thermostatic appliances with 
flexible demand capability, which account for a major portion of 
household total electricity demand [7,31,37] . Deferrable/ 
Thermostatic Appliances (DTA) such as electrical water heaters, 
and space heating/cooling systems receive remarkable attention 
due to their specific advantages to offer power system facilities 
[37]. 

In fact, tl1is categorization can direct NILM analysis toward 
beneficial applications and promote the choice of NILM algorithms 
since, the identification of a variety of household appliances is a 
burdensome practice and tl1us; NILM strategy should be well-defined 
and effective. 

2.1.2. Dataset properties 
Dataset contains household appliances information required for 

NILM process. Therefore, the dataset properties have a significant 
impact on the results of NILM practice [7]. Indeed, the efficiency of 
NILM technical processes highly depends on the quality and sufficiency 
of sorne crucial factors that should be met by measured database 
properties [7] . These factors , which can outline the efficacy of tl1e real 
data, are termed in the following. 

2.1.2.1. Data sampling interval. NILM should present a suitable 
technique for measuring the appliances' energy usage. Accordingly, 
two approaches can be differentiated for energy measurements in tl1e 
domain of electric signal analysis and appliance identification 
[18,20,27,38,39] : 

1. Low frequency: tl1is method extracts features from long-term, i.e. 
minutes to hours or even days, power consumption data in a low 
sampling rate. 

2. High frequency: this technique extracts features from short-term, 
i.e. cycles to seconds, voltage and current waveforms in a high 
sampling rate. 
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It is noted that there are different approaches to frequency ranges 
in order to define low and high rates and the choice of electrical signal 
as weil [32]. Low frequency measurement techniques are regarded as 
they maintain a realistic aspect considering the actual smart meters' 
technologies, and big data handling concerns [15]. On the other side, 
higher sampling measures i.e. 10 kHz and up [32] , require highly 
calibrated equipment for collecting data which are sensitive to electric 
noise however, they can provide important operative information for 
load identification [23,28]. Additionally, although a higher sampling 
frequency can allow for harmonic and signal transformation analysis of 
non-linear appliances with triviallow energy demand [40], it do es not 
significantly improve the disaggregation results of high-usage resistive 
appliances [14,41]. 

More importantly, the desirable sampling frequency is determined 
considering the appliance candidates and load management goals [7]. 
Accordingly, a sampling time of 1 s to 1 min is generally utilized, by 
knowing the fact that 1 Hz sampled active power is accepted as the 
proper sampling interval [7]. From this standpoint, among the avail­
able public databases, only [11,42-44] provide this sampling resolu­
tion in both appliance and aggregate signal levels. However [45-47], 
offers higher sampling frequency just for aggregate signal. In fact, the 
measured sampling interval becomes challenging when the targeted 
appliances for NILM analysis require a higher sampling rate than the 
measured one to deliver more detailed information on electrical 
signatures. 

2.1.2.2. The period of data measurement. Long-term available data is 
essential to analyze the correlation between household appliances 
operation with occupants behavior patterns and weather conditions 
[7]. Long-time information assists in investigating the impacts of the 
seasonal changes in terms of temperature variations on the household 
overall energy demand specifically seasonal appliances i.e. electrical 
heating and cooling systems [7] . This property can enhance NILM 
analysis and allow for not only appliance recognition but also 
discovering households energy consumption habits. Hence, there is 
only [43] which considers the sampling interval issue and also contains 
long-time data. 

2.1.2.3. Appliance candidates principals. It is obvious that 
information of a dataset is case-specific inc\uding appliances with 
particular electric signature features [7]. Considering the importance of 
energy saving for both consumers and utilities, as one of the NILM 
ultimate purposes, a database should inc\ude the real data of 
appliances that consum a high portion of electric energy. Such energy 
demand can be drawn by different types of heatingjcooling systems 
and Electrical Water Heaters (EWH) that have meaningful interactions 
with occupants activities, building gain and loss, and outside 
temperature which in turn, can aid NILM analysis [7]. However, 
most datasets give no information about major uses e.g. different 
heatingjcooling systems and EWH demands [11,44,46]. One reason 
relates to the type of the utilized source for building heating demands 
which in such cases can be natural gas [47] . Generally, except for major 
kitchen appliances other loads considered in data sets are case-related 
and not among major usages [45] . 

2.1.2.4. Non-elecb'ic data, Non-electric features such as occupancy and 
indoorjoutdoor temperature information can assist NILM analysis and 
form an enhanced load disaggregation practice [7] . Only DRED dataset 
[44] inc\udes non-electric information in minute intervals, however, due 
to the way of storing data, this database requires a demanding 
preprocessing work to manage the appliances information compared to 
other databases like [11]. Moreover, it undergoes challenges inc\uding 
high rate of missing data e.g. outside temperature information, the lack of 
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Table 1 
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Publicly available datasets of household energy consumption (48). 

Dataset 

REDD 
BLUED 
GreenD 
ECO 
DRED 

(44) 

UMass 
Smart 

Tracebase 
Pecan 

Street 
Sample 

HES 
AMPDs 
iAWE 
UK-DALE 

COMBED 
BERDS 
SustData 

Nnmber 
of honses 

6 
1 
9 
6 

3 

15 
10 

251 

4 

8 
NIA 
50 

Measuring 
duration per 
honse 

3-19 days 
8 days 
1 year 
8 months 
6 months 

3 months 

NIA 
7 days 

1- 12 months 
1 year 
73 days 
3-17 months 

18 months 
1 year 
5 year 

Sampling freqnency 

Appliance 

3s 
Event label 
1 s 
1 s 
1 s 

1 s 

1- 10 s 
1 min 

2- 10 min 
1 min 
1- 6 s 
6 s 

30 s 
20 s 
1 min 

Aggregate 

1 s & 15 kH z 
12 kHz 
1 s 
1 s 
1 s 

1 s 

NIA 
1 min 

2-10 min 
1 min 
1 s 
1- 6 s & 
16 kHz 
30s 
20 s 
1 min 

Site 

USA 
USA 
USA 
DE 
USA 

UK 

CON 
IND 

UK 
AT/ IT 
IND 
CH 

NL 
USA 
PT 

enough acquisition time period, and suitable information about heatingj 
cooling appliances which almost makes temperature data useless to 
analyze. Actually, the accuracy of a signature-based study even by using 
proper electrical data can decrease due to electrical features sensitivity to 
different causes like temperature changes and thus; non-electric data 
matters as an important factor of a dataset [7]. 

Correspondingly, an applicable dataset should consider these major 
factors, which in turn, can facilitate the NILM operation. However, 
collecting ail effective elements in a dataset is a burdensome task and in 
fact, public\y available databases that even realize the first two 
elements [43], does not generally inc\ude other elements i.e. major 
appliances information and non-electric data. Essentially, there is no a 
single household data with mentioned factors that incorpora tes the 
information of even ail second level major appliances inc\uding 
refrigerator, washing machine, dryer, dishwasher, and stove which is 
another critical issue regarding the available databases. The informa­
tion related to different public datasets is demonstrated in Table 1 
considering the discussed issues [48]. 

2.2. Environmental issues 

The environmental condition as the second issue is a crucial 
priority, which can significantly affect NILM purposes. Preferred 
appliances for NILM that should be mostly chosen base on the amount 
of energy consumption differentiate considering the environ mental 
conditions. Indeed, a study on the seasonal weather and environ mental 
conditions, which highly influence electricity consumption patterns, 
can effectively define energy saving strategies and in turn, rise interests 
in deploying NILM systems. For instance, the household appliances 
usage in the US and Canada is shown in Fig. 3 [5,49]. As it can be seen, 
weather condition causes a considerable difference in energy use 
preferences between these countries. In Canada, considering Quebec 
with cold long winters, heating appliances category inc\uding Electrical 
Space Heating (ESH) and EWH consume around 80% of households' 
total energy consumption [49]. lt means that the most important part 
of energy saving practices can be met by managing ESH and EWH 
demands using NILM related methods. On the other hand, this 
category in the US consume around 31% of total energy usage which 
expresses that NILM task should also consider other major usages like 
space cooling. 
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pace cooling:!°o 

(a) (b) 

Fig. 3. Energy of end users as a percentage of total building energy use including electric usage in (a) Canada and (h) us [5,49). 

Moreover, high energy demands, which can be due to environ­
mental issues can bring about special NILM cases considering the type 
of in-use appliances. In Canada, household ESH systems encompass a 
high number of electric baseboards i.e. Quebec 61 %, Newfoundland 
and Labrador 47%, New Brunswick 35%, Nova Scotia 22% [50] that 
can significantly confront the NILM operation. Electric baseboards 
have a high switching frequency that causes a large rate of temporal 
overlap. Furthermore, several electric baseboards located in each hou se 
may have the same nominal power that increases spatial overlapping 
events [7]. These issues along with the EWH short duration demands 
can decline NILM performance and so, a NILM system should be 
examined under such items in order to achieve a practical approach. 

With the aim of enabling the practical analysis of su ch cases the 
author has developed a tool that can generate ESH and EWH synthetic 
data since, there is no publicly available data for Canadian cases. The 
semi-synthetic data generator can derive appliances probabilistic 
schedules from real datasets and then, creates their long-term power 
profiles using their real signatures. Subsequently, using a modeled 
house considering ail thermal interactions, real weather data, and 
occupants water usage patterns, the tool synthetically creates on/off 
power demands ofhousehold heating/cooling systems and EWH [7] as 

shown in Fig. 4. The generated data from this tool is semi-synthetic 
since it utilizes both real power profiles and synthetic power loads to 
create the ove rail aggregated power profile. 

In order to demonstrate the NILM challenges in the presence of 
electric baseboards and EWH, second level major appliances from ECO 
dataset [11] has been utilized as real data to produce the on/off power 
profiles of Il baseboards and one EWH in a modeled house [7]. Fig. 5 
illustrates created semi-synthetic and real aggregated power profiles 
using the information of ECO house number one in the same day. It is 
observed that, the resulted power profile in the presence of electric 
base boards and EWH can be a difficult case for NILM analysis. The 
reason is that, it includes a great number of on/off transition events, 
which increase the rate of both temporal and spatial overlapping [7]. 
Moreover, the operation cycle of electric base boards and EWH is short 
which causes difficulties for NIM methods that seek a sufficient 
operating time for the training step [7,13] . 

The developed tool has a realistic viewpoint since, it captures the 
operation schedules and power signatures from a real world data and 
distributes appliances in a modeled house considering thermal gain 
and loss due to inside/outside temperature variations in order to 
simulate ESH and EWH load consumption [7]. AdditionaIly, a load 

Wealher data 

Long-tenn appliances power 
profiles 

Simulation system 

Hot-w3ter consumption 

Occupants' \Valer 
usage schedules 

Generated power profiles 

Fig. 4. The structure of the semi-synthetic data generator tool. 
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Fig. 5_ Semi-synthetic and ECO daily aggregated power profiles generated using the 
information of ECO second level appliances data. 

Table 2 
The accuracy score of disaggregating refrigerator in different scenarios. 

Scenarios ECO EWH One electric Two electric 
presence baseboard baseboards 

presence presence 

Disaggregation 96% 95% 74% 71% 
accuracy 

disaggregation procedure has been developed to actually indicate the 
impact of electric baseboards and EWH presence on NILM practice to 
identify household appliances. In this regard, HMM as an advanced 
and robust algorithm has been utilized for pattern recognition and load 
identification [15,16,18,51,52] . The Viterbi algorithm as a dynamic 
programming procedure has been used to compute the most probable 
hidden state of HMM and solve the disaggregation problem [52]. 
Table 2 shows the accuracy results of disaggregating refrigerator in four 
different scenarios using appliance-based accuracy score [14,53]. After 
simulating on/off power profiles of electric baseboards and EWH, their 
signature has been increasingly presented in the ECO aggregated load 
profile. It can be seen that the ability to recognize refrigerator 
continuously decreases in the presence of ESH and EWH. The accuracy 
reduction even with a few number of electric baseboards is consider­
able which evidences NILM difficulties with real cases of several in-use 
baseboards. 

The detailed discussion presented above with actual study demon­
strates the importance of appliance candidates and environmental 
issues as major effective factors in NILM analysis. Accordingly, HEMS 
should account for these effective issues, if possible in order to realize 
an operative NILM, which can lead to household appliances correct 
monitoring and energy demand savings [16] . 

3. Classification of NILM applications 

Given the fact that NILM has been discussed so many years 
focusing on proposed methods, this literature attempts to present the 
perspective of NILM applications concerning customer preferences and 
system operators' interests. Indeed, defining the application of ALM 
can assist the choice of NILM techniques and appliance candidates, 
which in turn, facilitates and improves the NILM task. For instance, if 
the NILM application is to monitor non-linear loads, the transient 
analysis of current waveforms of such appliances like microwave and 
computer in higher sampling rate is preferred [14,54]. This aspect can 
categorize NILM utilizations in two sections described in the following. 
It is noted that energy saving as the foundation of NILM is the mutual 
concern ofboth customers and system operator and thus; the common 
application of NILM systems [32]. 
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3.1. Customer-side NILM applications 

This category presents fields in which NILM feedbacks please 
customers by providing convenient services as below: 

3.1.1. Intelligent the"mostatic control systems (ITeS) 
Advances in communication and electronic technologies have 

introduced the communicating electronic thermostatic systems to give 
customers the ability to remotely manage their operations such as 
heating systems. These systems have received significant attention 
because of their wide availability and ability to be toggled on/off 
without compromising end user satisfaction [55,56] . Moreover, high 
tech advancements in terms of Internet of Things (loT), cloud 
computing, and big data cause to take a great advantage of ITCS to 
facilitate customers living manners [1]. Subsequently, through con­
trolling electric energy consumption, thermostatic systems can provide 
a wide range of grid services regarding system operator interests still 
maintaining user comfort [55]. 

On the other hand, existing NILM methods undergo difficulties in 
the presence of the electronic thermostatic loads operating in short 
periods of a few seconds that specifically affect the NILM training 
processes [5,13]. Consequently, NILM approaches should be able to 
handle technical barriers associated with ITCS, which has not usually 
been investigated in literature. 

3.1.2. Fai/ure analysis and security management 
A promising use of NILM technology is to locate and identify device 

failures or abnormal usages which can be evidenced by unusual power 
consumption or duty cycle characteristics [25,27] . Security manage­
ment enabled by NILM is another remarkable utilization, since with 
new generation of smart meters capable of providing highly accu rate 
profiles of energy usage, it is possible to identify consumers' specific 
activities or behavior patterns, which brings about serious privacy 
concerns [23,25,57,58]. Therefore, providing a trade-offbetween smart 
meter information privacy and its applications particularly for grid 
services, can satisfy the participants [25,57]. The proposed approaches 
to address such arrangement are generally based on the anonymization 
of meter readings. Gong et al. has studied the cryptographic primitives 
technique to verify customer information for participating in grid 
services without uncovering their actual identity [57]. Yang et al. has 
explored a method based on covering the data using a rechargeable 
battery to provide a consistent consumption that is equivalent to 
customer's average usage [9]. Other typical methods for data preser­
ving are based on providing uncertainties in the total power signal 
which require technical changes in smart meters structures [9]. Indeed, 
failure, abnormal or high consumption detection, security manage­
ment, and computerized surveillance specifically remotely are impor­
tant opportunities allowed by NILM. 

3.2. Grid-side NILM applications 

NILM as an adaptive enabling technology can facilitate power grid 
services that interest system operator. The automation network 
enabled by NILM mechanisms can enhance HEMS communication 
with different type of appliances to gather their power consumption 
data [59] . NILM capability in load disaggregation and energy compu­
tation can provide an advantageous application for HEMS to manage 
economic development, and pattern recognition of occupants' behavior 
[3,59,60]. Accordingly, HEMS can participate in power grid services by 
employing NILM systems [59]. Lin and Tsai [59] have utilized NILM in 
the context of a HEMS to execute a residential Demand Response (DR). 
ln fact, the general approach to NILM application for grid services is 
the management ofhousehold appliances to engage in DR and Demand 
Side Management (DSM) programs [9,25,57,61]. Alizadeh et al. have 
studied the potential of DTA for DR which is regarded as a promising 
NILM application to take the advantage of DTA capabilities in demand 
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side [25]. In addition, NILM exploitation for OSM services can provide 
estimates on energy savings as weil as end-use load profiles [23,60]. It 
is deduced that there is a significant potential for enhancing grid 
services using NILM, which requires to be more investigated. 

4. The future standpoint of NILM: deadlock or progress 

Indeed, this survey attempts to reveal pivotai challenges regarding 
NILM systems in order to give meaning to future opportunities. Most 
of the researchers believe that the traditional application of NILM for 
energy auditing has come to a hait [60,62]. This lack of progress can be 
described within two main argumentations as below. 

4.1. Advancement of smart grid adapting technologies 

The first reason for lapses in NILM is more about the causes of 
tendency to this concept at the first place. NILM has been presented as 
a viable alternative to the home automation network because of two 
important facts: 

4.1.1. Lack of communication infrastructure and customer affinity 
The lack of a two-way communication with each home appliance as 

weil as social acceptance of home automation network are the first 
persuasive evidence for employing non-intrusive aspect [4]. Therefore, 
new advancement in Advanced Metering Infrastructure (AMI) tech­
nologies, revolutionary changes in power networks under smart grid 
paradigm, and growing rate of customer's affinity for new develop­
ments, can impose difficulties for the future acceptance of NILM 
approach as a preferred alternative solution. 

4.1.2. Smart plugs/outlets high cost 
Smart outlets represent an intrusive aspect of load monitoring systems 

that can be installed for each building's appliance. Utilization of NILM 
du ring years can also be attributed to the high cost of smart outlets [62]. 
However, the mainstream of home automation sector equipped with the 
low oost smart outlets capable of remote load control is expected to 
continue remaining more relevant than non-intrusive concept in the 
future, growing by 60% from 2012 to 2018 [26]. This trend conveys the 
message that these oonvenient technologies may replace the non-intrusive 
systems [26,62]. Nevertheless, the smart outlet technology faces sorne 
difficulties like errors that come from the poor performance of the 
electronic devices that need proper solutions [14,26,62]. 

4.2. NILM technical barriers 

Considering the essence of NILM approach, technical issues are 
vital obstacles for future development. Accordingly, the lack of new 
progresses des pite numerous proposed solutions can be viewed from 
two different points. InternaI difficulties, which includes complexity of 
the load space, and proficiency of the available data as weil as external 
difficulties, that consists of the lack of a standard for data acquisition, 
the absence of unified evaluation systems, human intervention barriers, 
and case-specific studies incapable of generalization [4,7,14,61,62]. As 

noted, although technical problems of NILM have been explored for 
many years, serious concerns exist which have not been thoroughly 
solved [61,62]. 

Apart from above, new outlooks are undertaken to provide a 
progressive idea in order to overcome the deadlock of NILM applica­
tions. The new perspective outlines NILM system with a reasonable 
complexity which utilizes an appropriate data for a specifie application 
[7,61] . Accordingly, two opposite aspects toward the future research on 
NILM can be inferred [61,62] : 

• Positive views believe that with a more reasonable, less complex 
approach toward a progressive NILM concept deviated from prior 
ineffective ideas, novel thoughts, and studies will be established. 
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Fig. 6. Breakdown of household energy consumption by type of use in Quebec, Canada 
in 2011. 

• Negative views believe that it is impractical to identify household 
appliances solely using a non-intrusive approach based on the 
measurement of one dimension signal at a single point. 

5. The creation of ANILM systems 

In order to make progressive views toward NILM achievable, the 
ANILM concept is proposed. Given the NILM discussion in previous 
sections, it is realized that an ANI LM system should consider sig­
nificant properties described as below. 

5.1 . DTA utilization 

ANILM should account for appliance candidates that are first 
among major consumption devices and second able to be delayed. 
These factors refer to OTA, which are important for both demand and 
supply sides' scenarios [25,37] . These appliances are capable of 
providing grid services without jeopardizing the quality and reliability 
of their primary function according to users' comfort level, and 
satisfaction [25,55,63]. For instance, Fig. 6 demonstrates residential 
energy usage in Quebec, Canada in 2011 [64]. As it can be seen, OTA 
such as ESH and EWH consume more than 70% of household total 
energy use, which reveals their great potential to provide power grid 
facilities that satisfy both customers and utilities. The same scenario 
can be realized for space cooling devices as OTA in the US, shown in 
Fig. 3. Therefore, ability to exploiting OTA potentials as Medium 
Energy Storages (MES) in demand side is an important feature of an 
ANILM. For example, OTA by means of ANILM systems can facilitate 
more integration of small scale renewable energy resources in the near 
future [55,64-67] . Such perspective represents OTA as grid friendly 
appliances with a range of advantages for both customers through 
dei ive ring incentives and suppliers through providing grid services. 

5.2. Real-time application 

Furthermore, ANI LM should realize a real-time structure as an 
inevitable part of future power networks under smart grid paradigm. 
Moreover, the real-time aspect of ANILM is essential considering the 
new movement of technology toward different designs such as loT 
environment that provide an enhanced communication among utilities, 
manufactures, and customers [1,15,16,32] . It should be mentioned 
that traditional NILM concept with a huge complicated space of data, 
slow analysis process, and long computation al time is usually an offline 
system. In fact, the idea of ANILM can enable utilization of OTA 
capabilities in a real-time context. Furthermore, this concept can 
provide a practical indoor communication with OTA and other MES 
such as Plug in Electric Vehicles (PEVs), and renewable energy 
resources as weil as a beneficial outdoor communication with system 
operator. 
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6. Conclusion 

The promise of Non-Intrusive Load Monitoring (NILM) approach 
eases the effective cooperation among stakeholders in electrical energy 
industry in the context of Home Energy Management System (HEMS) 
and gives a new force to inevitable move toward Smart Home (SH) 
concept. Accordingly, in this paper we conducted a thorough study on 
major issues required to achieve an actual NILM. Apart from the 
methods analyses, the paper investigated the prerequisite necessities 
and final constructive expectations of the NILM system in order to 
realize an effective NILM. Initial requirements to establish a well­
organized NILM were described using con crete analyses to address 
sorne important issues. Furthermore, the paper explored the primary 
applications of NILM considering both customer and utility sides to 
develop an operative NILM structure in terms of utilized mechanisms. 
From a realistic standpoint, the author proposed the Advanced NILM 
(ANILM) aspect and discussed its properties as the result of a cIear 
understanding of an effective NILM requirements and purposes. 
ANI LM concept can lead to a building with integrated system designs 
and operations. A successful realization of this concept eventually 
makes HEMS feasible. ANILM abilities which can make actual NILM 
applications feasible, can be considered as the solution for regressive 
trend of traditional NILM and create a novel way for next studies. 
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Abstract-Home Energy Management System (HEMS) is ac­
knowledged as a promised approach to explore household appli­
ances dynamic energy usage. The availability of an appropriate 
dataset is indispensable to evaluate the performance of HEMS 
operations in the designing phase. In this paper, we develop 
a tool capable of generating long-term semi-synthetic data to 
avoid deficiency of available datasets particularly, the lack of the 
major appliances measurements and non-electric information. 
Accordingly, a simple household with primary appliances located 
in two-main zones is simulated. The paper utilizes a statistical 
analysis of real-world data to crea te probabilistic models of 
appliances and consequently, produce time-extended stochastic 
power profiles. Afterward, a simulation structure is developed 
to generate the power consumption profiles of major appliances 
consisting of Electrical Space Heaters (ESH) and Electrical Water 
Heaters (EWH). In order to achieve its ambition, this study 
executes a post-processing practice to create on/off power profiles 
of these appliances using their models. The results show that the 
proposed tool can be exploited for different HEMS scenarios. 

1. INTRODUCTION 

Smart grid development bolsters the interests in deploying 
HEMS in demand side due to enabling the idea of smart home 
in the near future [1], [2]. Smart home facilitates occupants 
comfort in the building while saving the energy through real­
izing an advanced sensing and measurement system as one of 
the five fundamental technologies essential for the smart grid 
[3] . The emergence of HEMS technologies can be considered 
as the primary requirement to realize the smart home platform 
[4]. These technologies ass ist residential dynamic power con­
sumption analysis by providing load monitoring and energy 
usage feedback, as weil as advanced control and diagnosis. 
For instance, load monitoring services allow energy usage 
regulation, faultlabnormal usage detection, elderly surveillance 
and intrusion verification, especial and emergency situation 
recognition, and novel electric bills preparation [5]-[9] . 

Correspondingly, the availabi lity of an appropriate dataset is 
the fundamental requirement to conduct a valuable HEMS in­
vestigation in residential buildings [10]. Such dataset is highly 
beneficial to the approach of Non-Intrusive Load Monitoring 
(NILM) which facilitate HEMS, since this technique seeks 
suitable information in order to deliver useful results. NlLM 
is regarded as an effective application of an advanced HEMS 
[1 1]. It is deduced that an appropriate dataset would consist 

of a real-world data that its properties concern ail possible 
elements which affect the performance of residential energy 
analysis techniques. Notwithstanding, amassing such dataset 
is costly, time-consuming, and cumbersome [12] thus; a more 
comprehensive dataset from both perspectives of electric and 
non-electric information, even not completely real, can be de­
fined as a promised data base for HEMS services examination. 

Moreover, propriety of a dataset depends on the geographi­
cal characteristics and thus the type of in-use appliances, par­
ticularly electric heating and cooling devices. In countries with 
cold winter c1imates like Canada, ESH and EWH controlled 
by electronic thermostats demanding high energy rate i.e. 
more than 80%, generate specific challenging HEMS scenarios 
specifically for NILM techniques [13]. However, majority of 
avai lable datasets are measured in US and European countries 
[10] , that boosts the ambition of this study to contribute a 
tool for data generation which in turn can be used for the 
exceptional cases of Canada like Quebec region. 

Accordingly, in this study, we intend to develop a tool 
capable of generating time-extended serni-synthetic data to 
deal with challenges regarding the collection of real-world 
data. This paper explores household appliances actual data 
to characterize their consumption behavior by means of a 
statistical analysis. The usage patterns are learned with no 
prior information, to realize appliances probabilistic models 
which in turn are used to produce time-extended stochastic 
power profiles. Subsequently, the created signaIs of real power 
signatures are exploited to generate synthetic data of major 
appliances in the context of a simulation framework. These 
major appliances include Electrical Space Heaters (ESH) and 
Electrical Water Heaters (EWH). Finally, a post-processing 
phase is applied to create ESH and EWH on/off load profiles. 
The semi-synthetic aggregated power profile is the ultimate 
result of the whole analytical method and simulated system. 

The rest of this study is organized as follows: Section 2 
discusses a brief discussion over public datasets. The statistical 
analysis of real-world data in order to capture appliances 
schedules is described in section 3. Moreover, the simul ation 
structure to generate the synthetic data is developed in this 
section. Section 4 presents the results and relating analyses 
over them which is followed by a conclusion in section 5. 
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II. BACKGROUND AND CONTRIBUTION 

Considering the characteristics of the existence databases 
mainly for NILM purposes, there are significant elements that 
define the usefulness of a dataset discussed as below: 

1- Granularity of the data: Acceptable granularity for the 
datas et depends on targeted appliances and the aim of investi­
gating them. Nonetheless, the tendency is to utilize a sampling 
period of 1 second to 1 minute [10] with a common belief 
that selected electrical features should be 1 Hz-sampled active 
power [14]. Higher resolution data and other electric features 
may provide effective and flexible signature analysis, but there 
are sorne important issues to notice. First, it increases the 
set-up costs and also the size of information which would 
be difficult to manage. Second, such information may not be 
compatible with smart meter technologies [15], [16]. 

2- Time duration of data acquisition: Time-extended data 
measurements is significantly important in order to study the 
impacts of the occupants' behavior and weather changes on 
electricity demand [ID]. Analyzing the relationship between 
appliances energy usage especially major seasonal appliances 
and non-electric information requires a time-extended informa­
tion to apply explicable results [Il]. In fact, understanding of 
consumer activities and environmental conditions are crucial 
for developing an advanced NILM analysis [17], [18]. 

3- Non-electric information: The information referred to as 
non-electric can improve HEMS services particularly NILM in 
the context of a multi-modal load identification procedure [19] . 
The importance of providing non-electric data e.g. outside 
temperature increases by knowing that even high-resolution 
signature analysis declines as electrical characteristics change 
under situations like temperature variations. 

4- Appliance candidates criteria: The inflexible information 
of datasets includes specific manufactured appliances which 
have their particular electric features [20]-[22]. Therefore, an 
acceptable dataset should consist of common household ap­
pliances with a considerable share of electricity consumption 
that have an effective relationship with occupants behavior and 
environmental situations. These appliances generally include 
different heating/cooling systems and EWH [13]. 

In this regard, an actual dataset with the properties of 
sufficient acquisition time i.e. yearly and proper sampling 
frequency i.e. at least one second is motivated. However, 
such a dataset if available, broadly lack both non-electric 
information and major appliances measurements comprising 
ESH and EWH. Finally, introducing a useful dataset becomes 
more challenging considering uncommon cases like Cana­
di an households with ESH and EWH high energy demand 
for which, there is no available real-world dataset [13]. In 
Canada, heating systems set Forth a vast utilization of elec­
tric baseboards, e.g. Quebec 61 % [23] that can significantly 
confront the HEMS services . Each household is equipped by 
several electric baseboards which sorne of them have the sa me 
nominal power. Additionally, high switching rate thermostats 
increase the occurrence of overlapping events. These issues 
can specifically decrease the performance of NILM techniques 

and thus, promote the development of a convenient tool for 
generating related data for further investigations. Accordingly, 
the main contributions of this study are outlined as below: 

1- Generating a semi-synthetic dataset in a sampling period 
of one second including major electric consumption appliances 
which enables analyzing specific reaJ-world HEMS cases. 

2- Providing a framework capable of creating appealing 
time-extended load monitoring and control scenarios of dif­
ferent real appliances schedules and non-electric information. 

III. SEMI-SYNTHETIC BENCHMARK DEVELOPMENT 

The proposed approach to generate the semi-synthetic 
dataset encompasses three important layers which are appli­
ance probabilistic modeling and profile construction, building 
model simulation, as weil as post-processing analysis and 
on/off power signature generation. 

The general model formulation representing the result of 
the whole data creation system can be expressed by (1) 
considering the different steps to generate appliances power 
signatures. 

N 

Yk = y'/os h + y'/ow h + L ynw~ (1) 
n = 1 

Where at discrete time k, Yk presents total power consumption; 
y't,s h describes the heating system power demand which is 
a function of building thermal factors, environ mental param­
eters, and temperature set-point; y'/ow h stands for the water 
heater electricity demand which is a function of hot-water 
consumption, and indoor temperature; and yn and wn denote 
active power value and operation schedule of appliance nu m­
ber n. 

