141 research outputs found

    Energy hole mitigation through cooperative transmission in wireless sensor networks

    Get PDF
    The energy balancing capability of cooperative communication is utilized to solve the energy hole problem in wireless sensor networks. We first propose a cooperative transmission strategy, where intermediate nodes participate in two cooperative multi-input single-output (MISO) transmissions with the node at the previous hop and a selected node at the next hop, respectively. Then, we study the optimization problems for power allocation of the cooperative transmission strategy by examining two different approaches: network lifetime maximization (NLM) and energy consumption minimization (ECM). For NLM, the numerical optimal solution is derived and a searching algorithm for suboptimal solution is provided when the optimal solution does not exist. For ECM, a closed-form solution is obtained. Numerical and simulation results show that both the approaches have much longer network lifetime than SISO transmission strategies and other cooperative communication schemes. Moreover, NLM which features energy balancing outperforms ECM which focuses on energy efficiency, in the network lifetime sense

    Power Optimisation and Relay Selection in Cooperative Wireless Communication Networks

    Get PDF
    Cooperative communications have emerged as a significant concept to improve reliability and throughput in wireless systems. In cooperative networks, the idea is to implement a scheme in wireless systems where the nodes can harmonize their resources thereby enhancing the network performance in different aspects such as latency, BER and throughput. As cooperation spans from the basic idea of transmit diversity achieved via MIMO techniques and the relay channel, it aims to reap somewhat multiple benefits of combating fading/burst errors, increasing throughput and reducing energy use. Another major benefit of cooperation in wireless networks is that since the concept only requires neighbouring nodes to act as virtual relay antennas, the concept evades the negative impacts of deployment costs of multiple physical antennas for network operators especially in areas where they are difficult to deploy. In cooperative communications energy efficiency and long network lifetimes are very important design issues, the focus in this work is on ad hoc and sensor network varieties where the nodes integrate sensing, processing and communication such that their cooperation capabilities are subject to power optimisation. As cooperation communications leads to trade-offs in Quality of Services and transmit power, the key design issue is power optimisation to dynamically combat channel fluctuations and achieve a net reduction of transmit power with the goal of saving battery life. Recent researches in cooperative communications focus on power optimisation achieved via power control at the PHY layer, and/or scheduling mechanism at the MAC layer. The approach for this work will be to review the power control strategy at the PHY layer, identify their associated trade-offs, and use this as a basis to propose a power control strategy that offers adaptability to channel conditions, the road to novelty in this work is a channel adaptable power control algorithm that jointly optimise power allocation, modulation strategy and relay selection. Thus, a novel relay selection method is developed and implemented to improve the performance of cooperative wireless networks in terms of energy consumption. The relay selection method revolves on selection the node with minimum distance to the source and destination. The design is valid to any wireless network setting especially Ad-hoc and sensor networks where space limitations preclude the implementation of bigger capacity battery. The thesis first investigates the design of relay selection schemes in cooperative networks and the associated protocols. Besides, modulation strategy and error correction code impact on energy consumption are investigated and the optimal solution is proposed and jointly implemented with the relay selection method. The proposed algorithm is extended to cooperative networks in which multiple nodes participate in cooperation in fixed and variable rate system. Thus, multi relay selection algorithm is proposed to improve virtual MIMO performance in terms of energy consumption. Furthermore, motivated by the trend of cell size optimisation in wireless networks, the proposed relay selection method is extended to clustered wireless networks, and jointly implemented with virtual clustering technique. The work will encompass three main stages: First, the cooperative system is designed and two major protocols Decode and Forward (DF) and amplify and forward (AF) are investigated. Second, the proposed algorithm is modelled and tested under different channel conditions with emphasis on its performance using different modulation strategies for different cooperative wireless networks. Finally, the performance of the proposed algorithm is illustrated and verified via computer simulations. Simulation results show that the distance based relay selection algorithm exhibits an improved performance in terms of energy consumption compared to the conventional cooperative schemes under different cooperative communication scenarios

