169 research outputs found

    Performance assessment of real-time data management on wireless sensor networks

    Get PDF
    Technological advances in recent years have allowed the maturity of Wireless Sensor Networks (WSNs), which aim at performing environmental monitoring and data collection. This sort of network is composed of hundreds, thousands or probably even millions of tiny smart computers known as wireless sensor nodes, which may be battery powered, equipped with sensors, a radio transceiver, a Central Processing Unit (CPU) and some memory. However due to the small size and the requirements of low-cost nodes, these sensor node resources such as processing power, storage and especially energy are very limited. Once the sensors perform their measurements from the environment, the problem of data storing and querying arises. In fact, the sensors have restricted storage capacity and the on-going interaction between sensors and environment results huge amounts of data. Techniques for data storage and query in WSN can be based on either external storage or local storage. The external storage, called warehousing approach, is a centralized system on which the data gathered by the sensors are periodically sent to a central database server where user queries are processed. The local storage, in the other hand called distributed approach, exploits the capabilities of sensors calculation and the sensors act as local databases. The data is stored in a central database server and in the devices themselves, enabling one to query both. The WSNs are used in a wide variety of applications, which may perform certain operations on collected sensor data. However, for certain applications, such as real-time applications, the sensor data must closely reflect the current state of the targeted environment. However, the environment changes constantly and the data is collected in discreet moments of time. As such, the collected data has a temporal validity, and as time advances, it becomes less accurate, until it does not reflect the state of the environment any longer. Thus, these applications must query and analyze the data in a bounded time in order to make decisions and to react efficiently, such as industrial automation, aviation, sensors network, and so on. In this context, the design of efficient real-time data management solutions is necessary to deal with both time constraints and energy consumption. This thesis studies the real-time data management techniques for WSNs. It particularly it focuses on the study of the challenges in handling real-time data storage and query for WSNs and on the efficient real-time data management solutions for WSNs. First, the main specifications of real-time data management are identified and the available real-time data management solutions for WSNs in the literature are presented. Secondly, in order to provide an energy-efficient real-time data management solution, the techniques used to manage data and queries in WSNs based on the distributed paradigm are deeply studied. In fact, many research works argue that the distributed approach is the most energy-efficient way of managing data and queries in WSNs, instead of performing the warehousing. In addition, this approach can provide quasi real-time query processing because the most current data will be retrieved from the network. Thirdly, based on these two studies and considering the complexity of developing, testing, and debugging this kind of complex system, a model for a simulation framework of the real-time databases management on WSN that uses a distributed approach and its implementation are proposed. This will help to explore various solutions of real-time database techniques on WSNs before deployment for economizing money and time. Moreover, one may improve the proposed model by adding the simulation of protocols or place part of this simulator on another available simulator. For validating the model, a case study considering real-time constraints as well as energy constraints is discussed. Fourth, a new architecture that combines statistical modeling techniques with the distributed approach and a query processing algorithm to optimize the real-time user query processing are proposed. This combination allows performing a query processing algorithm based on admission control that uses the error tolerance and the probabilistic confidence interval as admission parameters. The experiments based on real world data sets as well as synthetic data sets demonstrate that the proposed solution optimizes the real-time query processing to save more energy while meeting low latency.Fundação para a Ciência e Tecnologi

    Topology control and data handling in wireless sensor networks

    Get PDF
    Our work in this thesis have provided two distinctive contributions to WSNs in the areas of data handling and topology control. In the area of data handling, we have demonstrated a solution to improve the power efficiency whilst preserving the important data features by data compression and the use of an adaptive sampling strategy, which are applicable to the specific application for oceanography monitoring required by the SECOAS project. Our work on oceanographic data analysis is important for the understanding of the data we are dealing with, such that suitable strategies can be deployed and system performance can be analysed. The Basic Adaptive Sampling Scheduler (BASS) algorithm uses the statistics of the data to adjust the sampling behaviour in a sensor node according to the environment in order to conserve energy and minimise detection delay. The motivation of topology control (TC) is to maintain the connectivity of the network, to reduce node degree to ease congestion in a collision-based medium access scheme; and to reduce power consumption in the sensor nodes. We have developed an algorithm Subgraph Topology Control (STC) that is distributed and does not require additional equipment to be implemented on the SECOAS nodes. STC uses a metric called subgraph number, which measures the 2-hops connectivity in the neighbourhood of a node. It is found that STC consistently forms topologies that have lower node degrees and higher probabilities of connectivity, as compared to k-Neighbours, an alternative algorithm that does not rely on special hardware on sensor node. Moreover, STC also gives better results in terms of the minimum degree in the network, which implies that the network structure is more robust to a single point of failure. As STC is an iterative algorithm, it is very scalable and adaptive and is well suited for the SECOAS applications