In fact, y't,s h and y't,wh vary by changes in electric appliances 
usage that affect the household thermal interactions and hot­
water consumption , respectively. It is noted that y'/owh is also 
a matter of changes caused by household activities e.g. sink 
and bathroom. This would be another advantage of composing 
appliances schedules with building models to enable tracking 
and analyzing of appliances electricity demand specially, ESH 
and EWH. The description of the general model and its 
components is presented in the following discussions. 

A. Probabilistic inference of appliances operation schedules 

The energy consumption of household appliances possesses 
an uncertain pattern due to dynamic behavior of effective 
factors such as occupants behavior and environmentaJ con­
ditions. Therefore, the operation al behavior of loads over time 
needs to be learned from a stochastic process with no prior 
knowledge. The reason is that the random processes of the 
effective factors avoid pre-definition over appliances events 
during the time of operation. Accordingly, the utilization of a 
probabilistic modeling to examine the operational activities 
of power signaIs is signified. Subsequently, the variables 
representing the operating features of an appliance are found 
from probability distributions. The procedure that can be used 
to discover the appliances schedules is described as follows 
[24] . 
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J) Appliances time-of-use scheduling: Proposing a distri­
bution over time-of-use of household appliances requires to 
define time duration in which operational characteristics are 
likely to have a periodic behavior. In this regard, the time­
of-use can be regarded as circular observations from which 
observed values can be modeled by probability distributions 
[25]. In fact, the periodic nature of time as a random variable 
leads to a circular analysis to capture the appliances operation 
patterns [26]. Therefore, the usage time i.e. the number of 
time units, t in the period of T, from the initial direction, is 

specified by an angle, B given by (2): 

t e = 27rr (2) 

The density of an appliance operation during a specific period 
of time with a circular relationship has the property defined 
by (3) having a periodic feature as equation (4) [27] : 

laT f(w) d(w) = 1 (3) 

f (w + T) = f (w) (4) 

The estimation of the uni-variate density f (x) using real­
world observations Xl,"" X n can be defined by the kernel 
estimator with kernel k and bandwidth h using (5). This 
function is modified by employing the von Mises distribution 
to examine a circular probability density function through (6) 
[25]. 

1 
g(B;p"r;,) = ( ) exp{r;, cos(B - p,)} (6) 

27r 10 r;, 

Where the center p, and concentration r;, are the mean and 
variance respectively and 10 is the modified first kind zero­
order Bessel function described by (7). 

1 12
11" Io(r;,) = - exp(r;, cos(B)d(B)) 

27r 0 
(7) 

B. Residential building design 

Building Energy Optimization (BEopt) software is a known 
simulator to model a residential building. This software is pro­
moted by the National Renewable Energy Laboratory (NREL) 
in order to realize Building America program introduced by 
U.S. Department of Energy. BEopt prepares the capability 
of designing single or multi-family buildings with individual 
characteristics ta apply the simulation of different energy con­
sumption scenarios [28]. BEopt employs EnergyPlus engine 
to process the simulation system. This architecture allows for 
energy consumption analysis by supplying the related data 
of indoor/outdoor fundamental s, building thermal interactions, 
hot water consumption From different sources, and appliance 
choices and usages [28]. 

On the other hand, BEopt undergoes two important issues 
regarding the analysis of total and appliance level electricity 
use. First, it proposes a deterministic behavior over domestic 

Time of the use distribution ~ Real appliances 

1 operation data 

Oays of Times of r:===~ 
the week the day 

Heating energy 
consumption 

Total hot-water 
consumption 

Fig. 1: Definite semi-synthetic data generator structure 

demands and as a result the consumption schedules are disti nct 
which cannot emulate the real behavior of loads. Furthermore, 
considering consistent patterns can decl ine the simulation of 
real-world scenarios, since a part of ESH and EWH energy 
demands is defined by heat produced and hot-water amount 
consumed by relevant appliances, respectively. Secondly, in 
sorne cases the appliances from the same type e.g. interior 
lighting are grouped together and thus, their total energy con­
sumption is simulated which may not be preferable for specific 
load recognition like individual lighting usages. Therefore, 
another process is required to generate appliances stochastic 
power profiles resulted from the probabilistic-based scheduling 
of real-world data. 

C. ESH/EWH power trajectories modeling 

In fact, ESH and EWH systems controlled by electronic 
thermostats, have on/off signal trajectories. However, the 
related results from building si mulator engine do not have 
such characteristics. Therefore, a post-processing analysis is 
needed to produce on/off power profiles by tracking the 
energy consumption of the se systems. In order to achieve 
an actual behavior, the electrical and physical properties of 
manufactured appliances can be conducted to model well­
founded synthetic on/off signaIs. The proposed procedure of 
semi-synthetic data generation can be thoroughly summarized 
in Figure 1. 

It is noted that the ability to define hot-water consumption 
by introducing dynamic schedules of related operations re­
sulted from occupants random activities hands over a realistic 
approach towards EWH consumption analysis. Subsequently, 
the hot-water usage can be applied to different manufactured­
base models to generate EWH electricity demand . 

IV. RES ULT AND DISCUSS ION 

The semi-synthetic data generator benchmark requires two 
important sets of information in order to execute the simulation 

566 



Fig. 2: The sketch of a simple Canadian household modeled 
by BEopt 

TABLE 1: The general properties of modeled household 

Household specifications 

Site location: Trois-Rivieres 
Wealher data: Trois-Rivieres weather condition 
Size: 700 sqft 
Number of zones: Two including living and basement zones 
Wall thermal resistance: Wood Stud, R23 (c1osed cell spray foam) 
Number of windows: Six with total area of 132 sqft 

process. This information encompasses environmental condi­
tions and building characteristics as weil as desired appliances 
active-power values and operation schedules. Accordingly, the 
environmental information of Trois-Rivières city located in 
Quebec, Canada where this study is conducted, has been 
introduced to the simulation system [29]. Moreover, a simple 
household has been modeled using BEopt software, consider­
ing the general properties of an average Canadian home [30] . 
The specification of the modeled house is summarized in Table 
1. It is noted that detailed construction material modeling is 
out of the scope of this study. A schematic sketch of the house 
is shown in Figure 2. 

On the other side, the statistical analysis has been applied 
to real-world data from ECO database, [9] in order to give 
a practical viewpoint to electrical appliances energy demand 
in the house and catch their actual stochastic behavior. As 
a result, the operation schedules of electrical appliances have 
been estimated using the probabilistic models of their daily and 
weekly usages. Finally, the time-extended non-deterministic 
time-series of appliances power profiles in one-second sam­
pling frequency have been created using their operations prob­
abilistic distributions and real power signatures. The targeted 
appliances for statistical analysis consist of refrigerator, stove, 
and dishwasher located in zone 1, as weil as washing-machine 
and dryer located in zone 2 which is a common style in 
the hou ses with basement area. The daily/weekly operation 
schedules of these appliances are illustrated in Figures 3 and 
4, respectively. As it can be seen, the refrigerator weekly/daily 
schedules are likely uniformed distributions due to periodicity 

- Dryer 
- Washing machine 
- Stave 
- Oishwasher 
- Refrtgerator 

Fig. 3: Daily probabilistic operation of targeted appliances 
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Fig. 4: Weekly probabilistic operation of targeted appliances 

in duration statlstlcs of an actual domestic refrigerator. Il 
should be noted that these appliances along with EWH and 
ESH account for more than 90% of a typical Canadian 
household electric energy consumption [31] . 

Subsequently, the provided information have been given 
to the building simulator to examine the heating system 
electricity demand and hot-water usage in the modeled house. 
Afterward, ESH and EWH on/off profiles have been generated 
through a post-processing step executed using the data resulted 
from simulated demands. 

In this regard, based on a water heater model proposed in 
[32] EWH time-extended power profile has been constructed. 
The proposed EWH [with nominal values 3kW at 240V] has 
2.8kW power use corresponding to 232V which has been 
located in zone 2. Figure 5 shows the results for a period 
of one day. As it can be seen, the on/off EWH load profile 
demonstrates a higher rate of activities which demand hot 
water, in the afternoon for the related day. Such analyses 
through scheduling the occupants different energy consump-
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Fig. 5: EWH on/off power profile for one-day time duration 

tion patterns can benefit demand side management strategies. 
In addition, heating energy consumption has been dis­

tributed among seven 1kW baseboards in zone 1 and three 
500W baseboards in zone 2 in a way that none of them 
indicates the same behavior. The model used to generate ESH 
on/off power profiles has been developed based on electrical 
characteristics of an electronic thermostat. This thermostat 
operates based on a PWM technique with a time period of 16 
seconds. A Gaussian noise, ç drawn from (8) is added to the 
signal to capture more actual aspect. The mean /.1, and variance 
0' 2, have different values in on and off events based on our 
measurements of several electric base boards on/off states. 

(8) 

Figure 6 presents the generated load profile of a 1 kW electric 
base board in around half-an-hour. As it is shown, the created 
signal using the proposed model manifests high event rates 
variations with saturation times. These are of the main be­
havior of electric baseboards operation periods particularly, in 
co Id c1imates. 

Subsequently, semi-synthetic aggregated power profile is 
created based on (1) using real and synthetic appliances power 
profiles. Figure 7 illustrates the long-term generated results 
and real-world measured data of a Canadian case from [33] 
with an houri Y sampling interval. It can be realized that the 

Fig. 6: On/off power profile of a IkW ESH for half-an-hour 
time duration 
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Fig. 7: Yearly semi-synthetic aggregated and real-wold mea­
sured power profiles 

semi-synthetic data has the same trend and behavior as weil as 
simi lar total power demand as the real data. Furthermore, the 
impacts of ESH and EWH power trajectories on the aggregated 
power signal is demonstrated in Figure 8. This figure presents 
daily load profiles of generated data and house 1 in ECO 
database. As it can be seen, the high event rates of several 
ESH which some of them have the same power demand, and 
short duration operations of EWH can lead to a complicated 
aggregated signal for HEMS services analyses. This signal 
includes a high number of overlapping events which makes it 
a difficult case for NILM. 

Finally, the generated data can be regarded as a household 
fundamental electricity signal which consists of appliances 
that their long-time consumption exhibit relationship with 
occupants behavior, thermal interactions, and environmental 
conditions. The dataset development tool is specially beneficial 
for NILM time-extended studies since it accounts for neces­
sary information. In addition, by introducing the appliances 
schedules drawn from publicly available real-world data of 
Canadian houses, this structure can capture a more practical 
perspective of such exceptional cases concerning the analysis 
of different HEMS scenarios. It should be mentioned that the 
ability of this tool to generate data can give the possibility for 
further studies in the context of an advanced HEMS. 

(17 

o~~~~~~~~~~~~~~~ 

<:J<:J.(;)<:J <:J~.(;)<:J <:J".(;)<:J <:JC).(;)<:J ,\'J,.(;)<:J ,\" .(;)<:J ,\'O.(;)<:J 'J, ..... (;)<:J <:J<:J.(;)<:J 

Fig. 8: One-day aggregated power profiles of semi-synthetic 
dataset and house 1 in ECO database 
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V. CO NC L USIO N AN D F UT URE WORK 

The Canadian households major electric consumption ap­
pliances along with long cold seasons bring about specifie 
complicated energy management cases. Such situation requires 
an appropriate dataset for HEMS studies that enables a time­
expanded analysis of major appliances including ESH and 
EWH. Due to difficulties related to defining a real-world 
available database addressing these issues, we have developed 
a tool to generate time-specific semi-synthetic data. The con­
structed dataset which has a one-second sampling rate provides 
the electric information of EWH and ESH appliances as major 
usages vital for energy consumption analyses relevant to our 
case. Moreover, this dataset includes both second-Ievel major 
domestic loads and non-electric data over a long time. As a 
result, the dataset development tool can also benefit industrial 
applications for which it is necessary to study the relationship 
between occupants behavior and temperature fluctu ations with 
e1ectricity consumption patterns. In our future work, thi s 
dataset will be specially used for Nll-M practice in different 
cases i.e. major appliances, time-expanded, and non-electric 
information analysis. 
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3.3 Household database construction approach 

3.3.1 Background 

Although NILM is a traditional subject, thoroughly studied for man y years, the ambition to 

investigate its diagnosis capability has been overlooked. Diagnosis services can be regarded as 

a key facility of advanced ALM systems. Therefore, the examination of the requirements of a 

diagnosis system in the context of NILM can be innovative. This idea can bring about enhanced 

insights into NILM main processes of appliances' load modellearning, disaggregation, and 

identification. Accordingly, the second study has its roots in designing a NILM system for 

diagnosis purposes. The development of such a system needs an extensive framework with 

different procedures that are not limited to only a load disaggregation phase. The essence of 

this framework aims a process with an explicit intention of constructing valid appliance models 

and providing a flexible mechanism that is not restricted to the static models. This architecture 

is characterized to realize a systematic model-discovery scheme that is able to detect new 

events as they occur and start their detection with routine information. Furthermore, such 

an enhanced structure necessitates the development of an adaptable procedure to recognize 

the operation trends of existing models for their parameters' update. Correspondingly, our 

ambition to achieve the aforementioned framework has resulted in the approach of household 

appliances' database construction that is formulated based on an adaptive on-Iine unsupervised 

method. 

3.3.2 Me thodology 

The proposed mechanism for household database creation is realized through a set of algo­

rithms that can ultimately uncover underlying load models with robust parameters from the 

household aggregated signal as the only source of information. Therefore, the uncovered load 

models are dealt with as Virtual Appliances (VA) because of the lack of any prior knowledge. 

This mechanism is based on an adaptable method as the key answer to a gradually model 

generation concept [l OI ]. Moreover, unsupervised machine-learning algorithms that use no 

labeled data to recognize and update the models are employed, which rise the importance 

of an adaptive means [ 102]. The above architecture is executed by an Appliance Database 
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Constructor (ADC). Our ADC has a dynamic characteristic, since the load models, which are 

stored in the database, evolve over time. ADC carries out the following steps to complete the 

entire procedure of Figure 3-2. 

- Model detection and supervision: This step applies a pattern recognition procedure 

for both detecting likely VA, which have not been previously modeled, as weIl as 

supervising CUITent VA, stored in the database. This procedure takes advantage of 

subtractive clustering and KDE methods. 

- Model construction and revision: Designed with an on-line model learning technique, 

this phase consists of low-complexity algorithrns that result in both constructing new VA 

and revising the existing ones. The modeling process utilizes an HMM with dynarnic 

parameters that is updated by using a Viterbi Training (VT) algorithm. 

Load profiling 
Appliance Database Constructor 

Aggregated signal 

i.e-------.-.- .... -- .... ------------------.- ....... -- ·······-----···---------------------·····1. 

. Model detection Model construction . 
and supervision and revision 

Figure 3-2 Block diagram of ADe in accordance with the proposed approach of household 
database construction. 

3.3.3 Outcomes 

The investigation into a NILM for diagnosis purposes and the household database construction 

approach has provided new understandings of an appliance-Ievelload monitoring system. To 

be precise, these comprehensions have been made based on the exarnination of ADC within 

its specific contexts, explained below. 

- Resulting models: The electrical features of constructed VA as the final results of the 

modeling process have been evaluated. VA can be identified by using their features and 

general information of household appliances. 

- ADC steps: ADC consists of different procedures, which require their own analysis. 

Accordingly, model detection and construction as the main steps of ADC have been 
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analyzed. Furthermore, two important processes of pattern recognition and load profiling, 

described in the article have been discussed. 

- Simulation process: Due to the adaptive nature of the proposed algorithm, not only the 

results, but also the process evolution has been elucidated in order to provide an actual 

evaluation. Furthermore, the structure of the designed database has been represented in 

order to detail its management by ADe within the process. Additionally, the capability 

of the adaptable procedure to capture the dynarnic of the consumption and improve the 

estimated parameters of VA has been discussed. 

The following study demonstrates the results of the household appliance database construction 

approach through an extensive analysis. 
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1. Introduction 

ABSTRACT 

Enabling diagnosis capabilities of Appliance Load Monitoring (ALM) necessitates providing in-operation in­
formation of appliances' behavior. Due to both appliances' time-varying model parameters and operations, 
household aggregated consumption has a dynamic structure. Existing time-invariant load models, built of off­
line datasets with statie information, are not sufficient to capture the actual behavior of the power consumption. 
In fact, these models, generally obtained from exhaustive training phases are intended to satisfy load monitoring 
goals. Therefore, a time-variant load modeling is more practieal to capture such a dynamic property of the power 
consumption. Accordingly, this paper presents an adaptive on-li ne appliance-level load modeling approach, to 
design a load monitoring structure for diagnosis purposes. By using the aggregated power consumption of in­
dividual households, our proposed structure results in an autonomous household database construction. The 
modeling procedure begins with a designed recurrent pattern recognition system that is capable of detecting and 
maintaining load models. This load model structure is determined by using a hidden Markov model (HMM) with 
dynamic parameters, that are extracted from aggregated signal and trained within an on-li ne learning process. 
Our proposed approach can detect time-varying power consumption behavior and estimate the robust load 
models of appliances. Additionally, our novelty in employing a set of straightforward algorithms, suggests the 
practicality of our data base construction approach. 

Appliance Load Monitoring (ALM) is an applicable foundation for 
load diagnosis services to recognize statistieal deviations in load con­
sumption behavior [1] . In this regard, ALM, which is a prerequisite of 
load diagnosis estimation algorithms, needs a framework capable of 
providing in-operation information of appliances [2] . Such information 
can be provided through continuously monitoring household appli­
ances' power consumption and capturing their behavior. 

known appliances ' load, which are captured through an extensive 
training phase [5-8] . In fact, by using off-line datasets with statie in­
formation, they construct time-invariant load models to satisfy load­
monitoring goals through generally an off-line load disaggregation. The 
resulting load models with fixed parameters provide an invariable ex­
amination of appliances' behavior [9-11] . Therefore, they are not 
practical enough to realize the actual behavior of the power con­
sumption. The aforementioned restrictions of NILM has caused its di­
agnosis potential to be overlooked. 

1.1. Household ALM context 

An ALM approach that uses the data from a single metering point is 
known in the literature as Non-Intrusive Load Monitoring (NILM) [3] . 
ln the context of NILM, the goal is the disaggregation of appliances' 
power consumption trajectories from the aggregated signal [4] . In 
NILM, the efficient methods mainly utilize previously learned models of 

• Corresponding author. 

1.2. Contribution 

This paper aims to design an ALM system for load diagnosis pur­
poses in a non-intrusive context. Both time-varying model parameters 
and operations of household appliances, give the aggregated power 
consumption a dynamie structure. As a result, a time-variant appliance­
level load modeling framework is more practical to capture such a 
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Nomenclature 

w time window index (data frame cell index) 
ç constant adaptation coefficient 
E positive constant 
11, a2 mean, and variance parameters of Gaussian distribution 

function 
.AI" (.) Gaussian distribution function 
7r state distribution vector 
A transition matrix 
B emission matrix 

dynamic property of the power consumption. This modeling framework 
can allow the recognition of new presenting loads and graduai changes 
in existing ones in the aggregated signal. Accordingly, we present an 
adaptive on-li ne unsupervised approach to perform a time-variant ap­
pliance-level load modeling as a prerequisite for a load monitoring 
system with diagnosis goals. The proposed approach results in an au­
tonomous household database construction to explore time-varying 
behavior of the power consumption. 

The details of our proposed approach can be presented in terms of: 
(1) a flexible load modeling framework, designed by a set of straight­
forward algorithms, that uses 1 Hz sampled data of aggregated power 
consumption; (2) a recurrent pattern recognition process that is able to 
detect and maintain probable load models; (3) an adaptable procedure 
that is capable of realizing an on-line load model learning mechanism; 
(4) a HMM representation of appliances' load with dynamic parameters, 
which is initialized using a non-parame tric method, combined with a 
parametric mixture model; (5) a load model construction of major ap­
pliances with high accuracy, which is employed for a fully unsupervised 
load profiling phase. From this perspective, we treat an uncovered load 
(that may present an actual appliance) as a Virtual Appliance (VA). 

The rest of the paper is organized as follows. Section 2 provides a 
review of recent studies on appliance load modeling in the context of 
NILM. Section 3 describes the proposed approach methodology through 
an in-depth discussion. Section 4 presents the evaluation framework of 
the developed method. Section 5 examines the method performance by 
presenting the results of different tests on public and experimental data, 
that is followed by a discussion in Section 6. The concluding remarks 
are presented in Section 7. 

2. Background 

NILM approach has been proposed as an alternative to the bur­
densome intrusive ALM approaches [5,12-14]. Hart [3] is the first to 
study NILM. Subsequently, many research studies have used this ap­
proach to recognize a set of household appliances in the aggregated 
signal through load disaggregation method. They have investigated this 
method based on either a steady-state analysis of low-sampling rates of 
electric load signais or a transient analysis of high-frequency ones 
[15-17] . However, due to smart meter capabilities to provide low­
sampling rate data (regarding their real-world deployment issues), the 
former has been mostly into consideration [18] . To be precise, due to 
their energy saving potentials, the researches have usually targeted 
appliances with costly power consumption through a steady-state 
analysis [6,9,19,20] . 

Load disaggregation have been examined by employing many ma­
chine learning algorithms [21-24] . Former methods, which have been 
usually used for load disaggregation, consist of Artificial Neural Net­
works (ANN) [25,26], Support Vector Machines (SVM) [27,28], k­
Nearest Neighbor (k-NN) algorithms [29,30], and Decision Tree (DT) 
[31,32]. These learning algorithms can face different difficulties. For 
example, ANN are simple, but at the cost of an arbitrary development 
(of construction and training phases). SVM and k-NN can be 
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vth cluster center 
Marginal Probability Density Function (PDF) 
Kernel Density Estimation (KDE) function 
bandwidth parameter of Kernel function 
Kernel function 
number of observations at time window w 

set of observations at time window w 
set of absolute value of l1Yk at time window w 
observation at discrete time k 
consecutive observations difference at discrete time k 

computationally expensive. Instability problems in the presence of 
perturbations in the data can challenge DT [9,33]. Moreover, recent 
achievements of Deep Learning (DL) methods in data processing have 
caused their utilization for NI LM [34-37] . Although DL models can be 
very efficient, the need for a huge amount of data to train a large 
parameter space and a heavy processing power to manage an expensive 
computational complexity can affect their efficiency [38] . 

Besides, state-based approaches, particularly Hidden Markov 
Models (HMM) have been the state-of-art method for load disaggrega­
tion. Due to their capability to provide analytical state-based models of 
household appliances, the variants of HMM have become the main 
focus of most researches [39-41] . They can effectively explain the ag­
gregated signal as the combination of operation sequences of individual 
appliances [11] . In fact, the essence of HMM is qualified to model time­
series of appliances' load and interpret their actual behavior. Generally, 
the studies based on HMM have utilized the labeled data from an 
available dataset in order to build a set of load models of targeted ap­
pliances. Accordingly, they have developed either supervised or semi­
supervised learning methods. In the former method, the exclusive load 
models have been tested on unseen instances from the same dataset as 
training. For example, the PALDi method, proposed by Egarter et al. 
[19] , has recommended a training-free load disaggregation by using 
Factorial HMM (FHMM), which has been constructed from appliances' 
sub-metered measurements. Likewise, Kong et al. [6] have built FHMM 
of appliances however, through a considerably lengthy training phase 
compared to Egarter. Furthermore, they have evaluated their method 
by applying an optimization algorithm with a costly computation time. 
Makonin et al. [9] have aimed to evade HMM complicated types, while 
preserving its performance, by using a super-state HMM. However, 
their model builder demands a valid prior-data of targeted appliances in 
order to realize an efficient training phase. Consequently, their ap­
proach to collect the labeled data and evaluate the models' efficiency 
offers an intrusive mechanism. Generally, the main issue with su­
pervised techniques is their generalization ability. In the latter method, 
the generic load models have been tuned to specifie appliances' load in 
other datasets. For instance, Parson [7] has exploited a difference 
FHMM to create generic load models by using the prior data of an 
available dataset. Subsequently, he has trained these models to ex­
clusive load models. The scalability of the algorithm is usually the main 
challenge of semi-supervised methods. Indeed, the common facet of the 
above studies is the utilization of a learning phase, that mainly requires 
an off-line run to train load models. 

In addition, the researchers have employed different HMM variants 
to study load disaggregation through unsupervised learning methods. 
By avoiding labeled data of an available dataset, they have created 
appliances' load models by using a set of priors, mostly based on their 
general information. However, these methods have not been much into 
consideration. For instance, Hart [3] has extended a thorough un­
supervised disaggregation algorithm to build appliances' load models. 
However, his technique suffers from a deterministic load modeling 
structure, which does not capture a real-world scenario. Kim et al. [42] 
has proposed a learning process consisting of four different FHMM. 
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However, the real-time configuration of a computationally expensive 
mechanism, the complex structure of several FHMM, and the in­
itialization and assumptions of model parameters are the main issues of 
their suggested procedure. Johnson and Willsky [43] have exploited 
Hidden Semi-Markov Models (HSMM). Although they have stated that 
their efficient method can account for an unsupervised learning, they 
have utilized the same dataset for both building the models and re­
porting the results. Guo et al. [44] have developed an Explicit-Duration 
HMM (EDHMM) with differential observation for load modeling. They 
have set up their learning process by appliances' general information. 
Notwithstanding, their work lacks addressing the method application 
for load disaggregation, and evaluating fairly the proposed modeling 
process. More detailed review of load disaggregation algorithms have 
been conducted in [45] . Furthermore, we have investigated essential 
prerequisite of a successful NILM system in [1] . 

Due to complicated task of load disaggregation, it has become the 
main goal of NILM. Therefore, a comprehensive investigation of the 
essential prerequisites for enabling the diagnosis capacity of a NILM has 
been ignored. 

3. Appliance data base construction methodology 

3.1. Automatic alTangement of aggregated data 

The data base construction procedure is applied to the aggregated 
signal, which is automatically organized in an on-line framework by 
using the data arrivai time. In this regard, a data frame is constructed, 
in which the total signal is collected as a time-series, indexed in a date­
time basis with one second intervals. Subsequently, the data frame is 
tabulated in a way that the number of observations in each cell corre­
spond to the duration of time window. Regarding the operation cycle of 
household appliances, this time window is considered to be one hour. In 
fact, each cell of tabular data (which is related to an individual time 
window) should comprise sufficient data points to provide meaningful 
information for load modeling. Now with a tabulated data structure, the 
constructed data frame can enable the evaluation of the collected data 
in terms of a sequential analysis. To further clarify the data frame, we 
should note that the table is set to hold the information of one day; 
meaning we have a table of 24 cells (each for one time window). 
Therefore, let w E {l, 2 .... ,24} be the index of each time window that 
encompasses one hour of power data measurements, denoted by Yk' 
where k is the discrete time index. Consequently, the subset of power 
readings related to each w can be defined as 
x .. = {Yk1k = (w - l)N + 1.. .wN), where N = 3600 is the number of 
observations in the time window. From the data in x ... LU .. is con­
structed, which is the subset of absolute values of the difference be­
tween each two consecutive observations, given by 
Llx .. = {ILlYk IILlYk = Yk - Yk- l' Yk EX .. }. Afterwards, our proposed 
methodology is applied to the positive differential observations (Pdiff) 
in LU ... In fact, we consider a common assumption for load modeling, 
that is at most one appliance changes its state during a short sampling 
interval [44] . As a result, we can analyze differential observations in 
order to capture the power consumption of unknown appliances' load, 
since we have no prior knowledge about them. 

3.2. Appliance database constructor 

The proposed mechanism for household data base construction can 
ultimately uncover the underlying VAs with robust parameters from the 
aggregated signal. This mechanism is based on an adaptive process, 
which assists with a graduai model generation procedure through em­
ploying an unsupervised machine-Iearning algorithm [46,47]. To do so, 
we develop an extensive adaptable system that is executed by an Ap­
pliance Database Constructor (ADC). Our AOC has a dynamic char­
acteristic, since the load models, which are stored in the data base, 
evolve over time. ADC carries out the following steps to complete the 
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Fig. 1. Block diagram of our appliance database constructor in accordance with 
the proposed approach of household data base construction. 

entire procedure of Fig. 1. As mentioned, due to the lack of any prior 
knowledge, uncovered load models are dealt with as VAs. 

1- Model Detection and Supervision: This step applies a pattern re­
cognition procedure for both detecting likely VAs, which have not 
been previously modeled, as weil as supervising current VAs, stored 
in the database (explained in Section 3.2.1 ). 

2- Model Construction and Revision: Designed with an on-line model 
learning technique, this phase consists of low-complexity algorithms 
that result in both constructing new VAs and revising the existing 
ones (explained in Section 3.2.2). 

ADC continuously monitors the data base in order to properly op­
erate the above steps (explained in Section 3.2.3). Concurrently with 
every step, it manages the database in order to add and update VAs. In 
the database, VAs are labeled by two elements, their power consump­
tion patterns and time window index of their first occurrence. Fur­
thermore, their model is structured by HMM parameters (discussed in 
detail below). In addition, we develop an unsupervised load profiling 
technique by using VAs, created by AOC (explained in Section 3.3). In 
what follows, the adaptive on-line process of model detection, con­
struction, and revis ion of VAs during a time window is described. 

