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ABSTRACT 

Human population is increasing at unprecedented rates, particularly in urban areas. This in-

crease, along with the rise of a more economically empowered middle class, brings new and 

complex challenges to the mobility of people within urban areas. To tackle such challenges, 

transportation and mobility authorities and operators are trying to adopt innovative Big Data-

driven Mobility- and Traffic-related solutions. Such solutions will help decision-making pro-

cesses that aim to ease the load on an already overloaded transport infrastructure. The infor-

mation collected from day-to-day mobility and traffic can help to mitigate some of such mo-

bility challenges in urban areas. 

Road infrastructure and traffic management operators (RITMOs) face several limitations 

to effectively extract value from the exponentially growing volumes of mobility- and traffic-

related Big Spatiotemporal Data (MobiTrafficBD) that are being acquired and gathered. Re-

search about the topics of Big Data, Spatiotemporal Data and specially MobiTrafficBD is scat-

tered, and existing literature does not offer a concrete, common methodological approach to 

setup, configure, deploy and use a complete Big Data-based framework to manage the lifecycle 

of mobility-related spatiotemporal data, mainly focused on geo-referenced time series (GRTS) 

and spatiotemporal events (ST Events), extract value from it and support decision-making 

processes of RITMOs. 

This doctoral thesis proposes a data-driven, prescriptive methodological approach to-

wards the design, development and deployment of MobiTrafficBD Frameworks focused on 

GRTS and ST Events. Besides a thorough literature review on Spatiotemporal Data, Big Data 

and the merging of these two fields through MobiTraffiBD, the methodological approach com-

prises a set of general characteristics, technical requirements, logical components, data flows 

and technological infrastructure models, as well as guidelines and best practices that aim to 

guide researchers, practitioners and stakeholders, such as RITMOs, throughout the design, 

development and deployment phases of any MobiTrafficBD Framework. 
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This work is intended to be a supporting methodological guide, based on widely used 

Reference Architectures and guidelines for Big Data, but enriched with inherent characteristics 

and concerns brought about by Big Spatiotemporal Data, such as in the case of GRTS and ST 

Events. The proposed methodology was evaluated and demonstrated in various real-world 

use cases that deployed MobiTrafficBD-based Data Management, Processing, Analytics and 

Visualisation methods, tools and technologies, under the umbrella of several research projects 

funded by the European Commission and the Portuguese Government. 

Keywords: Big Spatiotemporal Data, Mobility- and Traffic-related data framework, data-

driven methodology, geo-referenced time series, spatiotemporal events 
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RESUMO 

A população humana cresce a um ritmo sem precedentes, particularmente nas áreas urbanas. 

Este aumento, aliado ao robustecimento de uma classe média com maior poder económico, 

introduzem novos e complexos desafios na mobilidade de pessoas em áreas urbanas. Para 

abordar estes desafios, autoridades e operadores de transportes e mobilidade estão a adotar 

soluções inovadoras no domínio dos sistemas de Dados em Larga Escala nos domínios da 

Mobilidade e Tráfego. Estas soluções irão apoiar os processos de decisão com o intuito de li-

bertar uma infraestrutura de estradas e transportes já sobrecarregada. A informação colecio-

nada da mobilidade diária e da utilização da infraestrutura de estradas pode ajudar na miti-

gação de alguns dos desafios da mobilidade urbana. 

Os operadores de gestão de trânsito e de infraestruturas de estradas (em inglês, road 

infrastructure and traffic management operators — RITMOs) estão limitados no que toca a extrair 

valor de um sempre crescente volume de Dados Espaciotemporais em Larga Escala no domí-

nio da Mobilidade e Tráfego (em inglês, Mobility- and Traffic-related Big Spatiotemporal Data — 

MobiTrafficBD) que estão a ser colecionados e recolhidos. Os trabalhos de investigação sobre 

os tópicos de Big Data, Dados Espaciotemporais e, especialmente, de MobiTrafficBD, estão dis-

persos, e a literatura existente não oferece uma metodologia comum e concreta para preparar, 

configurar, implementar e usar uma plataforma (framework) baseada em tecnologias Big Data 

para gerir o ciclo de vida de dados espaciotemporais em larga escala, com ênfase nas série 

temporais georreferenciadas (em inglês, geo-referenced time series — GRTS) e eventos espacio-

temporais (em inglês, spatiotemporal events — ST Events), extrair valor destes dados e apoiar os 

RITMOs nos seus processos de decisão. 

Esta dissertação doutoral propõe uma metodologia prescritiva orientada a dados, para 

o design, desenvolvimento e implementação de plataformas de MobiTrafficBD, focadas em 

GRTS e ST Events. Além de uma revisão de literatura completa nas áreas de Dados Espacio-

temporais, Big Data e na junção destas áreas através do conceito de MobiTrafficBD, a metodo-

logia proposta contem um conjunto de características gerais, requisitos técnicos, componentes 
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lógicos, fluxos de dados e modelos de infraestrutura tecnológica, bem como diretrizes e boas 

práticas para investigadores, profissionais e outras partes interessadas, como RITMOs, com o 

objetivo de guiá-los pelas fases de design, desenvolvimento e implementação de qualquer pla-

taforma MobiTrafficBD. 

Este trabalho deve ser visto como um guia metodológico de suporte, baseado em Arqui-

teturas de Referência e diretrizes amplamente utilizadas, mas enriquecido com as característi-

cas e assuntos implícitos relacionados com Dados Espaciotemporais em Larga Escala, como 

no caso de GRTS e ST Events. A metodologia proposta foi avaliada e demonstrada em vários 

cenários reais no âmbito de projetos de investigação financiados pela Comissão Europeia e 

pelo Governo português, nos quais foram implementados métodos, ferramentas e tecnologias 

nas áreas de Gestão de Dados, Processamento de Dados e Ciência e Visualização de Dados em 

plataformas MobiTrafficBD,  

Palavas chave: Dados Espaciotemporais em Larga Escala, Plataforma de dados relacionados 

com Mobilidade e Tráfego, Metodologia orientada a dados, Series Temporais Georreferencia-

das, Eventos Espaciotemporais 
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1  

 

INTRODUCTION 

This chapter presents the context and motivation of this doctoral thesis, the research chal-

lenges, opportunities and goals, the expected scientific and technical contributions, and the 

structure of this document. Furthermore, this chapter describes the research methodology that 

supports this thesis and the relationship between its steps and the expected results and the 

overall contribution of relevant research endeavours for the development of the presented 

work. 

1.1 Context 

Human population reached 7.5 billion in 2017 and it is expected to rise to 10 billion by 2050, 

from which 66% will live in cities or urban areas (United Nations, Department of Economic 

and Social Affairs, Population Division, 2014). Urban areas with more than 10 million inhabit-

ants are expected to grow from 28, in 2017, to 41 by 2030 (United Nations, Department of Eco-

nomic and Social Affairs, Population Division, 2014). Many social and economic areas will be 

greatly affected by this growth, but perhaps one of the most affected areas will be mobility, 

especially urban mobility. One of the major concerns of the United Nations (UN) of the impact 

of this exponential migration to cities is its management regarding spatial distribution and 

mobility of the population (United Nations, Department of Economic and Social Affairs, Pop-

ulation Division, 2014). Mobility may be defined as the ease of movement from one location 

to another with the help of transport networks and services available within and between the 

two locations (Beimborn, Horowitz, Vijayan, & Bordewin, 1999). 

More than the growth of population, the rise of middle-class population in cities is also 

challenging, when considering that more than 2 billion people will likely enter the middle-

class demographic group, namely in cities in emerging markets, such as China or India. The 

new middle class will want to buy their own cars, with an expected growth in automobile sales 
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of 70 million in 2010 to 125 million in 2025 (Goldman Sachs, 2017). Some even argue that to-

day’s global car fleet could double by 2030, mainly in cities (Dargay, Gately, & Sommer, 2007). 

The existing urban infrastructure cannot support such an increase in vehicles. Congestion is 

already close to unbearable in many cities and can cost as much as 2 to 4 percent of countries’ 

Gross Domestic Product, caused by lost time in traffic, fuel waste and increased costs. Moreo-

ver, the environmental hazards that are linked with congestion are a tough reality. The World 

Health Organization estimated in 2014 that seven million premature deaths are attributable to 

air pollution, and a significant share is the result of urban transit (World Health Organization, 

2014). 

Therefore, urban productivity and lifestyle are highly dependent on the efficiency of its 

transport system to move labour, consumers and freight between multiple origins and desti-

nations. But what does this mean for individual commuters? Among the most notable urban 

transport challenges are traffic congestion, parking difficulties, longer commuting times, pub-

lic transport inadequacy and lack of efficiency, difficulties for non-motorized transport, loss 

of public space, high infrastructure maintenance costs, environmental impacts and increase in 

energy consumption, more accidents and less safety, to name a few (Rodrigue, 2017). 

So, with all the above in mind, what are the main solutions, presently available or future 

prospected, to the evolution of mobility, particularly urban mobility? Besides the implemen-

tation of new policies regarding infrastructure and space management, urban design, public 

transport optimization (e.g., last mile public transportation schemes) or fuelled automobile 

restrictions (e.g., diesel-based vehicle ban in major cities), which will be further pushed for-

ward during and after the COVID-19 pandemic situation lived across the world (McKinsey & 

Company, 2020), Information and Communication Technologies (ICT) solutions, supported 

by novel sensing capabilities, are being developed and implemented by cities worldwide. 

In fact, the introduction and diffusion of ICT, and the emergence of an information soci-

ety, resulted in several economic and social impacts, notably for activities depending on infor-

mation processing. This has impacted both the service and manufacturing sectors. Transpor-

tation is a service that requires and processes large amounts of data. For instance, transporta-

tion users make decisions about where and when to travel, which mode to use and, if they are 

operating their own vehicle, which route to take. Inversely, transportation services' providers 

must manage their assets so that they effectively match the demand of data by various trans-

portation markets (Rodrigue, 2017). 

Some examples of such ICT-supported solutions are electric and autonomous vehicles, 

vehicle-to-vehicle and vehicle-to-infrastructure communication, electronic toll collection or 

automatic road enforcement, for instance. These constitute applications of a new paradigm 

coined Intelligent Transportation Systems (ITS). ITS is a research field in the domain of ICT 
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which addresses problems on the transportation sector and the daily journeys made by citi-

zens. Specifically, “Intelligent Transport Systems (ITS) refers to the integration of ICT with 

vehicles and transport infrastructure to improve economic performance, safety, mobility and 

environmental sustainability for the benefit of all citizens” (European Telecommunications 

Standards Institute, 2012). 

Ultimately, the main goal of ITS is to enable optimization and to promote the efficiency 

of mobility services, by providing added value through processing and analysis of mobility-

related data. This goal is tackled by solving data-related problems, coping with the spatiotem-

poral aspects of mobility-related information and creating insights and new knowledge from 

such data, by applying analysis, correlation, event and anomaly detection and enhanced vis-

ualization techniques. The application of the above analyses and optimization procedures is 

seen as part of Machine Learning and Data Mining research fields. The goal of Machine Learn-

ing and Data Mining is to deliver a set of tools and methods to extract automatically or semi-

automatically relevant and easy-to-understand insights, such as rules, patterns, irregularities, 

or associations, based on the characteristics and interactions between the data being analysed 

(Pujari, 2001). 

Hence, the main concerns involved in such analysis and optimization processes com-

prise the whole lifecycle of data, from its collection, cleaning, transformation and storage to its 

processing, analysis and visualization. For instance, how to get quality data in enough quan-

tities to realize the mobility of the future? The acceleration in both the volume and speed of 

exploitable data will have a significant and disruptive impact in transportation (OECD/ITF, 

2015). Massive amounts of mobility data must be collected in real-time, in order to have an 

up-to-date view of mobility.  

The collection of large datasets – coined as “Big Data” – is not a new concept and is not 

part of a single technological development. The collection of great volumes of data is sup-

ported by new data gathering mechanisms on ubiquitous devices, better storage capabilities, 

enhanced computing power and novel sensing and communication technologies (Monino, 

2021).  

Mobility data is often divided into three main categories: Moving object data, i.e., the 

movement of objects (e.g., people, vehicles) in space over a period of time, non-moving object 

data, which corresponds to data captured throughout time in a specific location, such as, for 

instance, road sensor data, and event data, defined by the collection of mobility data variables 

on specific points in space and time, such as in the case of traffic events (Andrienko & An-

drienko, 2009). Therefore, ITS should be able to efficiently collect and store mobility-related 

Big Data, considering its high-volume, high-speed characteristics. 
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Moreover, in order to have a good understanding of mobility within cities, ranging from 

traffic information to individual commuters’ routes, infrastructure status or public transport 

demands, reliable data is needed. Data may come from sensors, both in-vehicle or in-infra-

structure, Global Positioning Systems (GPS) tracking devices, public transit routes, times, de-

lays, etc., or even users’ mobility behaviours and tendencies. Some of these datasets have a 

well-defined purpose and are collected to address well-defined questions or to resolve specific 

tasks. However, the potential value of mobility data lies in the combination of different, het-

erogeneous data sources (Silveira, de Almeida, Marques-Neto, Sarraute, & Ziviani, 2016; Peix-

oto & Moreira, 2013). The issue is that mobility data is like “digital dust” that is gathered from 

humans’ interactions with a panoply of computing systems or services and digital infrastruc-

ture. When effectively combined and merged, these data streams may help revealing unsus-

pected or unobserved patterns and insights in day-to-day mobility that can be used in benefit 

of all (OECD/ITF, 2015). ITS should cope with this heterogeneity aspect of mobility data, by 

introducing effective data standards and common formats for mobility and interoperability 

services, to merge and harmonize data coming from different data sources. 

There are several compelling cases on the value brought forward by Big Data, data min-

ing and visual analytics solutions in ITS for urban planning (Chen & Englund, 2016), intelli-

gent and connected transport (Jia & Ngoduy, 2016) and better safety (González, Pérez, Mila-

nés, & Nashashibi, 2016). However, there is a big question mark on the ability for relevant 

stakeholders, such as road infrastructure and traffic management operators, to keep the pace 

with the proliferation of newly available data and with the tools to efficiently analyse it. Big 

Data, data mining and visual analytics are promising research fields for improving planning, 

management and decision-making processes related to transport, by applying new data anal-

ysis and analytics frameworks (OECD/ITF, 2015). These advancements in large-scale data 

analysis are the best option to extract insights and knowledge from mobility data in a timely 

manner and to, ultimately, support decision-making processes. Hence, ITS should make use 

of efficient Big Data, data mining and visual analytics tools and technologies over large-scale 

mobility data to support the decision-making processes of relevant stakeholders. 