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    CHOReOS Middleware Specification (D3.1)

    Get PDF
    This deliverable specifies the main concepts of the CHOReOS middleware architecture. Starting from the Future Internet (FI) challenges for scalability, heterogeneity, mobility, awareness, and adaptation that have been investigated in prior work done in WP1, we introduce the aforementioned concepts to deal with the requirements derived from the FI challenges. In particular, we propose an extensible and scalable service discovery approach for the organization and discovery of services that relies on multiple service discovery protocols. Moreover, we introduce an extensible and scalable approach, based on the service bus paradigm, for service access that features the integration and adaptation of multiple interaction protocols. Furthermore, we propose solutions that enable the execution of FI service compositions that range from compositions of choreographed services, developed according to the CHOReOS development process, to massive compositions of things. Finally, we detail the Cloud & Grid middleware facilities that support the overall middleware and the choreographies that are built on it, via a unified API that provides access to multiple cloud infrastructures (e.g., Amazon EC2, HP Open Cirrus, private clouds)

    Urubu: energy scavenging in wireless sensor networks

    Get PDF
    For the past years wireless sensor networks (WSNs) have been coined as one of the most promising technologies for supporting a wide range of applications. However, outside the research community, few are the people who know what they are and what they can offer. Even fewer are the ones that have seen these networks used in real world applications. The main obstacle for the proliferation of these networks is energy, or the lack of it. Even though renewable energy sources are always present in the networks environment, designing devices that can efficiently scavenge that energy in order to sustain the operation of these networks is still an open challenge. Energy scavenging, along with energy efficiency and energy conservation, are the current available means to sustain the operation of these networks, and can all be framed within the broader concept of “Energetic Sustainability”. A comprehensive study of the several issues related to the energetic sustainability of WSNs is presented in this thesis, with a special focus in today’s applicable energy harvesting techniques and devices, and in the energy consumption of commercially available WSN hardware platforms. This work allows the understanding of the different energy concepts involving WSNs and the evaluation of the presented energy harvesting techniques for sustaining wireless sensor nodes. This survey is supported by a novel experimental analysis of the energy consumption of the most widespread commercially available WSN hardware platforms.Há já alguns anos que as redes de sensores sem fios (do Inglês Wireless Sensor Networks - WSNs) têm sido apontadas como uma das mais promissoras tecnologias de suporte a uma vasta gama de aplicações. No entanto, fora da comunidade científica, poucas são as pessoas que sabem o que elas são e o que têm para oferecer. Ainda menos são aquelas que já viram a sua utilização em aplicações do dia-a-dia. O principal obstáculo para a proliferação destas redes é a energia, ou a falta dela. Apesar da existência de fontes de energia renováveis no local de operação destas redes, continua a ser um desafio construir dispositivos capazes de aproveitar eficientemente essa energia para suportar a operação permanente das mesmas. A colheita de energia juntamente com a eficiência energética e a conservação de energia, são os meios disponíveis actualmente que permitem a operação permanente destas redes e podem ser todos englobados no conceito mais amplo de “Sustentabilidade Energética”. Esta tese apresenta um estudo extensivo das várias questões relacionadas com a sustentabilidade energética das redes de sensores sem fios, com especial foco nas tecnologias e dispositivos explorados actualmente na colheita de energia e no consumo energético de algumas plataformas comercias de redes de sensores sem fios. Este trabalho permite compreender os diferentes conceitos energéticos relacionados com as redes de sensores sem fios e avaliar a capacidade das tecnologias apresentadas em suportar a operação permanente das redes sem fios. Este estudo é suportado por uma inovadora análise experimental do consumo energético de algumas das mais difundidas plataformas comerciais de redes de sensores sem fios

    Configuring heterogeneous wireless sensor networks under quality-of-service constraints