    An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks

    Get PDF
    In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes

    On energy efficiency of routing with cooperative transmissions

    Get PDF
    Cooperative transmissions emulating multi-antenna systems may help reduce the total energy consumption in wireless networks. In this thesis, we define a virtual multiple-input single-output (vMISO) link to be established when a group of nodes (transmitters) jointly enable space-time communications with a single receiver. There has been plethora of research investigating physical layer issues of such systems; however, higher layer protocols that exploit vMISO links in ad hoc networks are still emerging. We present a novel approach in characterizing the optimal multi-hop vMISO routing in ad hoc networks. The key advantages of vMISO links that we exploit are the increase in transmission range and the decrease in the required transmission energy due to diversity gain. Specifically, under a high node density regime, we solve a nonlinear program that minimizes the total energy cost of reliable end-to-end transmissions by selecting the optimal cooperation set and the location of the next relay node at each hop. We characterize the optimal solution with respect to the reliability of the links, and for different fixed node transmission powers. Our results indicate that a multi-hop vMISO system is energy efficient only when a few nodes cooperate at each hop. We design a new greedy geographical vMISO routing protocol that is also suitable for sparse networks using the results determined under high node density regime. Also, we consider the network lifetime maximization problem in networks employing vMISO links. We formulated the network lifetime maximization with vMISO routing as a nonlinear program. Then, we presented a novel cooperation set selection and flow augmentation based routing heuristic that can significantly increase the network lifetime compared to Single-Input Single-Output (SISO) systems

    A New Cooperative MIMO Scheme Based on SM for Energy-Efficiency Improvement in Wireless Sensor Network

    Get PDF
    Improving the energy efficiency in wireless sensor networks (WSN) has attracted considerable attention nowadays. The multiple-input multiple-output (MIMO) technique has been proved as a good candidate for improving the energy efficiency, but it may not be feasible in WSN which is due to the size limitation of the sensor node. As a solution, the cooperative multiple-input multiple-output (CMIMO) technique overcomes this constraint and shows a dramatically good performance. In this paper, a new CMIMO scheme based on the spatial modulation (SM) technique named CMIMO-SM is proposed for energy-efficiency improvement. We first establish the system model of CMIMO-SM. Based on this model, the transmission approach is introduced graphically. In order to evaluate the performance of the proposed scheme, a detailed analysis in terms of energy consumption per bit of the proposed scheme compared with the conventional CMIMO is presented. Later, under the guide of this new scheme we extend our proposed CMIMO-SM to a multihop clustered WSN for further achieving energy efficiency by finding an optimal hop-length. Equidistant hop as the traditional scheme will be compared in this paper. Results from the simulations and numerical experiments indicate that by the use of the proposed scheme, significant savings in terms of total energy consumption can be achieved. Combining the proposed scheme with monitoring sensor node will provide a good performance in arbitrary deployed WSN such as forest fire detection system

    Cluster Heads Selection and Cooperative Nodes Selection for Cluster-based Internet of Things Networks

    Get PDF
    PhDClustering and cooperative transmission are the key enablers in power-constrained Internet of Things (IoT) networks. The challenges for power-constrained devices in IoT networks are to reduce the energy consumption and to guarantee the Quality of Service (QoS) provision. In this thesis, optimal node selection algorithms based on clustering and cooperative communication are proposed for different network scenarios, in particular: • The QoS-aware energy efficient cluster heads (CHs) selection algorithm in one-hop capillary networks. This algorithm selects the optimum set of CHs and construct clusters accordingly based on the location and residual energy of devices. • Cooperative nodes selection algorithms for cluster-based capillary networks. By utilising the spacial diversity of cooperative communication, these algorithms select the optimum set of cooperative nodes to assist the CHs for the long-haul transmission. In addition, with the regard of evenly energy distribution in one-hop cluster-based capillary networks, the CH selection is taken into consideration when developing cooperative devices selection algorithms. The performance of proposed selection algorithms are evaluated via comprehensive simulations. Simulation results show that the proposed algorithms can achieve up to 20% network lifetime longevity and up to 50% overall packet error rate (PER) decrement. Furthermore, the simulation results also prove that the optimal tradeoff between energy efficiency and QoS provision can be achieved in one-hop and multi-hop cluster-based scenarios.Chinese Scholarship Counci

    A Comprehensive Approach to WSN-Based ITS Applications: A Survey

    Get PDF
    In order to perform sensing tasks, most current Intelligent Transportation Systems (ITS) rely on expensive sensors, which offer only limited functionality. A more recent trend consists of using Wireless Sensor Networks (WSN) for such purpose, which reduces the required investment and enables the development of new collaborative and intelligent applications that further contribute to improve both driving safety and traffic efficiency. This paper surveys the application of WSNs to such ITS scenarios, tackling the main issues that may arise when developing these systems. The paper is divided into sections which address different matters including vehicle detection and classification as well as the selection of appropriate communication protocols, network architecture, topology and some important design parameters. In addition, in line with the multiplicity of different technologies that take part in ITS, it does not consider WSNs just as stand-alone systems, but also as key components of heterogeneous systems cooperating along with other technologies employed in vehicular scenarios

    Power-aware routing in multi-hop wireless networks

    Get PDF
    corecore