But maybe the biggest issue of spatiotemporal data has to do with its inherent charac-

teristics, which make it different from information originating in other areas and domains: its 

space-time features. The space-time dimension of mobility data introduces direct conse-

quences in the ways such data is collected, stored, processed, analysed, correlated or visual-

ized (Atluri, Karpatne, & Kumar, 2018). All these inherent characteristics of spatiotemporal 

mobility data should be considered when collecting, harmonizing, processing and visualizing 

mobility data. 



 5 

In the literature, spatiotemporal data often refers to data that presents variability and 

dynamicity in both time and space (Heuvelink, Pebesma, & Gräler, 2017). But, spatiotemporal 

data may also define any data that includes a static or dynamic representation in both time 

and space, i.e., the measured variables are represented in both space and time, but these di-

mensions may or may not be static (have the same value across readings/measurements), such 

as presented in (Atluri, Karpatne, & Kumar, 2018), (Shekhar, Zhang, & Huang, 2010), 

(Pebesma, 2012) and (Kisilevich, Mansmann, Nanni, & Rinzivillo, 2009), for instance. For the 

sake of the presented work, the different types of spatiotemporal data that will be considered 

are defined by (Kisilevich, Mansmann, Nanni, & Rinzivillo, 2009), and will be further explored 

in Chapter 2. For now, it is worth to highlight that, although all spatiotemporal data types may 

be used for the purpose of managing traffic and road infrastructure, most public operators for 

road infrastructure and traffic management use road sensors' (geo-referenced time series) and 

traffic events' (spatiotemporal events) data to accomplish this goal.  

Road sensors are relatively cheap and can be placed in prioritized, carefully selected 

positions to produce more accurate data on the different arteries of the road network, whereas 

traffic events’ data is easy to capture by local authorities, through gathering of real-time infor-

mation about events that happen in the road infrastructure by police authorities or road infra-

structure operators. Hence, such data types enable a more comprehensive view of mobility, 

by providing an abstraction from individual drivers to an overall mobility panorama in spe-

cific points of interest within an urban area or city.  

Hence, for the sake of this thesis work, the focus will fall upon spatiotemporal event (ST 

Event) and geo-referenced time series (GRTS) data, since these are directly linked with traffic-

related data that do not fall into the categories of moving objects, presenting some advantages, 

in terms of data lifecycle management and analysis, due to the fact that they are considered 

spatially static objects, i.e., their location does not change across time. A ST event is often char-

acterized by fixed location and fixed time, representing where and when the event happened, 

whereas GRTS data is composed by measurements of continuous or discrete spatiotemporal 

fields, recorded at fixed locations in space. 

1.2 Motivation and Research Goals 

Road infrastructure and traffic management operators (RITMOs) face several limitations to 

effectively extract value from the exponentially growing volumes of spatiotemporal data that 

are being acquired and gathered. The cheer volume and increased heterogeneity of collected 

data from traffic sensors and events, in the form of GRTS and ST events, undermines the pro-

cess of answering important questions about day-to-day mobility in a timely manner, so as to 
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support data-driven decision-making processes of these stakeholders. RITMOs need to be 

aware that traditional data lifecycle management strategies, such as conventional data ware-

housing systems or geographic information systems, are unable to solve all these issues and 

that new strategies and technologies must be employed to address the specificities of both Big 

Data and spatiotemporal characteristics, present in mobility data.  

The literature does not offer a concrete methodological approach to design, implement 

and deploy a complete Big Data-based approach to manage the lifecycle of mobility-related 

spatiotemporal data, extract value from it and support decision-making processes of RITMOs. 

Research about these topics is scattered and there is no common approach to design, imple-

ment and deploy a generic, fully fledged solution to collect, store, process, analyse and visu-

alize mobility- and traffic-related Big spatiotemporal Data (throughout the document, the ab-

breviation MobiTrafficBD will be used; the "spatiotemporal" dimension of data is already com-

prised in data coming from the Mobility and Traffic domains), in the form of ST Events and 

GRTS. Most works focus on specific use cases and consist of finding the best Big Data technol-

ogy and/or spatiotemporal data model depending on use case-specific requirements, instead 

of a data-driven approach (Clegg, 2015) (e.g., (Anbaroglu, Heydecker, & Cheng, 2014; Wu, 

Zurita-Milla, & Kraak, 2015; Reich & Porter, 2015)).  

Furthermore, several works point the way to some guidelines, best practices and imple-

mentations in specific contexts, but these only partially cover the aspects and characteristics 

of both Big Data and spatiotemporal data lifecycle management identified in the literature. 

This issue is a consequence of the multidisciplinary nature of these research areas, as works 

often present approaches on general guidelines and best practices for one research discipline 

but not for the others (MacLeod, 2018) (e.g., Big Data best practices (Marz & Warren, 2015)), 

while other works focus on particular technological advances in one specific area, such as Big 

Data collection [26] or analysis  (Nallaperuma, et al., 2019), spatiotemporal models (Cheng, 

2016; Wang, et al., 2017) or visualization (Surkhovetskyy, Andrienko, Andrienko, & Fuchs, 

2017; Gatalsky, Andrienko, & Andrienko, 2004), to name a few examples. There is no inte-

grated approach focusing on all the layers, logical and physical, that are needed to implement 

and deploy a solution as a whole that copes with the MobiTrafficBD lifecycle along with the 

correct evaluation measures (e.g., benchmarking, data modelling, deployment evaluation, etc.) 

which would provide a general-purpose data-driven approach. Such approach will enable the 

prescription of models and methods as well as best practices and guidelines to researchers and 

practitioners, so that they can effectively implement and deploy solutions that fit different 

needs and scenarios, opting for a data-driven approach, rather than a use case-specific one. 

Hence, the main gap in the current state-of-the-art is the lack of definition of a prescrip-

tive, methodological approach that describes in depth how a Big Data-based solution for the 
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lifecycle management and analysis of MobiTrafficBD should be designed, implemented and 

deployed, in contrast with the existing approaches that RITMOs have at their disposal, in 

terms of MobiTrafficBD processing and analysis.  

The proposal of a prescriptive methodology will provide not only the set of steps to-

wards a generic data-driven framework for MobiTrafficBD lifecycle management and analysis 

in a rigorously justified manner, but also the non-functional requirements that are crucial for 

the envisaged framework, such as setup time, easy deployment, benchmarking and validation. 

Such methodology enables models (representations of logical and infrastructural compo-

nents), methods (structured practices), and instantiations (prototypes or implemented sys-

tems) that are tightly coupled and grounded on evaluated practices. Hence, the following re-

search question and hypothesis are proposed: 

 

Q.: How can a methodology enable easy design, development and deployment of generic data-driven 

approaches for the lifecycle management and analysis of MobiTrafficBD, in order to help RITMOs to 

extract value from such data to support their decision-making processes? 

 

H.: A prescriptive and data-driven methodology for the design, development and deployment of Mo-

biTrafficBD Frameworks that comprises logical components, data flows and technological infrastructure 

models, along with guidelines, may ease and accelerate lifecycle management and value extraction nec-

essary to support RITMOs' decision-making processes. 

 

The main goal of this doctoral thesis is the proposal of prescriptive, data-driven meth-

odology to design, implement and deploy Big Data-based frameworks for the management 

and analysis of MobiTrafficBD, in the form of GRTS and ST events, which take into account 

the characteristics of both Big Data and spatiotemporal data, providing prescriptive models, 

methods and infrastructural components to manage these complex data assets, in the form of 

a structured practical guide to practitioners and stakeholders. In this context, data-driven 

means that, instead of being use case-driven, i.e., the solution is built solely according to par-

ticular use cases' specifications, a data-driven approach abstracts from use cases and focuses 

on the data itself, in this case GRTS and ST Events, creating a generic approach that can be 

applied to different use cases that provide these types of data, regardless of format or schema 

and spatial and temporal distribution of the available data sources. 

The proposed methodological approach is foreseen to be used in the following situa-

tions: relevant stakeholders do not currently have a solution for MobiTrafficBD management 

and analysis and want to deploy one; relevant stakeholders already have some form of legacy 

solution for MobiTrafficBD management and analysis (e.g. traditional Data Warehousing, 
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Geographic Information Systems, etc.) but need to replace it; or relevant stakeholders have a 

use case-driven solution, relying on a non-interoperable  integration of technologies and mod-

els, and prefer to have a data-driven approach, based on highly interoperable components and 

well defined models and methods for MobiTrafficBD management and analysis.  

Furthermore, the proposed approach presents itself as a valuable contribution to the sci-

entific community and to practitioners in the areas of ITS, spatiotemporal data analysis and 

Big Data for Mobility by providing tightly coupled and scientifically evaluated models, meth-

ods and instantiations. With all the above in mind, the research objectives of the presented 

work are: 

• A prescriptive, step-by-step, data-driven methodology that will enable the creation of 

models and methods for MobiTrafficBD management and analysis will be presented. 

This methodology will provide the basis for the development and deployment of 

frameworks that will encompass the entire lifecycle of MobiTrafficBD, from data col-

lection, harmonization and storage to processing, analysis and visualization, by 

providing guidelines and best practices that are independent of the use cases at hand. 

Nevertheless, in some cases, the ultimate choice of method or technology will be based 

on the use case, without affecting the overall data-driven philosophy of the framework 

itself, as will be noted throughout the document. Such guidelines and best practices 

will guide stakeholders through the decision process around the choice of the most 

suitable data models, methods and algorithms to handle, process and analyse Mo-

biTrafficBD, and towards the selection and deployment of Big Data technologies. 

• Validation and evaluation of the models and methods through the application in sev-

eral demonstration scenarios and comparison with known benchmarks: The validation 

of the methodology will be based on several real-world use case scenarios that present 

similar MobiTrafficBD sources, but have different formats and contexts, as well as dif-

ferent overall goals. Furthermore, the methodology will be evaluated on other scenar-

ios that are not fully related to traffic management and monitoring, such as in the case 

of public transportation use cases. Moreover, requirements for each of the use cases 

will help in the benchmarking and evaluation process that will validate that the meth-

odology is generic enough to be applied in different MobiTrafficBD-related scenarios 

but is specific enough to support these scenarios to achieve their goals, while conform-

ing with the requirements of each of them. 

 

Regarding the proposal of models and methods the methodology offers: 

1. A model for logical components and layers using general guidelines and best practices 

defined by several Big Data institutes and standards, such as the Big Data Value 
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Association (BDVA) Strategic Research Agenda and Reference Architecture (Big Data 

Value Association, 2020), and apply it to the Mobility and Traffic Management sector. 

The model further represents how MobiTrafficBD, namely GRTS and ST events, flow 

through the different components. 

2. Guidelines and best practices for collecting, harmonizing and enriching MobiTraf-

ficBD, in the form of GRTS and ST events, providing methods to collect data from dif-

ferent sources and with different formats, and accounting for the Big Data characteris-

tics of the collected data. These methods also provide ways for new mobility-related 

GRTS and ST event data sources and formats to be added, enabling new deployment 

scenarios. 

3. A technological infrastructure model, defining the configuration, organization, de-

ployment and usage of Big Data technologies in a shared-nothing architecture for the 

specific case of MobiTrafficBD frameworks. 

4. Data modelling guidelines that enable the representation and description of GRTS and 

ST event data types related to traffic and mobility, regardless of their structure and 

format. Such modelling methods will be part of the presented use cases and are sup-

ported by relevant mobility data standards, such as DATEX II (Easyway, 2011), ena-

bling direct mapping between raw data formats and standardized formats. 

5. Guidelines and best practices on the choice of Data Analytics and Visualization meth-

ods and tools according to the data and the use case at hand. 

 

In terms of the evaluation of the models and methods through the application in several 

demonstration scenarios, the methodology aims to: 

1. Evaluate the suitability of the proposed approach when applied to several real-world 

scenarios concerning RITMOs. This objective focuses on the validation of the method-

ological approach across four concrete traffic management use cases with different re-

quirements, data sources, data formats and deployment needs, by providing a set of 

data models, methods and guidelines for the application of a Big Data-based frame-

work for MobiTrafficBD lifecycle management and analysis. 

2. Demonstrate the suitability of the proposed approach for solving real-world problems 

in other related sectors, such as in the case of public transport operators' data analysis 

requirements, through the application of the methodology in one concrete use case fo-

cusing on the public transportation sector. 

3. Provide an informed guide for practitioners and researchers, in the form of practical 

examples of the employment of the overall methodology to design and develop Mo-

biTrafficBD frameworks, derived from the above use cases, by presenting a thorough 
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description of the use cases, their objectives and the choices taken in each one of them, 

regarding the entire lifecycle of the data available for each specific use case. 

 

It is worth mentioning that, throughout this doctoral thesis, the adaptation, customiza-

tion or creation of new Big Data technologies, machine learning algorithms or data quality 

methods are not seen as contributions. The main goal is to propose a cohesive and prescriptive 

methodology to build generic, data-driven MobiTrafficBD Frameworks for lifecycle manage-

ment and analysis (within the document, these frameworks will be abbreviated to MobiTraf-

ficBD Frameworks: Mobility- and Traffic-related Big Spatiotemporal Data Frameworks for 

data lifecycle management and analysis) and evaluate their usability through demonstration 

cases that will use Big Data technologies and machine learning algorithms already developed. 

Moreover, in the context of the presented work, some concerns should be considered. 

First, although the title and goal of this work, i.e., the methodology to develop and deploy 

MobiTrafficBD Frameworks, does not point to ITS directly, it is strongly related with ITS, since 

these frameworks are considered ITS: the use of ICT technologies and paradigms to tackle 

challenges in the Mobility and Transportation domains. Thus, a MobiTrafficBD Framework is 

a fully-fledged ITS instantiation. Effectively, the title for the presented work, "A Prescriptive 

Methodology for the Design and Implementation of Mobility- and Traffic-related Big Spatio-

temporal Data Frameworks ", can be decomposed in the following concepts: 

• Prescriptive methodology: A set of step-by-step methods, procedures, guidelines, best-

practices and useful directions to design and develop a data framework.  

• Data Frameworks: In the context of the presented work, a data framework is an instan-

tiation of a set of components to achieve specific data-driven objectives. Components 

may be software components (e.g., databases, processing engines, visualization tools, 

etc.), hardware components (e.g., distributed environments, cloud environments, etc.), 

conceptual components (e.g., modules in a modular architecture). Data-driven objec-

tives are any objective accomplished by means of ICT-based systems that focus on the 

data at hand to tackle the specific objective (e.g., data lifecycle management, decision 

support, business insights and understanding, advantage over competitors, etc.). The 

word "frameworks" is in the plural form since the methodology will not focus on a 

particular type of framework; rather, it will strive to be generic and modular enough 

to encompass several types of data-driven frameworks, from simple data lifecycle 

management frameworks, encompassing data collection, harmonization, cleaning, cu-

ration and storage tasks, to fully-fledged data-driven frameworks that manage all 

stages of the data lifecycle and comprise Data Analytics, Visual Analytics and Decision 
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Support tasks. The idea is that the methodology is used to support the design and im-

plementation of one framework at a time! 