3.2.1. Model detection and supervision 
ADC begins this step with a pattern recognition process. It employs 

Kernel Density Estimation (KDE) method in order to recognize the 
power consumption patterns in the aggregated signal. KDE is a simple 
non-parametric method and thus, a perfect fit for the density estimation 
of data streams with unknown underlying distribution. Therefore, it can 
benefit our unsupervised load modeling technique, which uses no prior 
knowledge [48] . Particularly, we apply a Gaussian-based KDE function 
to Pdiff in order to detect power consumption patterns by exploring 
their density variations. This function can be formulated as (1), 

N-l 

~ 1" f (x) = -- L... .Jfi, (x - Ll.Yj) 
N - 1 j= l (1) 

where x specifies the discrete support. Î (.) presents KDE function with 
Gaussian kernel, f (.), centered at Ll.Yj. h is the bandwidth parameter 
with an empirically chosen value of 15 for aU the process. We have 
employed Gaussian function in our analysis, since it is capable of pro­
viding an acceptable model of finite-state load appliances (such as 
fridge, stove, and dishwasher), regarding their steady-state operation 
[42] . Furthermore, in order to avoid complexity, we have considered a 
constant bandwidth parameter that has resulted in a better estimation 
through our experiments. Moreover, in order to detect the recurrence of 
patterns within time windows, an adaptive detection scheme is used. 
This scheme results in a discrete distribution as marginal Probability 
Density Function (PDF) of power consumption. In each time window, the 
adaptive scheme revis es this distribution by a portion of the difference 
between KDE and its previous estima te. This, in turn, forms a non­
parame tric recursive distribution, described by (2) [49], 

(2) 

that !.. (x) and !..-l (x) present the discrete distribution and its previous 
estimation. ~ is the constant adaptation coefficient that is considered 0.1 
for aU the process. This coefficient has been experimentally selected 
From a numerical range of [0, 1]. Due to the stochastic nature of 
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aggregated signal, the primary PDF is defined as a uniform distribution 
to avoid any prior assumption. The resulting PDF consists of regions 
with higher emission probability that determine the power consump­
tion patterns. ADC examines these patterns to construct the data base of 
VAs (the start of the modeling process). More importantly, the adaptive 
scheme recognizes the recurrence of patterns by detecting their trends 
based on their density variations within time windows. Furthermore, 
these variations are used to identify the operation state of their related 
VAs, which signifies the advantage of our process for diagnosis systems. 
Indeed, the emission distribution of an appliance in the aggregated 
signal can be decreased to lower probability in the presence of other 
appliances, noise, and notable transients [44] . Our tests demonstrate 
that the adaptive scheme avoids the loss of patterns in such situations 
(discussed more in Section 5) [49] . 

In fact, not all the patterns, detected in fw (x) belong to appliances' 
loads. Therefore, patterns that present probable VAs need to be iden­
tified. We describe them as Patterns of Interest (PoI) and utilize a peak 
detection phase to extract them. This phase searches for patterns with 
probabilities higher than a threshold and extracts them consecutively. 
Our peak detection method takes advantage of Subtractive Clustering 
algorithm. This algorithm is appropriate for our analysis, since it is an 
unsupervised clustering method, which requires no predefined cluster 
numbers. Subtractive clustering (until verifying the termination cri­
terion) iteratively (i) catches the cluster with highest probability 
through (3), and (ii) revises the probability distribution through (4), 

Cv = arg max (Pile (x)) 
XE {XI.X2.···. XN} (3) 

Pi/H I (X) = Pile (x) - p(Cv)exp( -H x h Cv n 
(4) 

where ite is the iteration and PI (x) is equal to !.v(x), because we need to 
maintain the form of fw (x) for evaluating the recurrence of the patterns. 
Cv is the chosen cluster with index number v and probability value p. 
The constant radius h is set to 1.5 h in order to efficiently make potential 
neighbors as unlikely cluster centers. The iterations terminate when 
peCv) < Ep(CI ), where E is a positive constant. As a result, this algo­
rithm crea tes a class of cluster centers (power values) that present Pol. 

The model detection and supervision step resuIts in a set of Pol at 
every time window of analysis. Pol consist of both new and recurrent 
patterns. We utilize a likelihood estimation to differentiate between 
these two, by using the patterns that have been previously stored. 
Consequently, our adaptive on-line process applies the following up­
dates to the database. New patterns and the time window index of their 
occurrence (only the first occurrence) create new labels, while re­
current ones revise previous labels. The type of patterns (new or re­
current) de fines the successive modeling processes. Accordingly, new 
patterns, which can be described as V As, are modeled through model 
construction phase. In addition, recurrent patterns, which their relevant 
VAs have been previously stored, are updated through model revision 
phase. ADC also handles these phases in an adaptive manner. 

3.2.2. Model construction and revision 
In this section, we describe the construction and revision of a single 

VA. In model construction step, new Pol are modeled as VAs by ex­
tracting their model parameters directly from the aggregated signal. In 
fact, each new Pol can present a VA. As mentioned, aggregated signal 
can be expressed as a non-Gaussian distribution of Gaussian mixture 
models of finite-state load appliances. Indeed, these appliances account 
for a major part of total power consumption. Therefore, the power 
consumption of a VA is assumed to have a Gaussian distribution. The 
parameters of this Gaussian are initialized by using new pattern's value, 
C as mean and bandwidth, h as variance. Consequently, we classify 
Pdiff in Llxw according to initial Gaussian parameters by utilizing 
Inverse Normal Distribution function, defined by (5) 
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(5) 

where J.l and a present the mean and standard deviation parameters of a 
VA's Gaussian distribution. c5 is equal to 3 based on three-sigma rule of 
thumb. y comprises the set of LlYk' classified under new Gaussian 
component. Subsequently, the mean and variance parameters of this 
component are re-estimated by using its relevant power values in y. In 
fact, the primary parameters of new Gaussian are used to detect its 
relevant Pdiff in the time window, since they are more precise to esti­
mate its mean and variance (regarding our unsupervised method). As a 
result, by using a new Pol's value, a Gaussian distribution that presents 
a VA power consumption is constructed. Afterwards, the model con­
struction of a VA is achieved by employing its Gaussian parameters. 

In fact, a VA in the data base is presented as a difference HMM [50], 
which is determined by a set of parameters À = (?r, A, B) that: for Z 
number of states and 1 ~ i,j ~ Z, ?r = {rr;}ZX ' is the state distribution 
vector, where ?ri = P [ql = il, P is the probability, and qk is the state at k, 
A = {aij}zxz is the transition matrix, where aij = P [qk = jlqk-I = il, and 
B = (bij}zxz is the emission matrix, where bij(LlYk) = ./f/' (LlYk;J.lij ' ai}) and 
./f/' ( .) is the Gaussian function. For simplicity, we refer to a difference 
HMM, as a HMM in the rest of the paper. The ADC creates a VA as a 
two-state HMM (Z = 2) with initial parameters Ào = (?ro, Ao , Bo). 

Accordingly, a VA's Gaussian model parameters are exploited to 
initialize its emission matrix Bo, expressed by (6). Since the Gaussian 
parameters are the mean and variance of Pdiff, they are used to in­
itialize emission matrix with regard to difference HMM. 

(6) 

In order to calcula te ?ro and Ao, an operation period of a VA (that we 
are modeling) is captured in the aggregated signal. For this purpose, we 
categorize LlYk that correspond with a VA, by using its Gaussian model, 
through (5). In addition, time indexes of LlYk are defined in the data 
frame. As a result, we extract approximate operation cycles of a VA by 
using the sign of these power values and their time indexes. To be 
precise, we match the consecutive LlYk that have inverse signs (a posi­
tive matches a negative), to form the operation cycles, as shown in 
Fig. 2. In this Figure, the black-dotted bars are classified power values 
and red rectangles are VA's operation cycles. On the basis of the cap­
tured operation, we create an ON/ OFF state sequence of a VA. By 
counting the number of states in this sequence, ?ro and Ao are computed. 
In fact, we employa state-indicator function, based on (7) and (8) to do 
this. These equations are explained in the model revision phase since 
they are a rule of the modellearner. As a result, a new VA is constructed 
and stored in the database. The above procedure is done for ail new Pol, 
successively. 

As mentioned, the Pol also include the recurrent patterns, which 
their corresponding VAs have been previously modeled and stored in 
the database. Therefore, we have a set of VAs (new and previously 
modeled) that are revised within the model revision phase. As high­
lighted before, we explain this process for a single VA. ADC revises a VA 

Fig. 2. The schema tic of approximate operation cycles of a VA. 
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through an on-line learning procedure, capable of updating the model 
parameters by estimating their posterior probabilities. This procedure 
takes advantage of Viterbi Training (VT) algorithm in order to expedite 
the training. VI is a logical fit for our method, since it is an un­
supervised learning algorithm based on unlabeled data [51 J. VI is 
simpler, more robust, and significantly faster than Baum-Welch algo­
rithm. Therefore, it performs weil with regard to an online un­
supervised update to HMM parameters [52J. VI algorithm first makes a 
best-guess to initialize the model parameters. Due to the lack of prior 
knowledge, we have extracted the initial parameters directly from the 
aggregated signal. For a previously modeled VA, we use its parameters 
from the past window. Afterwards, VI (Unlike Baum-Welch algorithm) 
employs the most likely state sequence to re-estimate HMM parameters. 
Accordingly, we utilize standard Viterbi algorithm to decode the state 
sequence of a VA (using its HMM parameters) and capture its best state 
sequence. In fact, we disaggregate a VA from the aggregated signal in 
order to estimate its HMM inference. As a result, the most likely state 
inference is exploited by VI to update a VA's HMM. The state dis­
tribution vector and transition matrix are re-estimated by using (7) and 
(8) 

(7) 

(8) 

where I j(qn) is the state-indicator function, which is one for qn = i and 
zero otherwise. qn is a V A's best state inference at observation n. Ac­
tually, the numerator and denominator in (8) are the number of tran­
sitions from state i to state j, and the number of transitions from state i, 
respectively. As mentioned, the Eqs. (7) and (8) are also used to cal­
culate 71"0 and Ao. Moreover, the best state sequence, q is used to detect 
Pdiff that are consistent with its state changes, through (9). 

(9) 

Consequently, the mean and variance of these power values are 
calculated to update a VA's Gaussian model and construct its revised 
emission matrix based on (6). The model revision phase re-estimates the 
HMM parameters of ail V As in the database, which have been detected. 
It can be deduced that ADC adaptively revises VAs' parameters (both 
their labels and HMMs) by employing their information from the pre­
vious time. In fact, our model revision phase can be executed within 
either the current time window or the occurrence time window. The 
latter is a time window that starts from the first time (iabeled in the 
database) that a VA has been detected. Regarding the data frame 
structure, occurrence time window can have a maximum length of one 
day. The model revision in such a window is mainly preferred, because 
it can yield more accurate estimation of parameters. Therefore, it can 
assit with detection of VAs' missing operation sequences From previous 
times. Indeed, our modeling process gradually enhances the data base 
structure in an adaptive on-line context. 

3.2.3. Database management 
ADC continuously monitors the database and aggregated signal in 

order to implement the above mechanisms at every time window. As a 
result, VAs are constructed and stored in the data base. ADC is set to 
start the process of data base construction from a time window with 
least number of patterns. In this case, we consider the minimum of two 
patterns. Consequently, it avoids the modeling during peak hours, 
where the rate of overlapping and the number of invalid patterns are 
higher. In fact, ADC manages Pol in the following orders to update the 
data base (see Fig. 3). 

1- Previous VAs: First, the detected VAs, which have been previously 
modeled are selected. Consequently, their models are revised and 
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their power profiles are reconstructed and disassociated from the 
aggregated signal, separately. 

2- New VAs: Second, the new VAs are constructed and stored in the 
data base. Subsequently, they are treated like existing models, de­
scribed in 1. 

We have realized that disaggregating the previous VAs first, pre­
vents the data base from invalid new ones. In fact, the aggregated signal 
changes by disassociating the previous VAs from it. Therefore, sorne of 
new Pol are not valid for the changed aggregated signal. As a result, 
ADC rejects these new patterns and accelerates the modeling process. 

Accordingly, by disaggregation of VAs' power profiles from the 
aggregated signal, a residual remains at the end. In the context of a 
steady-state analysis, the devices such as fridge with considerable 
transient can cause the load disaggregation practice to fail in capturing 
either their or other loads' operations during the same period. Such 
cases result in a residual that can contain the missing operation cycles 
of the loads. In fact, this situation can be avoided by using an effective 
preprocessing, generally a high order filtering. However, the pre­
processing can cause the loss of operation events of other appliances. 
Therefore, we develop a residual process that ai ms to capture the 
possible missing operations in the remaining signal. Our residual pro­
cess only looks for the probable operations of previously stored VAs and 
not constructing new ones. This process employs the pattern detection 
step to recognize any recurrent patterns in the residual signal. 
Consequently, it revis es any VAs that it detects its pattern in the re­
maining signal through the model revision phase. Generally, the 
missing operations are related to VAs that present devices with high 
transient events like fridge. These operations have not been successfully 
disassociated through the main process. Therefore, our residual analysis 
intends to improve the performance of the modeling process by cap­
turing the missing operations of VAs. 

Aggregated signal 

Model detection and supervision 
(New and recurrent patterns) 

Yes No 

Model construction 
(New patterns) 

Model revision 
(Recurrent patterns) 

Residual analysis 

Yes 

Fig. 3. General structure of the data base construction process at every time 
window (End means that the process moves to the next window). 
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3.3. Load profiling 

Since we have no prior knowledge about existing appliances, we 
estima te their power profiles. In fact, our ADC is capable of an un­
supervised load profiling of VAs. Load profiling can be executed in ei­
ther current time window or occurrence time window. A VA's load 
profiling is performed by using Pdiff that correspond with the state 
changes in its HMM inference based on (9). ADC applies KDE, expressed 
by (1), to the corresponding Pdiff in order to determine the power value 
with the highest density. This value is considered as the power con­
sumption of the related VA. Subsequently, the V A's power consumption 
is multiplied by its state sequence inference in order to build its power 
profile. 

4. Evaluation framework 

Our intention, stated in the Section 1 is evaluated based on the 
following framework. 

4.1. Dataset 

We employa publicly available dataset and an experimental data, 
described as below: 

1- ECO (Electricity Consumption and Occupancy) dataset: We utilize 
the comprehensive ECO dataset, suitable for load disaggregation 
studies [53] . In fact, in [1 ], we have demonstrated ECO as a profi­
cient dataset with properties that lack in other databases. In addi­
tion, we are interested in load modeling of Electric Water Heater 
(EWH), due to its influence over total electricity consumption of 
Quebec houses, where this study is conducted [54,55] . Therefore, 
we utilize our dataset development tool, discussed in [56] to gen­
erate the EWH's profile. Subsequently, we construct our total signal 
by adding EWH data to ECO aggregated signal. We do not consider a 
set of targeted appliances due to the lack of prior information. 
However, our results demonstrate that the constructed VAs in the 
data base include household loads with major power consumption. 
Therefore, they are comparable with targeted appliances, that are 
modeled in other studies, which benefit from any kind of prior 
knowledge. 

2- Experimental data: We have developed a data acquisition system to 
provide our experimental data [57] . Because of stochastic un­
supervised nature of the process, the experimental test mainly in­
tends to asses the algorithm capability in a low expectation scenario. 
This scenario processes the real aggregated data of a set of two 
household appliances with high energy consumption, consisting of a 
fridge and an EWH. Although two appliances are targeted, the 
number of Pol, generated by their aggregated signal account for 
several VAs (discussed in detail below). This makes our real case 
worthy of examination. 

4.2. Simulation report 

Our adaptive database construction approach requires its specific 
context for results' presentation in order to highlight important matters 
(which have not been necessitated in other studies). 

1- Resulting models: The electrical features of constructed VAs are 
presented as the final results of the modeling process. VAs can be 
labeled by using of these features and general information of 
household appliances. 

2- ADC steps: ADC consists of different procedures, which require their 
own analysis. Accordingly, model detection and construction as the 
main steps of ADC are analyzed. Furthermore, we illustrate ex­
amples of pattern recognition and load profiling processes. 

3- Simulation process: Due to the adaptive nature of the algorithm, not 
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only the results, but also the process evolution is elucidated in order 
to provide an actual evaluation. Furthermore, the structure of the 
designed data base is represented in order to detail its management 
by ADC within the process. Additionally, the capability of our 
adaptable procedure to capture the dynamic of the consumption and 
improve the estimated parameters of VAs is discussed. 

4.3. Accuracy metrics 

We describe our database construction results by using energy es­
timation accuracy (10) and FI-score (11), detailed in [58,59], respec­
tively. 

(10) 

where Xk and Xk are power consumption of reconstructed VA and its 
actual corresponding appliance. 

FI = 2 x precision x recall 
precision + reeall (11) 

that precision = ~ and reeall = ~, in which Ip presents true po-
lp +;p tP+Jn 

sitives (number of correct detection of an appliance's ON state), Jp 

stands for false positives (number of false detection of an appliance's 
OFF state as ON), and Jn expresses false negatives (number of false 
detection of an appliance's ON state as OFF). 

The adaptive scheme can maintain the recurrence of a pattern when 
it is weakened by the other patterns' presence. Nevertheless, regarding 
our diagnosis purposes, its capability to correctly diagnose the opera­
tion state of a VA is evaluated. Accordingly, we interpret increase/ de­
crease in the density of a VA's recurrent pattern as its ON/ OFF opera­
tion states, respectively. Afterwards, we apply the diagnostic odds ratio 
(DOR) to our interpretation. DOR is a single indicator of a diagnostic 
test performance [60]. It is used in medical testing with binary classi­
fication as the ratio of the odds of the positivity in disease to the odds of 
the positivity in non-diseased, described by (12) 

DOR = !!../!!. 
Jp ln (12) 

that ln describes true negatives (in our case, number of correct detection 
of an appliance's OFF state), and other parameters are as above. 95% 
confidence interval (95%CI) of DOR in terms of 
exp [log (DOR) + 1.96 x SE(log(DOR»] is also computed, for which SE is 
the standard error, defined by (13) 

1 1 1 1 
-+-+-+-
Ip ln Jp Jn 

SE(log(DOR» = 
(13) 

DOR values range from zero to infinity, which values lower than one 
represent an erroneous test, a value of one indicates the test inability to 
discriminate between true and false, and higher values imply better 
discrimination [60] . Moreover, we examine the pattern recognition 
results by using diagnostic effectiveness ratio as a simple metric, ex­
pressed by (14). 

Eff = __ I_n _+_t-,--f __ 

ln + If + Jp + In (14) 

Egarter has also used this metric however, diagnostic effectiveness 
ratio is prevalence-dependent and should always be examined con­
sidering other diagnostic accuracy me trics. It is noted that DOR is 
prevalence-independent [60] . 

5. Results and evaluation 

We have utilized the aggregated power consumption signal in order 
to examine our proposed approach. The results are presented in a 
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period of one day, considering the length of the data frame. 
Accordingly, the household data base construction results for ECO 
Houses 2 and 6 are presented in Tables 1 and 2, respectively. These 
houses consist of appliances with different electrical characteristics. 
Particularly in [5], the author has demonstrated ECO House 2 as one of 
the challenging cases for load modeling among three popular datasets. 
For a clear comprehension of constructed VAs, we have labeled them 
with regard to actual appliances that they have uncovered. 

In both cases, ADC has created VAs that correspond to household 
appliances' with major power consumption, by use of no prior knowl­
edge. In fact, these appliances, which consume a massive energy in 
residential houses, are commonly targeted due to energy saving issues. 
For example, EWH accounts for 20% of electricity bills in Quebec, 
Canada [61) . We have presented the electrical features of VAs (their 
mean and variance) since they are sensible. The database of House 2 
has comprised 12 VAs among which, 6 have explained actual appli­
ances. On the other side, in the data base of House 6, there have been 9 
VAs, that 5 of them have corresponded to real loads. Impractical VAs 
(remaining ones in both cases) have been most/y related to transient 
and overlapping events, specifically during peak hours. Unlike Kim, we 
have not assumed a constant variance however, in order to avoid 
overfitting problems, we have considered an arbitrary upper bound of 
700 W [62) . In fact, the algorithm can be improved by analyzing var­
iance stability to prevent leaving it as a free variable [10) . Nonetheless, 
except for two VAs, our adaptive on-line process has maintained the 
variance variations. Furthermore, it has successfully managed the var­
iance of ail VAs in House 6. Actually, this variable highly varies due to 
our entirely stochastic unsupervised process. However, we only present 
the values in the last window of a VA's presence based on its recurrent 
pattern. 

In addition, we have evaluated the main steps of ADC to create VAs. 
The model construction accuracy has been computed by using re­
constructed power profile and state sequence inference of a VA based 
on (10) and (11), respectively. In order to effectively show the model 
construction ability, these metrics are only computed for the occurrence 
time window of a VA. This avoids the imbalance classes, which can 
affect FI-score results. Furthermore, it is more practical considering our 
study that investigates a NILM system with diagnosis purposes. 
Accordingly, it can be observed that the model construction has 
achieved high scores in a fully unsupervised process, especially FI-
score. Additionally, without any prior information, it has favorably 
determined VAs' power values and estimated their energy consumption, 
considering Acc. However, the model construction accuracy of VAu in 
House 2 and VAs in House 6 has scored low. VAn has a similar power 
value to VAs with a large variance, and its order in the data base is after 
VAs. Therefore, it has been frequent/y categorized as VAs. Actually, VAs 
are handled in every time window based on their storing order in the 

Table 1 
Appliance data base construction results for ECO House 2. 

VA Madel (j.t , a' ) Model construction accuracy 

F.-score Acc 

VA, (2750.76, 137.53) 98.5% 94% 

VA, (79.8, 3.99) 95% 87.5% 

VA7 (1854.19, 700) 99.6% 99.7% 

VA. (2352.7,700) 98.6% 84.6% 

VA IO (1192.3, 191.2) 99.3% 98.4% 

VAl! (2300.36, 115.02) 77% 66% 
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database. Moreover, VAs presents one of the operation states of coffee 
maker that has a high-varying power consumption (between 250 W and 
400 W) with a very short duration (one second). Consequently, the 
model construction precision of VAs has not scored high specifically, its 
Acc. Moreover, it can be observed that VAs and VAIO in House 2 as weil 
as V As and VAs in House 6 characterize two different operation states of 
stove and coffee maker, respectively. This signifies the fact that a 
thorough unsupervised appliance-Ievelload modeling by using only one 
source of information is limited, regarding multi-state appliances. 

Moreover, the model detection me trics have been calculated for the 
total windows of analysis (One day). It can be noticed that model de­
tection phase has carried out very accurate results, specifically in re­
cognition of VAs related to regular loads such as stove. The lower re­
sults for V As, presenting periodic loads such as Fridge are mainly due to 
the loss of their patterns during peak hours. However, DOR results 
demonstrate the pattern recognition capability to discriminate between 
operation states of VAs. Additionally, we have considered the results of 
the residual process for the accuracy reports in the above Tables. The 
primary goal of residual process is to capture the signatures with high 
transients since we have avoided a high-order filtering. Our residual 
phase has captured missing operations of VA2 in House 2 at 7,8, and 
11AM as weil as 6 and 9PM and increased its final accuracy from 93% 
to 95%. In addition, it has detected VAl 's missing operations in House 6 
at 6 and 7 AM. However, our adaptive process has been able to detect 
these operations in the next windows and thus, they are automatically 
computed in the accuracy. 

By comparing VAs of the above experiments for example EWH, it 
can be deduced that their order is based on their first-time detection. 
Consequent/y, they have gradually constructed the database. This de­
monstrates ADC capability of capturing the dynamic of consumption 
through continuously monitoring the aggregated signal and uncovering 
VAs. In addition, through its adaptable procedure, ADC has prevented 
the data base from accumulating false VAs and converged to a specific 
number of models in both cases. This has been illustrated in Fig. 4 for 
House 2. Moreover, we have presented the data base structure of House 
6 for two VAs during one day in Fig. 5. This details the way that we 
store and manage VAs in the database. In order to make our approach 
feasible, we have designed an organized database with sufficient in­
formation to manage it efficiently. It can be seen that our ADC identifies 
a VA by five features. 'Name' is the index of a VA that defines its order 
in the database. 'Pattern ' presents its power consumption pattern. 
'Trend ' describes the density of its pattern and 'Model' is an object that 
comprises its HMM parameters. These information are updated in every 
time window. Finally, 'Flag' that contains several cases, which define 
the appropriate process for a VA. Accordingly, 'S' (Start) presents the 
first time that a VA has been detected and handled by model con­
struction step. 'IN ' means that adaptive process has maintained a VA in 

Madel detection accuracy Actual appliances 

Eff DOR SE 

(95% CIl 

89% 2.85 2.05 EWH 
(0.05-158.63) 

73% 85.8 1.62 Fridge 
(3.61-2041) 

95% 141 2.1 7 Kettle 
(2-9917.9) 

92% 45 1.84 Stave 
(1.23-1650.6) 

96% 225 2.1 
(3.6-14018.5) 

96% 225 2.1 Dish washer 
(3.6-14018.5) 
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Table 2 
Appliance data base construction results for ECO House 6. 

VA Madel construction accuracy Madel detection accuracy Actual appliances 
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Fig. 4. ADC results of capturing the dynamic of aggregated power consumption 
of ECO House 2 through recognizing its recurrent patterns and creating their 
corresponding VAs. 

the modeling procedure due to the recurrence of its pattern. Therefore, 
it has been managed by model revision step. 'OUT' shows the time that 
a VA has been excluded from the process. In 'Flag', ' time' represents the 
day and the hour. The great advantage of 'Flag', enabled by our 
adaptive on-li ne approach, is that ADe can efficiently manage a VA and 
in turn, accelerate its modeling process. 

Moreover, we have depicted the results of recurrent pattern re­
cognition for House 2 in Fig. 6. The color fluctuation from dark to light 
presents low and high density regions, respectively. This Figure de­
monstrates the procedure capability to recognize new patterns and 
maintain recurrent patterns. Although the actual appliances are un­
known, it is possible to propose hypotheses. The recurrent patterns, 
related to periodic loads are observable at ail times. For example, at the 
bottom of the Figure, the continuous increase in density value wi th low 
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Fig. 6. ADC results of recurrent pattern recognition of aggregated signal of ECO 
House 2. 

power consumption can be attributed to appliances such as fridge. 
However, a slight reduction in density of this pattern during peak hours 
(12-16 h) can be related to its overlapping with other patterns. 
Nevertheless, the results demonstrates that our adaptive sc he me is able 
to maintain the presence of a pattern and avoids the loss of its recurrent 
pattern. On the other hand, recurrent patterns of regular appliances 
such as stove diminish steadily. Additionally, there are also other pat­
terns, related to transient events, load combinations, and overlapping 
that can challenge the pattern recognition of actual loads. In fact, our 
analysis demonstrates that a memory-Iess pattern recognition can per­
iodically miss the recurrence of patterns and their operation times. This 
can lead to define mistakenly new VAs, lose their probable operations, 
and renew their starting time, which is important for adaptive on-line 
training. 

In addition, we have illustrated unsupervised load profiling for 

Name: VA, 
1 

Pattern : 2026.86 
1 

Trend: 0.0022 

Model 

[0.9936 0.0064) 

[ [9.9986e·01 1.3980.-04) 
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[[ O. 2088.64) [[ 208.86 208.86) 
[-2088.64 O. Il [208.86 208.86) ) 

Flag 
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Case OUT OUT OUT OUT OUT OUT S IN OUT OUT OUT OUT 
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Case OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT 

Fig. 5. The schematic of the data base structure of ECO House 6. 
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House 2 in Fig. 7. Load profiling has been presented for occurrence time 
window of VAs. ADC ability to manage the recurrent patterns within 
the modeling process has been also shown in this Figure. It can be seen 
that VA7 (see Table 1) has not been profiled at the end of the process 
since it has been excluded by ADC ('OUT' case). This is the case for VA9 

in House 6, as shown in Fig. 5. As it can be concluded from Table l , 
VAn is not efficient to build an accurate power profile. It should be 
highlighted that VAu performs relatively efficient during the proce­
dure, which is important for on-line applications. However, we have 
presented limited examples to avoid an exhaustive discussion. Indeed, 
Fig. 7 has been presented to indicate the effectiveness of created VAs to 
reconstruct the power profiles of actual loads. 

Moreover, the ability of our adaptive learning as a retrievable 
procedure to improve the model parameters has been explored. We 
have described this ability based on better recognition of operation 
cycles of a VA due to its upgrade within time. This has been illustrated 
in Figs. 8 and 9 for VAl in Houses 2 and 6, respectively. The actual 
appliances' signature has been used to show the results' efficiency. It 
can be observed that the adaptable procedure is able to modify a failure 
(red rectangle) to a success (blue rectangle) by revising VAs' para­
meters. However, the required time to correct a faulty recognition is 
different. Moreover, it can be realized that the ability of adaptive 
process to improve the model parameters can benefit more VAs with 
frequent operation (VAl and VA2 in both cases). Indeed, a failure can be 
attributed to model deficiency for different reasons. Nevertheless, our 
adaptable structure, designed with an on-line learning phase is capable 
of recovery from the failure. 

Although the public datasets are actually real-world measured data, 
we have also utilized the data of our developed acquisition system. As a 
thoroughly stochastic process, the intention is to explore the approach 
performance in a low expectation scenario. Accordingly, the process has 
been targeted to construct the V As, corresponding to power measure­
ments of a fridge and an EWH. The results of data base construction 
have been presented in Table 3. It can be seen that ADC has successfully 
constructed VAs, related to our targeted loads. However, the model 
detection accuracy of VAl is very low that demonstrates its inadequacy 
of discrimination between operation states. Notwithstanding our EWH's 
one state operation, there are two VAs that describe it. To be precise, as 
it can be observed in Fig. 10, our low expectation scenario (two ap­
pliances) is a challenging one. From recurrent patterns with high den­
sities, it can be thought that severalloads exist in the aggregated signal. 
Fridge has high lengthy transients with steady-state power variations. 
Therefore, there are 9 recurrent patterns that only belong to Fridge. As 
a result, the process has frequently lost its main pattern. Furthermore, 
EWH exposes 5 recurrent patterns. In fact, at 12PM, a variation in 
EWH's power consumption has generated different patterns that re­
sulted in a new VA (VA3). Nonetheless, not only our ADC has main­
tained the main patterns of VAs but also it has constructed a database of 
only three VAs and rejected aIl invalid ones. Indeed, our experimental 
test can be a case for diagnosis of either acquisition system or appli­
ances, particularly regarding the behavior of our fridge. The above 
notes has made it worth to investigate a low expectation scenario of 
real-world data. 

6. Discussion 

In fact, our thorough study necessitates a discussion, which is pro­
vided in the followings. 

6.1. Our approach 

In this study, we have investigated the essential prerequisite of a 
NILM system for diagnosis purposes. Accordingly, we have designed a 
time-variant load modeling system (regarding the dynamic of power 
consumption) with two important abilities, the recognition of new ap­
pliances and the continuous learning of their parameters. Indeed, these 
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abilities are important for diagnosis systems that require knowledge 
about new loads and their standard behavior. Consequently, we have 
proposed our approach in terms of household appliances database 
construction. We have utilized three important methods to formulate 
our database constructor with regard to its features, as follow: 

1- Our load modeling structure only uses the measured data of the 
aggregated signal. Therefore, it is advised to employ a method, 
capable of operating with less or no initial information [2] . There­
fore , notwithstanding its complexity, we have utilized an un­
supervised approach. 

2- In addition, our time-varying analysis with less/ no prior knowledge 
signifies the exploitation of an adaptive structure to extract the 
preserved sequential information in the data [46] . As a result, by 
using the adaptive estimation of appliances' model parameters, we 
have developed a thoroughly adaptable procedure for an effective 
interpretation of their behavior. 