    Get PDF
    Wireless sensor networks (WSNs) are useful for a diversity of applications, such as structural monitoring of buildings, farming, assistance in rescue operations, in-home entertainment systems or to monitor people's health. A WSN is a large collection of small sensor devices that provide a detailed view on all sides of the area or object one is interested in. A large variety of WSN hardware platforms is readily available these days. Many operating systems and protocols exist to support essential functionality such as communication, power management, data fusion, localisation, and much more. A typical sensor node has a number of settings that affect its behaviour and the function of the network itself, such as the transmission power of its radio and the number of measurements taken by its sensor per minute. As the number of nodes in a WSN may be very large, the collection of independent parameters in these networks – the configuration space – tends to be enormous. The user of the WSN would have certain expectations on the Quality of Service (QoS) of the network. A WSN is deployed for a specific purpose, and has a number of measurable properties that indicate how well the network's task is being performed. Examples of such quality metrics are the time needed for measured information to reach the user, the degree of coverage of the area, or the lifetime of the network. Each point in the configuration space of the network gives rise to a certain value in each of the quality metrics. The user may place constraints on the quality metrics, and wishes to optimise the configuration to meet their goals. Work on sensor networks often focuses on optimising only one metric at the time, ignoring the fact that improving one aspect of the system may deteriorate other important performance characteristics. The study of trade-offs between multiple quality metrics, and a method to optimally configure a WSN for several objectives simultaneously – until now a rather unexplored field – is the main contribution of this thesis. There are many steps involved in the realisation of a WSN that is fulfilling a task as desired. First of all, the task needs to be defined and specified, and appropriate hardware (sensor nodes) needs to be selected. After that, the network needs to be deployed and properly configured. This thesis deals with the configuration problem, starting with a possibly heterogeneous collection of nodes distributed in an area of interest, suitable models of the nodes and their interaction, and a set of task-level requirements in terms of quality metrics. We target the class of WSNs with a single data sink that use a routing tree for communication. We introduce two models of tasks running on a sensor network – target tracking and spatial mapping – which are used in the experiments in this thesis. The configuration process is split in a number of phases. After an initialisation phase to collect information about the network, the routing tree is formed in the second configuration phase. We explore the trade-off between two attributes of a tree: the average path length and the maximum node degree. These properties do not only affect the quality metrics, but also the complexity of the remaining optimisation trajectory. We introduce new algorithms to efficiently construct a shortest-path spanning tree in which all nodes have a degree not higher than a given target value. The next phase represents the core of the configuration method: it features a QoS optimiser that determines the Pareto-optimal configurations of the network given the routing tree. A configuration contains settings for the parameters of all nodes in the network, plus the metric values they give rise to. The Pareto-optimal configurations, also known as Pareto points, represent the best possible trade-offs between the quality metrics. Given the vastness of the configuration space, which is exponential in the size of the network, it is impossible to use a brute-force approach and try all possibilities. Still our method efficiently finds all Pareto points, by incrementally searching the configuration space, and discarding potential solutions immediately when they appear to be not Pareto optimal. An important condition for this to work is the ability to compute quality metrics for a group of nodes from the quality metrics of smaller groups of nodes. The precise requirements are derived and shown to hold for the example tasks. Experimental results show that the practical complexity of this algorithm is approximately linear in the number of nodes in the network, and thus scalable to very large networks. After computing the set of Pareto points, a configuration that satisfies the QoS constraints is selected, and the nodes are configured accordingly (the selection and loading phases). The configuration process can be executed in either a centralised or a distributed way. Centralised means that all computations are carried out on a central node, while the distributed algorithms do all the work on the sensor nodes themselves. Simulations show run times in the order of seconds for the centralised configuration of WSNs of hundreds of TelosB sensor nodes. The distributed algorithms take in the order of minutes for the same networks, but have a lower communication overhead. Hence, both approaches have their own pros and cons, and even a combination is possible in which the heavy work is performed by dedicated compute nodes spread across the network. Besides the trade-offs between quality metrics, there is a meta trade-off between the quality and the cost of the configuration process itself. A speed-up of the configuration process can be achieved in exchange for a reduction in the quality of the solutions. We provide complexity-control functionality to fine-tune this quality/cost trade-off. The methods described thus far configure a WSN given a fixed state (node locations, environmental conditions). WSNs, however, are notoriously dynamic during operation: nodes may move or run out of battery, channel conditions may fluctuate, or the demands from the user may change. The final part of this thesis describes methods to adapt the configuration to such dynamism at run time. Especially the case of a mobile sink is treated in detail. As frequently doing global reconfigurations would likely be too slow and too expensive, we use localised algorithms to maintain the routing tree and reconfigure the node parameters. Again, we are able to control the quality/cost trade-off, this time by adjusting the size of the locality in which the reconfiguration takes place. To conclude the thesis, a case study is presented, which highlights the use of the configuration method on a more complex example containing a lot of heterogeneity