• Design and implementation: The methodology will focus on both the design phase, cov-

ering design considerations' discussion, requirements elicitation and analysis, concep-

tual architecture definition and initial technology surveys, and the development phase, 

comprising the final choice of technologies, data models, methods, algorithms, and 

standards and the development and deployment of the final system. 

• Mobility and Traffic: The methodology will focus on the design and implementation of 

ICT-based frameworks that target the Mobility and Traffic Management research ar-

eas. Thus, the methodology enables the creation of ITS frameworks. 

• Big Spatiotemporal Data: The main goal of the methodology is to guide researchers and 

practitioners in the design and development of data-driven frameworks that can tackle 

the lifecycle management and analysis of Big Data sets with spatiotemporal character-

istics, under the scope of Mobility and Traffic domains. 

 

Second, this relation between the frameworks and ITS brings yet another misconception 

to the discussion: the distinction between architecture and framework. Although this work 

proposes a conceptual architecture for the development of MobiTrafficBD Frameworks, in the 

form of a model of logical components and data flows (Chapter 3), it is based on software 

architectures developed for more generic purposes and domains, such as the NIST (NBD-

PWG, 2015) and BDVA (Big Data Value Association, 2020) reference architectures for Big Data. 

So, MobiTrafficBD Frameworks can be considered, under the scope of the presented work, as 

ITS instantiations of existing Big Data, Data Warehousing and other generic domains' refer-

ence architectures, taking full advantage of guidelines and best-practices extracted from these 

generic architectures and repurposed to cope with the specificities of ITS, besides ITS-specific 

guidelines and best-practices collected throughout the author's work on several research pro-

jects in the ITS area. 

Hence, the presented prescriptive methodology is intended to be used and, perhaps, 

further improved in future research endeavours, as it aims to represent one step forward to-

wards the creation of easy-to-design, easy-to-develop, easy-to-deploy MobiTrafficBD Frame-

works for research and academic applications and, ultimately and essentially, a guide for other 

researchers and practitioners that, like the author, struggle to find the best ways to handle, 

manage and extract value from high-volume, high-speed, high-variety MobiTrafficBD 

sources. 
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1.3 Research Methodology and Context of Work 

This dissertation is supported by a generic research methodology, based on Design Science 

Research, which is used as the means to build a proof of concept. Since this dissertation is 

encompassed within the Computer Science and information Systems domain, the selected 

methodology was the Design Science Research Methodology (DSRM) for Information Sys-

tems, proposed in (Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007), represented in Fig-

ure 1.1. Such methodology is suitable for Computer Science research, and comprises six stages, 

which are also suitable for the objectives and expected results.  

The methodology starts by identifying the problem at hand and the motivations behind 

it, although it is designed to be flexible and can be applied to any research project in any of the 

phases. Also, the methodology provides retroactive connections, in order to allow several 

types of process iterations. In this case, research starts by identifying the problem and motiva-

tions. Instantiating this dissertation with the DSRM and considering the time limits for each 

intermediate phase, the following tasks are expected as outcome: 

 
Figure 1.1 — Design Science Research Methodology (DSRM) for Information Systems (Peffers, Tuunanen, 

Rothenberger, & Chatterjee, 2007) 

• Problem and motivation identification: identify the specific research problem and jus-

tify the value of the resulting solution. The first step towards successful scientific re-

search consists in choosing a meaningful topic. As already explained, there is a signif-

icant lack in the literature regarding a prescriptive, data-driven methodology to de-

sign, implement and deploy Big Data-based frameworks for mobility-related spatio-

temporal data management and analysis. The main problem and motivation arise from 

this gap and will help researchers and practitioners in the Mobility and Traffic man-

agement areas. 



 13 

• Define solution outcomes: define the outcomes to achieve to solve the problem and 

considering the knowledge of what is doable and achievable. This task comprises the 

formulation of the hypothesis. It should be stated in a declarative format, which brings 

clarity, specificity and focus to a research problem. In the context of this doctoral thesis, 

the outcomes are presented in Section 1.2 and aim at delivering a prescriptive, data-

driven methodology towards the design and development of generic MobiTrafficBD 

Frameworks that can aid RITMOs in the MobiTrafficBD (GRTS and ST Events) lifecycle 

management and value-extraction processes. 

• Design and implementation: This task encompasses the design and development of a 

proof-of-concept. The proof-of-concept is frequently related to engineering research 

and the development of a prototype. It is the evidence that demonstrates that an idea 

is feasible. This way, and because many times the complete validation of the hypothe-

sis in a real-world environment involves resources (both time and money) that few 

have access to, this step relates directly to the design of an experiment in a controlled 

environment. In the scope of the presented work, this task corresponds to the develop-

ment of the data-driven, prescriptive methodology, along with all its components, 

challenges, guidelines and best practices. 

• Testing and validation: This is the step where the testing of the hypothesis will be done. 

It includes the validation of the proof-of-concept and execution of tests according to 

the pre-defined validation method. Considerations regarding the implementations and 

ultimately the hypothesis will be drawn. At this stage, the researcher may find evi-

dence that the hypothesis needs to be reformulated, thus it will need to jump back to 

step 4 or might need to propose adaptations to the prototype design (previous step). 

This task corresponds to the validation and demonstration scenarios that will serve as 

examples of the application of the presented methodological approach. 

• Demonstration and dissemination: If the hypothesis is validated, it is a corroborated 

hypothesis, and can be published. It is mandatory to publish final findings and provide 

peers from the scientific community the chance to verify, comment, and use the devel-

oped work. Nonetheless, and despite appearing only as the final step of the adopted 

research method, intermediate findings can also be published. 

 

This methodology was used throughout the research phases of the proposed work, as it 

was developed and applied to several European Commission- and Portuguese Government- 

funded research projects, which is, per se, a form of peer validation, as well as a way for proof-

of-concepts to be tested and validated by industrial/commercial stakeholders in real world 
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scenarios. This is an important step, since it is crucial for future technology transfer from re-

search to industry. Hence, this PhD work has contributed for (thus being validated in): 

• The European Commission's (EC) Seventh Framework Program (FP7) MobiS (Person-

alized Mobility Services for energy efficiency and security through advanced Artificial 

Intelligence techniques) research project (Grant Agreement 318452) (European Com-

mission, 2012), funded by the EC from October 2012 to October 2015, focusing on cre-

ating a new concept and solution of a federated, customized and intelligent mobility 

platform by applying novel Future Internet technologies and Artificial Intelligence 

methods that monitor, model and manage the urban mobility complex network of peo-

ple, objects, natural, social and business environment in real-time. 

• The scientific research project Horizon 2020 OPTIMUM project (Grant Agreement 

636160) (European Commission, 2015), funded by the EC from January 2015 to August 

2018, which aims at unveiling state-of-the-art information technology solutions to im-

prove transit, freight transportation and traffic connectivity throughout Europe. 

Through tailor-made applications, OPTIMUM strives to bring proactive and problem-

free mobility to modern transport systems by introducing and promoting interopera-

bility, adaptability and dynamicity. OPTIMUM establishes largely scalable architec-

ture for the management and processing of multisource big data, which enables the 

continuous monitoring of transportation system needs while facilitating proactive de-

cisions and actions in a semi-automated way. 

• The national research P2020 Mobile Security Ticketing project (Grant LISBOA-01-0247-

FEDER-011388), funded by the Portuguese Government, with the objective of devel-

oping an alternative ticketing support solution, based on contactless technology pre-

sent in smartphones. This project also aims at delivering Big Data analytics solutions 

for traffic management and public transport operators. 

 

All the above research projects joined relevant European and national stakeholders from 

the Traffic and Mobility domain as final end-users. Some examples are national road infra-

structure operators (e.g., Infraestruturas de Portugal1, the Portuguese road infrastructure op-

erator, an end-user in OPTIMUM, and Trafikverket2, the Swedish road infrastructure author-

ity, an end-user in MobiS) or public transportation operators (e.g., OTLIS3, the Lisbon's public 

transportation operators association, an end-user in Mobile Security Ticketing, and LPP4, 

 

1 https://www.infraestruturasdeportugal.pt/ 
2 https://www.trafikverket.se/en 
3 https://www.portalviva.pt/pt/homepage/sobre-a-otlis/a-otlis.aspx 
4 https://www.lpp.si/en 

https://www.infraestruturasdeportugal.pt/
https://www.trafikverket.se/en
https://www.portalviva.pt/pt/homepage/sobre-a-otlis/a-otlis.aspx
https://www.lpp.si/en
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Ljubljana's public transportation operator, an end-user in OPTIMUM) , just to name a few. 

Hence, the work done under the scope of these projects was validated, demonstrated and put 

into use as proofs-of-concept in real-world scenarios, supported by relevant stakeholders. 

Throughout the 8-year research work performed by the author under the scope of the afore-

mentioned projects, there was always a necessity to benchmark the most suitable architectures, 

methodologies, methods, tools and technologies for handling and capitalizing on both the in-

put data sources and the underlying use cases originated from the projects' end-user scenarios, 

and to build roadmaps for the creation of MobiTrafficBD Frameworks that could provide the 

required functionalities to tackle the end-user scenarios' challenges. 

Thus, the benchmarking and roadmapping processes mentioned above served as a basis 

for a symbiotic relation between the presented prescriptive methodology and the research 

work performed under the scope of these projects. On one hand, the systematic utilization of 

these processes across projects have paved the way to the formalization of all the steps of the 

methodology, from the generic requirements' elicitation and design considerations' specifica-

tion for MobiTrafficBD Frameworks and the design of the logical components and data flows 

model to the catalogue of guidelines and best practices for the design and development of 

MobiTrafficBD Frameworks. On the other hand, the empirical research knowledge acquired 

by the author throughout the execution of the above projects has served as a proving ground 

for the creation, application and validation of the methodology, along with its models, guide-

lines and best practices, in real-world scenarios, reducing the design time of and guiding the 

creation of MobiTrafficBD Frameworks across projects. 

This symbiosis is at the heart of the scientific contribution of the presented work: The 

methodology was created from the research work performed throughout the projects and the 

projects attested for the validity of the methodology and served as real-world demonstration 

scenarios for the application of the methodology to design and develop MobiTrafficBD Frame-

works. 

1.4 Document Structure 

This section will overview the structure of this document. Figure 1.2 presents the bottom-up 

approach considered for the writing of the presented work. To fulfill the offerings mentioned 

above, the presented work will initially go through a detailed overview of the main literature 

works revolving around the disciplines of Spatiotemporal Data and Big Data, and the inter-

disciplinary conjunction of both these areas that forms the specific domain of Mobility- and 

Traffic-related Big Spatiotemporal Data, going through all phases of the data lifecycle, such as 

collection, modelling, cleaning and interoperability, processing and data and visual analytics.  
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The literature review, more than providing evidence of the already mentioned lack of 

an established methodology, with its guidelines and best practices, to handle and manage Mo-

biTrafficBD, will try to encompass the main tools, challenges and relevant academic works 

regarding the above topics, to serve as an initial guide for researchers and practitioners to-

wards a thorough understanding about specific tools, methods, models and solutions to man-

age and extract value from MobiTrafficBD. The literature review will be presented in Chapter 

2. 

Second, the prescriptive, data-driven methodological approach will be presented, start-

ing from the generic characteristics, functional and non-functional requirements and design 

considerations for MobiTrafficBD Frameworks, and going through the thorough description 

of the model of logical components and data flows that is the basis of the prescriptive meth-

odology, along with the technological infrastructure model that fulfills the logical components' 

technological stack. The presentation of the methodological approach will be concluded with 

a list of general guidelines and best practices for the design and development of MobiTraf-

ficBD Frameworks. 

 
Figure 1.2 — Document structure 

Third, real-world use cases of MobiTrafficBD Frameworks put into practice will be high-

lighted through the overall descriptions, general requirements and in-depth listing of the data 
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sets at hand for each use case. The use cases cover several MobiTrafficBD-related challenges, 

such as pipelines for Big Spatiotemporal data collection and harmonization (Figueiras, Guer-

reiro, Silva, Costa, & Jardim-Gonçalves, 2018; Figueiras, et al., 2016; Figueiras, et al., 2016), 

complex-event processing for traffic event detection (Figueiras, Antunes, Guerreiro, Costa, & 

Jardim-Gonçalves, 2018; Antunes H. A., 2017), real-time analysis of traffic flows (Figueiras, et 

al., 2018; Rosa, 2017), public transport network status analysis and visualization (Antunes, 

Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 2019; Antunes, Figueiras, Costa, Teixeira, & 

Jardim-Gonçalves, 2019; Antunes, Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 2019) and 

social-media data mining for traffic event detection (Gutiérrez, Figueiras, Oliveira, Costa, & 

Jardim-Gonçalves, 2015). The use cases were tested, validated and demonstrated under the 

scope European Commission-funded and nationally funded research projects and provide not 

only validation and demonstration cases implemented and deployed in real-world scenarios, 

backed up by relevant Traffic and Mobility domain stakeholders and experts, but will also 

serve as example guides for researchers and practitioners towards the application of the pre-

sented prescriptive, data-driven methodology. 

Fourth, the specificities of the methodological approach will be reviewed in detail, by 

dividing the logical components into two main groups: 

• The first group concerns all data-driven processes spanning from data collection, clean-

ing, transformation, harmonization, etc. up to data storage. This group corresponds to 

Chapter 5 of this document and will focus on data modelling strategies, the use of 

standards for this purpose and on the data collection, harmonization, transformation 

and storage processes. 

• The second group will go into MobiTrafficBD Analytics and visualization and will be 

the subject of Chapter 6. Since Data Analytics and Visualization tend to be more use 

case-driven than data-driven (in the sense that the type of data analytics and/or visu-

alization methods chosen depends more on the final objective of the use case and less 

on the data at hand), this group will focus on more general guidelines and best prac-

tices that can be applied across use cases. 

 

The discussion about the above groups will include detailed examples extracted from 

the presented use cases and will strive to guide researchers and practitioners through the dif-

ferent phases of the data lifecycle, from its collection, initial pre-processing and storage to the 

value-extracting processes of data analytics and data visualization. 
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2  

 

LITERATURE REVIEW 

This chapter presents a literature review on the most relevant concepts in the context of this 

dissertation. Section 2.1 introduces notes regarding the literature review process, while the 

following sections focus on the characteristics and methods related to spatiotemporal data and 

Big Data, finishing with a thorough review on the main topic of the presented work: mobility- 

and traffic-related Big Spatiotemporal Data. 