3- Furthermore, an efficient ALM scheme mostly targets the devices 
with high power consumption, whose their accurate energy esti­
mation can assist in a notable cost reduction. Accordingly, we have 
used the state-of-the-art method of HMM that is able to build robust 
models of household major loads. 

6.2. Comparative study 

This study is not presenting a new load disaggregation algorithm to 
be compared with existing load disaggregators. In fact, the database 
construction approach has not been adequately explored, especially in 
this scale. Moreover, there are not specifie studies with the same ob­
jective to provide a fair comparison. Accordingly, we have provided 
detailed results with a thorough discussion to enable a convenient 
evaluation. Nevertheless, we have developed a fully unsupervised 
method without any prior knowledge. From this stand point, Hart, Kim, 
and Guo have provided a similar analysis. However, Hart and Kim have 
utilized their own experimental data to report the results, that prevents 
a sensible comparison. In addition, Kim has not provided appliance­
level results and except for fridge, his targeted appliances have not been 
among household devices with major loads. Guo has used a public 
dataset however, he has neglected to report disaggregation results for 
comparison. To the best of our knowledge, unsupervised disaggregation 
studies have mostly considered a set of initializations by use of general 
information. However, due to diversity of household appliances in types 
and brands (for example fridge in our case studies), providing an ap­
propriate space of information is difficult. Therefore, they have con­
sidered more specifie information that has resulted in a likely semi­
supervised analysis (an unsupervised method with specifie priors). 
Indeed, general information can be beneficial since an analysis with no 
prior knowledge can de cline an accurate interpretation of the results 
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Fig. 9. The adaptive process capability of recognizing the correct operation cycles of VA, in ECO House 6 by revising its model parameters through the time. 

and decrease the performance of the modeling process. However, we 
propose to employ these information in the level of housing stock to 
enhance its application by reducing uncertainties. 

Moreover, it should be noted that the recent studies tend to report 
the disaggregation results in the scale of entire house. The critical 
downside of this aspect is that it does not satisfy customers' preferences 
and producers' interests, who seek the energy reports of individual 
appliances. Furthermore, such assessment is not suited for our ap­
proach, which outlines appliance-Ievel model construction. 
Notwithstanding the above note, the performance of the ADe is 
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evaluated in terms of a disaggregator (regarding load disaggregation 
studies) in order to deeply discuss this aspect of our proposed method, 
as below. 

1- Feature choice: We have analyzed steady-state operation of house­
hold appliances, which can be executed through a system with low­
sampling frequency. In fact, regular smart meters are able to provide 
data in 1 Hz sampling frequency to be used for load disaggregation 
algorithms [18] . 

2- Accuracy: A disaggregator is required to have a minimal accuracy of 
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Table 3 
Appliance data base construction results using experimental data. 

VA Model construction accuracy 
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Fig. 10. ADe results of recurrent pattern recognition of aggregated signal of 
experimental test. 

80% [9] . However, our extensive method is not only a disaggregator 
because, it consists of two main processes of 'model detection and 
supervision' as weU as 'model construction and revision'. In ac­
cordance with each process, a set of accuracy metrics have been 
presented. Accordingly, AOC has met acceptable results for aU cases, 
and high accuracy scores for the majority of them (considering aU 
accuracy metrics). It must be highlighted that the modeling process 
is influenced by the recurrent pattern recognition step, which makes 
the numerical analysis of our method's accuracy, particular. In order 
to demonstrate this fact, we have utilized our constructed model of 
VA9 in House 6 for merely a load disaggregation, that has resulted in 
FI-score of 99.4% and Acc of 98%. In addition, the studies that 
mention the above accuracy have conducted either supervised or 
semi-supervised methods. Therefore, they have had access to sub­
meter measurements or a set of priors. To be precise, they have a set 
of known appliances. Indeed, it is chaUenging to infer the power 
consumption's model of an unknown load in a modeling procedure 
with no prior knowledge (modeling from scratch). This is the reason 
that our energy estimation accuracy has lower scores. 

3- No algorithm training: This aspect refers to a disaggregator that does 
not require any human intervention. Our AOC employs an un­
supervised method with no prior knowledge and thus, notably re­
duces human involvement in the set-up phase. Due to supervised 
and semi-supervised nature of the most load disaggregation 
methods, human efforts is required in initial model construction. In 
addition, the paper tackles the concept of appliances' automatic 
labeling by using an unsupervised load profiling in order to reduce 
final human intervention. This concept has been mainly ignored in 
previous studies. In fact, the necessity for human supervision is a 
fundamental issue of NI LM systems. This issue can hinder real on­
line applications, reduce customer motivations after purchase, and 
influence the usability of manufactured products. By constructing a 
household data base of virtual appliances, this paper intends the 
maximum reduction of human intervention. 

4- (Near) real-time application: An on-line learning system with 
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Model detection accuracy Actual appliances 

Eff DOR SE 

(95% Cl) 

21% 0.23 2.06 Fridge 
(0.004-1 2.6) 

73% 27.5 1.5 EWH 
(1.3-560) 

96% 301 2.08 
(5.09-17794.6) 

dynamic HMM parameters has been proposed in this paper. It em­
ploys a set of low-complex algorithms to expedite the whole process 
of appliance data base construction. In fact, load disaggregators have 
mostly encountered an off-line phase and the concept of on-li ne 
have been proposed for an on-line disaggregation. 

5- Type of appliances: ADC constructs the models of finite-state load 
appliances in terms of two-state loads. Therefore, it cannot identify 
multi-state appliances and thus, it considers them as a composition 
of two-state loads. In fact, due to unsupervised nature of our method 
that use no prior knowledge about household appliances, it is almost 
impossible to identify multi-state appliances. These appliances have 
a wide-range of power consumption based on their brand, for ex­
ample washing machines. Therefore, their recognition requires 
general information or sub-metered data compared to periodic loads 
with similar power consumption such as fridge. Nevertheless, it 
should be noted that a great advantage of our ADC is to recognize 
the type of a pattern (regular or periodic) by continuous monitoring 
of its value and operating time. Therefore, it can provide hypotheses 
about the type of a load, for example multi-state devices that are 
normally regular loads (their operation period is limited). In addi­
tion, our proposed method has difficulty with modeling of identical 
loads. Therefore, in the House 2, we have extracted Freezer's load 
profile from the aggregated signal. Indeed, the analysis of periodic 
loads with highly similar power consumption values (such as fridge 
and freezer in ECO House 2) is a fundamental issue of NILM studies, 
which has been mainly ignored. One reason can be attributed to the 
fact that, this is a rear scenario among popular datasets that have 
been utilized for load disaggregation, such as REDD (Reference 
Energy Disaggregation Data Set) [58] . In fact, our set of appliances 
is comparable with other studies. It should be added that con­
tinuously variable loads have not been in the scope of this analysis. 
ActuaUy, most of disaggregators have ignored these loads since, 
normaUy they are not among household appliances with major 
power consumption. 

7. Conclusions 

In this paper, the approach of adaptive on-line unsupervised ap­
pliance-Ievel load modeling has been proposed. We have designed a 
time-variant load modeling procedure for load diagnosis goals of NILM. 
In fact, the disaggreation methods have been the focal point of NILM 
studies, that has caused its diagnosis goal to be ignored. Therefore, we 
have provided a thorough analysis of essential prerequisite of a NILM 
system with diagnosis purposes. Our proposed approach has resulted in 
an auto no mous household data base construction system. Our future 
studies focus on the improvement of our household database con­
structor and its utilization for diagnosis systems. 
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3.4 On-Hne anomaly detection approach 

3.4.1 Background 

The concept of household appliances' anomaly detection has been the third important element 

of an ALM system that has drawn our interest. Behavior that does not comply with the expected 

manner, which is characterized based on the definition of the normality, can be attributed 

to anomaly [53]. Particularly, the focal point of our analysis is the operation-time anomaly 

detection for both technical and mathematical reasons. Technically, household electrical 

circuits have been designed to capture a load with faulty operation power (like a defective 

washing machine that has current leakage) rather than one with anomalous operation time (like 

a functioning stove that is left ON). Furthermore, household devices with notable electricity 

consumption are mainly finite-state loads such as refrigerators, stoves, and EWH that mostly 

advertise their anomalous behavior through operation time deviations. Mathematically, the 

operation time of an electrical appliance is straightforward to model, particularly with regard 

to state-of-the-art methods. For example, in the context of probabilistic models, the likelihood 

estimation of a refrigerator's operation sequence compared to its state sequence shows notably 

higher variations. In fact, due to power consumption transients and fluctuations of a refrigerator, 

the examination of its operation sequence requires an exact model of power consumption 

that is not the case for its state sequence. Additionally, the anomaly detection of appliances 

can be explored in both aggregate and appliance levels. Nevertheless, state-of-the-art NILM 

(aggregate level) methods are not adequate to provide efficient anomaly detection and thus, 

diagnosis services [31 ], [57]. Therefore, an appliance-level anomaly detection analysis has 

been considered that focuses on operation-time deviations. This idea is signified with future 

low-priced smart plug technologies. This analysis targets an on-line manner where a connected 

structure continuously monitors and analyzes each data arrivaI to capture possible anomalies. 

Besides, experimentation with actual anomaly scenarios has been another motivation of this 

analysis that has been neglected in other relevant studies [31], [57]. 
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3.4.2 Methodology 

An appliance-Ievel analysis of anomaly promotes the exploitation of techniques that are 

low-priced, computationally inexpensive, and comprehensible specifically, from the view of 

customers. Accordingly, the energy and average power consumption information that are 

also compatible with smart metering technologies have been utilized for the anomaly study. 

Moreover, the refrigerator has been targeted as the appliance candidate due to the fact that it is 

a universal household device with intensive consumption, which can be subject to different 

anomaly conditions. In order to permit real implementation, the entire examination has been 

done by using the real data of our acquisition system. Our methodology to execute the third 

study is provided through the following phases that have been illustrated in Figure 3-3. In this 

Figure, the online anomaly detection procedure is initialized with a threshold that is required 

to identify ON/OFF operation states of appliances candidate. 

- First, normal and anomalous behaviors of the appliances candidate are explored through 

analyzing their energy and average power consumption factors based on different 

anomal y scenarios. This analysis focuses on the exarnination of the Probability Density 

Function (PDF) of these factors. Accordingly, it demonstrates the effectiveness of the 

information that is extracted from cyclic operations of the targeted loads to capture an 

anomaly. 

./,Random data of ,; 
sub-metered signa 

~ l, Raw data of ,1 On-line event 
normal operation detection 

~ ~ 
Normal behavior f--+ 

Probability density 
model construction function estimation 

~ 
On-line anomaly 

detection 

Figure 3-3 Black diagram of the on-line appliance-Ievel anomaly detection system. 
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- Second, a semi-supervised anomal y detection method with low-complexity is developed 

to model the analytical factors. This model explains the normal behavior patterns 

by using Gaussian distribution functions that are applied to standard data through an 

off-line training phase. Consequently, it is employed to distinguish anomalies through 

probabilistic thresholds, deterrnined based on Inverse Cumulative distributions of these 

functions. 

- Third, an on-li ne technique is proposed to efficiently monitor the energy consumption 

and provide dynamic information for consecutive anomaly detection algorithms. This 

technique detects the operation cycles of the appliances candidate and estimates their 

PDF for anomaly based on the corresponding models, captured from the normal data. 

In fact, on-line data that comprises random (both regular and irregular) instances is 

exploited to evaluate the performance accuracy of the method by using a complete set 

of diagnostic tests. 

3.4.3 Outcomes 

The results of an exhaustive study about household appliance-level anomaly detection with 

the focus on finite-state energy-intensive loads particularly, refrigerators have brought about 

the below explanations. 

- A useful understanding of the main opportunities and challenges of an operation-time 

anomaly detection by means of the analysis of energy and average power usages. 

- Important notice of appliances type, operation behaviors, and analytical features to 

design an efficient method that can effectively estimate any deviation from normality. 

- A critical proposition on an appropriate strategy to manage the time of anomaly de­

tection and diagnosis decision with regard to differences between faulty and abnormal 

operations of an appliance. 

The following study presents the aforementioned discussions in the context of residential 

appliances anomaly detection problem. 
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: ABSTRACT Anomaly detection is a significant application of residential appliances load monitoring 
systems, As an essential prerequisite of load diagnosis services, anomaly detection is critical to energy 
saving and occupant comfort actualization. Notwithstanding, the investigation into diagnosis of household 
anomalous appliances has not been decently taken into consideration. This paper presents an extensive 
study about operation-time anomaly detection of household devices particularly, refrigerators, in terms 
of appliances candidate, by utilizing their energy consumption data. Energy as a quantitative property of 
electricalloads, is a reliable information for a robust diagnosis. Additionally, it is very practical since it is low­
priced to measure and definite to interpret. Subsequently, an on-line anomaly detection approach is proposed 
to effectively determine the anomalous operation of the household appliances candidate. The proposed 
approach is capable of continuously monitoring energy consumption and providing dynamic information for 
anomaly detection algorithms. A machine learning-based technique is employed to construct efficient models 
of appliances normal behavior with application to operation-time anomaly detection. The performance of 
the suggested approach is evaluated through a set of diagnostic tests, by utilizing normal and anomalous 
data of targeted devices, measured by an acquisition system. In addition , a comparison analysis is provided 
in order to further examine the effectiveness of the developed mechanism by exploiting a public database. 
Moreover, this study elaborates sensible remarks on an effective management of anomaly detection and 
diagnosis decision phases, pivotaI to correctly recognition of a faulty/abnormal operation. Indeed, through 
experimental results of case studies, this work assists in the development of a load monitoring and anomaly 
detection system with practical implementation. 

INDEX TERMS Appliance load monitoring, on-line anomaly detection , energy consumption , load model­
ing, load diagnosis. 

1. INTRODUCTION 
With a 66.5 TWh electricity saving potential, residential sec­
tor becomes the world primary energy saving target among 
end-use sectors. The residential energy saving is reinforced 
by an inevitable increase in electricity prices and thus, cus­
tomers affordabi lity of spending on electricity consumption 
[1] , [2]. Residential sector accounts for nearly a portion 
of 60% over 2017-25 and 70% over 2025-40 of building 

electricity demand rise. A significant share of this demand is 
due to the huge growth in the quantity and size of in-operation 
appliances in the projection period to 2040. Therefore, effi­
cient operation and appropriate usage of household appli­
ances play an important role in the achievement of energy 
saving targets [3], [4]. 

The associate editor coordinating the review of this manuscript and 

approving it for publication was Luigi De RussisG. 

A. HOUSEHOLD ANOMALOUS APPLIANCES 

Household electrical appliances can undergo operational con­
ditions that violate their normal operation. These abnormal 
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conditions can be attributed to different causes that identify 
an appliance as anomalous. The consumption pattern of an 
anomalous appliance deviates from its expected behavior 
that complies with normality [5], [6]. From the perspective 
of normal behavior, both faulty operation due to electrical 
defects and abnormal usage due to customers' neglect can 
be defined as anomaly. Anomalous appliances can impede 
energy saving, reduce operation performance, and jeopardize 
safe operation. Accordingly, household appliances anomaly 
detection tools are highly useful for both customers to reduce 
the energy costs and system operator to enable energy effi­
ciency improvements [7], [8]. Indeed, a reliable and efficient 
operation of household appliances, preserved by anomaly 
detection systems can increase energy saving up to 12% [9]. 

B- MOTIVATION AND CONTRIBUTION 

Careful anomaly detection requires a framework that is capa­
ble of continuous1y monitoring appliances loads and provid­
ing their in-operation information for estimation algorithms. 
According1y, durable household load monitoring systems are 
emphasized as key enabler to designate such a structure 
[10], [Il]. Although, these systems have been thoroughly 
probed from both intrusive and non-intrusive aspects, their 
anomaly detection capability has not been fairly taken into 
consideration. In terms of Non-Intrusive Load Monitoring 
(NILM), few studies have only investigated the proficiency 
of load disaggregation methods for anomaly detection [12], 
[13]. Furthermore, in [Il], we have aimed to design a NILM 
system for diagnosis purposes. Nevertheless, state-of-the-art 
NILM methods are not adequate to provide efficient anomaly 
detection and thus, diagnosis services [Il], [12]. In fact, 
anomaly in electrical appliances has a dynamic stochastic 
nature, for which providing a training class is a tedious 
task. The complication increases since a house consists of 
a range of appliances with completely different operating 
features due to their various manufactures/models. Notwith­
standing a wide range of loads, the anomalous data is very 
lilTÙted that worsens the above problems [5], [14]. Therefore, 
an appliance-Ievel anomaly detection approach is suggested 
that investigates the sub-metered data of a targeted-appliance 
in-depth and subsequently develops its efficient anomaly 
detection method. This concept is augmented by the inade­
quacy of aggregate-Ievel anomaly detection techniques and 
advancements in cost-efficient smart plugs technology [15]. 
However, it has been almost ignored due to the interesting 
topic of a NILM with diagnosis abilities. 

This paper provides a comprehensive study on household 
appliance-Ievel anomaly detection by using energy consump­
tion information of a smart and a standard refrigerator as 
appliances candidate. Particularly, it thoroughly examines 
anomalous behavior of the targeting loads that is ascribed 
to irregularity in their time of operation. Accordingly, this 
study proposes: 1) an on-line operation-time anomaly detec­
tion system with generalization ability that is dynalTÙc to 
capture any deviation from normality in terms of faulty and 
abnormal operations; 2) a robust structure that is performed 
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by a set of straightforward algorithms and requires lTÙnimum 
intrusion, least amount of information, and low resolution 
data (highly compatible with current metering technologies); 
3) an efficient model of appliances normal behavior that 
is developed with practical application to diagnosis of an 
operation-time anomaly; 4) a highly accurate anomaly detec­
tion of appliances candidate, specifically periodic loads that 
consume a notable energy and are important for household 
energy saving; 5) the idea of diagnosis decision (as distinct 
from anomaly detection) that is resulted from an in-depth 
examination of operational conditions of anomalous appli­
ances in terms of faulty or abnormal. 

The rest of the paper is organized as follows. Section II 
provides a review of anomaly detection concept and its appli­
cations. Section III presents a thorough investigation into 
anomalous behavior of household appliances. Section IV 
describes the proposed approach through an in-depth dis­
cussion. Section V represents the results of the case studies 
and evaluates the method performance. Section VI discusses 
important remarks about anomaly detection and load diagno­
sis concepts in accordance with the provided analyses. The 
concluding remarks are presented in Section VII. 

Il. BACKGROUND 
Anomaly detection plays a key role in load monitoring and 
predictive maintenance [16]. In the following, this concept 
is outlined from different perspectives and consequently 
discussed with regard to power system sectors, especially 
residential zone. Generally, an anomaly detection method 
is determined based on the nature of anomaly, which is 
categorized in three different cla ses. The simplest type, 
known as 'point anomal y' , is a single data instance that is 
anomalous considering the rest of the data. The second class, 
expressed as 'contextual anomaly', refers to a deviation in 
a particular context regarding the structure of the data. For 
example, a temperature record of -30D C during hot seasons 
can be anomalous however, in the context of cold seasons, 
this report can occur. The third category, defined as 'col­
lective anomaly', implies a data portion that is collectively, 
not necessarily individually, anomalous [5]. For instance, 
a washing-machine program consists of individual events 
such as rinse, drain, and spin. Although these actions are 
individually normal, their occurrence in a wrong sequence 
can lead to a collective anomaly. From another viewpoint, 
anomaly detection methods are classified into 'data-driven ' 
and 'model-based ' practices, according to the way of acquir­
ing a priori knowledge. In the former it is presumed that 
a notable amount of data is available, while in the latter 
some fundamental comprehension about the physics of the 
system is used to create a model [8]. From the standpoint of 
formulating an anomaly detection problem, machine-learning 
techniques have been widely utilized [17], [18]. In this regard, 
three different mechanisms can be defined, accounting for: 
'Supervised', that is training a classifier by using labeled 
classes of both normal and anomalous data instances; 'Semi­
supervised', that is training only by utilizing a labeled set 

VOLUME 8, 2020 



S. S. Hosseini et al.: Practical Approach to Residential Appliances On-Line Anomaly Detection IEEEAccess 

of normal data; 'Unsupervised', that requires no training set 
since it groups the data under several clusters and defines 
dissimilar samples as anomaly. It should be noted that the 
supervised techniques simply consider an anomaly detection 
as a classification problem. On the other side, the semi­
supervised methods are broadly exploited to separate outliers 
regarding normal samples (especially, when the classes are 
imbalance) [6]. The aforementioned perspectives can be fur­
ther explored in the specified references. 

The concept of anomaly detection has been broadly 
explored in different research domains such as computer net­
work, image recognition, and machine operation [19]- [23] . 
In the context of power systems, thi s concept has been 
generally studied in the main grid sectors. Wang et al. have 
proposed a deep-learning based method for fault diagnosis 
in a power network by using the power f10w information 
[24]. Hong et al. have analyzed an integrated anomaly detec­
tion system for network intrusion in the substations [25]. 
Shaw et al have focused on the anomaly detection of loads 
operation power in distribution systems [26]. They have 
employed a supervised method based on high sampling rate 
data of transient events to provide a classification between 
anomalous and normal instances. It should be noted that Shaw 
has considered a non-intrusive approach. In small-scale grids 
such as institutional sectors, Cui and Wang have explored the 
anomalous behavior of a school's electricity consumption by 
visualization of its related data [27] . They have utilized the 
half-hourly energy consumption data to assist with the chal­
lenging task of eyeballing of data for detecting anomalies. 

At the household level, NILM ability to detect anoma­
lies has recently drawn researchers' attention. The authors 
have previously investigated the NILM capability to provide 
diagnosis services [11]. Actually, in [II], we have aimed to 
enable NILM diagnosi s capacity by designing a time-variant 
load modeling system. This framework exploits a recurrent 
pattern recognition and model construction mechanism to 
capture the dynamic of power consumption. Nevertheless, 
the essence of our analysis implies the difficulty of NILM 
methods to execute anomaly detection. Besides, other studies 
have mainly examined the proficiency of NILM methods for 
anomaly detection. Rashid et al. have evaluated the ability 
of household appliances load disaggregation techniques for 
anomaly detection [13]. Likewise, they have concluded that 
enhanced NILM algorithms are required to achieve such 
an ability. Furthermore, Rashid has made another similar 
study, where the inadequacy of NILM methods to pro­
vide anomaly detection has been inferred [12]. This infer­
ence has been made by manually inserting anomalies into 
limited number of appliances data from publicly available 
datasets. Therefore, their method of generating a synthetic 
anomalous data can point out further challenges of NILM 
in the presence of actual anomalies. Notwithstanding the 
above, in a priOf study, Rashid et al have proposed a 
NILM system for anomaly detection [9]. Similarly, they 
have used publicly available databases such as ECO that 
can bring about further questions on their inference about 
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anomalous appliances. For example, they have employed 
weather data to assist with their visualization of abnormal 
consumption. However, ECO dataset provides no information 
about the weather. Furthermore, their method, applied to 
power-Ievel ratings of a set of known appliances, provides a 
low performance compared to the accuracy of current super­
vised NTLM methods [11], [14]. This becomes more critical 
as they have not reported appliance-level anomaly detection 
results. Moreover, Jonetzko et al have suggested a non­
intrusive load detection and diagnosis by exploiting high­
frequency data with 4kHz sampling rate [28]. However, their 
study lacks to report any diagnosis results . Furthermore, due 
to utilizing a NILM method with a very low accuracy, they 
have reduced the dataset by removing the loads to increase 
the accuracy. Therefore, their method is not practical. 

In fact, NILM barriers to a useful anomal y detection stim­
ulates taking advantage of sub-metered measurements with 
regard to low-priced smart plugs technology. Accordingly, 
Ganu et al have provided a limited study about an appliance­
level monitoring system [29]. They have utilized several 
electrical features to explain appliances behavior. However, 
their method can be simply described by a Hidden Markov 
Model (HMM) [30]-[33]. Although they have stated their 
method is unsupervised, it is likely to be semi-supervised due 
to a training phase with predefined parameters. Additionally, 
they have neither proposed an anomaly detection method nor 
presented numerical results. In [13], Rashid has also reported 
the anomaly detection based on sub-metered data. However, 
by utilizing a window length of one day, hi s analysis is 
more suitable for an off-line run . In addition, as demonstrated 
in thi s study (Section IV), a daily analysis is not efficient 
for appliances anomaly detection especially, periodic loads. 
It can notably restrict normal model construction, threshold 
definition, and on-line applications. Furthermore, such a win­
dow size necessitates a longer training phase. On the other 
side, Rashid 's proposed technique has not been fairly exam­
ined since it has been mainly tested on one type of appliance 
anomaly (a refrigerator with continuously ON state). Consid­
ering the anoma1y detection rules, it can be concluded that 
his method is only suited for significant anomalous events. 
This can be related to the choice of the window range that 
has limited a more precise anomaly detection. Moreover, 
the results have not been adequately evaluated due to a limited 
diagnostic test that can be also sensitive to imbalance classes. 
On the other hand, thi s comprehensive study contributes to 
appliance-Ievel anomaly detection through actual experimen­
tation with the aim of sensible applications. To the best of 
our knowledge, household appliance-Ievel anomaly detection 
and diagnosis decision by exploiting sub-metered data has 
not been properly investigated. Such a concept allows an 
effective analysis of occupants usage and appliances opera­
tion behavior towards a careful anomaly detection. This is 
pivotai since the fidelity of customers and system operator 
to diagnosis feedback is highly influenced by its accuracy. 
It should be mentioned that available products, for which 
there is no valuable scientific report, does not normally aim 
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FIGURE 1. Two-state, (a) and multi-state, (b) and (c) household appliances can be expressed as two-state operation-time loads. 

residential applications. Indeed, an extensive appliance-Ievel 
study can aid in designing efficient aggregate-Ievel methods. 

III. PROBLEM DEFINITION OF APPLIANCE ANOMAL y 
DETECTION 
In fact, an effective strategy to approach an anomaly detection 
problem is to define its general features. Afterwards, the prob­
lem can be further elucidated with regard to case study and 
type of input information. In the context of a household, 
an anomal y detection problem can be characterized based on 
the following overviews. 

A. OVERVIEW OF ANOMALY TYPE 

Generally, household appliances demonstrate anomalous 
behaviors that can be attributed to either their operation­
power or operation-time deviations. For two important rea­
sons, the focal point of thi s analysis is the operation-time 
anomaly detection. First, irregular behavior of household 
appliances, especially with major power consumption (such 
as refrigerators, stoves, washing machines, and electric water 
heaters) is commonly implied by a faulty operation-time 
duration. Second, households electrical network has not 
been designed to capture this type of anomaly. Indeed, res­
idential electric circuit is technically equipped to detect an 
operation-power anomaly within a normal consumption time 
rather than an operation-time anomaly with a normal power 
demand. According to the nature of anomal y, an operation­
time anomaly can be expressed as a collective anomaly that 
oceurs in the context of time [5]. For instance, a freezer with 
normal power demand that its ON state lasts for an unusually 
long time. 

Moreover, the anomaly of household appliances is stochas­
tic with a dynarnic nature. Therefore, it is difficult to define 
an anomalous region that can be utilized to build a mode!. 
This issue deteriorates by knowing the fact that anomalous 
data instances are very limited and difficult to collect. Indeed, 
the number of ab normal occurrences are much less compared 
to normal ones, which causes highly imbalance classes [34] . 
Accordingly, semi-supervised machine learning methods are 
stimulated to deal with appliances anomaly detection due to 
the serious challenge of providing labeled class of anomalous 
data. 
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B. OVERVIEW OF APPLIANCE CANDIDATE 

Household energy-intensive appliances are commonly fi ni te­
state loads that can be subject to malfunction at any operation 
state [35] . Nevertheless, from the perspective of operation­
time anomaly detection, these appliances can be classified 
as two-state operation-time (ON/OFF) loads. This has been 
demonstrated for common household devices in Fig. 1. Such 
classification, as the essence of this study, facilitates provid­
ing a general anomaly detection method for finite-state loads. 

In the context of a household, refrigerator is defined as 
a global energy-demanding appliance type. In both devel­
oping and advanced economies, refrigerators are among 
key factors for residential electricity consumption growth. 
They are the main purchased appliance with the increase 
of middle-income households in the world [3]. In fact, with 
more than two billion in-use numbers worldwide, refriger­
ators have a high penetration rate among main domestic 
equipment [36] , [37]. On the other side, a refrigerator can 
undergo anomaJous behaviors that can be attributed to differ­
ent causes related to either a faulty operation or an ab normal 
usage. Despite other major domestic appliances, an anoma­
lous refrigerator can bring about important energy saving 
issues since it is a permanently operating load with consider­
able energy consumption [38] . Although with most malfunc­
tioning household devices, no (less) usage can avoid (reduce) 
anomaly impacts, this is not the case for refrigerators as per­
manent loads. Furthermore, an accu rate anomaly detection 
of a refrigerator is complex since the causes of deviations 
from expected behavior are not always related to a failure. For 
example, the power profiles of an open-door refrigerator and 
a loaded one are very similar since both result in a lengthy 
operation time (discussed in Section IV). Indeed, the above 
remarks make refrigerators an appropriate candidate for an 
in-depth anomaly detection investigation with regard to two­
sate operation-time appliances. It should be noted that this 
appliance has been also an interesting candidate for anomaly 
detection analysis in other researches [13], [29]. 

C. OVERVIEW OF SELECTED FEATURE 

Our proposed appliance-level load monitoring and anomal y 
detection system utilizes the data of active power consump­
tion with a one-minute sampling frequency, gathered by a 
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sub-metered measurement system [39]. Therefore, it presents 
a data-driven approach for which, energy consumption is 
employed as the extracting feature to explore the anomaly 
in the targeted loads [8]. As a quantitative property of an 
electrical appliance, energy is a very practical feature for 
appliance-level anomaly detection systems. lt is a reliable 
information for a robust diagnosis as a critical element of 
such systems. Energy is low-priced to measure and com­
patible with smart plug/meter structures. In fact, an energy­
based anomaly detection method is easy to integrate with 
the se structures since they both record energy consumption. 
Particularly, from the perspective of both customers and sys­
tem operator, energy-based information is straightforward to 
comprehend since the electricity is delivered to customers in 
form of energy consumption [40]. 