    A framework for multimodal wireless sensor networks

    Get PDF
    Wireless Sensor Networks are a widely used solution for monitoring oriented applications (e.g., water quality on watersheds, pollution monitoring in cities). These kinds of applications are characterized by the necessity of two data-reporting modes: time-driven and event-driven. The former is used mainly for continually supervising an area and the latter for event detection and tracking. By switching between both modes, a WSN can improve its energy-efficiency and event reporting latency, compared to single data-reporting schemes. We refer to those WSNs, where both data-reporting modes are required simultaneously, as MultiModal Wireless Sensor Networks (M2WSNs). M2WSNs arise as a solution for the trade-off between energy savings and event reporting latency in those monitoring-oriented applications where regular and emergency reporting are required simultaneously. The multimodality in these M2WSNs allows sensor nodes to perform data-reporting in two possible schemes, time-driven and event-driven, according to the circumstances, providing higher energy savings and better reporting results when compared to traditional schemes. Traditionally, sophisticated power-aware wake-up schemes have been employed to achieve energy efficiency in WSNs, such as low-duty cycling protocols using a single radio architecture. These protocols achieve good results regarding energy savings, but they suffer from idle-listening and overhearing issues, that make them not reliable for most ultra-low-power demanding applications, especially, those deployed in hostile and unattended environments. Currently, Wake-up Radio Receivers based protocols, under a dual-radio architecture and always-on operation, are emerging as a solution to overcome these issues, promising higher energy consumption reduction and reliability in terms of latency and packet-delivery-ratio compared to classic wake-up protocols. By combining different transceivers and reporting protocols regarding energy efficiency and reliability, multimodality in M2WSNs is achieved. This dissertation proposes a conceptual framework for M2WSNs that integrates the goodness of both data-reporting schemes and the Wake-up Radio paradigm--data periodicity, responsiveness, and energy-efficiency--, that might be suitable for monitoring oriented applications with low bandwidth requirements, that operates under normal circumstances and emergencies. The framework follows a layered approach, where each layer aims to fulfill specific tasks based on its information, the functions provided by its adjacent layers, and the information resulted from the cross-layer interactions.Doctor en IngenieríaDoctoradohttps://orcid.org/0000-0003-1346-6451https://scholar.google.com.co/citations?user=0I4kXQUAAAAJ&hl=enhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=000001365

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    A Data-driven Methodology Towards Mobility- and Traffic-related Big Spatiotemporal Data Frameworks