2.1 Notes About the Literature Review Process 

The creation of a systematic process for the retrieval of pertinent literature within the concep-

tual framing phase is essential not only to ease the research and reading tasks but also to main-

tain a consistent work method. Therefore, an initial phase of the literature review process was 

to define search keywords, reference databases and paper selection methods. Since the idea is 

to access the most up-to-date literature available, several temporal filters were used, depend-

ing on the novelty factor of each concept to study. Hence, for Big Data, for instance, due to the 

concept’s youth, no time filters were used, but in the case of GRTS, a filter comprising the last 

ten years was used. Moreover, several alerts were enabled in reference databases, to maintain 

a tight monitoring on present and future published articles that may be important within the 

scope of the dissertation. Citations of works prior to 2010 occur if it is cited in another work 

under analysis, or if the work is a reference in the field. 

Thus, the selected search keywords are composed by an aggregation of two main groups 

of keywords: keywords linked to the main concepts, and keywords which represent grammat-

ical action nouns. The first group has keywords such as “Big Data”, “time series”, “geo-refer-

enced time series”, “spatiotemporal data” and “Intelligent Transportation Systems”, among 

others, which were used individually or combined, and the second group is comprised by 

“optimization”, “storage”, “processing”, “visualization”, “harmonization”, “indexation”, 
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“standards” etc. Searches were made by using keywords in the first group, individually or 

aggregated to keywords of the second group. The reference databases used for such searches 

include “Scopus”, “ISI Web of Science”, “RUN FCT-UNL”, “Google Scholar”, “IEEE Xplorer” 

and specific publishers’ repositories, as “Springer-Verlag” and “Elsevier”, just to name a few.  

The selection of relevant articles was achieved in two stages. The first stage consisted in 

a quick “diagonal” reading of the initial set of papers, with emphasis given to the title, abstract 

and introduction, in which the papers were considered relevant or not relevant. The second 

stage was a thorough reading of the papers deemed relevant, to establish the degree of rele-

vance and novelty of the presented work. Other literature sources were directly gathered, by 

recommendation of the supervisors, the citation in relevant articles and official technology 

sites. The filtered articles were thoroughly analysed, and important information and concepts 

were retrieved and used/cited throughout this document. 

Finally, it is worth mentioning that this Literature Review strives not only to demon-

strate the usefulness and value of the proposed approach, by pointing out the lack of a pre-

scriptive methodology, comprising models, guidelines and best practices for the design, de-

velopment and deployment of MobiTrafficBD Frameworks, but also to serve as a valuable 

source for practitioners and researchers that condenses works in the main areas that compose 

the MobiTrafficBD Framework ecosystem, from Spatiotemporal Data and Big Data as individ-

ual research domains, to the symbiotic relationship between these two domains, creating the 

more specific MobiTrafficBD research domain. Hence, this chapter intends to be more thor-

ough and in-depth than regular literature reviews. 

2.2 Spatiotemporal Data 

Everything that occurs in space also occurs in time, i.e., phenomena always occur at some 

location in space within some time period. This implicit relation between time and space is all 

around, even more with the explosion in geographic and other types of spatially bound data, 

such as sensor data, social network data, etc. The analytical observation of movement by us, 

observers, or our observing and sensing technologies, produces data that can be better repre-

sented and defined as data types that have both space and time contexts or definitions (Lami-

gueiro, 2014). 

On one hand, the time dimension represents the evolution of objects in time and defines 

the extent of such evolution present in data. The most trivial case is when the observed object 

does not evolve at all, meaning that the data only represents a static snapshot of each object. 

Another, more complex, case is when the object can change its status, which corresponds to 

an updated snapshot, but there is no information about its historical evolution. The extreme 
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opposite of static objects would be to know the complete history of an observed object, thus 

creating a time series of the evolution it experienced. 

The time dimension possesses an underlying semantic structure, comprised by its sys-

tem of time granularities, hierarchically organized (e.g., seconds, minutes, hours, days) (An-

drienko, et al., 2010), and represented in different calendar systems. These granularities hide 

natural cycles and re-occurrences, which may have a more regular (e.g., seasons) or less regu-

lar nature (e.g., social cycles, such as work and school holidays, economic cycles) and, while 

some of these cycles can be natural (e.g., seasons, volcanic activity), others are inherently hu-

man (e.g., seasonal public transportation routes). Furthermore, time may be viewed as contin-

uous or discrete, depending on the data at hand. For instance, data may be captured at partic-

ular time instants, or points, such as in the case of discrete events (e.g., car crashes, sensor 

readings) or during extended, continuous time intervals (e.g., GPS routes of vehicles).  

On the other hand, the space dimension describes position and movement properties of 

an object, whether it is fixed at a specific location or if its location can dynamically change over 

time. The spatial dimension may also discriminate the spatial extension of the objects ob-

served. This dimension enables the location of observations and variables in a two-dimen-

sional space, with one of the dimensions based on the North-South relation (latitude) and the 

other dimension based on the East-West relation (longitude). The most popular, simple, case 

is based on point-wise objects, which defines an object's location as a single point. More com-

plex cases consider extended objects, such as lines and areas. This spatial feature might also 

be perceived as an extra dimension of space. 

Any process performed on spatial information is both controlled and reinforced by To-

bler’s fundamental first law of geography (Tobler, 1970): “everything is related to everything 

else, but near things are more related than distant things.”, i.e., spatial information is funda-

mentally characterized by the existence of spatial dependency. This means that often, two sim-

ilar or nearby locations present close values for a particular variable or that a phenomenon in 

a specific location is probably a function not only of underlying factors, but also of the intensity 

of that phenomenon in nearby locations. Other important feature of spatial data is its hetero-

geneity, or the lack of stability in terms of the behaviour of relationships over space since spa-

tial data rarely has stationary characteristics. This is also known as non-stationarity (Brundson, 

Fotheringham, & Charlton, 1998). 

These inherent characteristics create several challenges for spatial data analysis, due to 

the local sensitivity aspects of the interaction between processes in space (Zhou & Lin, 2017). 

On one hand, global models and statistics do not constitute good tools, since they tend to fade 

out complex interactions between processes in small, nearby places, such as in the case of tra-

ditional Geographic Information Systems applications (Miller & Han, 2009). On the other 
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hand, errors and uncertainty in spatial data are often spatially aggregated (Miller & Han, 

2009). There are still other issues, such as discrepancies between the real world and its repre-

sentations, the fuzziness of spatial data, or the problems of spatial data collection (e.g., sam-

pling, extensiveness, redundancy and aggregation issues) (Heuvelink & Brown, 2017; Pauly & 

Schneider, 2017).  

Further, there are many commonalities between space and time dimensions of data. On 

one side, Tobler’s law for space interdependence and autocorrelation has similar twin concepts 

for relationships with expression on the temporal dimension (Andrienko, et al., 2010). These 

dependencies constrain the use of standard statistical analysis techniques, since these often 

assume independence between observations. On the other hand, spatiotemporal processes ex-

ist and evolve at different space and time scales or granularities (Silva R. A., 2017). On the 

space dimension, and due to Tobler’s law, the scale of spatial analysis may significantly affect 

analysis results, because certain phenomena not detected at a particular spatial scale, may be 

clearly visible at another, bigger or smaller, scale. This also happens with time, as the time and 

space scales chosen may affect analysis in similar ways (Laube & Purves, 2010). 

 Spatiotemporal Data Types 

Spatiotemporal data is defined in the literature as data that presents some level of dynamicity 

and variability in one or both of its space and time scopes (Heuvelink, Pebesma, & Gräler, 

2017), i.e., data that comprise both space and time scopes, with these independent scopes pre-

senting or not changes for different measurements (Atluri, Karpatne, & Kumar, 2018; Shekhar, 

Zhang, & Huang, 2010; Pebesma, 2012; Kisilevich, Mansmann, Nanni, & Rinzivillo, 2009), and 

these differences define the different spatiotemporal data types available. In the context of the 

presented work, the different types of spatiotemporal data that will be considered are shown 

in Figure 2.1. 

These relations can be represented in a Cartesian plane, in which each observation com-

prises a location described by two points that represent the geographic coordinates. This rep-

resentation on the Cartesian plane enables the calculation of distances between two points, 

each point representing the location of a particular observation, which can then be used to 

determine the intensity of the relations between the observations (Dubé & Legros, 2014). As 

presented in (Wu, Zurita-Milla, & Kraak, 2015), from the panoply of point-wise spatiotemporal 

observations gathered, several data types may be differentiated, regarding their spatial and 

temporal dimensions (Kisilevich, Mansmann, Nanni, & Rinzivillo, 2009): (1) spatiotemporal 

events; (2) geo-referenced variables; (3) GRTS; (4) moving objects (points) and (5) trajectories. 



 23 

 
Figure 2.1 — Spatiotemporal data types, as defined by (Kisilevich, Mansmann, Nanni, & Rinzivillo, 2009) 

The spatiotemporal data types depicted in Figure 2.1 arise from the static or dynamic 

nature of each dimension’s scope, space and time: when both scopes are static, the data de-

scribes a single event, clearly defined in both time and space (e.g., place and time of an acci-

dent); when space is static and the time scope is dynamic, the data describes the evolution of 

measurements about phenomena on a single, well-defined place, throughout time, also coined 

as geo-referenced time series, or GRTS (e.g., road sensor values for instant speed, vehicle flow, 

etc.); and finally, when both time and space are dynamic, the data depicts moving objects (e.g., 

moving weather balloons continuously capturing weather data at different points of space and 

time) and trajectories (e.g., the movement of individual vehicles or people throughout a day). 

A spatiotemporal event (ST event, as an abbreviation) is often characterized by fixed 

location and fixed time, representing where and when the event happened. Apart from these 

two dimensions, spatiotemporal events include other variables that provide additional infor-

mation about the event, denominated marked variables (Silva R. A., 2017). For instance, in the 

case of traffic events, a common marked variable is the type of event that occurred (e.g., acci-

dent, traffic jam, etc.), providing a categorization of the event. Although most ST events may 

be defined by a single point in space and time, there are simple extensions that are common 

in real-world applications, such as the definition of the space scope of the event not by a point, 

but rather by a line or a polygon (e.g. traffic jam), or the depiction of the event in a time inter-

val, such as the start and end times of the event (e.g. the time at which an accident occurred 

and the time at which the accident ended). Even so, most applications and methods for ana-

lysing this type of data are based on spatiotemporal points. 
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GRTS data is composed by measurements of continuous or discrete spatiotemporal 

fields, recorded at fixed locations in space. The measurement points may be regularly or irreg-

ularly spaced in both time and space (e.g., road sensor networks). While some examples of this 

data type comprise observations at point vertices (e.g., measurements collected by a sensor 

network), others make aggregated measurements over a region. Further, when analysing 

GRTS with varying resolutions, data is often converted from its native resolution to a finer or 

coarser resolution, so that a seamless analysis of all GRTS can be performed at a common res-

olution (e.g., temporal aggregation of sensor data to a single resolution, such as five-minute 

intervals, spatial aggregation of sensor data, to get regional measurements). 

Moving point data comprises observations of continuous spatiotemporal fields through-

out a set of moving points in space and time, such as weather balloons that capture meteoro-

logical observations. In both cases, finite, discrete samples of spatiotemporal points are used 

to depict the behaviour of a continuous spatiotemporal field. Normally, this kind of data is 

gathered through the aggregation of data captured within smaller space and time scopes. 

Finally, trajectories denote the movement paths of objects or bodies in space throughout 

time, and are often collected by placing spatial sensors, such as GPS devices, on the moving 

objects and periodically measure and transmit their position over time. Examples of trajecto-

ries include routes taken by vehicles in a road network or migration patterns of animals and 

humans. Trajectories are a common problematic in several works in the literature, focusing on 

moving object data on the different stages of data handling and analysis: collection, storage, 

processing and querying (Silva & Santos, 2010; Xiaofeng, Ding, & Xu, 2012; Raza, 2012), ana-

lytics and data mining (Atluri, Karpatne, & Kumar, 2018; Andrienko, Andrienko, Fuchs, & 

Wood, 2017) and visualization (Bach, Dragicevic, Archambault, Hurter, & Carpendale, 2014), 

as well as on their application on real-world scenarios (Atluri, Karpatne, & Kumar, 2018). 

Looking at Figure 2.1, the spatial extension dimension is not contemplated in the above 

descriptions. This dimension enables the definition of more spatiotemporal data types, by 

providing combinations of the spatial and temporal properties on objects that comprise a spa-

tial extension, such as lines (e.g., roads) and areas (e.g., catastrophe extension). This third di-

mension and its implications will not be a subject of this work. 

Moving point data is mainly used for applications in which the uncertainty of the spatial 

position of the measurement or observation does not affect the overall data analysis, since the 

produced fuzziness does not affect the analysis of a continuous phenomenon on a wider scale. 

Examples are the evolution of meteorological (e.g., wind, sea currents, etc.), biological (e.g., 

fish stocks and movements) or other variables across space and time. It is difficult to apply 

reference point data to traffic analysis and management due to the produced fuzziness and 

spatial uncertainty of the observations. 
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On the other hand, trajectories are crucial for traffic applications, but there are some 

limitations for its use by public operators. First, most public traffic-related operators do not 

have access to trajectory data from drivers and commuters, due to public privacy laws. Alt-

hough some private companies have created applications using trajectory data from users, 

namely Google with Google Maps and Waze, public authorities and operators do not have 

access to it. Also, there is a problem of accuracy: Moving object and trajectory data may rep-

resent accurately moving behaviours, but to represent the reality of the entire road network 

involves having access to big volumes of trajectory and moving point data, otherwise this rep-

resentation may be inaccurate. One example of poor accuracy on mobility analyses from mov-

ing objects data has to do with average speeds errors due to the lack of data: If the data is 

collected from just one vehicle, and the vehicle is going at a low speed, although there is no 

traffic in the road, then the overall speed on that road will be wrongly considered as the speed 

of the single vehicle. Another example has to do with heavy traffic depictions on roads with 

traffic lights, although it is normal for vehicles to slow down or stop due to the traffic lights, 

and such decrease in speed does not account for heavy traffic.  

As already stated in Chapter 1, the focus of the presented work will be ST Event and 

GRTS data since these are directly linked with traffic-related data that do not fall into the cat-

egories of moving objects or trajectories and take advantage of the static nature of the space 

dimension’s scope. In the literature, different approaches were presented to analyse and mine 

the different spatiotemporal data types, meaning that data mining and analysis methods over 

spatiotemporal data are applied on one or more spatial and temporal models, to extract further 

insights from the data. Within the scope of the presented work, the focus will be given to spa-

tial object-based models and to temporal snapshot and event and process models. 