According to the above analyses, an anomaly detection 
method is suggested for household two-state operation-time 
appliances that is semi-supervised, data-driven, and collective 
in the context of time. This work promotes an appliance­
level anomaly detection problem in general rather th an an 
appliance-specific one by using appropriate case studies. 
Even from the viewpoint of the latter, thi s study can be 
still general due to utilizing a basic method, a common 
electrical feature, and a low sampling rate (regarding energy­
intensive loads) [41], [42]. Besides, the exploitation of sub­
metered data is motivated by rapid influence of smart plug 
technologies. With the increasing significance of Internet of 
Things (loT), smart plugs become beneficial for enabling 
smart appliances data connection [15] , [43]. These appliances 
are not on1y equipped by an electricity connector but a1so a 
data connector according to digitalization aspect [3]. Smart 
plugs can provide a key opportunity for an extensive analysis 
of anomalous behaviors of major loads (specifically, refrig­
erators, washing machines, and air conditioners). Such an 
examination is essential to design efficient anomaly detection 
and diagnosis decision systems. It should be noted that 
CUITent smart plugs are mostly normal operating systems and 
are not targeted to provide services for any specific type of 
appliances. Actually, future smart appliances can be them­
selves equipped with load monitoring and diagnosis services. 
As mentioned, this implies the practica1ity of the proposed 
approach since it can be integrated into different systems. 

IV. METHODOLOCY 
Our proposed mechanism for anomaly detection is the con­
sequence of an exhaustive investigation into the behavior of 
the case studies based on their energy consumption. Accord­
ingly, the following steps are executed to provide a thorough 
examination. 

1- First, normal and anomalous behaviors of the appli­
ances candidate (the standard and smart refrigerators) are 
explored through analyzing their specified electrical features, 
explained below. 

2- Second, an on-line technique is proposed to effi­
ciently monitor these electrical factors and provide dynarnic 
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information of targeted loads for consecutive anomaly detec­
tion algorithms. 

3- Third, a semi-supervised anomaly detection method 
with low-complexity is developed that is capable of modeling 
the normal behavior of case studies and subsequently distin­
guishing their anoma10us operation. 

Moreover, useful remarks are elaborated as an explanation 
to the issues, discovered within our comprehensive analysis. 
As mentioned, in order to permit an actual implementation, 
the entire study is done by using the rea1 data of our acquisi­
tion system. 

A. COMPUTATION OF THE ANALYTICAL FEATURES 

The behavior of the appliances candidate under different 
operation conditions is explored by the calculation of their 
energy consumption. These appliances con si st of a stan­
dard single-door and a smart french-door refrigerator with 
completely different technical specifications. The energy 
consumption as the main analytical factor is computed 
through (1) [9], 

N .. 

Uw = L Yk - i 
i=l 

(1) 

where k is the di screte time, during which a window size 
of w with Nw number of samples is captured for the energy 
analysis. Yk presents the active power demand at k, and Uw 

describes the energy consumption within w. Since energy, 
by definition, explains a constant power during a specific 
period of time, it is a convenient element to determine average 
power consumption within a targeted time duration. There­
fore, average power usage, derived from energy based on (2), 
is another analytical factor that is employed, 

_ Llw 
Llw=-

Nw 
(2) 

where Uw presents the average power use during time win­
dow w. Due to the accumulating nature of energy consump­
tion, the average power quantity with no time dependency 
allows to recognize a stationary behavior and define the 
boundaries of variations over the time window of ana1ysis. 
Furthermore, it eases the comparison between appliances dif­
ferent models of energy consumption behavior. As di scussed 
in the following, this factor is critical for an accu rate estima­
tion of anomalous behavior of periodic loads such as refrig­
erators, freezers, and electric water heaters. This quantity can 
be easily converted to energy for a standard comprehension 
of electricity consumption in terms of kWh. 

B. ANOMALY SCENARIOS 

In fact, different conditions can cause the operation of a 
household refrigerator to deviate from normality. Therefore, 
four scenarios are considered to represent the common con­
ditions that result in an anomalous behavior of a refrigerator. 
These scenarios are grouped into faulty and abnormal classes. 
Failure is attributed to a condition that cold air is constantly 
lost while abnormality is referred to as a situation that cold 
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FIGURE 1. Daily energy and average power consumption of (a) standard and (b) smart refrigerators under normal operation. 

ai r is finally kept inside by closing the door. The classes are 
numbered in an ascending order and explained as fo llow. The 
faulty class consists of cases 1: door not closed weil; and 2: 
door with defective gasket. For the scenario l , the door was 
left open at various angles for different time duration. For the 
scenario 2, the door gasket was deformed in different sides 
of the door for a long time to emulate a damaged one. The 
abnormal class comprises cases 3: door open/close overly; 
and 4: loaded refrigerator. For the scenarios 3, the door was 
overly open/close within several hours at different time of 
the day. For the scenario 4, the refrigerator was loaded with 
various amount of water at different temperature. lndeed, 
the variety of anomaly sources, which cause either a fai lure 
or an abnormality makes refrigerators a challenging load for 
a precise anomaly detection. This is not the case of other 
household energy demanding devices . 

Ali aforementioned scenarios can lead to a notable waste 
of energy. Moreover, operating with dirty coils is another 
common condition that brings about an anomalous behav­
ior. However, cleaning the coils, which requires customers' 
attention cannot make a considerable difference regrading 
the amount of energy usage of new refrigerators. Like­
wise, a freezer can be subject to the same scenarios and 
thus, the followi ng examination can also provide valu able 
insights into the anomalous behavior of a freezer. It should 
be noted that refrigerators and freezers, recently along with 
air conditioners are the fundamental members of every single 
house [3] , [44]. 

C. INVESTIGATION INTO NORMAL AND ANOMALOUS 
BEHAVIORS 

In our study, the anomalous behavior is deliberately induced 
by jeopardizing the normal operation based on the anomaly 
scenarios. Accordingly, an in-depth examination is provided 
in the following that outlines the key features of the proposed 
load monitoring and anomaly detection system. Furthermore, 
a detailed visualization is presented to assist with a clear 
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comprehension. It should be mentioned that the following 
discussion is based on the exploration of the analytical fac­
tors , determined in Section IV.A. 

1) NORMAL OPERATION OF APPLIANCES CANDIDATE 

In order to capture the difference between normality and 
anomaly, the normal behavior is considered beforehand. 
Fig. 2 shows the daily energy and average power consumption 
for the normal operation of standard and smart refrigera­
tors, respectively. It can be observed that the increase in 
energy consumption is consistently uniform. Furthermore, 
the average power usage demonstrates a stationary behavior 
within the time. More importantly, the consistency of energy 
growth and the stability of average power value is preserved 
over time. This has been demonstrated in Fig. 3, where the 
power profiles of non-consecutive days are coupled. It can 
be recognized that in concatenated days (black dashed lines), 
which are not successive, there is no inconsistency in the 
values of both examining factors. Consequently, the energy 
can be determined as a reliable criterion for normal behavior 
description due to the fact that the amount of energy use 
within normal operation cycles is almost identical. It is noted 
that the second factor is also stable since it has been computed 
by using the energy consumption. In addition, the modeling 
of energy and average power use of refrigerators and freezers 
is more efficient since their actual power consumption with 
notable transient is challenging to model (see Figs. 2 and 3). 

2) ANOMALOUS OPERATION OF APPLIANCES CANDIDATE 

The anomaly scenarios have been executed during several 
days in order to provide sufficient evidences for the exam­
ination of their resultant irregular behavior. Accordingly, 
Fig. 4 illustrates the effect of anomaly scenarios on the energy 
and average power usage within a period of the experimen­
tation. In this Figure, the green dashed lines illustrate the 
time in which an anomaly scenario has been experimented. 
Grey colors in-between energy and average power curves 
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FIGURE 4. Energy and average power consumption variations due to anomaly scenarios applied to (a) standard and (b) smart refrigerators. Each 
dashed line corresponds to the time of a specifie anomaly test. Yellow dashed line presents an important case, explained in the texl 

depict the days of normal operation with no anomaly test. 
It can be observed that ail cases cause fluctuations in both 
the regular increase of energy demand and the regularity of 
average power use. These fluctuations occur exactly at the 
sa me time of the anomaly test that demonstrate the capa­
bility of the analytical factors for on-line applications. The 
variations can be acknowledged as a general alarm for an 
on-going anomaly when compared to the uniformity during 
normal operation. Generally, an anomalous behavior can be 
recognized by a sudden increase in both energy and average 
power consumption. Due to the normal behavior recovery, 
this increase is followed by a regular growth in the first factor 
and dirninished steadily in the second one. The intensity of 
an anomaly depends on the extent of the induced scenario, 
for example the duration time of an open door. Nevertheless, 
no anomaly scenario has been exaggerated throughout the 
experiments. Even at the cost of a low accuracy, this study 
has avoided evident anomalies that can be easily captured. 
According to the operation condition that each scenario can 
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cause, the following has been noticed. The scenarios 1 and 3 
are more distinguishable. Scenario 2 is challenging to be dif­
ferentiated from a normal condition, especially in a long term. 
These scenarios have been tested multiple times during every 
day of their experiment. Scenario 4 needs a longer period of 
time for the exarnination in comparison with other scenarios. 
Therefore, it has been executed within several days. With 
regard to the exarnined scenarios, there are relevant remarks 
that are discussed in details below through Fig. 5. In accor­
dance with Fig. 4(a), there are other events that should be 
mentioned. The yellow dashed line with no scenario type is a 
noteworthy case that has been faced during the experiment. 
In fact, during the test days, a notable decrease in both 
factors has been experienced due to the loss of data in the 
acquisition system (zero consumption has been recorded in 
the database). However, in the lack of any clue about the 
source of such a behavior, it is yet difficult to attribute that 
to an anomalous refrigerator. The reason is that this event has 
caused a rapid reduction in the exarnining features (and not 
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FIGURE 5. A detailed demonstration of the energy and average power consumption fluctuations of the standard refrigerator due to the anomaly 
scenarios. 

an increase based on the above explanation). Additionally, 
the unwanted growth during the normal days (after 2018-
12-17) is due to deliberately decreasing the temperature set­
point. Although this situation can be sirnilar to an anomaly, 
the degree of a refrigerator is normally fixed by customers 
and its manipulation is not a common action. 

Fig. 5 exemplifies the energy and average power demands 
behavior under each anomaly scenario. Although this is 
not the focus of this study, it can be observed that in a 
detailed view, the type of anomaly can be explored. Normally, 
the anomaly scenarios 1 and 3 lengthen the time duration 
of the refrigerator's ON operation within one to several 
cycles. Therefore, they provoke an immediate growth in both 
factors, as shown in Fig. 5(a) and 5(b). Actually, leaving 
the door open even slightly leads to a non-stoppable running 
that usually creates a cycle with long ON operation. Besides, 
the anomaly scenarios 2 and 4 boost the number of operation 
cycles. Consequently, they raise the slope of energy and level 
of average power consumption, as illustrated in Fig. 5(c) 
and 5(d). The scenario 4 should be studied in a longer 
period according to experimental observations that demon­
strate graduai changes in the analytical factors under this case. 
During this scenario (Fig. 5(d)), it has been observed that 
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the refrigerator operates with faster operation cycles (first 
slope change) and subsequently proceeds with longer ON 
operations (second slope change). In fact, door with defective 
gasket (scenario 4) is the only case that causes a permanent 
anomaly. These conditions can be generally encountered by 
other periodic-Ioad appliances such as freezers. 

According to the above analysis, it is deduced that the 
refrigerators are subject to an unexpected operation time 
growth in the presence of an anomaly. Likewise, this can be 
the situation for other energy-intensive appliances such as 
stove and electric water heaters that signifies our proposed 
approach to an operation-time anomaly detection system. 

D. ANOMALY DETECTION TlME-WINDOW 

An extensive examination of normal and anomalous behav­
iors of appliances candidate has been provided in the previous 
subsection. The main objective of such an analysis is to elab­
orates important remarks that can assist with the development 
of an efficient anomaly detection framework. In accordance 
with this investigation, it can be acknowledged that the time 
is a critical element in an energy-based anomaly detection . 
In fact, the time to capture an anomaly becomes crucial for 
two main reasons. First, the rapid response of energy-based 
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factors to an anomaly that promotes an actual on- line appli ­
cation. Second, the accumulative manner of energy usage and 
stationary behavior of average power use that necessitates a 
quick action. Actually, amassing the energy quantity over a 
notable time makes it difficult to distinguish a deviation in 
the consumption value. Likewise, the tendency to steady-state 
amount of average power demand causes a fluctuation to fade 
over a short time. 

The time restriction to detect an abnormality can be 
explored by the analysis of both factors based on a daily time­
window. Fig. 6 depicts the daily energy and average power 
demands during the same period as Fig. 4(a) for the standard 
refrigerator. For most of the scenarios, it can be observed that 
the amount of average power use at the end of a day (brown 
dots within the anomalous days) is lower than its value at the 
time that the anomaly has occurred. In fact, by the end of 
the day, this amount can be attributed to a normal condition 
instead of an anomalous event. On the other side, daily energy 
usage can be more useful because of its accumulating quality. 
Notwithstanding, it can be noted that anomalous and normal 
days produce similar step changes (brown dots within aIl 
the days) in their daily energy consumption. This situation 
becomes more challenging when the duration time (intensity) 
of an anomaly is not significant. 

To more clarify, a Gaussian-based Kernel Density Estima­
tion (KDE) based on (3) has been applied to daily energy 
and average power consumption data for the sa me duration 
as Fig. 6, 

1 N 
J(x) = N L>~:::h (x - Xi) (3) 

i= l 

that for N number of data instances, x defines the discrete 
support, J(.) is the KDE function, K( .) presents a Gaus­
sian Kernel, which is centered at each data sample Xi, and 
h specifies the bandwidth parameter. As a non-parametric 
method, KDE is a suitable choice for this analysis since the 
data stream includes the samples of anomalous days with 
completely random behavior. KDE is ab le to create an empir­
ical probability density function (pdf) of every data point in 
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order to estimate an unknown underlying distribution [11] . 
In order to reduce the complexity, a constant bandwidth with 
an empirical value has been chosen that has resulted in a better 
estimation through the experiments. Furthermore, the ability 
to offer an adeq uate description of normal behavior of energy­
intensive appliances is the logic behind choosing a Gaussian 
Kernel [45]. 

Accordingly, Fig. 7 illustrates the results of KDE, applied 
to energy and average power consumption within a daily 
time-window. It can be seen that for the analytical factors 
of both case studies, a distinguishable region can be defined. 
For the standard refrigerator (Fig. 7(a) and 7(b)), this region 
deviates from the general region and can be highly related 
to anomalous events. Nevertheless, it contains very few data 
samples. For the smart refrigerator (Fig. 7(c) and 7(d)), 
the situation is the same however, the few instances in this 
region can be hardly associated to an anomalous operation 
due to their lower values (as discussed above) . Therefore, 
for this case, the general region encompasses aU anomalous 
samples. In fact, for the two refrigerators, the general region 
accounts for both normal and anomalous instances. It can 
be deduced that a daily analysis is inefficient to capture 
deviations from the common behavior that can be related 
to anomalous operation. Indeed, such an analysis is useful 
when a deviation is highly significant. Additionally, a daily 
examination can reduce the usability of the examining factors , 
considering the similarity between both distributions (loca­
tions of the samples). Consequently, the following remarks 
can be realized from the underlying distributions of data 
samples, captured through a daily time-window investigation. 

1- Accumulating and stationary behaviors of energy and 
average power consumption over a day reduce the influence 
of a deviation (anomaly) over the normality. 

2- Considering a specific amount of data, a daily time­
window supplies the analysis with less number of samples 
and requires a lengthy duration of data acquisition [46] . Addi­
tionally, daily data can suppress detailed information that are 
valuable. 

3- On a daily basis, defining a threshold to increase the 
number of correctly detected anomalies is chaIlenging since 
in the general region, differentiating between normal and 
anomalous instances is more uncertain. 

Regarding the KDE analysis, presented in Fig. 7, it should 
be mentioned that higher/lower values for bandwidth param­
eter do not improve the results. The former forms one region 
that means aIl data samples present the same behavior while 
the latter shapes several regions that means data instances 
offer different classes standing for multiple behaviors. 

GeneraIly, the time-window of the anomaly analysis can 
affect the influence degree of the analytical factors, the num­
ber of correctly detected deviations, and on-line implemen­
tations. Since an anomalous refrigerator demonstrates an 
unexpected periodic behavior, a cyclic time-window exam­
ination of energy and average power consumption is sug­
gested. Fig. 8 demonstrates the KDE results of the cyclic 
investigation during the same period as daily analysis. 
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The detection of operation cycle has been realized by 
constructing the operation-state (ON/OFF) sequence of the 
refrigerators based on a threshold. Consequently, a cycle is 
determined as an event that falls between two ON (or OFF) 
state transitions. As it can be observed in Fig. 8, a cyclic 
estimation resu lts in distinguishable regions that can be dis­
tinctly segregated from general regions. Particularly, for the 
smart refrigerator, a distinguishable region has been created 
that in spite of its daily analysis, can be related to anomalous 
operations. Moreover, the cyclic analysis demonstrates that 
the analytical factors have different sensitivity with regard 
to resultant distributions (samples location) and the number 
of instances in the distinguishable regions. The samples of 
this region can be highly presented as anomaly since it is 
almost impossible to present them in a single category due 
to their random behavior. Subsequently, the general region 
as the only dominant class can be significantly associated 
with normality and in turn, assist with capturing an exact 
model of normal behavior. Therefore, it can be concluded 
that the capability of energy and average power consumption 
for anomaly detection remarkably improves by exploring the 
cyclic operation of the refrigerators (in comparison with the 
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daily operation). Considering the remarks about the daily 
analysis, the following notes are emphasized for the cyclic 
one: 

1- Analyzing the energy and average power consump­
tion during an operation cycle can dramatically increase the 
impact of an anomaly on the normality. Therefore, this tech­
nique realizes a definite distinguishable region with larger 
instances of probable anomalies. 

2- Knowing the fact that both examinations have been 
applied to the same amount of data, a time window with 
the length of a cycle provides the analysis with a substantial 
number of samples. Furthermore, it uncovers the detailed 
information to enable an explicit anomaly detection. 

3- A cyclic investigation not only facilitates the choice of 
a threshold but also increases its flexibility due to the wide 
distribution of anomalous samples. The latter is significantly 
important since not ail the anomalies require an (quick) 
action. 

Moreover, a cycle-based mechanism can offer an on-line 
anomaly detection framework by enabling a faster estima­
tion of analytical factors. It should be emphasized that in 
the cyclic analysis, the same bandwidth has been chosen to 
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FIGURE 8. KDE of cyclic energy and average power consumption of standard (up) and smart (down) refrigerators. 

provide acceptable results for KDE through aU the cases. 
Regarding the completely different electrical features of the 
refrigerators, this can evidence the ability of such a mecha­
ni sm to assist with the construction of general models of nor­
mal behavior. Therefore, a cyclic time-window is employed 
for the development of the proposed load monitoring and 
anomaly detection structure. 

E. ANOMALY DETECTION FRAMEWORK 

The comprehensive study, given above has provided a clear 
understanding about the refrigerators behavior from different 
viewpoints that can make an anomaly detection system feasi­
ble. Therefore, it is used to design both load monitoring and 
anomaly detection systems. In fact, the designated structure 
that is based on the operation cycles, consists of three proce­
dures of normal behavior modeling, anomaly inference, and 
load monitoring. 

As mentioned, the modeling process utilizes a semi­
supervised machine leaming method since it only constructs 
the model of the normal behavior. The cyclic energy and aver­
age power consumption are modeled in terms of Gaussian 
distributions N(.), due to the fact that a Gaussian Kernel has 
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been able to provide a plausible explanation about these fac­
tors. Accordingly, the Gaussian parameters of each analytical 
factor are defined based on (4) and (5), 

1 c 
f-L= C Lvw (4) 

w= 1 

a 2 = 
1 c 
CL (Vw - f-L)2 (5) 

w= l 

that within C number of training cycles, f-L and a 2 presents 
the mean and variance of the modeling factor v E lu , ïï} . 
According to the related models, the anomaly is inferred 
through two steps . First, the probabi lit y density,f (.) of energy 
and average power usage of a captured cycle is estimated by 
means of (6), 

1 ( (V-f-L)2 ) f (v 1 f-L , a) = r;:;--;'j exp - 2 
.y 2na 2 2a 

(6) 

Afterwards, the estimated densities are compared with their 
relevant thresholds to be identified as either normal or anoma­
lous. These thresholds are computed by using the Inverse 
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Normal Distribution function of every Gaussian mode\. 
Accordingly, f.J., - DeI ~ Tv ~ f.J., + DeI presents the lower 
and upper bounds of each threshold, Tv, respectively, where D 
is defined based on three-sigma rule of thumb. As an essential 
prerequisite for the proposed anomaly detection structure, 
an on-line load monitoring framework is developed. This 
framework provides in-operation information of appliances 
candidate power consumption. It creates a data-frame accord­
ing to the sampling time of data arrival. This data-frame, D 
is continuously expanded by storing the power consumption 
and the relevant state, Zk of every appliances candidate in 
order to capture its operation cycle. Consequently, the energy 
and average power consumption of the detected cycle is com­
puted for model construction and anomaly inference phases. 
It is noted that the sa me state detection method, explained 
in the previous subsection is used for the on-line process. 
The above procedures result in an on-line load monitoring 
and anomaly detection system. In this system, an anomaly 
is detected by applying the diagnosis algorithm to the calcu­
lated analytical factors within a detected cycle, expressed by 
Aigorithm 1. 

Aigorithm 1 On-Li ne Load Monitoring and Anomaly Detec­
tion 

1: procedure Nv & Tv 
2: D= {I 
3: for (Yb k) do 
4: # Step 1: 
5: define Zk 

6: D = {ch 1 dk = (y, Z)k 1 
7: if I::!.Zk ,k- 1 = 1 & I::!. Zk - NIV, k - NIV- 1 = 1 then 
8: # Step 2: 
9: calculate Vw 1> According to (1) & (2) 

10: calculatefv
lV 

1> According to (6) 
Il: # Step 3: 
12: iffvlV outof Tv then 
13: labelvlV ~ Anomaly 
14: alarmvlV ~ ON 
15: end if 
16: end if 
17: return ON alarms 
18: end for 
19: end procedure 

V. RESULT AND EVALUATION 
The power consumption data of appliances candidate, me a­
sured by our acquisition system has been utilized to examine 
the proposed on-line anomal y detection approach. The devel­
oped structure is able to concurrently construct the model 
and estimate the anomaly. However, due to the importance 
of a robust detection, a practical model of normal behavior 
has to be ensured first. Accordingly, the normal behavior 
models of the refrigerators have been constructed within a 
time period of normal operation, in which no anomaly test 
has been executed. Nevertheless, the least amount of data 
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has been exploited to build a feasible model and examine 
its performance with regard to a real-time implementation. 
It should be noted that normal condition presents a normal 
usage and does not mean a constantly close-door refrigerator. 
Subsequently, the most efficient model of each case study, 
captured by minimum amount of data has been employed 
to detect anomalous events, caused by different anomaly 
scenarios. Given the above, it can be comprehended that the 
algorithm is semi-supervised from the perspective of anomaly 
detection (due to the lack of an anomaly class) and supervised 
from the standpoint of model construction (due to utilizing a 
training phase). In fact, based on actual events that have been 
faced during the tests, a continuously unsupervised update of 
the normal model can be unreliable. 

Besides, an appropriate diagnostic test is required to 
demonstrate the performance of the method. In fact, the accu­
racy metrics, reported in literature have been utilized to esti­
mate either operation states or load profiles of a set of targeted 
appliances in the context of a load monitoring problem. How­
ever, in an anomaly detection system, the first target should be 
a correct diagnosis of the anomalous event. In such a system, 
the estimation of energy waste is also crucial, but thi s is 
not always the case. For example, informing the customers 
about an open-door refrigerator or left-on stove is sufficient 
since these incidents are not among poor behavioral con­
sumption to be avoided by energy saving awareness. In this 
study, a set of diagnostic tests are employed that not only 
evaluate the general ability to detect an anomaly but also 
estimate the specific operation cycles that are affected by it. 
From the view point of the latter, the metrics are similar to 
those utilized in load monitoring studies for load profiling. 
Therefore, the accuracy metrics that are exploited to describe 
the results of anomaly detection are formulated as below, 

tn 
Spe= -­

tn+fp 
tp + tn 

Acc = --'-----
tp + fp + tn + fn 

(7) 

(8) 

2 x precision x recall 
Fl= ~ 

precision + recall 

that Spe, Acc, and FI stands for specificity, accuracy, and 
FI-score, respectively. tp describes true positives (number of 
correct detection of anomalous cycles),fp explains false pos­
itives (number of false detection of a normal cycle as anoma­
lous), tn defines true negatives (number of true detection of 
normal cycles), andfn expresses false negatives (number of 
false detection of an anomalous cycle as normal). Conse­
quently,precision = Ip~fp and recall = Ip ~J,I. The specificity 
metric determines the robustness of the model through its 
capability in correctly capturing the true normal events. This 
diagnostic test is essential for the performance evaluation of 
a household anomaly detection system due to the infrequent 
occurrence of anomalies in electrical appliances operation. 
It should be noted that specificity has not been necessitated 
for the evaluation of load monitoring processes. FI-score is 
the harmonic mean of precision and recall that presents the 
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TABLE 1. Standard refrigerator modeling within normal operation cycles. 

NoC N(J1-, a) Speeificity( %) 
u (0.59,0.034) 10 2 72 

49 
u (11.97,0.69) 10-3 85 

97 
u (0.58,0.029) 10 2 69 
u (11.74,0.61)10- 3 79 

142 
u (0.63,0.072)10 2 98 
u (12.24,0.99)10- 3 93 

186 
u (0.65,0.081)10 2 97 
u (12.59,1.10)10- 3 94 

TABLE 2. Smart refrigerator modeling within normal operation cycles. 

NoC N(p" a) Specificity( % ) 
u (3.4,0.8)10 2 90 

46 
u (6.4,1.0) 10-3 76 
u (3.3,0.07)10 2 98 

87 
u (5 .9,1.0)10- 3 98 

accuracy of the model to identify the anomalous events. Due 
to the sensitivity of FI-score to imbalance classes, the accu­
racy score is also utilized to define the general correctness of 
the results. In addition, the ability to correctly estimate the 
amount of energy usage and average power consumption of 
anomalous cycles has been examined through (10), 

L;=I (XIV - XIV) 
EA = 1 - c (Lü) 

2 LIV=I X W 

where EA is utilized for both the energy and average power 
estimations. Xw and Xw are estimated and actual quantities 
of analytical factors within C cycles, respectively. In fact, 
EA is applied to the estimated energy and average power 
of detected anomalous cycles during testing phase of each 
scenario. In order to report the overestimation, this metric has 
been revised to consider the real value of the nominator since 
the abso lute value can only interpret the underestimation. 
Actually, the performance evaluation of an anomaly detection 
procedure is not simple. It should be noticed that the load 
monitoring process has been mainly reported in literature by 
using FI-score and energy estimation (based on the absolu te 
value). Although our ambition is to uncover an anomaly, 
a severe evaluation process has been used that examines both 
state detection and load profiling abilities. 

Accordingly, Table 1 presents the results of normal behav­
ior modeling of standard refrigerator. The model has been 
examined over an overall set of anomalous events based on 
the four predefined scenarios. In such manner, the model is 
not tuned to a specific scenario since anomaly is a general 
description, given to any kind of deviation from normality. 
In addition, Table 2 describes the modeling procedure of 
the smart refrigerator. The term 'NoC' explains the Num­
ber of Cycles with normal behavior that have been utilized 
to construct the model. The resultant Gaussian models of 
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FI -seore( % ) Aeeuraey( % ) EA(%) 
57 77 150.34 
76 86 95.97 
54 74 155.24 
71 82 95.14 
92 98 103.70 
84 92 99.51 
84 95 106.9 
81 91 102.84 

FI -seore( % ) Aeeuraey( % ) E A(%) 
83 92 107.64 
76 82 90.46 
98 99 101.32 
93 96 101.34 

both analytical factors have been also presented. It can be 
noticed that their parameters vary through normal operation 
cycles. Although low variations demonstrate the stability of 
normality to rapidly extract an efficient model, it is observed 
that they can notably influence a precise anomaly detection. 
It should be mentioned that the energy has been presented 
based on kWh and averaged over the number of samples of 
the detected cycle to compute the average power (kW). 

The mjnimum number of the cycles to capture an efficient 
model of the standard refrigerator is 142 that accounts for 
around three days of normal operation. The tests have shown 
that enlarging the modeling period cannot yield a notable 
improvement. Besides, as it can be noticed, thjs number of 
cycles has provided highly accurate resu lts. On the other 
side, 87 number of normal operation cycles, associated with 
around two days, is the least number to extract an effective 
normal model of smart refrigerator. The corresponding model 
has provided a remarkable anomal y detection performance as 
weil. It should be highlighted that the less modeling period 
of the smart refrigerator is due to a more sensitive response 
to any deviation, and not because of a more stabilized nor­
mal behavior. Nevertheless, the minimum time to ensure a 
standard model is completely depend on the user behavior. 
For example, a refrigerator with less utilization requires more 
time to offer an acceptable model since the boundaries of 
normality have to be defined with respect to customers' usage 
behavior. 

Accordingly, the performance of the on-line load moni­
toring and anomaly detection method to capture a specific 
anomaly scenario is estimated based on the efficient models. 
In fact, the feasible model of normal behavior can provide 
a valid estimation of the anomaly scenarios. Accordingly, 
Table 3 expresses the on-line anomaly detection results of the 
four scenarios for the standard refrigerator. Il can be observed 
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TABLE 3. On-line load monitoring and anomaly detection of test scenarios applied to standard refrigerator. 

Scenario Specificity( % ) FI -score( % ) Accuracy( % ) EA(%) 

1 
u 99 86 99 106.57 
u 97 80 97 93.01 

2 
u 
u 100 63 87 103.33 

3 
u 98 75 98 110.28 
u 89 50 89 92.59 

4 
u 100 96 96 96.65 
u 97 99 99 98.83 

TABLE 4. On-line load monitoring and anomaly detection of test scenarios applied to smart refrigerator. 

Scenario Specificity( % ) F I -score( % ) Accuracy( % ) EA(%) 
u 99 
u 100 

Blackout 
u 96 
u 100 

that the efficient model is highly accurate to distinguish 
anomaly from normality for any type of deviation (caused 
by different scenarios) . Furthermore, it is able to estimate 
the deviating consumption in the analytical factors with high 
performance. Although the energy consumption factor has 
not been able to recognize the scenario 2, this has not been 
interpreted as a fail ure. This scenario mainly influences the 
duration time of OFF state rather than ON. ActuaUy, overly 
opening/closing of the door has caused the standard refriger­
ator to operate with less OFF periods. However, the energy 
consumption (as it can be noticed) computes the amount of 
energy demand due to an ON operation condition. Therefore, 
the average power consumption has been also considered as a 
complementary factor to uncover the OFF-state deviation and 
its impact on the whole cycle due to an abnormal operation. 
In addition, this factor is useful in explaini ng the anoma­
lous behavior corresponding to scenario 4 since this scenario 
influences both operation states. Furthermore, the average 
power consumption can reflect the abnormality due to the loss 
of data as it interprets that as OFF period. Such a situation 
has been encountered during our tests (yellow dashed line 
in Fig. 4(a)). 