    Get PDF
    Human population is increasing at unprecedented rates, particularly in urban areas. This increase, along with the rise of a more economically empowered middle class, brings new and complex challenges to the mobility of people within urban areas. To tackle such challenges, transportation and mobility authorities and operators are trying to adopt innovative Big Data-driven Mobility- and Traffic-related solutions. Such solutions will help decision-making processes that aim to ease the load on an already overloaded transport infrastructure. The information collected from day-to-day mobility and traffic can help to mitigate some of such mobility challenges in urban areas. Road infrastructure and traffic management operators (RITMOs) face several limitations to effectively extract value from the exponentially growing volumes of mobility- and traffic-related Big Spatiotemporal Data (MobiTrafficBD) that are being acquired and gathered. Research about the topics of Big Data, Spatiotemporal Data and specially MobiTrafficBD is scattered, and existing literature does not offer a concrete, common methodological approach to setup, configure, deploy and use a complete Big Data-based framework to manage the lifecycle of mobility-related spatiotemporal data, mainly focused on geo-referenced time series (GRTS) and spatiotemporal events (ST Events), extract value from it and support decision-making processes of RITMOs. This doctoral thesis proposes a data-driven, prescriptive methodological approach towards the design, development and deployment of MobiTrafficBD Frameworks focused on GRTS and ST Events. Besides a thorough literature review on Spatiotemporal Data, Big Data and the merging of these two fields through MobiTraffiBD, the methodological approach comprises a set of general characteristics, technical requirements, logical components, data flows and technological infrastructure models, as well as guidelines and best practices that aim to guide researchers, practitioners and stakeholders, such as RITMOs, throughout the design, development and deployment phases of any MobiTrafficBD Framework. This work is intended to be a supporting methodological guide, based on widely used Reference Architectures and guidelines for Big Data, but enriched with inherent characteristics and concerns brought about by Big Spatiotemporal Data, such as in the case of GRTS and ST Events. The proposed methodology was evaluated and demonstrated in various real-world use cases that deployed MobiTrafficBD-based Data Management, Processing, Analytics and Visualisation methods, tools and technologies, under the umbrella of several research projects funded by the European Commission and the Portuguese Government.A população humana cresce a um ritmo sem precedentes, particularmente nas áreas urbanas. Este aumento, aliado ao robustecimento de uma classe média com maior poder económico, introduzem novos e complexos desafios na mobilidade de pessoas em áreas urbanas. Para abordar estes desafios, autoridades e operadores de transportes e mobilidade estão a adotar soluções inovadoras no domínio dos sistemas de Dados em Larga Escala nos domínios da Mobilidade e Tráfego. Estas soluções irão apoiar os processos de decisão com o intuito de libertar uma infraestrutura de estradas e transportes já sobrecarregada. A informação colecionada da mobilidade diária e da utilização da infraestrutura de estradas pode ajudar na mitigação de alguns dos desafios da mobilidade urbana. Os operadores de gestão de trânsito e de infraestruturas de estradas (em inglês, road infrastructure and traffic management operators — RITMOs) estão limitados no que toca a extrair valor de um sempre crescente volume de Dados Espaciotemporais em Larga Escala no domínio da Mobilidade e Tráfego (em inglês, Mobility- and Traffic-related Big Spatiotemporal Data —MobiTrafficBD) que estão a ser colecionados e recolhidos. Os trabalhos de investigação sobre os tópicos de Big Data, Dados Espaciotemporais e, especialmente, de MobiTrafficBD, estão dispersos, e a literatura existente não oferece uma metodologia comum e concreta para preparar, configurar, implementar e usar uma plataforma (framework) baseada em tecnologias Big Data para gerir o ciclo de vida de dados espaciotemporais em larga escala, com ênfase nas série temporais georreferenciadas (em inglês, geo-referenced time series — GRTS) e eventos espacio- temporais (em inglês, spatiotemporal events — ST Events), extrair valor destes dados e apoiar os RITMOs nos seus processos de decisão. Esta dissertação doutoral propõe uma metodologia prescritiva orientada a dados, para o design, desenvolvimento e implementação de plataformas de MobiTrafficBD, focadas em GRTS e ST Events. Além de uma revisão de literatura completa nas áreas de Dados Espaciotemporais, Big Data e na junção destas áreas através do conceito de MobiTrafficBD, a metodologia proposta contem um conjunto de características gerais, requisitos técnicos, componentes lógicos, fluxos de dados e modelos de infraestrutura tecnológica, bem como diretrizes e boas práticas para investigadores, profissionais e outras partes interessadas, como RITMOs, com o objetivo de guiá-los pelas fases de design, desenvolvimento e implementação de qualquer pla- taforma MobiTrafficBD. Este trabalho deve ser visto como um guia metodológico de suporte, baseado em Arqui- teturas de Referência e diretrizes amplamente utilizadas, mas enriquecido com as característi- cas e assuntos implícitos relacionados com Dados Espaciotemporais em Larga Escala, como no caso de GRTS e ST Events. A metodologia proposta foi avaliada e demonstrada em vários cenários reais no âmbito de projetos de investigação financiados pela Comissão Europeia e pelo Governo português, nos quais foram implementados métodos, ferramentas e tecnologias nas áreas de Gestão de Dados, Processamento de Dados e Ciência e Visualização de Dados em plataformas MobiTrafficB
    corecore