 Spatiotemporal Data Storage 

Spatiotemporal data storage is not a new research field. Since the end of the 90's, researchers 

sought to find the best ways to store data with both time and space dimensions in database 

systems (Kim, Ryu, & Kim, 2000). Although such research endeavours produced some proto-

types of spatiotemporal databases (e.g., (Kim, Ryu, & Kim, 2000; Sözer, Yazici, Oğuztüzün, & 

Taş, 2008)), for the best of the author's knowledge there are few off-the-shelf spatiotemporal 

database systems available. Some examples of proprietary systems are Spacetime (Mireo d. d., 

2020), a relational database management system (RDBMS) for spatiotemporal analytical work-

loads, or ArcGIS Data Store (ESRI, 2020), the data storage application for hosting servers of the 

ArcGIS Enterprise software. It is worth to mention that neither of the examples are free or 

open-source, and the latter can only be used in conjunction with ArcGIS Enterprise, which is 

a major downside. 
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Hence, most approaches opt for building extensions to be applied on already existing 

database systems, in two different ways: spatial extensions for databases that only handle tem-

poral information, such as in the case of time series and relational database systems, or tem-

poral extensions for databases that only handle spatial information, such as in the case of spa-

tial and Geographic Information Systems (GIS) databases (Fan, Yang, Zhu, & Wei, 2010). Nor-

mally, the first option is more popular, simply since there are more time series and relational 

database systems available than spatial database systems, and GIS databases are often related 

to trajectory and raster data storage (Yue & Tan, 2018). Thus, this section will focus on the 

spatial extensions for time-driven and relational database systems. 

Regarding traditional RDBMS, several systems provide spatial extensions to integrate 

spatiotemporal data into relational tables. The most popular is PostGIS (PostGIS Project Streer-

ing Committee, n.d.) for PostGreSQL (The PosgreSQL Global Development Group, 1996). It 

adds support for geographic objects allowing location queries to be run in SQL and enables 

yet other spatial extensions, such as the pgrouting extension (pgRouting Community, 2007), 

which offers a range of methods to calculate any type of route (e.g., land vehicle routes, sea 

ship routes, etc.). Another example is Oracle Spatial (Oracle Corporation, 2019), which is also 

an extension to the Oracle RDBMS (Oracle Corporation, 1979). Some more examples can be 

found in (Chen & Xie, 2008). Also, in the academic domain, several works were published 

since the 90's about this subject. Regarding an example of recent works, the authors of (Mar-

tinez-Llario & Gonzalez-Alcaide, 2011) propose Jaspa, a Java spatial extension for RDBMS that 

mimics the offerings of PostGIS but can be integrated with other RDBMS, such as Oracle and 

HSQLDB (The HSQL Development Group, 2001). 

There are also new data storage paradigms that already present the capability of han-

dling both time and space, such as in the case of MongoDB (MongoDB, Inc., 2015), which rep-

resents time through a timestamp format and uses the GeoJSON (The Geographic JSON Work-

ing Group, 2016) spatial data representation standard to handle the spatial dimension, and 

ElasticSearch (Elasticsearch B.V., 2010), which has the ability to save both coordinates and geo-

hashes, along with temporal attributes. As in the case of RDBMS, some data storage tools that 

do not have the capability to handle spatial data can be extended to be able to perform spatial 

operations and indexing (Fox, Eichelberger, Hughes, & Lyon, 2013; Brahim, Drira, Filali, & 

Hamdi, 2016). The former work gave rise to a widely used tool, called GeoMesa (The GeoMesa 

Project , 2013),  which is an open-source, distributed, spatiotemporal index built on top of 

Bigtable-style databases, such as Google's BigTable (Google, Inc., 2005) and Apache Accumulo 

(The Apache Software Foundation, 2008), using an implementation of the Geohash algorithm 

presented in (Fox, Eichelberger, Hughes, & Lyon, 2013). But there is still some room to improve 

the performance of NoSQL databases for spatial operations, in relation to RDBMS and spatial 
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extensions, as is evident in several comparison works in the literature between RDBMS and 

NoSQL databases, often using PostGreSQL and PostGIS versus MongoDB as benchmarking 

subjects (McCarthy, 2014; Agarwal & Rajan, 2016; Bartoszewski, Piorkowski, & Lupa, 2019). 

Ultimately, the selection of the appropriate database system for spatiotemporal data is inher-

ently linked to the nature of the data and the domain at hand. 

 Spatiotemporal Data Interoperability 

Due to the amount and heterogeneity of data sources available nowadays, there is a need to 

agree on common grounds when it comes to collect and exchange data between different sys-

tems. These common grounds or agreements are known as interoperability. Interoperability 

is defined as the ability of two or more software components/systems to cooperate inde-

pendently of the individual characteristics of such systems (Grilo & Jardim-Gonçalves, 2010). 

There are different levels of interoperability (van der Veer & Wiles, 2008): technical interoper-

ability, which is centred on (communication) protocols and the infrastructure needed for those 

protocols to operate to enable machine-to-machine communication, syntactical interoperabil-

ity, which is associated with common data formats for data exchange, semantic interoperabil-

ity, which is associated with a common understanding between systems and the people using 

them of the meaning of the content (information) being exchanged, and organizational in-

teroperability, which is the ability of organizations to effectively communicate and transfer 

(meaningful) information even though they may be using a variety of different information 

systems over widely different infrastructures, possibly across different geographic regions 

and cultures. 

It is easy to understand that, nowadays, effective technical interoperability is already in 

place, since both new and legacy systems easily exchange data via communication protocols, 

such as in the case of the well-known TCP/IP protocol for data exchange over the Internet. 

The main issues lie in syntactical and semantic interoperability levels. On one hand, data for-

mats are increasing in number and complexity to cope with the exponentially growing volume 

and heterogeneity of data sources, and there are few standardized, one-size-fits-all approaches 

for syntactical interoperability. There are two main types of syntactical conflicts (Sonsilphong, 

Arch-int, Arch-int, & Pattarapongsin, 2016; Park & Ram, 2004). The first are data-type conflicts, 

which occur when data values of equivalent attributes are defined with different data types 

(e.g., a date attribute may be represented in one system as a string and in another as a 

timestamp) and the second are data-format conflicts, which account for the disparity of for-

mats between equivalent data values (e.g., a date attribute may be represented in the format 

"yyyy-MM-dd" in one system while being represented in the format "dd.MM.yyyy" in an-

other). 
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On the other hand, semantic conflicts appear in two different levels, data and schema 

(Sonsilphong, Arch-int, Arch-int, & Pattarapongsin, 2016; Park & Ram, 2004). On the data 

level, conflicts arise from the existence of multiple representations and interpretations of sim-

ilar data sources. Data level conflicts may also be divided into data-value, data-unit and data-

precision conflicts. Data-value conflicts occur when a specific value may have different mean-

ings (e.g., locations may be represented in different reference systems, meaning that the same 

value for a specific latitude and longitude may represent different references) or two different 

values may have the same meaning (e.g., the attributes "coordinates" and "location" may have 

the same meaning, both defining the spatial dimension). Data-unit conflicts are related to the 

specific units in which a data value is represented (e.g., the distance attribute may be repre-

sented in kilometres in one system whereas in other system may be represented in miles). 

Finally, data-precision, or data-scaling, conflicts arise when data values are represented with 

different granularities (e.g., the time interval for sensor readings stored in a system may be 

five minutes while in another system may be one minute). 

Finally, schema-level conflicts are divided into schema discrepancies and naming, en-

tity-identifier, schema-morphism, generalization and aggregation conflicts. Schema discrep-

ancies arise when the logical structure of attributes and corresponding values of an entity in 

one database are organized to produce a different structure in another database. The most 

common example is when data in one database correspond to metadata in one database (e.g., 

the values of an attribute in one system correspond to actual attributes in another system).  

Particularly in mobility- and traffic-related applications, data harmonization and aggre-

gation techniques of heterogeneous datasets are not easy tasks, mostly because most sensor 

data or existing services in ITS use an isolated approach of interoperability, which is an im-

portant problem to tackle to achieve better management of the global transportation network. 

Most interoperability approaches are made on a technical level, which is defined as the com-

mon understanding in messaging specifications, communication protocols, data formats and 

service discovery specifications, between others (European Commission, 2010). Hence, ITS in-

teroperability's future goal is to enable interoperability at data level, since the objective is to 

use a large diversity of transportation-related data/services developed in different formats. 

The adoption of common standards seems to be the easiest way not only to meet the interop-

erability requirements at data level, but also to provide a higher level of data harmonization. 

The advantages of using a standard/specification to achieve data interoperability and harmo-

nization is backed up by several studies.  

In (Westerheim, 2014), experiences of The Norwegian Public Roads Administration to 

achieve interoperability are presented, and it is understood that, regardless of the approach 

for an ITS system, the solution must be provided with technical interoperability standards and 
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specifications. The more widespread and used the solution is, the better is the understanding 

and the meaning of the information between different ITS systems, improving management 

of the overall network. In (Nowacki, 2012) and (Samper, Tomás, Soriano, & Pla Castells, 2013) 

the need of harmonizing all types of ITS-related data due to the proliferation of information 

and telematics systems is demonstrated, along with the major role of the European Transport 

Policy that, through ITS directives, can influence and contribute towards a concerted interop-

erability and harmonization of data exchange between new intelligent transport systems. The 

authors of (Samper, Tomás, Soriano, & Pla Castells, 2013) highlight the European role with the 

EasyWay programme (European ITS Platform, 2016), which since 2007 is working “for harmo-

nized deployment of ITS across Europe”, joining multiple key players. Fundamentally, the 

objective is the deployment of guidelines for stakeholders to spread best practices and 

knowledge, supporting projects and studies in the area. Therefore, it is important to explore 

the standard that best suits the goals of the presented work. 

DATEX (Easyway, 2011) was first published in the end of 2006 and acknowledged in 

2011 by the European Technical Specification Institute (ETSI) (European Telecommunications 

Standards Institute, 2015) for modelling and exchanging ITS-related information, being a Eu-

ropean standard for ITS since then. It has been developed to provide a way to standardize 

information covering the communication between traffic centres, service providers, traffic op-

erators or media partners. Thus, the European Commission made EU Directives 885/2013/EU 

and 886/2013/EU that require Member States to adopt the DATEX II standard or an equiva-

lent one. Since the first release many aspects have been improved. It is developed and main-

tained by the EasyWay project (Easyway, 2011) and supported by the European Commission. 

Some of the main uses are: 

• Routing/ rerouting using traffic management. 

• Linking traffic management and traffic information systems. 

• Multi-modal information systems. 

• Information exchange between cars or between cars and traffic infrastructure systems. 

• Applications where the exchange of measured data is important. 

 

Almost any traffic-related issue is covered, but as an example, some of the situations that 

the message covers are: 

• travel times. 

• all types of traffic events and accidents. 

• road works and infrastructure status. 

• road weather events and status /measurements. 

• traffic related measurements (speed, flow, occupancy). 
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• events with impact on traffic. 

• CCTV and parking. 

 

There are four main design principles involved in the creation of DATEX II: separation 

of concerns, in terms of their application domains, a rich domain model, which allows a com-

prehensive and well-defined modelling of data, extensibility, allowing specific extensions de-

pending on country or area, and data exchange. As described in (Figueiras, Guerreiro, Silva, 

Costa, & Jardim-Gonçalves, 2018), DATEX II supports and informs many ITS applications, 

particularly when cross border trips are concerned. DATEX II provides the platform and tech-

nical specification for harmonized and standardized data modelling and data exchange in ITS 

applications. 

The former DATEX specification was a ‘closed’ standard, i.e., a potential user could use 

the data concepts provided by the Data Dictionary, but if the application required data con-

cepts that could not be found in the Data Dictionary, there was no way to extend the data 

model without breaking the standard. Many potential users thus ignored DATEX entirely and 

produced non-interoperable solutions. It is one of the major requirements for the evolution of 

DATEX to overcome this problem. The solution for this issue is in part solved by the introduc-

tion of data model levels into the DATEX II data structure. 

DATEX II delivers a data model, called "Level A" data model, which is the result of stud-

ies on data which are shared by users across Europe. Nevertheless, there will be situations in 

which data concepts required by a particular user are missing in the Data Dictionary, for ex-

ample because they only make sense in a national context. To cater for this future proofing 

aspect of modelling it is desirable to have a formal mechanism by which the "Level A" model 

can be extended. For these new applications requiring extensions to the "Level A" model, the 

concept of "Level B" compliance has been created. This will allow development of specific 

models that will enrich the "Level A" model with additional, application specific information. 

These models/applications will remain interoperable with "Level A model compliant suppli-

ers/consumers: they can exchange objects structured according to these enriched models.  

After consideration of "Level A" and "Level B" compliance rules some users within the 

ITS domain may still find that there is no way that their specific data models can be accommo-

dated. They are just too different from the "Level A" model or else cover completely different 

contents. That is why the concept of "Level C" has been created. "Level C" implementations 

are to be considered as not compliant with the DATEX II "Level A/B" content models. How-

ever, they are to be compliant in all other aspects of the DATEX II specifications. 

More recently, in 2018, the DATEX II Light (DATEX II, 2018) specification was released. 

DATEX II light, also coined D2Light, is a JSON representation model that fully corresponds to 
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the former XML-based DATEX II model. D2Light is aimed at the exchange between a Traffic 

Centres and small Service Providers as well as the exchange with end-user apps directly. Since, 

the DATEX II model was heavy, in terms of its XML structure, there is a strong demand from 

road operators to open their data to app developers in order to achieve maximum usability of 

their data in the Open Data domain. To support the ability to meet this demand, the Activity 

Group behind DATEX II agreed on creating a simpler, lighter version of the standard model. 

 Spatiotemporal Data Mining and Analysis 

Although spatiotemporal data mining is a prolific research field, it is often divided into spatial 

and temporal methods, which are applied separately to produce distinct insights and results 

that are then merged to enable a spatiotemporal analysis on data. This is a common process 

when analysing and mining spatiotemporal data. True spatiotemporal data mining methods, 

which encompass both the temporal and spatial characteristics of data, are rare in the litera-

ture, and are often linked to the analysis of moving objects and trajectories (Silva & Santos, 

2010; Xiaofeng, Ding, & Xu, 2012; Raza, 2012; Bach, Dragicevic, Archambault, Hurter, & 

Carpendale, 2014), which are not the focus of this work.  

The main temporal counterpart of GRTS are time series, while ST events can be tempo-

rally translated to discrete temporal events, or single observations within time series. Hence, 

it may be worth defining what time series are, and what are their main characteristics. Time 

series are series of data points which were sequentially collected throughout a period of time, 

which makes them discrete points ordered and equally spaced in time. Time series arise from 

monitoring and tracking processes within several contexts of our society. One example is traf-

fic sensor data, which depicts the quality-of-service level of roads, by providing observations 

evenly spaced in time of several traffic-related variables such as average speed, number of 

vehicles, time gap between vehicles, etc. One can consider these data points as events happen-

ing on a time instant. Such points can be extracted from time series (e.g., in the case of a specific 

sensor reading) or can be aggregated to create a new time series (e.g., traffic events’ history 

during a year). 