Besides, Table 4 reports the on- line anomaly detection 
results of the efficient model of the smart refrigerator. The 
anomaly detection algorithm has been tested for the smart 
refrigerator after several months of its effective model con­
struction. It can be observed that the model is notably 
correct in detecting the anomalous behavior related to the 
scenario 1. The high accuracy of diagnostic tests particularLy, 
specificity score after a long time demonstrates the stabil­
ity of the normal operation and in turn the robustness of 
the modeL. During the anomaly tests of smart refrigerator, 
we have suddenly experienced a rapid blackout. Afterwards, 
a permanent anomalous behavior has been warned by our 
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91 99 99.35 
80 98 91.93 
98 98 100.79 
87 89 105.43 

on-line anomaly detection algorithm, whi le no anomaly 
test has been proceeded. Therefore, the power consumption 
behavior of the refrigerator has been observed. As illustrated 
in Fig. 9, the blackout event (grey dashed line) has totally 
disrupted the normal behavior of the refrigerator. Neverthe­
less, this unexpected event has not been considered as a 
disturbance. On the contrary, this advantageous incident has 
enabled a critical evaluation of the on-line anomaly detection 
system within an actual failure. Therefore, the blackout has 
been exarnined in terms of a scenario. The results indicate that 
the method has a high accuracy to detect this event especially, 
regarding the energy consumption factor. Furthermore, both 
factors are very efficient to estimate the deviations due to 
the blackout experience. The continuation of this incident is 
comparable with the behavior of the scenario 4. The black­
out exarnination has been do ne during several days before 
stopping the system for required inspections. However, this 
has not brought a major concern with the tests of scenarios 
2 and 3 (considering the benefits of such a realistic incident) 
since these scenarios are very sirnilar in behavior to scenarios 
4 and 1, respectively. In addition, they are not classified as an 
actual fai lure, as mentioned in Section IV. 

Moreover, the proposed approach is compared with the 
method that has been studied by Rashid in [l3] using REFIT 
database [47]. In this study, discussed in Section II, a sirnilar 
analysis is provided that has been applied to freezer as another 
household periodic appliance. Rashid has tested his technique 
withi n a period of three months. However, our suggested 
method is implemented for almost aIl the data (one year) of 
the freezers in the same homes of REFIT database to present 
an extensive exarni nation. Accordingly, Table 5 presents the 
comparison results. Likewise, 'NoC' presents the number of 
cycles that have been used to construct an efficient model. 
In [13], the training duration is one month however, in our 
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TABLE 5. Accuracy results of the proposed approach in comparison with the method in [13), tested on REFIT database. 

REFIT Noe Accuracy (%) 
On-line anomaly detection system Rashid [13] 

500 

~400 s: 
':' 300 
Q) 

::: 200 o 
a.. 

100 

Home 10 76 

Home 16 96 

Home 18 156 

Home 20 99 

Normal opeartion 
- Anomalous operation 

3 months 
Precision 100 

Recall 100 
FI-score 100 
Precision 92 

Recall 92 
FI-score 92 
Precision 100 

Recall 100 
FI-score 100 
Precision 71 

Recall 100 
FI-score 83 

FIGURE 9. The blackout event during the anomaly experiment on the 
smart refrigerator; the gray dashed line indicates the approximate time of 
the event occurrence. 

case, this period is maximum 156 cycles (House 18) that 
accounts for around 7 days. Besides, Rashid has used two 
factors to decide an anomaly. Therefore, in order to provide 
an equal analysis, a deviation has been identified as anomaly 
that has been detected by both analytical features (energy and 
average power usage). It should be detailed that one of the 
analytical factors, used in [13] is the daily number of opera­
tion cycles. Nevertheless, our actual experiments demonstrate 
that this factor varies in a sensible way (usefu l for anomaly 
detection), mostly when an intense anomaly occurs. The 
reason is that a noticeable anomaly can generally result in 
a lengthy operation time and thus, decrease the daily amount 
of cycles. The comparison has been made based on the sa me 
accuracy metrics. The results of the proposed approach have 
been reported every three months. It can be seen that the 
suggested method is notably accu rate within the entire test 
period. This high performance that has been maintained over 
a long time validates the robustness of the designed frame­
work. Particularly, the outcomes are very competitive regard­
ing a three-month comparison (the test duration in [13]). 
In fact, except for precision score in House 20, the on-li ne 
anomaly detection system is more accurate in ail the cases. 
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6 months 9 months 12 months 3 months 
83 95 95 100 
100 100 99 100 
91 97 97 100 
81 78 80 90 
91 91 90 90 
86 84 85 90 
92 92 88 100 
100 100 93 70 
96 96 90 80 
77 76 78 100 
100 100 100 60 
87 87 88 70 

It can be realized that the developed structure is also effective 
for other periodic appliances. Indeed, the correct results that 
have been obtained from other case studies (homes in REFIT 
dataset) demonstrate the generalization capability of the pro­
posed mechanism. 

It is worth to point out that author of REFIT database has 
declared the information of anomalous events [47]. However, 
by a complete examination of this dataset, it has been realized 
that there are other operation deviations and loss of data (sim­
ilar to reported ones) that have not been mentioned. It should 
be noted that the comparison analysis has been concluded by 
considering these additional instances. Nevertheless, this has 
not notably influenced the results, compared to an assessment 
without such samples due to their few numbers. Actually, 
the evaluation of both conditions has resulted in the same 
accuracy during three months and an insignificant difference 
only after a long period (9 months and more). 

VI. DISCUSSION 
In accordance with the above results and analyses of the pro­
posed on-line appliance- level load monitoring and anomaly 
detection system, the following remarks should be discussed. 

1- Although this work has focused on household periodic 
energy-intensive appliances as the case studies, its approach 
to anomaly detection is general. It has explored the operation­
time anomaly concept that can be app lied to other types of 
appliances. Furthermore, the method has utili zed a corn mon 
electrical feature in a low-sampling frequency that is compati­
ble with current metering technologies and household energy­
demanding devices. Employing normal electrical properties 
is critical to develop a general method, however appliances, 
particularly refrigerators can still have basic signatures that 
are notably different. 

2- Since the study has been done in the appliance-level 
with sub-metered information, a highly accurate anomaly 
detection process has been intended. Therefore, a careful 
set of diagnostic scores has been utilized to examine the 
results. These accuracy rules are very precise such a way that 
their estimation of the outcomes can be attributed to load 
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profiling rather than load diagnosis. From the standpoint of 
anomaly detection, the proposed method is totally capable 
of recognizing any anomalous behavior particularly, the ones 
that are considered as failure. 

3- A supervised machine learning algorithm that signifies 
an off-tine process has been employed to create the normal 
behavior models of the appliances candidate. A supervised 
method can facilitate capturing an efficient model that can 
handle both the stochastic nature of anomalous behavior 
of an appLiance and the variation of its normal electrical 
characteristics (due to different reasons, e.g. aging). In fact, 
ensuring effective models of loads regular patterns, which 
guarantees customers' fideLity to warning alarms, is pivotai 
for a usable anomaly detection system. Although an on-line 
model construction, mainly aimed by unsupervised methods, 
is interesting, the stationary behavior of household energy­
intensive appliances reduce its necessity. The concern with an 
unsupervised modeling of normal behavior increases consid­
ering an anomaly detection system with poor performance. 
For example, it is possible that such a system considers the 
abnormal behavior of a refrigerator with defective gasket as 
normal (due to the continuation of this kind of anomaly). 

4- It is advised that a load monitoring and diagnosis system 
should be capable of early diagnosis . Nevertheless, our thor­
ough study has demonstrated that the term 'early' (one can 
read real-time) depends on different matters, characterized as 
below: 

• The application: Among the chosen scenarios, two of 
them are actually a failure. However, al! scenarios have 
been detected as anomaly since they cause sirnilar vari­
ations on normal energy consumption. This is due to 
the operation-time anomaly nature rather than the model 
inadequacy. Therefore, an early detection should be 
defined based on the applications that general!y account 
for fault (scenarios 1 and 4) and over-usage (scenarios 
2 and 3) diagnosis. 

• The time: Scenarios 1 and 4 express a failure . Although 
the energy consumption is rapidly influenced by an 
anomaly, the se cases require different time period to 
ensure an abnormality. The anomal y detection system is 
quick to capture scenario 1 however, it needs more time 
to recognize scenario 4 (in our case more than one day) . 
Furthermore, the time can affect the recognition of an 
irregular behavior due to aging problems. Subsequently, 
a load diagnosis system is real-time with respect to the 
type of anomaly that it seeks to detect. 

• The urgency: Generally, an operation-time anomaly of a 
refrigerator can be dealt with as an energy saving issue. 
However, this is not the case for a stove that has been 
left ON. In fact, an anomalous stove can cause a dan­
gerous situation instead of energy waste. Consequently, 
the early diagnosis should favor the type of a targeting 
appliance. 

Accordingly, a load monitoring and diagnosis system is 
suggested that its diagnosis phase accounts for two separated 
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steps of anomaly detection and diagnosis decision. As a 
result, the term 'early ' can be an appropriate fit for the 
former. The anomaly detection should capture a deviation 
when it occurs (on-tine distinguishability) and the diagnosis 
decision should confirm a malfunction when there is adequate 
evidences (e.g . continuation of a deviation). 

VII. CONCLUSION 
Anomaly detection is a significant application of load mon­
itoring systems. In the residential sector, this application 
can assist with different kind of energy saving aware­
ness. Due to the inadequacies related to an aggregate-level 
implementation from one side and future low-priced smart 
plugs from the other side, an appliance-level anomaly detec­
tion aspect is reinforced. Accordingly, this paper has pro­
vided an exhaustive investigation into different aspects of an 
appliance-Ievel anomaly detection with regard to household 
energy-intensive apptiances. As a result, an on-tine load mon­
itoring and anomaly detection approach has been proposed 
that is capable of expeditiously capturing any operation-time 
abnormality. The proposed approach has been exarnined by 
implementing an actual framework. This framework appties 
the suggested design to the measured data of a set of appli­
ances candidate. These appliances account for a standard and 
a smart refrigerator with different electrical characteristics. 
Refrigerators are important household finite-state loads that 
can bring about challenging anomalous behaviors. Therefore, 
they are a suitable case study for anomaly detection of hou se­
ho Id energy-expensive loads. The results based on careful 
diagnostic tests have demonstrated the high performance of 
the proposed method. Furthermore, the efficiency of the sug­
gested technique has been demonstrated through an extensive 
comparison analysis. Moreover, the util ization of a group of 
straightforward algorithms, examined on a physical operating 
system, has validated the pertinence of the developed struc­
ture to smart meters/plugs systems. With regard to the case 
studies, thi s analysis has elaborated important remarks on 
a full appliance-Ievel load monitoring in terms of a system 
capable of continuous load observation, anomaly detection, 
and diagnosis deci sion. 
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Chapter 4 Discussion and future opportunities 

4.1 Introduction 

The foundation of this section is built on the extensive studies that have been provided for 

every targeted element, essential for a successful ALMD system. Accordingly, we attempt 

to describe the statement of each problem and the proposition. Furthermore, the reasons that 

have motivated every suggestion are detailed, through which the future studies according to 

further potentials are defined. In fact, the subsequent explanations have their roots in the last 

section (preceding the conclusion) of each paper, where the outcomes of the corresponding 

research have been explicitly discussed. 

4.2 Data generation approach 

Indeed, the proficiency of the database, resulted in a data generator is the consequence of a 

larger investigation into the other aspects of NILM systems rather than their mathematical 

process. These perspectives that mainly focus on the essential prerequisite and the practical 

outcomes can remarkably affect the algorithms. These two phases can define the methods, 

influence the accuracy, and manage the desires. In our NILM exercise, failing to obtain a 

publicly available database with appropriate information of ESH and EWH has evidenced 

the importance of sufficient data. Furthermore, this exercise has bolstered the significance 

of intended applications as the outcomes of the load monitoring system. Nevertheless, the 

studies have almost neglected the investigation into these two factors . Efficient literature 

has mainly studied the load disaggregation process of NILM. Accordingly, the examination 

of essential necessities and actual services have drawn our interest. As parts of the same 

process, these aspects should be analyzed in accordance with each other. Indeed, the key 
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perception that outlines the feature space completely depends on the implementations. Taking 

an achievable NILM into consideration, our extensive exploration of the above factors has 

resulted in a system with significant properties, described below. The appeal for realizing such 

characteristics can bring about effective research studies to make NILM concept feasible. 

- Appliances candidate: The information space of NILM should target household appli­

ances with specific features that can assist with both energy savings and grid services. 

Considering the former, it should inc1ude appliances candidate that are among major 

consumption devices. Regarding the latter, it should consider the energy-intensive appli­

cants that their electricity usage has the potential of being delayed. In fact, household 

energy-expensive loads particularly, thermostatic ones have the capability of being 

deferred within their operation time. Deferrable Appliances (DA) are important for 

both demand and supply sides' scenarios. These appliances are capable of providing 

grid services without jeopardizing the quality and reliability of their primary function 

according to users' cornfort level and satisfaction. For example, in Quebec, Canada, 

DA, inc1uding ESH and EWH reveals a great potential for energy savings and power 

grid facilities due to their large electricity consumption. In the US, the same scenario 

can be realized for space cooling devices as the household dominant energy consumers 

specifically, during hot seasons. Therefore, a NILM system with such an oriented 

information space can enable sensible applications, concerned by both customers and 

system operator. This concept is signified by the fact that the current feature space of 

NILM is too complex. 

- Enhanced applications: Small-scale renewable energy resources are an inevitable factor 

of the residential sectors of future power grids. Accordingly, a NILM system should 

contribute to the effective utilization of renewable resources. NILM methods can be 

enhanced to exploit DA capacity as Medium Energy Storage (MES) systems to expedite 

more integration of small-scale renewables. Such a perspective gives more importance 

to the utilization of DA capacities in the demand side. Besides, the future power 

systems have an undeniable load that is presented by Plug-in Electric Vehic1es (PEY). 

PEY as residential new energy-intensive loads can cause remarkable opportunities and 
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challenges to NILM implementations. Not only these devices must be considered in the 

information space of any practical NILM, but also their effective communication with 

DA has to be managed. The latter can lead to advanced applications of energy savings 

and grid services in the context of NILM. Consequently, the new players in both supply 

and demand si des can bring about interesting matters for NILM to be handled by its 

further improvements. 

- Real-time aspect: NILM should realize a real-time structure as an essential quality 

of future power networks un der the smart grid paradigm. The real-time computing 

is a pivotaI aspect of any ALM systems that must be defined based on the applica­

tions (which describe the deadlines). This aspect is highlighted considering the new 

movement of technology towards different designs such as the Internet of Things (loT) 

environment, which can provide enhanced communication among utilities, manufac­

tures, and customers. It should be mentioned that the traditional NILM concept with a 

huge complicated space of data, slow analytical process, and long computation al time is 

usually an offtine system. In fact, a real-time capability can result in a NILM structure 

under which, improved utilization ofthe aforementioned components (DA, PEY, and 

renewables) become possible. This structure can establish a beneficial communication 

between both customers, who look for incentives by participating in grid services and 

the system operator, who seeks effective management of the power network. Subse­

quently, NILM enhanced exercises should be enabled in a real-time design in order to 

be considered practical. 

- Synthetic data generation: Particularly, the exarnination of data efficiency for NILM 

practices with regard to specific cases of Quebec has motivated the idea of data gener­

ation tool. Accordingly, the simulation structure, used to generate the synthetic data 

can realize new research chances that are not only restricted to NILM exercises. It can 

enable the exploration ofthe relationship between appliances' energy consumption and 

occupants' behavior, household thermal interactions, as weIl as environmental condi­

tions. In addition, this tool can assist with the study of time-extended HEMS scenarios. 

Furthermore, it can facilitate the correlation analysis between household occupants 



89 

behavior and outdoor temperature fluctuations based on electricity consumption patterns. 

Generally, synthetic data generation tools are signified due to the limited availability of 

detailed measured data and costly manner of collecting it in large amounts. Therefore, 

these tools can benefit researchers with a variety of demand-side studies before actual 

experimentation. 

Indeed, an advanced framework can provide solutions to the standstill of the conventional 

NILM. Such an architecture can offer new opportunities for both customers and utilities by 

preparing real-time facilities to monitor, identify, and control DA and PEY. The real-time 

management of these energy-expensive devices lies in the first place of near-future applications 

of NILM. Furthermore, the integration of small-scale renewable energy resources can truly 

alter the role of buildings in distribution systems and transfer them to micro-grid systems 

that can independently operate through HEMS. In fact, an advanced NILM can create new 

research fields in the area of household ALM systems in the near future. 

4.3 Household database construction approach 

For many years, load disaggregation has been the focal point of NILM studies. Therefore, we 

have proposed to examine the essentials of a NILM system for diagnosis purposes. Accord­

ingly, a time-variant load modeling system (regarding the dynamic of power consumption) 

has been designed with two important abilities, accounting for the recognition of new appli­

ances and the continuous learning of their parameters. Indeed, these abilities are important 

for diagnosis systems that require knowledge about new loads and their standard behavior. 

Consequently, our approach has been presented in terms of household appliances database 

construction. In fact, this approach has not been adequately explored, especially in the scale 

of our analysis. Our database constructor has utilized different mechanisms for each of which, 

further independent studies can be provided. These techniques and the interesting matters that 

they can bring about are discussed in the following. 

- Prior knowledge: Notwithstanding its complexity, our load modeling structure employs 

an unsupervised machine-learning method. In fact, we have developed a fully unsuper­

vised procedure that is capable of operating with less or no initial information. To the 
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best of our knowledge, unsupervised disaggregation studies have mostly considered a 

set of initializations by use of general information. However, due to the diversity of 

household appliances in types and brands, providing an appropriate space of information 

is difficult. Therefore, the studies have considered more specific information that has 

resulted in a likely semi-supervised analysis (an unsupervised method with specific 

priors). Nevertheless, the importance of general information cannot be denied, sin ce an 

analysis with no prior knowledge can decline an accurate interpretation of the results 

and decrease the performance of the modeling process. However, we propose to study 

the effect of this information in the level of housing stock in order to enhance their 

application by reducing uncertainties. 

- Adaptive on-li ne framework: Our time-varying analysis with less/no prior knowledge 

has suggested the exploitation of an adaptive structure to extract the preserved sequential 

information in the data. As a result, by using the adaptive estimation of appliances' 

model parameters, we have developed a thoroughly adaptable procedure for an effective 

interpretation of their behavior. Adaptive leaming can effectively assist with research 

studies that aim for an enhanced appliance load modeling system. Due to deterministic 

trends of a locally non-stationary electric signal, an adaptable method can be used as the 

key answer to a gradually model generation concept. Adaptive leaming can facilitate 

the interpretability of underlying information and applicability of generated models. 

Additionally, an adaptable design can expedite the load modeling and disaggregation 

by achieving a structure capable of differentiating between the processes required for 

novel emerging events and existing instances. Therefore, it can make an on-line model 

learning concept feasible. Additionally, an adaptable procedure can be utilized for 

load behavior analysis by supervising the operation trends of the uncovered models. 

Moreover, an adaptive modeling structure using household general information can aid 

with diagnosis purposes. It can facilitate the recognition of the model parameters with 

unusual values by searching the data of past normal operation. An adaptable modeling 

system can be also considered for the reduction of customers intervention who has no 

expertise in appliances' operation. 
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- Pattern recognition promise: Our extensive method consists of two main processes 

of 'model detection and supervision' as well as 'model construction and revision'. 

The first process has been achieved by developing a pattern recognition system. This 

system has not been necessitated in load disaggregation studies however, it can promo te 

interesting analyses. The common facet of pattern recognition and load disaggregation 

methods is the load identification. Nevertheless, the former does not undergo the energy 

estimation phase. Therefore, household appliances' pattern recognition can be used 

to form an accelerated load identification system with actual on-li ne implementations. 

It can create a concept of NILM that does not require a disaggregator. This concept 

can be presented as a system that intends to detect the load patterns and monitor their 

recurrence. Therefore, it can be utilized to study the appliances' consumption behavior 

and their relationship with occupants' activities. A recurrent pattern recognition structure 

can be exploited to study the operation schedules of household devices. Furthermore, 

this structure can be employed to recognize the type of a pattern (regular or periodic) 

by continuous monitoring of its value and operating time. Therefore, it can provide 

hypotheses about the type of a load, for example multi-state devices that are normally 

regular loads (their operation period is limited). Moreover, such a framework can be 

exploited for load diagnosis services since it can capture the deviations in patterns' 

recurrence. Besides, a recurrent pattern recognition system requires further studies 

to define appropriate accuracy metrics for its performance evaluation. In fact, this 

framework can be improved from different perspectives such as mathematical methods, 

intended applications, and evaluating processes. 

- Human intervention: Our proposed structure employs an unsupervised method with 

no prior knowledge and thus, notably reduces human involvement in the set-up phase. 

Reducing human intervention requires a disaggregator with nolless training. However, 

due to supervised and semi-supervised nature of the most load disaggregation methods, 

human efforts have been required in initial model construction. In addition, we have 

tackled the idea of appliances' automatic labeling by using an unsupervised load profiling 

in order to reduce final human intervention. This concept has been mainly ignored in 

previous studies. In fact, the necessity for human supervision is a fundamental issue 

.. 
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of NILM systems. This issue can hinder real on-line applications, reduce customer 

motivations after purchase, and influence the usability of manufactured products. By 

constructing a household database, we have intended the maximum reduction of human 

intervention. Nevertheless, removing human involvement from both initial and final 

load identification phases needs further investigations. 

- Appliances candidate: Targeting multi-state appliances can be regarded as another 

important improvement to our developed database constructor. Indeed, the proposed 

structure constructs the models of finite-state load appliances in terms of two-state loads. 

Therefore, it cannot identify multi-state appliances and thus, it considers them as a 

composition of two-state loads. To be precise, due to the unsupervised nature of our 

method that uses no prior knowledge about household appliances, it is almost impos­

sible to identify multi-state appliances. These appliances have a wide-range of power 

consumption based on their brand, for example washing machines. Therefore, their 

recognition requires general information or sub-metered data compared to periodic loads 

with similar power consumption such as refrigerator. As a matter of fact, these types 

of appliances have been always a challenging object for enhanced NI LM mechanisms. 

Moreover, it should be mentioned that our proposed method has difficulty with modeling 

of identicalloads particularly, refrigerators and freezers. As mentioned, the analysis of 

periodic loads with highly sirnilar power consumption values is a fundamental issue 

of NILM studies, which has been mainly ignored (see our study in Appendix A). One 

reason can be attributed to the fact that this is a rear scenario among popular datasets 

that have been utilized for load disaggregation, such as REDD (Reference Energy Dis­

aggregation Data Set). Indeed, this type of NILM issue requires its specific context of 

analysis since it may necessitate the utilization of more complex algorithrns . 

Correspondingly, the aforementioned items have provided important matters for future 

studies through discussing the characteristics of our household database construction frame­

work in accordance with the lack of current NILM systems. 
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4.4 On-Hne anomaly detection approach 

Recently, enabling the diagnosis capability of ALM systems has received attention among 

the researches. Therefore, different studies have been conducted to evaluate NILM abilities 

specifically, load disaggregation engines for this purpose. Nevertheless, the CUITent dis ag­

gregators are not adequate to provide satisfying load diagnosis services. Accordingly, an 

appliance-level anomaly detection approach has been intended during our investigation into 

ALMD systems. This approach has resulted in developing an on-line operation-time load 

monitoring and anomaly detection system as another proposition of this study. This system 

that has been evaluated through a set of actual scenarios by utilizing real measured data can be 

discussed from different standpoints as below. 

- Generalization ability: Although the proposed system has focused on one type of 

household energy-intensive appliance as the case study, its approach to the anomaly 

detection is general. The reason is that this system has explored the operation-time 

anomaly concept, which can be applied to other types of appliances. In fact, an operation­

power anomaly detection can be not easily generalized due to the variety of electrical 

characteristics of household appliances for which, a specific power consumption model is 

required. Nevertheless, this is not the case for the operation-time anomaly since the time 

of energy consumption is general information of electricalloads. From this standpoint, 

aIl energy-intensive devices can be generalized to two-state loads. Therefore, a general 

operation-time anomaly detection method can be promoted for su ch household devices. 

Furthermore, the generalization capability of the method can be actually experimented 

since it has utilized a cornmon electrical feature in a low-sampling frequency that 

is compatible with CUITent metering technologies. In fact, such an analysis can be 

recommended for further examination of the proposed anomaly detection structure. 

- Diagnostic test: Our analysis has utilized a careful set of diagnostic scores to examine 

the results. The reason for such an intensive evaluation is the utilization of sub-metered 

information that has necessitated intending a highly accurate anomaly detection process. 

Nevertheless, defining effective diagnostic tests to be utilized for household appliances 

anomaly detection studies require further examinations. This does not necessarily 
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mean complex evaluation methods. Although our diagnostic metrics are very precise 

such a way that their estimation of the outcomes can be attributed to load profiling, 

the practical scores can be simple to only examine the detection abilities. In fact, 

different accuracy metrics are required to evaluate energy estimation and load diagnosis 

capabilities of an ALM system. The former asses ses the correct interpretation of a load's 

power profile. Since the main goal of an anomaly detection system is to diagnose the 

failure, the latter only requires to estimate the correct inference of anomaly during its 

occurrence. Nevertheless, this process becomes complicated since not aU the deviations 

in an appliance's standard behavior can be attributed to a failure. Therefore, different 

matters should be considered while designing the diagnostic scores for an anomaly 

detection system. 

- Standard behavior modeling aspect: In our analysis, a supervised machine learning 

algorithm has been employed to create the normal behavior models of the appliances 

candidate. In fact, it is suggested that further improvements to standard behavior 

modeling of household devices should be done based on (semi-)supervised methods. 

A supervised algorithm can facilitate capturing an efficient model that can handle 

both the stochastic nature of anomalous behavior of an appliance and the variation 

of its normal electric characteristics (due to different reasons, e.g. aging). Indeed, 

ensuring an effective model of regular load's pattern that guarantees customers' fidelity 

to warning alarrns is a pivotaI feature of a usable anomaly detection system. A supervised 

modeling is mainly an off-line process however, the anomaly detection procedure is 

performed in an on-line manner. Although an on-li ne model construction, mainly aimed 

by unsupervised methods, is interesting, the stationary behavior of household energy­

intensive appliances reduce its necessity. The concern with an unsupervised modeling 

of normal behavior increases since it is possible that an anomaly detection system with 

poor performance considers (for example) the abnormal behavior of a refrigerator with 

a defective gasket as normal (due to the continuation of such an anomaly). 

- Diagnosis decision: It is advised that a load monitoring and diagnosis system should be 

capable of early diagnosis. Nevertheless, our thorough study has demonstrated that the 
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term 'early' (one can read real-time) depends on different matters that demand more 

exploration. 

• The application: In our experimentation, among the chosen scenarios, two of them 

are actually failure. However, all scenarios have been detected as anomaly since 

they cause similar variations on normal energy consumption. This is due to the 

operation-time anomaly nature rather than the model inadequacy. Therefore, early 

detection should be defined based on different applications that generally account 

for fauIt and over-usage diagnosis. 

• The time: Although the energy consumption is rapidly influenced by an anomaly, 

various cases require different time period to ensure an abnormality. Furthermore, 

the time can matter the recognition of irregular behavior due to aging problems. 

Subsequently, the real-time applicability of a load diagnosis system should be 

analyzed with respect to the type of anomaly that it seeks to detect. 

• The urgency: Generally, an operation-time anomaly of a refrigerator can be dealt 

with as an energy-saving issue. However, this is not the case for a stove that has 

been left at ON-state. In fact, an anomalous stove can cause a dangerous situation 

instead of energy waste. Consequently, the early diagnosis should favor the type of 

targeting appliance. This concem leads to an appliance-specific load diagnosis idea 

that can stimulate more individual analyses of operation behavior of household 

appliances. 

Accordingly, a load monitoring and diagnosis system is suggested that its diagnosis phase 

accounts for two separate steps of anomaly detection and diagnosis decision. As a result, the 

term 'early' can be an appropriate fit for the former. The anomaly detection should capture a 

deviation when it occurs (on-line distinguishability) and the diagnosis decision should confirm 

a malfunction when there are adequate evidences (e.g. continuation of a deviation). This 

should be the outlook for additional studies on full anomaly detection and load diagnosis 

systems. In these studies, the stability of the proposed systems along with their sensibility to 

different sources of noise should be analyzed with regard to practical implementations. 
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This exhaustive discussion has detailed the properties of the proposed approaches through­

out this document. The essence of this discussion is based on the outcomes that have been 

already outlined in every corresponding article. Nevertheless, it has been mostly upgraded to a 

viewpoint that is more general with regard to future research studies. Accordingly, the roots of 

this study are concluded in the next section to finalize our efforts to analyze household ALMD 

systems. 



Chapter 5 Conclusions 

This study has focused on an investigation into household ALMD systems. By means of 

an extensive exploration of these systems, three main problems have been determined for 

further improvements. This research has attempted to define these problems with regard to 

other significant matters of ALMD concept that have not been decently taken into account. 

As a result, three main issues of the proficiency of the database, the feasibility of ALM, 

and the diagnosis of anomalous appliances have been exarnined that consequently led to the 

suggestions of this essay. These suggestions account for the data generation tool, the household 

database construction, and the on-line anomaly detection. The proposed approaches have been 

detailed in three separate studies (articles) for each of which, the following conclusions are 

provided. 

- Data generation approach: In the first study, the problem of the lack of proficient 

data for energy-expensive appliances in exceptional regions, particularly Quebec have 

been focused. Accordingly, a serni-synthetic data generation tool has been developed. 

Generally, this tool utilizes the operation schedules and electrical characteristics of real 

appliances, located in a house to create the power profiles of other devices for which, 

there is no actual data. The results have shown that the proposed approach is capable 

of effectively capturing the probabilistic schedules of appliances and constructing 

the targeted devices ' power profiles. By using the individualloads' information, the 

suggested tool can yield to aggregated load profiles' creation for different REMS 

scenarios. As stated, the first research has also conducted a thorough study on major 

issues required to achieve an actual NILM. The promise of NILM approach eases the 

effective cooperation among stakeholders in the electrical energy industry in the context 

of REMS and gives a new force to Inevitable move toward the SR concept. Apart 
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from the methods analyses, we have investigated the prerequisite necessities and final 

expectations of the NILM system in order to realize an effective one. Initial requirements 

to establish a well-organized NILM have been described using a concrete analysis to 

address sorne important issues. Furthermore, we have explored the primary applications 

of NILM, considering both customer and utility sides to develop an operative NILM 

structure. From a realistic standpoint, an advanced NILM aspect has been proposed 

and its properties have been discussed as the result of a clear understanding of effective 

NI LM requirements and purposes. This concept can lead to a building with integrated 

system designs and operations. A successful realization of such a concept eventually 

makes HEMS feasible. Advanced NILM abilities, which can make its actual applications 

possible, can be considered as the solution for the regressive trend of traditional NILM 

and create a novel way for the next studies. 

- Household database construction approach: In the second analysis, the appliance load 

modeling issues of capturing the dynamic of power consumption and exhaustive training 

phases in the NILM context have been tackled. Furthermore, this analysis has intended to 

notably reduce human intervention in the set-up phases. Consequently, we have proposed 

the approach of adaptive on-line unsupervised appliance-Ievelload modeling. We have 

designed a time-variant load modeling procedure for load diagnosis goals of NILM. 

In fact, the disaggregation methods have been the focal point of NILM studies, which 

has caused its diagnosis goal to be ignored. Therefore, we have provided a thorough 

analysis of the essential prerequisites of a NILM system with diagnosis purposes. Our 

proposed approach has resulted in an autonomous household database construction 

system. This system utilizes the steady-state operation of household appliances to 

execute an analysis based on low-sampling frequency, which is compatible with regular 

smart meters. Furthermore, we have designed an on-li ne learning system with dynamic 

HMM parameters. This architecture employs a set of low-complex algorithms to 

expedite the whole process of appliance database construction. Our database constructor 

targets the devices with high power consumption whom their accurate energy estimation 

can assist in a notable co st reduction. The results have demonstrated that our framework 

is capable of detecting the recurrence of loads' patterns with an accuracy of more than 
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90% for almost all cases. More importantly, it is able to construct highly accurate (90% 

and more) models for the majority of appliances with no prior knowledge. Future studies 

can focus on the improvement of our household database constructor and its utilization 

for diagnosis systems. 

- On-line anomaly detection approach: In the third research, the inadequacy of NILM 

methods for anomaly detection in the aggregate-level from one side and low-priced 

smart plugs capabilities from the other side have become the motivation to contribute a 

practical anomaly detection system in the appliance-level. In fact, anomaly detection 

accounts for a significant application of load monitoring systems. In the residential 

sector, anomaly detection can assist with different kinds of energy-saving awareness. 

Accordingly, we have provided an exhaustive investigation into different perspectives 

of an appliance-level anomaly detection with regard to household energy-intensive 

loads. As a result, an on-line load monitoring and anomaly detection approach has been 

proposed that is capable of expeditiously capturing any operation-time abnormality. The 

proposed approach has been exarnined by implementing an actual framework. This 

framework applies the suggested design to the measured data of a set of appliances 

candidate. These appliances consist of a standard and a smart refrigerator with different 

electrical characteristics. Refrigerators are important household finite-state loads that 

can bring about challenging anomalous behaviors. Therefore, they are a suitable case 

study for anomaly detection of household energy-expensive loads. The results based on 

careful diagnostic tests have demonstrated the high performance of our proposed method. 

In most of the experiments, this method has achieved correctness of more than 95% and 

around 90% to diagnose the anomaly based on energy and average power consumption, 

respectively. The high capability of our approach is further validated through its very 

accurate results in the diagnosis of anomalous events in REFIT database, especially 

within a long duration analysis (one year). Furthermore, the utilization of a group of 

straightforward algorithms, examined on a physical operating system has validated the 

pertinence of the developed structure to smart meters/plugs systems. With regard to the 

case studies, our analysis has elaborated important remarks on a full appliance-level 
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load monitoring in terms of a system capable of continuous load observation, anomaly 

detection, and diagnosis decision. 

Accordingly, the above conclusion finalizes the extensive analyses, provided in this study 

to examine the concept of ALMD from different standpoints. Despite aIl the propositions, 

the future of this concept highly depends on the manufacture trends in designing a new gen­

eration of household appliances based on customer preferences. In fact, the digitalization 

aspect of future products, capable of independent communication with electricity stakeholders, 

autonomous decisions, and self-observation can completely change the orientations. Never­

theless, the essence of the proposed approaches, which also concern the des ires of customers 

and system operator should be considered in any future energy estimation and load diagnosis 

system design that is favored for mass production. 
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Abstract-The promise of non-intrusive approach of Appliance 
Load Monitoring (A LM) promotes the load decomposition anal­
ysis at the most disaggregated leveI. Accordingly, appliance-Ievel 
load modeling is bolstered to provide appliance-Ievel informa­
tion and quantify energy consumption. This paper intends to 
investigate the proficiency of Markovian models, as the state-of­
the-art and Deep Learning (DL) architectures, as the cutting­
edge of machine learning methods for load modeling through 
disaggregation practice. Particularly, a simple Recurrent Neural 
Network (RNN) as a fundamental network architecture for DL 
is chose n, which is consistent with first-order Markovian chain 
assumption. A dataset with a challenging load disaggregation 
case is utilized for the analysis. The sa me learning mechanism is 
used to execute the training phase of both approaches, regarding 
a fair performance comparison. Consequently, the recognition 
accuracy of the algorithms is evaluated. The results demonstrate 
that Markov decision procedure is comparable with DL basic 
manner. Additionally, the paper elaborates remarks on essential 
prerequisites, specifically data adequacy, to provide a thorough 
load modeling analysis. From a practical stand point, this work 
aims to pinpoint major barriers in terms of both load model 
construction and recognition towards actual implementation. 

I1ldex Terms-Markov models, Deep learning, Recurrent neu­
ral networks, Load modeling, Disaggregation. 

1. I NTRODUCTION 

Household appliances load monitoring at the most disaggre­
gated level is signified due to energy saving potential aware­
ness [1] . Accordingly, the approach of appliance-level Joad 
modeling, widely practiced in the context of Non-Intrusive 
Load Monitoring (NlLM), is promoted to provide appliance­
level information , [2]. Correspondingly, different techniques 
have been exploited to meet load modeling, among which, 
probabilistic approaches specifically, Hidden Markov Models 
(HMM) have received a signi ficant attention. HMM methods 
are capable of providing analytical state-based model s of 
household appliances by enabling sequential data analysis 
[3], [4]. ln fact , the variants of HMM are the state-of-the­
art approaches especial ly, in low-sampling rate analyses of 
household total signal [5]. Recently, the promise of Deep 
Neural Networks (DNN) have provided a meaningful success 
in data processing in many areas as images, texts, and audios 
[6] . Therefore, they have been taken into consideration for 
Joad modeling as the cutting-edge research [7]. 

Consequently, a comparative study between DNN and supe­
rior variants of HMM can be advantageous for further studies 
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ln the early stages. In fact , this comparison is sensible due 
to the fact that they are both generative approaches, which 
their analytical techniques demonstrate a Bayesian nature [6] . 
This paper ai ms to provide a comparison between HMM and 
DNN methods, employed in appliance-Ievel Joad modeling 
under the same conditions. lndeed, the tendency of few simi lar 
studies signifies the appl ication of DL architectures. Kim et 
al. [8] discusses the difficulty of FHMM in recognition of 
appliances with the same power consumption, where the total 
power demand is the only observation. However, appliances 
identification with identical demands in such situation is a 
fundamental NlLM issue that can also matter DNN methods. 
Marques [6] expresses the ability of DNN means to achieve 
valuable results with almost no prior information. Nonetheless, 
due to a large parameter space, DL algorithrns require a great 
amount of prior knowledge to provide effective models [6], [9]. 
lndeed, the avail ability of large amount of data is a significant 
reason of recent DNN ach ievements. 

Accordingly, in order to provide a careful analysis, this 
paper first discusses the dataset candidate proficiency due to 
its influence over the accuracy of the methods. Furthermore, 
a simple Recurrent Neural Network (RNN) with short-term 
memory as a fundamental DL architecture is chosen due to 
its consistency with first-order Markovian chain assumption 
[10] . On the other side, two variants of HMM are studied, 
which consist of Factorial HMM (FHMM) and Hidden Semi­
Markov Models (HSMM), also known as Explicit Duration 
HMM (EDHMM). In fact, FHMM is capable of explaining the 
additive effect of aggregated signal, and HSMM is capable of 
modeling the operation time of individual loads. Therefore, 
they can enable a practical modeling framework regarding 
real-world behavior of household appli ances [10] , [11]. More­
over, a supervised machine learning process that utilizes 
straightforward training techniques to construct appliance­
level models, is exploited for both methods. Consequently, the 
Joad disaggregation technique is used to evaluate the perfor­
mance of the approaches in providing an accurate inference of 
Joad operation states. ln fact, this work demonstrates that the 
superior variants of HMM are competitive with DNN models 
under the same conditions. In addition, the paper provides 
sensible remarks by detailing the manner of both approaches 
to model and recognize household appliance-level loads. 



The rest of the paper is organized as follows. Section II 
presents appliance-Ievel load modeling formulation based on 
the suggested methods. Section III describes the case study 
and discusses important notes regarding the essentials of the 
exploited algorithms. Section IV provides the results with 
related discussion , followed by the conclusion remarks in 
Section V. 

Il. PROBL EM MOD ELING AND SPEC IFI CAT IO N 

Our methodology for investigating opportunities and chal­
lenges regarding household appliance-Ievel load modeling by 
using HMM and RNN is developed through the followings. 

A. RNN Framework 

A deep learning structure is developed based on a simple 
Recurrent Neural Network (RNN) as a basic model of DNN, 
designed to recognize patterns in data sequence [12]. The 
simple RNN decision at time instant t depends not only on 
the current input but also the net state at time t - 1. This 
configuration provides a feedback loop directly connected to 
the past deci sions and permit a temporal behavior. In fact, 
such RNN facilitates correlation investigation between time­
separated events as short-term dependencies by allowing the 
information circulation in the hidden layers. Accordingly, the 
network creates a memory that enables sequential analysis 
to capture the information of data sequence, essential for 
household load modeling and impossible with feed-forward 
networks [13] . The utilized net structure, proposed by Elman 
and known as Vanilla RNN [14], is shown in Fig. l. In this 
structure, the update rule of forward path parameters is defined 
by (1 ). 

ht = a (Wy YI + W h ht- 1 ) 

St = ()(Ws hd 
( 1) 

where at time step t, YI is the input i.e. observations, ht defines 
the context (hidden) state, and St presents the output i.e. load 
operation states. W y and Ws are the input and output weight 
matrices, respectively. Wh characterizes the hidden weight 
matrix as a transition matrix that is comparable to Markov 
chain. a and () express the activation functions of context and 
output layers, respectively. 

Memory feedback 
......... , (Copy) 

Fig. 1. The diagram of the simple RNN structure known as Vanilla RNN . 
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The RNN is trained using backpropagation of error and 
gradient-based optimization methods as feed-forward nets. 
However, the essence of RNN relies on an algorithm that 
applies time to the series of training calculations in order 
to link the time steps, called Backpropagation through time 
(BPTT). 

B. FHMM structure 

FHMM can be described as a generalization of HMM, pro­
posed by Ghahramani and Jordan [15] Ïn terms of a dynamic 
network of composed underlying Markov chains as shown in 
Fig. 2. The FHMM hidden state is defined as a collection of 
states of individual HMM with independent dynamics, [10] 
expressed by (2). 

(1) (m) (M) St = St , ... , St , ... , St (2) 

In fact, each network layer as a HMM is characterized by its 
state space Q (m) and emission distribution y;(m) that at time 
t, determine its state variable and describes the observation 
sequence through (3). 

~ ( (1) (m) (M)) YI = f Yt , ... ,Y; , ... ,Yt (3) 

A simplified FHMM consists of individual HMM with both 
equal number of state variables and constrained transitions 
between states in different layers. Accordingly, the dynamic of 
such structure can be captured through analyzing the evolution 
of each HMM state variables separately, defined by (4). 

M 

St 1 St - l ~ TI p (sim) 1 st'1) 
m=1 

(4) 

Fig. 2. The diagram of the FHMM structure with discrete hidden states. 

Appliance-Ievel load modeling based on active power con­
sumption, as the focus of thi s study relies on household total 
load in terms of the observation. In this case, a derivation, 
referred to as an additive FHMM is generally employed in 
which the observation is the sum of appliance emissions, 
explained by (5), 

M 

Yt = .L: y;(m) (5) 
m = 1 



that every individual appliance emission is assumed to follow 
a Normal distribution at each operation state, computed by (6). 

y: (m) 1 (m) N ( mm ) 
t q(I:I< ) ~ J-L ( I :J( ), CT(1 :J( ) (6) 

Due to the time complexity, the additive model faces dif­
ficulties to provide an exact inference estimation by us­
ing dynamic programming procedures, utilized by traditional 
HMM. Therefore, approximative inference procedures such as 
Markov Chain Monte Carlo (MCMC) methods and reduced 
forward-backward algorithms are exploited to interpret the 
most probable state sequence [10]. 

In addition, the learning phase of a FHMM can be done 
through parameter estimation of the model structure by em­
ploying Expectation Maximization (EM) algorithm. However, 
due to the expensive computation of the posterior probabilities, 
other efficient algorithms are signified [15] . 

C. HSMM structure 

The idea of HSMM allows to model the sojourn time of 
a Markov process as the duration that an HMM lies in a 
state [II]. The HSMM is promoted due to the fact that the 
inherent state duration of an HMM follows a geometrical 
distribution that is inadequate to model the real-world behavior 
of appliances ' operation. HSMM design , shown in Fig. 3, 
enables both the estimation of state duration distributions dt 
regarding the associated occuITing observations as weil as the 
effective inference of the underlying state sequence [16]. 

Fig. 3. The diagram of the HSMM structure denoted as EDHMM . 

A HSMM preserves the Markov property, i.e. p(St = qj 1 

SI ... St - l ) = p(St = qj 1 St- l = Qi) that 1 ~ i , j ~ J( for 
J( number of states and each latent state is infused with its 
duration distribution, p(dt 1 St = qj ). Accordingly, the state 
duration, drawn from its own distribution in a specific time 
instant constrains the transitions from that state. Principally, a 
decrement counter is utilized to cou nt down dt and allows the 
CUITent state to change when it is zero, explained by (7). 

{ 

J( i , j ), d > 0 (remain) 
p(St = qj 1 St - l = qi, dt- 1 ) = aij, d = o (transition) 

(7) 
Where the delta function, J( i, j ) and transitIOn matrix ele­
ments, A = {aij } perform the determined actions. Subse­
quently, the zero counter is reset to the duration of the next 
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state, described by (8) [16]. 

{ 

J(dt, dt- 1 - 1) if dt- I > 1 
d S = d = p( t 1 t qJ' t-I) p(dt 1 St = qj) otherwise (8) 

As a result, the join probability distribution of a particular 
observation sequence in a HSMM structure can be computed 
through (9). 

T T 

p(Y , S , D ) = TIp(Yt 1 St ,dt ) x TIp(St 1 St- I , dt- d 
t = 1 t= 1 

T 

x TI p(dt 1 St , dt- d (9) 
t= 1 

The contribution of the state duration probability in the 
forward algorithm can be realized in the equation (9). The 
parameter estimation and inference of a HSMM structure 
can be theoretically done using conventional methods applied 
for regular HMM. However, these methods can be complex. 
Accordingly, MCMC techniques such as Gibbs sampling can 
be utilized to provide an efficient procedure [16]. Moreover, 
these techniques can take advantage of forward-backward 
algorithms to offer a superior posterior estimation [II]. 

III. CASE STUDY IMPLEMENTATION AND DISCUSSION 

The problem structure is developed by defining the essential 
prerequisite to provide an actual viewpoint of the performance 
of the utilized methods. This consists of an appropriate dataset 
candidate of household appliances and initialization of the 
algorithms particularly, RNN. It is noted that our problem is 
coded using Python language that provides convenient libraries 
for HMM and DL experimentation. The load modeling anal­
ysis is do ne by using the steady-state feature of power con­
sumption data in a low-sampling rate of one minute. lndeed, 
lower-sampling frequencies are compatible with world-wide 
tendency of smart meter technologies in data transfer however, 
they can hinder the load disaggregation task [17]. 

A. Dataset Candidate 

We utilize the real-data of ECO (Electricity Consumption 
and Occupancy) dataset, qualified for load disaggregation stud­
ies [18]. The proficiency of ECO data in comparison with other 
datasets has been demonstrated in [1]. Particularly, aggregated 
data of ECO hou se 2 is used as a challenging case for load 
disaggregation due to high overlapping rates (simultaneous 
operations) and existing loads with similar power demands 
[19]. The targeted household appliances are comprised of 
fridge, freezer, dishwasher, kettle, and HTPC (Home Theater 
PC). The simultaneous presence of fridge and freezer in this 
case brings about difficult recognition tasks due to similarity 
in the power consumption and operation behaviors. Indeed, 
the combination of common periodic devices with similar 
power demands can demonstrate the difficulty of identical 
loads disaggregation as a common complication faced by 
load modeling methods. However, this issues is generally 
lacked in other studies, utilized REDD (Reference Energy 



Disaggregation Dataset) as another widely exploited dataset 
[20] , [21] . 

The importance of an efficient acquisition system as dataset 
builder increases with DL methods specifically, in the training 
phase [1]. Basically, the rate of missing data, especially gaps 
can significantly jeopardize the training procedure through 
changing the spaced samples length fed to DNN batches. Con­
sequently, such practice causes DNN to learn varying patterns 
at each time window [6]. As a result, a data preprocessing 
step is a prerequisite of load modeling analyses that utilize 
DL methods. Likewise, Markov-based analyses require the 
preprocessing phase. However, in thi s regard, they do not 
face crucial challenges and thus; detailing this phase has been 
skipped in the related studies. 

From a technical viewpoint, household appliances consist 
of periodic e.g. fridge, regular e.g. water heater, and irregular 
e.g. vacuum cleaner loads with different operation schedules. 
Accordingly, a large amount of data is essential for a suc­
cessful training however, available data is Iirnited with regard 
to household appliances' load space [22], [23]. Particularly, 
the size of data influences DNN Iearning phase due to the 
huge number of parameters . In fact, the collected data should 
be long enough to account for different combinations of 
appliances' operation to build a deep model structure [6]. 
Nevertheless, the available data still requires a computationally 
powerful system since, DNN can pass through many multipli­
cation steps. In this regard, it should be mentioned that another 
issue with REDD is a short duration measurement of 3 to 19 
days with long gaps of missing information [1]. 

B. RNN designation 

The RNN structure is designed using Keras as an open­
source Python-DL Iibrary of high-level neural networks. Keras 
is a user-friendly and easy-extensible framework to enable 
easy and fast practices regarding conventional and recurrent 
networks [24]. Accordingly, a Sequential model of Keras core­
data structure is chosen. Consequently, a fully connected RNN 
that consists of two hidden layers of 14 units in each, and 
an out-put layer consistent with the number of load models, 
is developed. ln addition, Rectified Linear Unit (relu) and 
Sigmoid functions are considered as the activation functions 
in context and output layers, respectively. Subsequently, the 
network is compiled using Adam, as the optimization al go­
rithm and mean squared error as the loss function. In fact, 
different structures and optimizer have been tried, among 
which the above structure with Adam (a stochastic gradient­
based optimizer) has surpassed the other choices for our case. 
The effectiveness of the configurations is evaluated by network 
fitting process within training on the dataset. As a result, the 
RNN is trained over a sliding window of 7 inputs, indexed 
in time to form a time-series. The training phase is advanced 
within 20 epochs, partitioned into groups of 60 batches to 
avoid loading too many inputs into the network memory at 
once. Due to the wide range of power data values, the inputs 
are standardized between [0 ,1] for an effective training [6]. 
Fig. 4 depicts the training platform of the RNN. Indeed, 
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Fig. 4 . The block diagram of the RNN training structure. 

the designation of DNN architecture deals with important 
ad just ment s, which may not be the case of HMM as their 
fundamentals signify sequential analysis applicable for time­
series exploration. 

C. FHMM and HSMM designation 

The Markov models are not confronted with manners that 
DNN models undergo for network design and fit specifically, 
in the context of a supervised learning. In fact, the HMM is a 
practical approach for exploratory data analysis of time series. 
Especially, using the underlying models, it can effectively 
describe the aggregate effect of total signal through factorial 
models. Accordingly, the main step is to define the structure 
of the HMM that automatically describes the set of parameters 
to estimate. Considering the targeted loads, a two-state HMM 
is chosen that its parameters are obtained From individual 
load profiles. The Baum-Welch algorithm can be used for 
parameter estimation however, there are simpler methods for 
two-state load profiles. In this case, the state probabilities 
are computed by defining the on/off operation states using 
a threshold. Consequently, the rel ated ernission parameters of 
each state is calculated as a Normal distri bution according to 
(6). As a result, the HMM parameter set of each targeted load, 
consisting of initial and transition probabilities as weil as state­
sequence time and emission distributions are constructed . 

In fact, the training phase of Markov-based methods using 
individual load profiles facilitates learning procedure with less 
amount of required data. However, the RNN training manner 
needs to capture the combination of individual profiles that 
becomes critical with the increase in the number of loads with 
limited data. Nevertheless, both approaches are sensitive to the 
presence of unknown loads that decline their efficiency. 

IV. R ESULT AND EVALUATION 

Our results is a consequence of concerning both the profi ­
ciency of the data and the adequacy of the methods crucial to 
a fruitful appliance-level modeling process. The training phase 
of the utilized methods is executed using the targeted loads' 
data of fifteen days, started at lOth day (based on ECO house 
2 information) . Subsequently, the evaluation phase is practiced 



using another 15 days of unseen data, started from 30th day. 
In fact, the efficiency of the model parameters of the chosen 
loads, captured through the training phase is examined in the 
context of a disaggregation procedure. The RNN interpretation 
is met by the evaluation of the loss function on the new 
data. Furthermore, FHMM inference is realized usi ng the 
Gibbs sampling method, exploited in [10]. Nonetheless, in a 
space with less number of models, the factorial model can be 
deterrnined to allow unrestricted transitions to create a regular 
super-state HMM. Subsequently, such HMM can be decoded 
using Viterbi algorithm to provide the state sequence inference 
of load models. Additionally, the HSMM is extended into a 
Factorial model as FHSMM that is evaluated using the same 
inference procedure as FHMM. Moreover, the fI -score, as a 
widely used metric for single-label classification is employed 
to explore the methods' accuracy performance [7], expressed 
by (10) 

f _ 2 x precision x recall 
1 - precision + recall 

(l0) 

that precision = t ~f p and recall = t ~fn' in which t p is 
true positives, which is the number of tir!;es an appliance ON 
state is correctly classified, f p is false positives, which is the 
number of times an appliance OFF state is wrongly classified 
as ON, and f n is fal se negatives, which is the number of times 
an appliance ON state is wrongly classified as OFF. 

In order to demonstrate the burdensome task of di saggre­
gating the simi lar loads, particularly with low average power 
consurnption i.e. fridge and freezer, a simple scenario is 
provided. In this case, the disaggregation practice is applied 
to the total signal of these two devices using their constructed 
load models. The outcomes of this scenario is shown in Table 
1. As a result, the problem of similar load recognition can be 
easily realized even in a simple case especially, considering 
the accuracy rate of FHMM. In fact, this scenario can evidence 
the recognition difficulties of these appliances in the presence 
of other loads, regarding the utilization of actual aggregated 
signal. However, other methods are able to provide a satisfac­
tory accuracy of more than 90%. The RNN is able to prepare 
a successful training, because of sufficient data of these two 
periodic appliances in different combination. The exceptional 
preciseness of FHSMM can be due to the fact that it is able 
to capture the behavior of time-duration operation of fridge 
and freezer, which pose a periodic pattern. Consequently, it 
notably increases the efficiency. 

Moreover, the recognition accuracy of five targeted appli­
ances of ECO house 2 is presented in Table 2. Although the 
training phase of RNN is time consuming, it performs the 

TABLE 1 

TH E RECOGNITIO ACCURACY OF FRIDGE AND FREEZER US ING 

FI-sCO RE IN A SCENAR IO OF ONLY TWO APPLI ANCES 

Appliance 
Fridge 
Freezer 

FHSMM 
99.1% 
99.2% 

FHMM 
82.8% 
86.9% 

RNN 
91.5% 
93.1 % 
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TABLE Il 

TH E RECOGN ITIO ACCURACY OF TARGETED LOADS OF ECO HOUSE 2 
US ING FI -sCO RE 

Appliance FHSMM FHMM RNN 
Fridge 88.7% 0.0% 70.1% 
Freezer 90.9% 70.5% 70.3% 
HTPC 94.9% 34.4% 74% 
Dishwasher 91.7% 76.6% 80.9% 
Kettle 76.7% 27.9% 0.0% 

disaggregation procedure faster in comparison with FHSMM. 
It can be seen that FHSMM surpasses other methods in 
appliance-Ievel load recognition and its accuracy falls under 
80% only for the kettle. FHSMM and RNN are able to capture 
the operation sequence of fridge and freezer. However, FHMM 
completely fails in providing any results for the fridge, which 
demonstrates its incapability to realize any sequence. In fact, 
the fridge and freezer have average power consumption values 
of 75W and 55W with high transients between 800W to lkW, 
respectively. Such large variance can cause their operation 
events to be easily mjstaken for each other. In this case, it 
is difficult to address this issue either by a transient analysis 
due to the low frequency scenario, or a high-order filtering due 
to the events loss of other loads. Nonetheless, FHSMM that 
can infer the operation duration and RNN that can learn the 
combinations, are able to recognize this challenging situation . 
Actually, the analysis of such combination of periodic loads 
with similar low-rate power values has been neglected. Only 
Parson [23] has aimed to investigate the recognition of fridge 
and freezer. However, hi s analysis has intended an energy 
efficiency practice with no report of disaggregation results. 
He has utilized the FHMM of only these two appliances in a 
scenario that the first load is extracted from the aggregated 
signal and the process di saggregates the second load from 
the reaming signal [25] . Moreover, the RNN has failed in 
recognizi ng the kettle. The reason can be because of the fact 
that the kettle is a regular load that has not been used every day 
and thus; it requires more data for trajning. Furthermore, the 
kettle frequently poses high variations of power consumption 
during its short time operations that transform its pattern 
in combination with other loads. It can be deduced that an 
effective model of operation cycle of household appliances, 
enabled by HSMM can significantly enhance the appliance­
level load modeling performance [26]. 

In our case, a dataset of load signatures has been utilized 
to provide effective load models. However, it can bring about 
other concerns related to the essence of employed methods. 
[n fact , an important issue with these generative algorithms is 
that they can lose the generalization. Therefore, they advertise 
specific cases due to the model parameters, estimated through 
the tuning procedure with specific prior knowledge. This issue 
becomes critical with DNN as it can influence the network 
structure by necessitat ing the practice of different architectures 
to realize an accurate structure regarding the case study. This, 



in turn, increases human intervention as a pivotaI concern of 
household load modeling approaches. However, DNN are able 
to provide competitive results with other methods specifically, 
HSMM. In fact, in order to provide a fair comparison under the 
sa me condition, a RNN has been chosen that its nature is con­
sistent with first-order Markovian assumptions [10]. However, 
RNN can be designated with long memories to consider long­
term dependencies for better achievements. Additionally, with 
further improvement of special designed cores for exceptional 
DL efficiency, training of large DNN can be possible. As 
a result, DNN have a great potential for advancement in 
the future from the perspective of both hardware as weil as 
operating systems and architectures. Such promising potential 
can influence their success in many areas. Notwithstanding, 
the NILM framework needs practical techniques that can 
overcome its particular obstacles. NILM requires a method 
that can handle the issues related to the limited available data 
and construct generic models not restricted by individual cases 
and human intervention. In addition, this method has to avoid 
complex computations that need heavy operation systems 
in order to be compatible with smart meter technologies 
(regarding practical real-time implementations) [27]. Indeed, 
these particular barri ers can sti ll signify the utilization of the 
efficient variants of HMM as the state-of-the-art approaches. 

y. CONCLUSION 

Recent advancements of DNN in terms of optimization 
algorithms and architectures have promoted their applications 
in the area of NILM. Therefore, this study provides a realistic 
comparison between variants of HMM as the state-of-the-art 
and DL fundamental structures as the cutting-edge approaches 
of household appliance-Ievel load modeling and recognition. 
Particularly, FHMM and HSMM as superior variants of HMM 
and simple RNN as a DL basic model have been analyzed 
under the same conditions. In addition, the importance of data 
has been investigated to provide a thorough load modeling 
procedure. The results have demonstrated that HSMM and 
RNN are competitive. From a practical perspective, this paper 
has provided important statements by carefully exploring the 
essentials of a load modeling practice in the context of 
NILM. ln the future work, the capability of DNN to achieve 
successful load recognition results in the scenarios with less 
prior information will be evaluated. Moreover, a combination 
of both techniques will be studied to provide enhanced designs 
of appliance-level load modeling process. 
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Appendix B Résumé 

B.I Introduction 

La demande d'électricité à l'échelle mondiale est en croissance en raison des processus 

d'électrification des déférents secteurs de l'économie. En ce qui concerne le secteur résidentiel, 

la demande d'électricité continue à croître à cause de l'augmentation des surfaces habitables 

et la substitution des sources d'énergie traditionnelles à savoir le bois, le mazout et le gaz 

naturel par l'énergie électrique [1]. Dans la province de Québec, la consommation d'électricité 

par habitant est parmi les plus élevées au monde. Ceci est dû principalement au chauffage 

de l'espace pendant des hivers relativement froids. Comme illustré dans la Figure B.I, la 

consommation d'électricité actuelle des bâtiments résidentiels est de 54% et on prévoit une 

augmentation de 70% d'ici 2050. Cette augmentation nécessite le développement de nouvelles 

techniques de gestion de la demande et l'adoption plus déterminée des réseaux électriques 

intelligents. Ces techniques devront aider à anticiper les besoins futurs en électricité et mieux 

gérer l'équilibre entre la production et la consommation, facilitant ainsi l'intégration des 

énergies renouvelables et la réduction des besoins en puissance pendant les périodes de pointe 

[2]. 