Generally, time series can be divided into four main components, which can be sepa-

rated individually from the observed data: Trend, Cyclical, Seasonal and Irregular compo-

nents (Adhikari & Agrawal, 2013). A time series is said to have a trend when there is a slowly 

evolving change, thus, the trend is a long-term movement in a time series, and it is said to 

have a seasonal component when some cyclic pattern emerges within the period of one year, 

with the period being the amount of time for a cyclic phenomenon to repeat itself. The cyclical 

variation in a time series describes the medium-term changes in the series, caused by circum-

stances, which repeat in cycles. The duration of a cycle extends over longer periods, usually 
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two or more years. Finally, irregular or random variations in a time series are caused by un-

predictable influences, which are not regular and do not repeat in a particular pattern.  

Two main data processes are normally associated to time series: time series analysis and 

time series mining. Time series mining uses statistical and data mining techniques to extract 

insights and inherent characteristics of data, such as trends, seasonal behaviours, outliers or 

abnormal observations, leading to improved knowledge. Time series analysis uses a model 

built to represent the time series and employs techniques to forecast what will be the future 

behaviour of these series. 

On the other hand, spatial data mining aims at extracting insights in the form of spatial 

interactions and other properties linked with the spatial component of data (Zeitouni, Yeh, & 

Aufaure, 2007). Like traditional, temporal data mining, the goal of spatial data mining is to 

deliver a set of tools and methods to extract automatically or semi-automatically relevant and 

easy-to-understand insights, such as rules, patterns, irregularities, or associations, based on 

the spatial interactions in the data being analysed. Such spatial interactions are directly linked 

to the first law of geography, or Tobler’s law (Tobler, 1970), already defined in this section. In 

fact, spatial data properties for a particular location are often related and can be explained in 

terms of the surrounding neighbourhood’s properties. Temporal aspects are also crucial but 

are rarely considered when analysing spatial data (Zeitouni, Yeh, & Aufaure, 2007). 

Regarding the data inputs for spatial data mining, these are also more complex than the 

ones used in classical temporal data mining, since they comprise extended spatial attributes 

such as points, lines and areas, which contain the information about spatial locations (e.g., 

longitude, latitude, elevation, shape), along with non-spatial attributes, such as names and 

numeric variables corresponding to some kind of measurement or observation (e.g., number 

of cars per minute, unemployment rate in a city) (Shekhar, Zhang, & Huang, 2010). Further-

more, and contrasting with non-spatial objects’ explicit relationships, relationships between 

spatial objects are generally implicit, such as in the case of overlapping, containing, intersect-

ing or positioning of objects in relation to each other. One possible way to overcome the im-

plicit nature of spatial relationships is to convert the relationships into normal data columns 

and then apply classical data mining techniques. This technique can result in loss of infor-

mation. Another workaround is to develop and apply models and methods to incorporate 

spatial information into the data mining process (Shekhar, Zhang, & Huang, 2010).  

Spatiotemporal data mining, as well as its spatial counterpart, is prone to many funda-

mental issues (Miller & Han, 2009). First, all spatiotemporal analyses are sensitive to the scale, 

or support, of the spatial and temporal scopes. This means that the spatial and temporal scales 

of data, usually selected upon data collection, determines which phenomena can be identified 

in the data. For instance, a phenomenon that is observed at smaller spatial or temporal scales, 
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may not be observed at bigger scales, and vice-versa. This issue is called Modifiable Areal Unit 

Problem or the Ecological Fallacy. To bypass this issue, a clear understanding of the phenom-

enon’s scale, or support level, is crucial. 

Second, the nature of space and time differs quite a lot, since time is often perceived as 

unidirectional and linear, whereas space is bi-directional and nonlinear. Furthermore, alt-

hough both scopes are continuous phenomena, time is generally represented as discrete and 

isomorphic integers at a higher granularity (e.g., hours, days, years), while space is often rep-

resented as isomorphic real numbers, with a generally smaller granularity associated. Hence, 

it is crucial to recognize the significant differences between spatial and temporal dimensions, 

even when analyses focus on static phenomena. Finally, the representation of spatial phenom-

ena on a Cartesian plane is a poor representation of reality because it limits the inherent rela-

tionship between space and time. Time is essentially a spatial phenomenon, and the most com-

mon representations of time, such as continuous and linear, discrete, monotonic, or cyclic time, 

are limited aspects of time and have limited applications. For a thorough explanation on these 

issues and possible workarounds, please refer to (Miller & Han, 2009). 

The following sections will present some of the more recent works on spatiotemporal 

data mining, namely on querying, clustering, classifying, summarizing, detecting anomalies 

and patterns, as well as predictive models for spatiotemporal data. 

2.2.4.1 Querying 

Spatiotemporal querying, just like the temporal counterpart, enables for spatiotemporal data 

search based on their spatiotemporal attributes, by defining both spatial and temporal query 

windows. (Luyi, Yan, & Ma, 2014) proposed an approach for querying fuzzy spatiotemporal 

data using XQuery, by making extensions to the XQuery language, while (Cheng, 2016) also 

proposed a model for representing fuzzy spatiotemporal objects and their topological rela-

tions. He proceeded to investigate how to design basic and complex fuzzy query operators so 

that it is possible to describe the evolution of fuzzy spatiotemporal objects over time. In two 

consecutive works, Magdy presents two systems for real-time spatiotemporal queries on mi-

croblogs with high efficiency: Mars (Magdy, et al., 2014) and Mercury (Magdy, Mokbel, 

Elniteky, Nath, & He, 2014). Mars supports a wide variety of spatiotemporal queries, while 

Mercury is based on top-k spatiotemporal queries. Both systems support high throughput of 

up to 64K microblogs per second and average query latencies of 4 milliseconds. For a thorough 

overview on indexing and querying techniques for spatiotemporal data, please refer to (John, 

Sugumaran, & Rajesh, 2016). 

In (Eldawy, Mokbel, Alharthi, Tarek, & Ghani, 2015), a system for querying and visual-

izing spatiotemporal satellite data, based on the MapReduce paradigm (Dean & Ghemawat, 
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2008), is presented. (Doraiswamy, Vo, Silva, & Freire, 2016) presented a GPU-based indexing 

scheme for spatiotemporal queries on historical batch data. More recently, (Alarabi, Mokbel, 

& Musleh, 2018) proposed a full-fledged MapReduce framework for supporting spatiotem-

poral data queries. In (Galić, 2016), an overview of query mechanisms for spatiotemporal data 

streams is presented. 

2.2.4.2 Clustering 

Spatiotemporal clustering is directly linked with the first law of geography, but with a differ-

ence: Everything is related to everything else, but things that are closer to each other, in both 

time and space, are more related than distant things. This means that when clustering spatio-

temporal data, both temporal and spatial proximity is of essence (spatiotemporal autocorrela-

tion). This is one of the most prolific subjects on Spatiotemporal Data Mining, with several 

surveys available throughout the years (Atluri, Karpatne, & Kumar, 2018; Kisilevich, Mans-

mann, Nanni, & Rinzivillo, 2009; Senožetnik, Bradeško, Kažic, Mladenic, & Šubic, 2016; Shi & 

Pun-Cheng, 2019; Ansari, Ahmad, Khan, & Bhushan, 2020). 

In (Anbaroglu, Heydecker, & Cheng, 2014), the authors present a spatiotemporal clus-

tering method for non-recurrent traffic congestion detection, based on link journey times clus-

tering on adjacent urban road links. The authors of (Saeedmanesh & Geroliminis, 2017) also 

aim at studying the spatiotemporal relation of congested links, observing congestion propa-

gation from a macroscopic perspective, by applying a dynamic clustering method to capture 

spatiotemporal growth and formation of congestion. More recent relevant works include (Wu, 

Zurita-Milla, & Kraak, 2015) and (Wu, Zurita-Milla, Verdiguier, & Kraak, 2018), which present 

novel algorithms for georeferenced time series clustering. 

2.2.4.3 Classifying 

Spatiotemporal classification is often based on coupling or tele-coupling. Spatiotemporal cou-

pling describes the occurrence of spatiotemporal objects in close geographic and temporal 

proximity, whereas tele-coupling patterns represent temporal correlations between spatiotem-

poral objects that are spatially further apart (Shekhar, Jiang, Ali, Eftelioglu, & Tang, 2015). 

Some examples of coupling and tele-coupling patterns are presented in (Shekhar, Jiang, Ali, 

Eftelioglu, & Tang, 2015). In (Steiger, Westerholt, Resch, & Zipf, 2015), the authors apply se-

mantic and spatiotemporal classification to analyse the spatiotemporal autocorrelation be-

tween geo-referenced Twitter data and official census data for the city of London. Further, 

classification processes are often based on spatiotemporal clustering techniques and posterior 

classification of the resulting clusters (Reich & Porter, 2015; Lin, Chang, Wang, Huang, & He, 

2019). 
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2.2.4.4 Summarizing 

Spatiotemporal summarization provides a reduced representation of spatiotemporal data (At-

luri, Karpatne, & Kumar, 2018). Summarization is important not only for data compression, 

but also for easing pattern analyses. In the case of GRTS, the summarization may be achieved 

by defining sets based on the partition of the series and posterior representation of the sets, 

using spatiotemporal nodes, paths or trees (Oliver, 2016), or by simply removing the spatial 

and temporal redundancy due to the effect of autocorrelation (Atluri, Karpatne, & Kumar, 

2018).  

The authors of (Pan, Demiryurek, Banaei-Kashani, & Shahabi, 2010) proposed a family 

of summarization methods for direct application on resource-efficient summarization and ac-

curate reconstruction of historic traffic sensor data, based on high temporal and spatial redun-

dancy/correlation among sensor readings from individual sensors and sensor groups. (Oliver, 

et al., 2012) explored summarization of GRTS using a k-full trees method, featuring an algo-

rithmic refinement for partitioning regions that led to computational savings without affecting 

result quality. 

2.2.4.5 Detecting Anomalies 

Spatiotemporal outliers are objects with spatial and temporal scopes’ references whose non-

spatiotemporal attributes greatly differ from other objects in their spatiotemporal neighbour-

hood, denoting a spatiotemporal discontinuity (Shekhar, Jiang, Ali, Eftelioglu, & Tang, 2015). 

To detect outliers in spatiotemporal data in an optimal way, all three types of dependencies, 

spatial, temporal and attribute-based, should be incorporated. (Shahid, Naqvi, & Bin Qaisar, 

2015) proposed that such a technique for outlier detection should exploit the above depend-

encies by firstly use temporal-attribute correlations to identify outliers in specific locations, 

and then should invoke a spatial consensus to determine the presence of outliers in neighbour-

ing nodes, to detect the presence of events. 

Namely in GRTS, basic spatial outlier detection approaches, like visualization-based 

(e.g., variogram clouds, Moran scatterplots) or neighbourhood-based (e.g., scatterplots, neigh-

bourhood spatial statistics) methods, can be used as a generalization for application in spatio-

temporal neighbourhoods. Visualization approaches plot spatial locations on a map or graph, 

to find spatial outliers by visual inspection, whereas neighbourhood approaches define spatial 

or spatiotemporal neighbourhoods, to which a spatial statistic is applied as the difference be-

tween the non-spatial attribute of the current location and that of the neighbourhood aggre-

gate (Shekhar, Jiang, Ali, Eftelioglu, & Tang, 2015). A thorough review on spatial outlier de-

tection can be found in (Aggarwal, 2017). More recently, authors of (Zhao, Qu, Zhang, Xu, & 

Liu, 2017) proposed a data mining technique applied on passenger smart card data to 
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understand the hidden regularities and anomalies of the travel patterns. (Shi, Deng, Yang, & 

Gong, 2018) proposed an approach that detects anomalies in spatiotemporal flow data, such 

as in the case of traffic flow data, by constructing dynamic neighbourhoods. 

One special case of anomaly detection is complex event detection (CEP). CEP is a defined 

set of tools and techniques for analysing and controlling the complex series of interrelated 

events that drive modern distributed information systems (Luckham, 2008). These tools are 

often based on a set of rules that are applied over data streams to detect complex events. Recent 

works on CEP applied to Mobility- and Traffic-related spatiotemporal data include (Figueiras, 

Antunes, Guerreiro, Costa, & Jardim-Gonçalves, 2018) and (He, et al., 2020). 

2.2.4.6 Discovering Motifs/Patterns 

Motifs and patterns discovery is the process of mining data sets to find patterns that occur 

frequently over several instances within the data set. A common research trend is based on 

the discovery of structural patterns in spatiotemporal data sets that extract complex spatio-

temporal dynamics (Atluri, Karpatne, & Kumar, 2018). In the case of GRTS, motifs are tem-

poral observations that repeat across several spatial locations. A thorough survey on this kind 

of motif discovery can be found in (Atluri, Karpatne, & Kumar, 2018). In the case of spatiotem-

poral event points, patterns can occur in co-occurrence or sequentially.  

Co-occurrence patterns denote subsets of spatiotemporal events that appear in close spa-

tial and temporal proximity. One example of co-occurrence patterns are hot spots (Levine, 

2017), which can be defined as locations where the number of events is unexpectedly high 

within certain time intervals (e.g., points in a road network where accidents occur often) (Shek-

har, Jiang, Ali, Eftelioglu, & Tang, 2015). Sequential patterns happen when the occurrence of 

spatiotemporal events of a specific type trigger a sequence of other types of spatiotemporal 

events (e.g., traffic jams caused by an accident). 

The authors of (Akbari, Samadzadegan, & Weibel, 2015) proposed a new generic method 

for co-occurrence pattern mining on complex applications such as air pollution patterns’ dis-

covery. This method enables the extraction of implicitly contained spatiotemporal relation-

ships over different spatial feature types, such as points, lines and polygons. In (Wu, Zurita-

Milla, & Kraak, 2015), authors present a GRTS co-clustering technique that enables simultane-

ous analysis of spatial and temporal patterns. (Nguyen, Liu, & Chen, 2017) presented a set of 

algorithms that implement causality trees from congestion data sets and estimate congestion 

propagation probabilities based on temporal and spatial information, revealing not only re-

curring interactions across spatiotemporal congestions, but also bottlenecks or flaws in the 

designs of existing road networks. Finally, (Andrienko, Andrienko, Fuchs, & Wood, 2017) pro-

posed an approach to ease exploration of long-term flow data by means of spatial and 



 37 

temporal abstraction, to study the spatiotemporal patterns and trends of mass mobility based 

on origin-destination data sets. 

2.2.4.7 Prediction 

Spatiotemporal prediction is based on the construction of a model that can predict some spa-

tiotemporal output variable (dependent variable) present in the data from the spatiotemporal 

input features or attributes (independent variables) also contained in the original data (Shek-

har, Jiang, Ali, Eftelioglu, & Tang, 2015). When the output variable is discrete, the prediction 

is called spatiotemporal classification, whereas when the output variable is continuous, the 

prediction is spatiotemporal regression. As previously presented, time series prediction is a 

prolific research field, but there is the need to develop new approaches that incorporate the 

spatial dimension of GRTS (Atluri, Karpatne, & Kumar, 2018).  

Several works on this challenge have been published recently. Different recurrent neural 

network prediction methods that comprise spatial features have been proposed in (Jain, Za-

mir, Savarese, & Saxena, 2016), (Jia, et al., 2017) and (Jia, et al., 2017). Other Deep Learning 

spatiotemporal prediction approaches were also presented in (Zhang J. , Zheng, Qi, Li, & Yi, 

2016), (Wang, Gu, Wu, Liu, & Xiong, 2016) and (Polson & Sokolov, 2017), with the latter two 

being concerned with traffic prediction. Other methods, such as latent space models that use 

topological and temporal attributes of locations (Deng, et al., 2016) and improved variants of 

SARIMA (seasonal autoregressive integrated moving average) and genetic algorithm models 

for spatiotemporal prediction (Luo, Niu, & Zhang, 2018) were also proposed. 

 Spatiotemporal Data Visualization 

Since the beginning of human history, people have used graphical and pictorial data repre-

sentations to understand and disseminate information in a way that was appealing to other 

humans. The information that our ancestors collected about the movement of celestial bodies 

and their seasonality can be defined as spatiotemporal series of data. Some monuments were 

used to visualize these spatiotemporal series throughout the year, such as in the case of Stone-

henge (Pearson, 2013), which was built as an astronomical observatory and a computational 

calendar. Interest in spatiotemporal data analysis and visualization has been present for sev-

eral decades, if not centuries (Surkhovetskyy, Andrienko, Andrienko, & Fuchs, 2017), with the 

first known graphical representation of spatiotemporal series in literature dating back to the 

10th or 11th centuries, depicting planetary orbits as functions of time (Funkhouser, 1936), as 

shown in Figure 2.2. 

Figure 2.2 depicts not only the time dimension, but also the space dimension associated 

to the movement of celestial bodies. This intrinsic connection between time and space is very 
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common, since represented data often possesses a spatial or geographical dimension associ-

ated to time. Some examples are floating car data, physical sensor data or weather data. Thus, 

the current exponential growth in data collection has brought the need to build tools that can 

help humans to effectively understand and share data by means of visual representations 

(OECD/ITF, 2015). 

 
Figure 2.2 — Plot depicting planetary orbits (10th/11th century). The illustration is part of a text from a monastery 

school and shows the inclinations of the planetary orbits as a function of time (Funkhouser, 1936) 

Data Visualization is the process of creating a visual representation of information using 

algorithms (Shrestha, 2014). The need for such algorithms is the characteristic that separates 

computer science-based visualizations from other visualizations in different fields of study, as 

it ensures reproducibility, i.e., if the original data is the same and the algorithms’ rules are 

fully complied, visualizations may be gathered independently from users, platforms or choice 

of programming language. In essence, data visualization encodes information into a visual 

representation using graphical symbols, or glyphs (e.g., lines, points, rectangles, and other 

graphical shapes). Then, human users visually decode the information by exercising their vis-

ual perception capabilities (Steed, 2017). 

In Data Science, the ideal scenario would be that systems could automatically discover 

knowledge from data without human supervision. Nevertheless, data analysis is generally an 

exploratory and complex process that fully automated solutions cannot achieve without pos-

ing trust issues upon the results. Data visualization methods help to discover patterns and 

relationships to find the best model that fits the data at hand, enabling automation of the data 

analysis process (Steed, 2017). When this happens, data visualization’s goals shift from the 

exploratory process to confirmation and dissemination of resulting insights and knowledge. 
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But, due to the sheer volume and complexity of modern datasets, the process of data explora-

tion through manual inspection is not feasible.  

Hence, new solutions are needed that can enable interactive data visualization and pro-

vide analysis techniques that combine the power of computers with the strengths of human 

visual understanding, by developing new data analysis and visualization methods, technolo-

gies and practices. Such solutions are part of a new “umbrella” term, called Visual Analytics 

(Andrienko, et al., 2010). Visual analytics is a branch of data visualization, which focus on the 

orchestration of interactive visualizations with data mining algorithms (Steed, 2017). The key 

characteristics of visual analytics are (Andrienko, et al., 2010): 

• emphasis given to data analysis, decision-making and problem-solving tasks. 

• application of automated methods for data processing, knowledge discovery and data 

mining. 

• support for direct human supervision of the analytical process, through interactive vis-

ual interfaces. 

• support for the provenance of analytical insights. 

• support for communication of the insights to relevant audiences. 

 

Visual analytics draws its research directly from information visualization and adds the 

need for interactivity and application of knowledge discovery methods in the resulting visual 

representations. Information visualization can be divided into three categories: 2D visualiza-

tion, which spans along two axes (e.g. bar charts, pie charts, line charts, 2D maps), 3D visuali-

zation, which spans along three axes (e.g. Google Earth visualization), and colour theory, 

which studies the most suitable colour pallet to improve data understanding or aid in the vis-

ual analysis of data (Silva R. A., 2017). 

Particularly in the ITS domain, access to new visual analytics tools is key for understand-

ing spatiotemporal data. These tools must be able to cope both with the spatiotemporal nature 

and Big Data characteristics of data coming from ITS. The following sections overview the 

spatiotemporal- and Big Data-related necessities of visual analytics techniques to support de-

cision-making processes in a timely manner by the relevant stakeholders, such as public agen-

cies and road infrastructure operators (Steed, 2017). 

Besides its interactive features, spatiotemporal visual analytics must conform to the 

characteristics of both time and space. In the case of time, (Aigner, Miksch, Schumann, & Tom-

inski, 2011) defined the inherent characteristics of time-oriented visualizations, to which some 

spatial characteristics were added (Silva R. A., 2017): 
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• Frame of Reference: Abstract data is collected without spatial context, i.e., is not con-

nected to any spatial locations, whereas spatial data contains an inherent reference to 

spatial locations. 

• Number of Variables: Univariate data comprises one data value for each time primitive, 

whereas multivariate data contains multiple data values for each temporal primitive. 

• Time Primitives: Time may be categorized as instants, which do not have a duration, or 

intervals, which have temporal extents greater than zero. 

• Time Arrangement: Time may be linear, meaning that time proceeds in a straight line 

from past to future, or cyclic, which comprises a finite set of recurring time elements, 

such as seasons. 

• Visualization Mapping: Static mapping maps time to spatial locations or to visual attrib-

utes, whereas dynamic mapping maps time to time. 

• Dimensionality: Representation of time and space dimensions can either be two- or tree- 

dimensional. 

 

On the other hand, other relevant features for spatiotemporal visual analytics are 

(OECD/ITF, 2015): 

• Geo-spatial: Data should be plotted on customisable maps with additional geographical 

information. 

• Time Resolution: Data patterns should be observable in different time granularities 

(hourly, daily, weekly, etc.) by easily switching between time resolutions. 

• Animation: Users should navigate freely across different time periods and spatial ex-

tensions and should be able to draw comparisons. 

• Interaction: Users should have the ability to pan or zoom to particular objects and in-

teract with them to extract additional insights. 

 

In the context of spatiotemporal data visualization, and particularly for GRTS and spa-

tiotemporal event points, there are three main visualization categories: multiple views, anima-

tions and isosurfaces, besides hybrid techniques that extend two or more of these categories 

and other visualization methods. Multiple views present time changes of a certain parameter 

on the same location, with each view corresponding to the state of a specific parameter or 

group of parameters at a given time. Recent examples of research works using multiple views 

are (Jern & Franzen, 2006; Maciejewski, et al., 2010; Plug, Xia, & Caulfield, 2011; Harris, Brund-

son, & Charlton, 2013). Animations show the temporal change of one or more parameters at a 

specific location, with the temporal change being perceived to happen in a single frame by 

displaying several snapshots after each other. Some examples on animated techniques for 
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spatiotemporal data comprise (Anwar, Nagel, & Ratti, 2014; Bouattou, Laurini, & Belbachir, 

2017). Isosurface methods map locations in the X-Y axes and time in the Z axis. Literature for 

this category is mainly based on space-time cubes and its variants, such as in the case of (Kraak, 

2003; Gatalsky, Andrienko, & Andrienko, 2004; Kristensson, et al., 2008; Nakaya & Yano, 2010). 

Finally, examples of hybrid approaches are (Shrestha, 2014; Andrienko, Andrienko, Mlade-

nov, Mock, & Pölitz, 2012; Landensberger, Bremm, Andrienko, Andrienko, & Tekušová, 2012). 

The above categories describe single visualizations, but one of the major innovations that 

characterize spatiotemporal visual analytics tools is the ability to provide multiple interactive 

visualizations in one interface, each of which representing one or more dimensions and attrib-

utes from underlying data (Figure 2.3). Hence, one interactive environment may combine in-

teractive maps, animated, temporal or timeless graphic charts or any other type of visualiza-

tion, depending on the information to be presented (Kraak & Ormeling, 2010). 

 
Figure 2.3 — Multi-window and synchronization example on geo-visualization interfaces (Kraak & Ormeling, 2010) 

Multiple visualizations are often scattered across different windows, which are dynam-

ically linked with each other, and their operation is based on the principle of synchronization 

and direct interaction with the user. So, if a visual object in one window is chosen or high-

lighted, the highlighting is applied to all the elements located in the other windows that are 

related with the selected object. One example of a research work on visual analytics based on 

multi-window synchronization is presented by (Chae, et al., 2012). In this work, the authors 

present a visual analytics approach that enables scalable and interactive social media data 

analysis and visualization through the exploration of abnormal events within various social 

media data sources. The visual analytics interface has a map for geographic reference, a tem-

poral window choice, social media content window and topic count window. 
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The authors of (Robinson, Peuquet, Pezanowski, Hardisty, & Swedberg, 2017) proposed 

a visual analytics tool called STempo, which includes coordinated-view visualization compo-

nents designed to support visual exploration and analysis of event data, and patterns extracted 

from those data, in terms of time, geography, and content. More recently, (Quinn & 

MacEachren, 2018) proposed the Crowd Lens system for OpenStreetMap (OSM), designed to 

help professional users of OSM make sense of the characteristics of the “crowd” that con-

structed OSM in specific places. Crowd Lens is an interactive Web tool with a single display 

containing multiple linked views, providing a filterable overview of the OSM contributor 

crowd in any given place, as well as a range of drill-down options to explore detailed aspects 

of data. 

As a final example, and one of the most widely used spatiotemporal data visualization 

tools, GeoServer (Open Source Geospatial Foundation, 2001) is a Java-based server that allows 

users to view and edit geospatial data. Designed for interoperability, GeoServer allows data 

publishing from any major spatial data source using open standards. GeoServer has evolved 

to become an easy method of connecting existing information to virtual globe apps, such as 

Google Earth. It is primarily used for raster data but can be extended to enable visualizations 

of MobiTrafficBD. 

2.3 Big Data 

Recent years have witnessed a dramatic increase in our ability to collect data from various 

devices, in different formats, from independent or connected applications. This data flood has 

outpaced our capability to process, analyse, store and understand these datasets. 5 Exabytes 

(1018 bytes) of data were created by humans until 2003, while ten years later the same amount 

of information is created in two days (Sagiroglu & Sinanc, 2013). According to a report from 

the International Data Corporation (IDC), in 2011, the overall created and copied data volume 

in the world was 1.8 Zettabytes (≈ 1021B), which increased by nearly nine times within five 

years, and in 2012, the digital world of data was expanded to 2.72 Zettabytes. This figure will 

double at least every other two years in the near future (Sagiroglu & Sinanc, 2013; Gantz & 

Reinsel, 2011). 

Considering Internet data, the web pages indexed by Google were around one million 

in 1998, but quickly reached 1 billion in 2000 and have already exceeded 1 trillion in 2008. This 

rapid expansion is accelerated by the dramatic increase in acceptance of social networking 

applications, such as Facebook, Twitter, Weibo, etc., that allow users to create content freely 

and amplify the already huge Web volume. Furthermore, with mobile phones becoming sen-

sory gateways to get real-time data on people from different aspects, the vast amount of data 
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that mobile carriers can potentially process to improve our daily life has significantly outpaced 

our past call data record-based processing designed only for billing purposes (Fan & Bifet, 

2013). 

Much influenced by technology-driven economies, in which innovation and creativity 

are encouraged, and by an easier access to new technologies, a menagerie of digital devices 

has proliferated and gone mobile—cell phones, smart phones, laptops, personal sensors—

which in turn are generating a daily flood of new information. More business and government 

agencies are discovering the strategic uses of large databases. And as all these systems begin 

to interconnect with each other and as powerful new software tools and techniques are in-

vented to analyse the data for valuable inferences, a radically new kind of “knowledge infra-

structure” is materializing. A new era of “Big Data” is emerging, and the implications for busi-

ness, government, society and culture are enormous. 

The explosion of mobile networks, cloud computing and new technologies has given 

rise to incomprehensibly large amounts of information, often described as “Big Data”. Big 

Data is a broad terminology for extremely large and complex data sets, which cannot be ade-

quately handled by traditional data processing tools and mechanisms. The term ‘Big Data’ first 

appeared in 1998 in a Silicon Graphics slide deck by John Mashey with the title “Big Data and 

the Next Wave of InfraStress” (Diebold, 2012). Most common definitions for Big Data are Gart-

ner’s 3 V’s definition for Big Data and De Mauro’s variant for the 3 V’s: 

• Big data is high-volume, high-velocity and high-variety information assets that de-

mand cost-effective, innovative forms of information processing for enhanced insight, 

decision making and process automation (Gartner, Inc., 2013). 

• Big Data represents the Information assets characterized by such a High Volume, Ve-

locity and Variety to require specific Technology and Analytical Methods for its trans-

formation into Value (De Mauro, Greco, & Grimaldi, 2014). 

 

In both definitions, Volume represents the ever-augmenting amount of data collected, 

Velocity corresponds to the exponential growth on data acquisition speed, and Variety stands 

for the growing heterogeneity of data formats and communication protocols that exist to share 

and spread data. More recently other definitions were presented, which included more V’s. 

Some of them include: 

• Variability: there are changes in the structure of the data and how users want to inter-

pret that data (Fan & Bifet, 2013). 

• Veracity: there is an inherent uncertainty on great volumes of data, whether it comes 

from low quality data, or simply flawed or untrustworthy data (Ward & Barker, 2013). 
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• Value: business value that gives organizations a competitive advantage, due to the abil-

ity of making decisions based in answering questions that were previously considered 

beyond reach (Fan & Bifet, 2013), (Chen, Mao, & Liu, 2014). 