Dans le contexte des réseaux électriques intelligents, les systèmes permettant un suivi en 

temps réel de la charge électrique des bâtiments résidentiels ont reçu une attention particulière 

ces dernières années. Ceci se justifie par la consommation accrue d'électricité des appareils 

électroménagers qui consomment plus de 20% de la consommation totale de la demande mon­

diale d'électricité. En conséquence, la surveillance détaillée de la consommation par usages a 

pris une ampleur croissante dans le domaine de la gestion intelligente de l'énergie résidentielle. 

Ceci à cause de sa capacité de rapporter des informations pertinentes et opportunes permettant 

aux utilisateurs d'avoir un meilleur contrôle sur leur consommation [6]. 
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Figure B,l Production d'électricité dans le monde et au Canada par principales ressources et 
consommation par principaux secteurs [4], [5]. 

B.2 Motivation 

La surveillance de la charge des appareils électroménagers (en anglais Appliance Load Moni­

toring (ALM)) peut aider les utilisateurs résidentiels à faire des économies non négligeables 

d ' énergie [10]. Le rôle principal des systèmes ALM consiste à quantifier la consommation 

individuelle des différents usages dans un bâtiment. Le déploiement des technologies ALM 

facilite le développement des nouvelles fonctionnalités telles que le diagnostic de la con­

sommation et l'automatisation des actions ciblant l'efficacité énergétique. La surveillance 

de la charge est normalement réalisée à l'aide de deux types de techniques, une est intru­

sive et l' autre est non intrusive [12], [13]. La technique non intrusive permet d'obtenir une 

consommation individualisée des appareils à partir d'un seul point de mesure, normalement, 

au niveau du panneau principal de la résidence [8], [Il ]. Par contre, la technique intrusive 

prévoit l'installation de capteurs à l'intérieur de la résidence au niveau de chaque appareil à 

surveiller [16], [17]. Les deux stratégies de surveillance peu vent faciliter le développement de 
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plusieurs applications telles que la régulation de la consommation d'énergie, la détection de la 

consommation anormale, la surveillance des personnes âgées et la détection des intrusions 

[30]. Bien que la technologie non intrusive soit préférable à cause de son coût et la facilité 

d'installation, dans le futur, les systèmes de communication et la technologie de l'Internet des 

objets, ou IdO (en anglais Internet of Things (loT)) vont faciliter le développement de charges 

intelligentes avec des prix compétitifs capables de rapporter leur consommation en temps réel. 

B.3 Problématique de thèse 

Le déploiement des systèmes ALM cherche à faciliter deux applications importantes dans le 

domaine de l'énergie résidentielle: le suivi en temps réel de la consommation des usages et 

le diagnostic de la charge. Pour réaliser une surveillance efficace, il faut d'abord concevoir 

des algorithmes pour la détection précise des états de charges, qui est l'objet principal des 

études dans la littérature. Pour cela, une base de données appropriée permettant de stocker les 

modèles et les signatures des différents appareils doit être construite. En plus, une méthode de 

détection des anomalies fiable et cohérente avec les modes d'opération des charges est requise. 

En considérant ces aspects, trois problèmes particuliers sont abordés dans le cadre de cette 

thèse, à savoir l'intégralité de la base de données, l'apprentissage en ligne de systèmes de 

surveillance et la détection d'anomalies [ II ], [31 ], [32]. 

8.3.1 Intégralité de la base de données 

L'exhaustivité d'une base de données est une condition déterminante dans l'efficacité des 

approches pour le suivi non intrusif de la consommation des usages résidentiels. En effet, les 

algorithmes de surveillance nécessitent des informations a priori suffisantes afin d'obtenir 

des résultats fiables pendant la phase de détection ou désagrégation [33], [34]. Une base 

de données appropriée doit comprendre des informations concernant les caractéristiques 

électriques telles que la puissance pour chaque mode d'opération. Elle doit aussi considérer 

les attributs structurant le comportement ou l'évolution temporelle du profil. Toutefois, la 

collecte d'une telle base de données est une tâche coûteuse en raison de la variété des appareils 

[35], [36]. Ce problème s'accroît en présence des usages ayant des signatures électriques 

liées aux conditions géographiques et climatiques. Par exemple au Québec, le chauffage 
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électrique (en anglais Electric Space Heaters (ESH)) et le chauffe-eau électrique (en anglais 

Electric Water Heaters (EWH)) représentent plus de 70% de la consommation d'électricité 

en raison du climat froid [25]. Ceci est dû au fait que ces deux appareils sont peu étudiés 

dans le domaine scientifique, ces appareils énergivores peuvent créer des scénarios complexes 

pour les techniques conventionnelles de surveillance. En plus, peu de données et modèles 

considérant les charges électrotherrniques propres aux régions froides sont accessibles au 

public. Ces limitations motivent le développement des outils de simulation capables de générer 

des données pouvant être utilisées pour le test et la validation des nouvelles méthodes de 

surveillance considérant les particularités du climat nordique[ 10], [ Il ]. 

B.3.2 Apprentissage en ligne de systèmes de surveillance 

La viabilité d'un système de surveillance de la charge concerne essentiellement la précision 

des systèmes non intrusifs (en anglais Non-intrusive Load Monitoring (NILM)) où les coûts 

sont basés sur le sous-mesurage, en raison de la complexité algorithmique de la surveillance 

non intrusive qui augmente de façon considérable avec le nombre d'appareils ciblés. Un 

scénario efficace de surveillance devrait centrer l'analyse sur les charges ayant une demande 

d'électricité importante. La capacité du système à déterminer avec précision la consommation 

des différents usages dépend fortement de la qualité de la base de connaissances. C'est-à-dire, 

de l'ensemble de modèles et de signatures ayant un pouvoir discriminant suffisant pour le 

processus de reconnaissance. La littérature scientifique du domaine a généralement privilégié 

la surveillance basée sur des méthodes supervisées en raison de leur précision [17], [23], [24]. 

Toutefois, la question d'apprentissage pendant le temps d'opération reste une des limitations 

majeures des approches NILM existantes [19], [36], [43], [44]. En effet, il est difficile de 

configurer un dispositif NILM pour qu'il puisse opérer dans tous les scénarios et avec toutes 

les charges d'une résidence. En plus, les charges peuvent avoir des signatures et cycles 

d'opération non homogènes dans le temps. Cette situation peut entraîner une perte graduelle 

de précision, car le modèle ou la signature s'éloignent des informations statiques introduites 

dans la phase d'apprentissage. Il est donc nécessaire d'aborder le problème d'apprentissage 

en ligne des systèmes NILM dans des conditions dynamiques telles que le changement ou 
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l'installation des nouveaux appareils, l'effet saisonnier, la dégradation d'équipements, entre 

autres [51 ]. 

B.3.3 La détection d'anomalies 

La surveillance automatique de la charge peut faciliter le suivi du comportement individualisé 

des appareils, en particulier, pendant une opération anormale ou un état de défaillance. La 

détection d'anomalies cherche à améliorer l'efficacité énergétique globale des résidences en 

facilitant l'intervention des utilisateurs afin de corriger des modes d'opération signifiant des 

pertes énergétiques considérables [54], [55]. La détection des anomalies est basée sur la 

surveillance continuelle des profils de consommation à partir des algorithmes capables de 

détecter les déviations par rapport aux conditions normales. Ces algorithmes peuvent être 

développés dans le cadre de l'approche intrusive et non intrusive [31 ], [56]. Toutefois, la 

précision limitée des méthodes non intrusives empêche d'avoir des résultats concluants dans 

l'inférence des états anormaux. Ceci à cause de l'incertitude des méthodes de désagrégation 

qui dépasse celle admise pour les méthodes de détection d'anomalies. En outre, la nature 

dynamique et stochastique des modes de fonctionnement de charges rend difficile la construc­

tion de règles de détection assez générales. C'est pourquoi des données acquises à l'aide des 

systèmes de sous-mesurage doivent être utilisées dans la construction de modèles statistiques 

décrivant le comportement normal des charges [32], [36], [52], [57]. Ces données sont de plus 

en plus accessibles à travers des charges et prises intelligentes. De plus, les techniques pour la 

construction des bases de données et celles de l'apprentissage en ligne sont exploitables dans 

la construction des modèles décrivant l'opération normale des charges [58]. 

B.4 Objectifs et contributions 

L'objectif principal de cette thèse consiste à proposer des approches pour la surveillance 

en ligne et la détection des anomalies des charges résidentielles. Les approches proposées 

ciblent les charges ayant un impact considérable sur la consommation d'électricité totale d'une 

résidence. En conséquence, les objectifs spécifiques suivants ont été considérés: 
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1. Réalisation d'une étude pour établir les conditions clés qui permettent la mise en œuvre 

des systèmes ALM dédiés aux appareils énergivores. Des analyses démontrant la 

complexité de la surveillance pour le cas des maisons canadiennes est aussi l'objet 

de cette étude. Pour répondre a cet objectif en termes de données, un outil pour la 

génération de séries temporelles semi-synthétiques a été proposé. 

2. Développement d'un système pour la construction automatique des modèles des charge 

résidentielles. Pour cela, un mécanisme capable de gérer les modèles des appareils, 

de fournir des informations de fonctionnement et de quantification d'énergie a été 

proposé. La principale motivation du développement de ce mécanisme consiste à doter 

la technologie ALM d'une capacité de diagnostic. En conséquence, une approche 

adaptative en ligne de construction de base de données a été proposée pour tenir compte 

des caractéristiques dynamiques des profils des charges. 

3. Proposition d'un algorithme pour la détection des anomalies à partir d'un traitement 

statistique automatique des données non agrégées des appareils. Cet algorithme cherche 

à saisir efficacement l'écart entre le fonctionnement normal et celui qui peut présenter 

des anomalies. Cette approche permet d'utiliser les technologies ALM de manière 

efficace à des fins de diagnostic en temps réel. 

Les contributions principales de cette thèse sont d'ordre méthodologique: 

• En raison du manque d'information concernant les charges énergivores canadiennes, 

une approche de génération de données a été proposée afin de i) développer un outil 

capable de générer des données synthétiques sur les appareils de chauffage de l'espace et 

le chauffe-eau; ii) créer des scénarios de surveillance et de contrôle de la charge sur une 

période prolongée en utilisant l'effet temporel ou calendaire lié au temps d'utilisation 

de ces appareils. 

• Approche pour la construction automatisée de la base de données caractérisant les 

charges d'une résidence a été développé. Cette stratégie cherche à gérer le comporte­

ment variable dans le temps des profils de charges résidentiels. L'approche permet 

de construire une base de données flexible en utilisant des algorithmes simples qui ne 
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demandent pas beaucoup d'informations préalables. Le système est basé sur des tech­

niques de reconnaissance des formes récurrentes. Il est capable de détecter et de mettre 

à jours les modèles et les paramètres des charges les plus persistants. Le processus 

d'apprentissage est adapté pour réaliser une adaptation en ligne de la base de données, et 

la construction des modèles exploite les données extraites directement du signal agrégé . 

• Proposition d'une méthode pour la détection en ligne d'anomalies dans l'opération des 

charges résidentielles. La méthode comporte un module pour l'analyse du temps de 

fonctionnement capable de saisir tout écart entre le fonctionnement normal et celui 

problématique. L'algorithme est alimenté par un nombre réduit de mesures électriques à 

faible résolution d'échantillonage (très compatible avec les technologies de mesurage 

actuelles). 

B.5 Méthodologie 

La méthodologie de cette thèse est décrite en trois phases communes comme montré sur le 

diagramme de la Figure B.2. Tout d'abord, un examen complet est effectué pour caractériser 

les opportunités et les défis des études de surveillance et le diagnostic de la charge des 

appareils (en anglais Appliance Load Monitoring and Diagnosis (ALMD» dans la littérature. 

Cet examen permet de préciser les objectifs et leurs nécessités. Ensuite, les méthodes de 

pointe sont explorées afin de définir des mécanismes utiles concernant les objectifs prescrits. 

En conséquence, des approches connexes ont été proposées et leurs exigences sont satisfaites 

sur la base de ces techniques. Troisièmement, les simulations analytiques et l'expérimentation 

réelle sont utilisées pour examiner les méthodes proposées en utilisant des données du monde 

réel provenant soit de bases de données publiques ou de mesures en laboratoire. Ensuite, les 

performances, la simplicité, l'applicabilité et les limites de chaque proposition sont analysées 

en profondeur et comparées aux recherches pertinentes. Les étapes de la méthodologie sont 

détaillées ci-dessous en fonction de chaque proposition, décrite dans la section précédente. 

• Approche de génération de données: afin de développer un outil pour simuler des 

scénarios réels, des caractéristiques des bases de données publiques ont étudiées. En 
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conséquence, des données réelles des appareils électroménagers provenant d'une base 

de données bien connue sont explorées afin de modéliser leurs comportements calen­

driers de consommation. De plus, des simulateurs énergétiques en bâtiments ont été 

utilisés pour identifier une structure de simulation appropriée pour générer les données 

synthétiques des charges ciblées (dans notre cas, ESH et EWH). Ensuite, une méthode 

de post-traitement a été étudiée pour moduler les données artificielles de ces charges et 

créer des profils de charges ON/OFF. 

• Approche de construction de la base de données des maisons: les mécanismes de 

désagrégation de la charge des maisons sont analysés en profondeur, car ils constituent 

la base de la modélisation de la charge des appareils au niveau agrégé. En particulier, 

les méthodes probabilistes ont été examinées en raison de leur capacité de fournir une 

interprétation physique du comportement des appareils. Cet examen se concentre sur 

les méthodes d'apprentissage en ligne non supervisé des charges à états finis. En outre, 

Explication du problème 

" 
Objectifs et hypothèses .... r Revue de la littérature 

(définition) 
... 

1 

sur l'état de l'art 
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méthodes, algorithmes et outils et comparaison des méthodes 

~ 

" 
Proposition d'approche ... Etude sur la simulation numérique 

et caractérisation des problèmes l et l'expérience physique 

Figure B.2 La méthodologie de recherche 
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des algorithmes de classification ont été étudiés afin de trouver des techniques efficaces 

pour classifier le fonctionnement des appareils. 

Plus précisément, les méthodes d'agrégation statistiques non paramétriques sont éval­

uées en raison de leur efficacité dans des cadres non supervisés. De plus, des procédures 

adaptatives sont évaluées pour déterminer leur capacité à gérer des motifs récurrents 

et à mettre à jour les modèles pour les charges. Différentes mesures de précision sont 

analysées afin de définir un ensemble de mesures efficaces pour un examen minutieux 

des phases de reconnaissance des motifs et de construction des modèles. 

• Approche de détection des anomalies en ligne: une recherche approfondie est axée sur 

les méthodes de détection des anomalies des appareils électroménagers au niveau agrégé. 

Un aperçu est effectué pour déterminer la nature des anomalies des appareils électromé­

nagers, et leurs caractéristiques électriques disponibles pour une expérimentation réelle. 

Ainsi, un ensemble d'appareils candidats, situés dans une maison expérimentale de notre 

laboratoire, sont choisis pour une étude pratique. 

Pour ces appareils, différents scénarios d'anomalies sont utilisés pour analyser leur 

comportement via une surveillance continue. En outre, des méthodes d'apprentissage 

automatique sont étudiées pour définir les techniques pratiques adaptées à une mise 

en œuvre réelle. Cette analyse vise à mettre au point des algorithmes simples pour la 

modélisation du comportement normal et la détection des opérations anormales. Par 

la suite, plusieurs tests de diagnostic sont envisagés pour évaluer les performances du 

mécanisme de détection des anomalies. 

B.5.] Hypothèse de recherche 

En ce qui concerne les approches proposées et les méthodes utilisées dans le cadre de cette 

recherche, les hypothèses suivantes sont prises en compte tant pour la surveillance de la charge 

ainsi que pour les analyses sur la détection d'anomalies. 

- Un sy.stème d'acquisition permettant l'échantillonnage des grandeurs électriques en 

régime permanent et à basse fréquence est considéré. En effet, des mesures de la 
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puissance active à une fréquence d'échantillonnage inférieure à un hertz sont requises 

afin de faciliter la détection des changements d'état des appareils. 

- Les usages ciblés correspondent à des charges ayant une utilisation périodique ou 

régulière. Leur profil de puissance doit être caractérisé par un nombre fini d' états; c'est­

à-dire qu'ils opèrent dans des modes de fonctionnement discrets à cause des contrôleurs 

thermostatiques embarqués. Ce type de charges est très courant au Québec, et inclut 

les réfrigérateurs, les cuisinières, le chauffage à convecteurs et le chauffe-eau. Tous 

ces appareils présentent une demande en énergie élevée et leur surveillance est donc 

importante pour améliorer les systèmes de gestion et les algorithmes de prévision. 

- Les appareils à faible demande ou avec utilisation peu récurrente ne sont pas considérés 

dans ce projet de recherche. 

B.6 Description des résultats publiés 

B.6.1 Introduction 

Une description générale des publications réalisées dans le cadre de cette thèse est présentée 

dans cette section. Pour chaque publication, nous détaillons les contributions, l'approche 

proposée et la technique adoptée de chaque sujet étudié. De la même façon, nous décrivons 

les aspects importants des formulations mathématiques et les procédures expérimentales 

permettant de valider les propositions. Par la suite, les résultats sont présentés et discutés afin 

de montrer l'efficacité des méthodes développées. 

B.6.2 Approches pour la génération de données 

B.6.2.1 Contexte 

La conception et validation des approches de surveillance nécessite des bases de données 

accessibles à la communauté scientifique. Ces bases doivent considérer les charges propres 

aux régions présentant des conditions climatiques particulières aux pays nordiques comme le 

Canada. Dans cette région, les usages énergivores sont constitués par des charges électrother­

mjques peu étudiées dans la littérature. En conséquent, cet article propose un processus pour 
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la génération des données basée sur des modèles probabilistes. Dans ce cas, le comportement 

des profils thermostatiques est dépendant des variables climatiques telles que la température 

extérieure. Un conditionnement par rapport au temps calendaire est aussi considéré afin 

de répliquer la dépendance temporelle des cycles d'opération des différentes charges de la 

résidence. 

B.6.2.2 Méthodes 

Les travaux de recherche aboutissant à cette approche ont été développés en deux phases. 

Dans un premier temps, une étude exhaustive sur les caractéristiques des bases de données ac­

cessibles au public a été réalisée. Ensuite, un outil de génération de données semi-synthétiques 

avec la structure de simulation ont été schématisés dans la Figure B.3. Les techniques et les 

modules du simulateur utilisés pour le développement de cet outil sont détaillés ci-dessous. 

- Pour le cas des charges conventionnelles, des distributions de probabilité non paramétriques 

décrivant les cycles d'opération sont construites à l'aide d'un estimateur par noyau de 

densité du type circulaire (en anglais Circular Kernel Density Estimation (CKDE)). 

L'estimateur traite les données provenant d'une base de données publique. Le mé­

canisme de modélisation produit des distributions sur l'état d'opération des charges 

conditionnées par rapport à l' heure de la journée et au jour de la semaine. 

- Le nombre de démarrages de chaque appareil est échantillonné en considérant le nombre 

d'occupants de la résidence simulée. 

- Les profils de puissance des charges sont construits à partir des modèles probabilistes et 

des signatures de puissance active réelle de la base de données publique. 

- Pour construire la géométrie et établir les caractéristiques thermiques du bâtiment, 

nous utilisons le logiciel (en anglais Building Energy Optimization Tool (BEopt)). Les 

résidences sont modélisées à partir de deux zones thermiques principales. Cette phase 

de modélisation tient compte des interactions thermiques, des données climatiques 

réelles et des données de consommation d'eau chaude provenant du comportement des 

occupants. 
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- Pour générer les séries temporelles comprenant la signature thermique de la résidence, le 

logiciel EnergyPlus est utilisé. Ceci permet de simuler l'architecture ciblée et de fournir 

les résultats en termes de consommation totale d'énergie, de demande du système de 

chauffage et le consommation totale d'eau chaude. 

- Finalement, une phase de post-traitement permet de générer les profils thermostatiques 

de puissance pour les charges électrothermiques. L'objectif de ce processus consiste à 

transformer le profil énergétique générée par EnergyPlus dans un profil thermostatique 

de puissance. En effet, le simulateur fournit des données de consommation à des 

intervalles de quelques minutes, qui sont des données continues qui ne reflètent pas 

le comportement d'un thermostat utilisé pour la régulation thermique. Le résultat est 

donc un nouveau profil de puissance répondant aux besoin énergétiques imposés par le 

simulateur. 

B.6.2.3 Résultats 

L'analyse de charges des résidences québécoises ainsi que l'approche de la génération synthé­

tiques des données ont abouti aux résultats suivants: 

Détermination des conditions nécessaires pour la conception d'une base de données 

appropriée pour les études sur la surveillance de la charge. 

- Création des profils de puissance plus réalistes des charges thermostatiques telles 

que l'ESH et l'EWH. Ces profils sont générés en considérant les effets des variables 

météorologiques. Cette particularité permet de déployer les analyses sur la surveillance 

de la charge des résidences ayant une composante importante de consommation associée 

aux appareils électrothermiques. 

- Mise en évidence des défis pour le suivi de la charge dans les ménages québécois en 

présence de charges ESH et EWH. Pour ce faire, la technique de détection de charge 

basée sur les modèles de Markov cachés a été utilisée. 
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Figure B.3 Les schémas (a) du générateur de données semi-synthétiques et (b) de sa structure de 
simulation 

B.6.2.4 Discussion 

La surveillance de la charge ouvre des possibilités et des applications dans le domaine des 

réseaux électriques intelligents. À cet égard, les points suivants sont discutés: 

Charges d 'intérêt: l'analyse doit cibler les appareils électroménagers ayant du potentiel 

pour aider à la fois à réaliser des économies d'énergie et à fournir des services de gestion 
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de la demande. En fait, les charges de chauffage peuvent avoir une certaine flexibilité 

exploitable dans les problèmes liés à la gestion de la pointe. Déterminer la façon dont 

ces appareils sont utilisés peut aider à maximiser leur potentiel en gardant le confort des 

occupants. 

- Applications avancées: L'intégration des sources renouvelables sera un aspect important 

des réseaux électriques futurs. En conséquence, la surveillance et la prévision de la 

charge vont contribuer à une gestion plus efficace de ces ressources. À travers le suivi 

précis des profils de consommation, les systèmes de gestion d'énergie pourront mieux 

déterminer l'utilisation de l'énergie produite. 

- Génération de données synthétiques: L'efficacité des méthodes pour la surveillance 

dépend de la qualité des données utilisées dans les phases de conception et les tests. Les 

approches appliquées dans les pays nordiques comme la région de Québec pourront être 

analysées à partir des mécanismes de simulation avant leurs déploiements. 

B.6.3 Construction en ligne de la base de données 

B.6.3.1 Contexte 

Cette partie du projet vise au développement d'un mécanisme permettant de construire de 

façon automatique les modèles des charges ayant une utilisation récurrente. Le mécanisme 

construit et met à jour une base de données flexible à partir des algorithmes statistiques et du 

traitement automatique des données. L'architecture algorithmique utilisée intègre un système 

pour la détection de nouveaux événements produits par le changement d'état des charges. 

8.6.3.2 Méthodes 

Les techniques utilisées permettent de découvrir les modèles et estimer leurs paramètres à 

partir d'un signal agrégé comme seule source d'information. À cet égard, les modèles de 

charge découverts sont traités comme des appareils virtuels (en anglais Virtual Appliances 

(VA)) . Ceci à cause de l'absence des connaissances priori sur les charges associées. Le 

système est capable de découvrir les profils récurrents et d'étendre la base de données afin 

de les stocker. Le mécanisme d'apprentissage exécute des règles pour la mise à jour des 
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paramètres des modèles déjà existants en présence de nouvelles données. Les techniques 

utilisées sont issues de l'apprentissage automatique non supervisé. Ces techniques n'utilisent 

pas de données étiquetées pour reconnaître et mettre àjour les modèles. La Figure B.4 illustre 

le flux d'information à travers les différents modules comprenant le système. Ce dernier 

est composée de deux modules d'analyse principaux: 1) le module pour la détection et la 

supervision des modèles et 2) le module pour la construction et la révision des modèles. 

- Détection et supervision des modèles : Ce module exécute une procédure pour la 

reconnaissance des modèles qui permet de détecter les charges virtuelles plus probables 

qui n'ont pas été modélisées auparavant et créer de nouvelles entrées dans la base 

de données. Cette procédure tire profit des méthodes de classification soustractif (en 

anglais Subtractive Clustering) et d'estimation de la densité du Kernel (en anglais Kernel 

Desnisty Estimation (KDE)). 

- Construction et révision des modèles: Ce module introduit des algorithmes à faible 

complexité permettant de générer les entrées pour les nouveaux VA. Le module permet 

aussi de vérifier la persistance des VAs enregistrés en retirant ceux qui devient obsolètes 

(peu utilisés) . Le modèle pour chaque VA est un HMM avec paramètres dynamiques 

qui sont mis à jour à partir d'un entraînement de Viterbi . 

.----~Profilage de la charge 

constru:~.t!:~!.~.~}.~ .~~.~~.?~.~?~~~~.s.~~?~J?p'~~~g~ .......................... ... ............. : 
,----------, i Détectionet et Révision et i 

Signal agrégé supervision construction 
des modèles de modèles 

Figure BA Diagramme de ADe pour l'approche proposée pour la construction de bases de 
données. 

B.6.3.3 Résultats 

Les résultats suivants sont soulignés: 

- La méthode est capable de construire des modèles de VA très précis (90% et plus). 

Ces modèles peuvent être fortement liés aux charges réelles puisque leurs paramètres 
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peuvent expliquer efficacement les caractéristiques électriques d'appareils domestiques 

Inconnus. 

- Le système est capable de construire des profils compatibles avec celles des charges 

réelles. Les profils sont modélisés en deux états avec le processus markoviens. Ces 

modèles probabilistes permettent d'inférer la séquence d'états d'opération et la consom­

mation d'énergie. 

- L'efficacité du mécanisme est également démontrée par l'utilisation des données expéri­

mentales provenant d'un système expérimental. 

B.6.3.4 Discussions 

Pour l'approche proposée, les points suivants sont discutés 

- La structure de modélisation proposée utilise une technique d'apprentissage automatique 

non supervisée. Cette procédure est capable d'opérer avec peu d'information préalable 

sur les charges existantes dans la résidence. 

- La méthode proposée est basée sur un système de reconnaissance des formes qui n'a 

pas été utilisée préalablement dans les études de désagrégation de charge. 

- La structure que nous proposons utilise une méthode non supervisée, qui nécessite une 

intervention humaine réduite. 

B.6.4 Détection en ligne d'anomalies 

B.6.4.1 Contexte 

Bien que le suivi de la charge par usage est étudié depuis les années 80. La possibilité d'étudier 

leur potentiel dans des applications de diagnostic a été l'eu étudié. Ses nouvelles applications 

peuvent être considérées comme un élément clé des systèmes de surveillance plus avancés. En 

conséquence, cette étude a pour objectif la conception d'un système de surveillance avec la 

capacité de diagnostic. 

Les techniques conventionnelles sont conçues pour détecter les charges défectueuses à 

partir du comportement en puissance. Toutefois, le comportement anormal de ce type de 
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charges se manifeste surtout dans des déviations du temps d'opération. C'est pourquoi cette 

approche centre les efforts dans la construction des modèles statistiques décrivant le temps 

d'opération. Les informations sur la consommation d'énergie et de puissance moyenne ont été 

également utilisées. 

B.6.4.2 Méthodes 

L'architecture du système pour la détection d'anomalies est illustrée dans la Figure B.S. 

- Tout d'abord, les comportements normaux et anormaux des appareils candidats sont 

étudiés en analysant des facteurs associés à la consommation d'énergie et la demande de 

puissance dans différents scénarios présentant des anomalies. Le comportement normal 

est caractérisé par des fonctions de densité de probabilité (en anglais Probability Density 

Function (PDF)) de ces facteurs. 

- Ensuite, une méthode de détection d'anomalie semi-supervisée est développée. Cette 

méthode utilise des modèles expliquant le comportement normal à partir de lois normales. 

Les anomalies sont alors déterminées à l'aide de seuils probabilistes estimés avec la 

fonction inverse cumulative. 

- Finalement, une technique en ligne est proposée pour surveiller efficacement la con­

sommation d'énergie et fournir des informations dynamiques pour les algorithmes de 

détection consécutive d'anomalies. Cette technique détecte les cycles de fonctionnement 

des appareils et estime leur PDF. 

B.6.4.3 Résultats 

Une analyse exhaustive sur le comportement anormal des cas d'études à abouti les résultats 

suivants. 

- Un outil statistique permettant de détecter la déviation du comportement normal. 

- Un système précis pour la surveillance et la détection des anomalies. Ce système a été 

évalué en utilisant des bases de données expérimentales. Les performances obtenues à 
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Figure B.S Diagramme du système de détection en ligne des anomalies au niveau des appareils 
électroménagers. 

partir de l'analyse de plusieurs scénarios démontre la capacité de généralisation et la 

robustesse de ce mécanisme. 

- Une analyse sur la stratégie appropriée pour gérer le temps de détection d'une anomalie 

en regardant les différences entre le fonctionnement défectueux et celui anormal d'un 

appareil. 

B.6.4.4 Discussion 

Une approche de détection en ligne des anomalies des charges résidentielles a été proposée 

dans le cadre de cette thèse. Le système a été évalué dans un ensemble de scénarios en utilisant 

des données réelles. Les aspects suivants sont soulevés: 

- Capacité de généralisation : Bien que le système proposé soit validé sur un seul type 

d'appareil, il reste assez général pour l'utiliser sur plusieurs types de charges. 

- Test de diagnostic: Notre analyse a utilisé un ensemble de métriques diagnostiques 

précis pour examiner les résultats. 
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- Modélisation du comportement normal: Dans notre analyse, un algorithme avec un 

apprentissage supervisé a été utilisé pour créer un modèle efficace des comportements 

normaux des appareils candidats. 

- Décision de diagnostic: Un système de surveillance de la charge devrait être capable 

de réaliser un diagnostic rapide. Néanmoins, une décision rapide dans une opération 

anormale dépend de différents éléments qui demandent des études plus approfondies . 

B.7 Conclusion 

Cette thèse a porté sur le suivi de la consommation des charges résidentielles. Pour cela, trois 

questions de recherche ont été abordées, à savoir i) la génération des données, ii) la construction 

en ligne de la base de données et iii) le diagnostic sur les cycles d'opération anormale. Les 

approches proposées ont été décrites dans trois publications sous forme d'articles scientifiques. 