 

From the above, the most important is Value. The real value of Big Data is in the insights 

it produces when analysed—finding patterns, deriving meaning, making decisions, and ulti-

mately responding to the world with intelligence. Data is not just a back-office, accounts-set-

tling tool anymore. Rather, it is increasingly used as a real-time decision-making tool. Re-

searchers using advanced correlation techniques can now tease out potentially useful patterns 

of information that would otherwise remain hidden in petabytes of data. Companies running 

social-networking websites conduct “data mining” studies on huge stores of personal infor-

mation in attempts to identify subtle consumer preferences and craft better marketing strate-

gies.  

But how can Big Data be collected, transformed and managed, in order to extract such 

insights? From what we have seen so far, data may come in completely different formats at 

completely different time intervals and cover a panoply of data topics, completely different 

from one another. Furthermore, other challenges driven by a Big Data context must be consid-

ered, such as inconsistencies on the data itself, outdated data, the bandwidth of the connection 

and the formats that data may take.  

Such inconsistencies lead to the lack of quality in data sets and, adding to that, there is 

still the challenge of fusing and harmonizing large volumes of data from many sources at the 

same time (volume to variety ratio). Furthermore, Big Data is not a singular construct; rather, 

it is a process spanning data acquisition, processing and interpretation. In other words, Big 

Data can be represented by a lifecycle shown in Figure 2.4, which starts from fast, voluminous, 

heterogeneous data and ends with Value, in the form of insights that support decision-making 

processes (OECD/ITF, 2015), through the proper interpretation and dissemination of the re-

sulting insights and gathered knowledge. 

As pointed out in (Chen & Zhang, 2014), (Garber, 2012) and (Marz & Warren, 2015), Big 

Data solutions often comprise the following objectives: 

• Presentation of high-level architectures, which address the specific role of each tech-

nology. 

• Take advantage of the application of different tools for specific tasks. 

• Comprise a set of data science processes, such as statistics, data mining, machine learn-

ing, and visualization. 

• Close the gap between data and analysis processes, by bringing these processes to 

where the data is stored, and not the opposite. 
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• Enable distributed processing and storage across several nodes arranged in clusters. 

• Coordinate the distribution of data and processing tasks in the nodes, to assure scala-

bility, efficiency and fault-tolerance. 

 
Figure 2.4 — Big Data Lifecycle (OECD/ITF, 2015) 

But, in most scientific research on Big Data, works mainly focus on some component 

technology or solution that reflect a small part of the whole Big Data ecosystem field (Dem-

chenko, de Laat, & Membrey, 2014). Big Data is not just related to data storage or processing, 

although these concepts are fundamental components for large scale data analysis and extrac-

tion of insights. Big Data is the fuel that powers all processes, sources, targets and outcomes 

related to data. The paradigm shift for the creation of a true Big Data ecosystem is dependent 

on several requirements and features, which have been the focus of a panoply of research en-

deavours (OECD/ITF, 2015; Marz & Warren, 2015; Manyika, et al., 2011; Costa & Santos, 2017; 

Demchenko, de Laat, & Membrey, 2014). Some of the most referred are: 

• Big Data Infrastructure: Key aspects of the required infrastructure are the existence of 

necessary infrastructure components and management tools that allow fast infrastruc-

ture and services composition, adaptation, scalability and provisioning on demand for 

specific projects and tasks. The infrastructure should support decentralized architec-

tures, due to the volume of data, i.e., data should be replicated and shared across mul-

tiple nodes, to support fault-tolerance, multistep processing and multi-partitioning. 

Data transformations should use scalable, efficient and fault-tolerant mechanisms. The 

results should be stored in adequate systems, such as distributed file systems or non-

relational database systems. Data reads should be efficient. 

• Data Management: Several key aspects of data management are required for support-

ing Big Data. On one hand, there is a growing need for data quality and interoperabil-

ity, in the form of new methods for improving data quality and standards for data 
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models and formats. On the other hand, data must be managed and leveraged across 

the entire Big Data lifecycle, ranging from data collection and cleaning, Big Data in-

teroperability and transformation approaches and long-term data storage and access, 

to integration of analytics, data mining, visualization and interaction with users. Fi-

nally, the inclusion of a clear paradigm of Data-as-a-Service, to aggregate both data 

and software processes for Big Data, is needed to offer Big Data solutions as a single 

package. 

• Data Processing and Analytics: Key requirements are the automation of all data pro-

duction, consumption and analysis processes including data collection, storing, pro-

cessing, classification, indexing and other components of the general data analytics and 

mining fields, scalable and performant systems to process and analyse data either in 

real-time or in batches, and dynamic data-driven approaches, such as improved mod-

els and algorithms for data processing and analysis, machine learning, clustering, pat-

tern mining, network analysis and hypothesis testing techniques and high perfor-

mance data analytics. All of these requirements have to address the improvement of 

the scalability and processing speed for the aforementioned algorithms in order to 

tackle linearization and computational optimisation issues. 

• Data Visualisation and User Interaction: Techniques must consider the range of data 

available from diverse domains as well as support user interaction for the exploration 

of unknown and unpredictable data within the visualisation layer. These requirements 

entail the need for new methods and tools for scalable visual data discovery, explora-

tion and querying, personalized and interactive visual analytics of large-scale data and 

domain-specific data visualization approaches as, for instance innovative ways to vis-

ualise data in the geospatial domain, such as geo-locations, distances and space/time 

correlations. 

• Data Security and Trust: Although not part of the presented work, data protection is 

also a crucial requirement of Big Data. Such requirements encompass advanced secu-

rity and access control technologies that ensure secure operation of the complex re-

search and production infrastructures and allow creating trusted secure environment 

for cooperating groups of researchers and technology specialists, robust anonymiza-

tion algorithms and complete data protection frameworks. Although security require-

ments, both functional and non-functional, are of vital importance for data-driven 

frameworks, they will not be subject of thorough discussion within this document. 

Nevertheless, these and other requirements that are not covered by this work, will be 

revisited when needed. 
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These and other requirements paved the way for the creation of a panoply of Big Data 

Reference Models and Architectures, such as the Lambda Architecture (Marz & Warren, 2015), 

the National Institute of Standards and Technology (NIST) Big Data Reference Architecture 

(NBD-PWG, 2015) or the Big Data Value Association (BDVA) Reference Model (Big Data Value 

Association, 2020), which present similar and equivalent concerns. The latter, BDVA, is an 

industry-driven international not–for-profit organisation, with the mission of developing the 

Innovation Ecosystem that will enable the data and AI-driven digital transformation in Europe 

delivering maximum economic and societal benefit and achieving and sustaining Europe’s 

leadership on Big Data Value creation and Artificial Intelligence. This mission is supported by 

the European Commission through the creation of a public-private partnership with the asso-

ciation to develop and implement a strategic roadmap for research, technological develop-

ment and innovation in the Big Data Value and other ICT domains in Europe. The BDVA Ref-

erence Model is presented in Figure 2.5. 

 
Figure 2.5 — The BDVA Reference Model (Big Data Value Association, 2020) 

The BDVA Reference Model (BDVA-RM) was chosen as the main reference architecture 

for this thesis work and as a basis for MobiTrafficBD framework design and development be-

cause, besides tackling the requirements brought by Big Data, it also points out the importance 

of data types, such as in the case of IoT data, time series and other spatial and temporal data, 

as shown in the yellow vertical data concerns. Nevertheless, and since this is a generic refer-

ence model, the spatiotemporal aspects of data must be added within the design phase of a 

framework, as will be further explored in Chapter 3. 
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The BDVA-RM comprises horizontal and vertical concerns. Horizontal concerns tackle 

specific aspects along the Big Data lifecycle of Figure 2.4, starting with data collection and 

ingestion, and extending to data visualization, whereas vertical concerns cover cross-cutting 

issues, which may affect all the horizontal concerns and may also involve non-technical as-

pects. Further, the BDVA-RM distinguishes between three different elements. On the one 

hand, it describes the elements that are at the core of the BDVA, represented in darker blue; 

on the other, it outlines the features that are developed in strong collaboration with hardware-

related European activities, depicted in lighter blue.  

Hence, Things/Assets, Sensors and Actuators (Edge, IoT, CPS) represent initiatives on 

hardware towards the collection of data from the physical world, Cloud and High-Perfor-

mance Computing (HPC) also relates to the necessary hardware infrastructure used to process 

and manage highly voluminous and fast-paced Big Data, Communication and Connectivity 

includes the development, implementation and adoption of communication hardware tech-

nologies, including 5G and Cybersecurity comprises techniques that maintain security and 

trust beyond privacy and anonymisation. 

Finally, six Big Data types have been identified, based on the fact that they often lead to 

the use of different techniques and mechanisms in the horizontal concerns, which should be 

considered, for instance, for data analytics and data storage: (1) Structured data; (2) Time series 

data; (3) Geospatial data; (4) Media, Image, Video and Audio data; (5) Text data, including 

Natural Language Processing data and Genomics representations; and (6) Graph data, Net-

work/Web data and Metadata (Big Data Value Association, 2020). 

Regarding horizontal core concerns in the BDVA-RM, Data Management relates to the 

Acquisition & Recording and the Extracting, Cleaning, Annotation and Storage steps of the 

Big Data lifecycle, and covers principles and techniques for data management. Data Protection 

does not have a direct connection to any individual step of the Big Data lifecycle; rather it 

should be accounted for in all the steps, since it represents privacy and anonymization mech-

anisms to facilitate data protection across the lifecycle. Data Processing Architectures concern 

optimised and scalable architectures for analytics of both data-at-rest and data-in-motion, with 

low latency delivering real-time analytics, and is linked to the Integration, Aggregation & Rep-

resentation step of the Big Data lifecycle. Data Analytics and Data Visualisation and User In-

teraction horizontal concerns are mapped to the Visualisation, Analysis & Modelling step of 

the Big Data lifecycle, with the former representing data understanding, deep learning and the 

meaningfulness of data and the latter accounting for advanced visualisation approaches for 

improved user experience, in order to support users in value creation in the final step of the 

Big Data lifecycle, Interpretation, Reinterpretation, Dissemination & Deletion step. 
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The vertical core concerns are present across the horizontal concerns. Standards symbol-

ise the standardisation of Big Data technology areas to facilitate data integration, sharing and 

interoperability. Development, Engineering & DevOps are at the basis of building Big Data 

Value systems, and Data Sharing Platforms comprise ecosystems for Data Sharing and Inno-

vation Support facilitate the efficient usage of several horizontal and vertical Big Data areas, 

most notably data management, data processing, data protection and cybersecurity. 

In the following sub-sections, the steps of the Big Data lifecycle presented in Figure 2.4 

will be described, and the most recent technological and research trends in the field of Big 

Data will be overviewed. Finally, Section 2.4 will entail the present state of the art in MobiTraf-

ficBD and guidelines and best practices in research works associated to this emerging field.  

 Data Acquisition and Recording 

As already referred, everybody leaves data traces, like breadcrumbs, wherever they go, either 

voluntarily or not. This phenomenon will increase with the introduction of new sensing and 

data capture capabilities. Data comes in the form of phone calls, text messages, emails, social 

media posts, online searches or credit card purchases, among other data sources. Data is then 

relayed to central servers of service providers that enable such services. Making sense of this 

data requires familiarity with the technical aspects of data production methods as well as an 

understanding of how, or from whom, the data is sourced (OECD/ITF, 2015). Some key dif-

ferences are listed: 

• Digital vs. analogue: Data may be digital or analogue in its creation. Digital data is 

created specifically for use in a machine processing environment (PCAST, 2014). Digi-

tal data is produced by design to address specific needs. Some examples of digital data 

are GPS traces, timestamps and process logs, data produced by devices, vehicles or 

networked objects, data associated with access (badges, cards, RFID tags, etc.) or com-

mercial transaction data, among others.  

• Real-time vs. batch: Although data is collected in real-time, until recently data was rec-

orded in the form of historical data, which is then stored as data batches. More recently, 

with the introduction of sensor technologies, the use of real-time data became common. 

Real-time data brings additional issues in its acquisition, since the recording methods 

must be ready to acquire data at great speeds, most of the times, in the order of the 

milliseconds. 

• Unstructured vs. structured: Structured data is characterized by its definition through 

a well-established data model, thus being easier to analyse. Structured data is usually 

stored in relational databases, with discrete fields and enabling quick aggregation of 

data from several locations, or tables, in the database. Some examples are GPS latitude 
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and longitude data and commercial transaction data, among others. On the other hand, 

unstructured data has an inherent internal structure but is not organized in predefined 

data model. This results in irregularities and ambiguities that make it difficult to un-

derstand using traditional programs as compared to data stored in structured data-

bases. Examples of unstructured data are emails, social media content, video and audio 

streams. 

 Extract, Clean, Annotate and Store 

When selecting a data source to analyse, one crucial factor is the quality and scope of the data 

set produced by the source. Data sets resulting from different sources tend to be messy (i.e., 

heterogeneous), dirty (i.e., comprising missing, incorrect, mislabelled or potentially forged or 

fake data) and incompatible (i.e., not aligned with other data sources). One characteristic that 

is part of the above issue is the structural level of data, with some data sets being highly struc-

tured, which eases and quickens the analysis, whereas other data sets are highly unstructured, 

which makes them more difficult and time consuming to analyse. Recent advances in data 

processing and analysis enable the elicitation of new insights by mixing both structured and 

unstructured data for analysis, but these processes require efficient data cleaning (OECD/ITF, 

2015). 

Data cleaning tasks are very time consuming and not trivial since the preparation of data 

for analytical use involves several processes. In the case of unstructured data, this type of da-

tasets must be correctly interpreted, contextualized, categorised and consistently labelled, 

while for structured data, datasets must be parsed and cleaned from missing and incorrect 

data. Furthermore, interoperability-based transformations for datasets that are contextually 

similar, but inherently different, in terms of structure and format, need to be applied for both 

unstructured and structured data. In fact, it is estimated that data cleaning tasks, manual or 

automatic, account for 50% to 80% of data scientists’ time (Endel & Piringer, 2015).  

These aspects bring particular importance to ETL (Extract-Transform-Load) processes 

when data needs to be loaded from sources into a harmonized data repository. ETL software 

houses have been extending their solutions to provide big data extraction, transformation and 

loading between big data platforms and traditional data management platforms, describing 

ETL now as “Big ETL” (Bala, Boussaid, & Alimazighi, 2016), i.e., Big ETL is the adaptation of 

ETL methodologies and techniques to Big Data, which is a relatively new research field. In 

(Figueiras, Guerreiro, Silva, Costa, & Jardim-Gonçalves, 2018), an overview of some Big ETL 

approaches in the literature is presented. 
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 Integration, Aggregation and Representation 

A wide range of methods and approaches have been drawn from the expertise of several dif-

ferent fields, such as statistics, computer science, applied mathematics and economics, to ma-

nipulate, aggregate, process and visualize Big Data. Within the context of mobility, transpor-

tation and road traffic, the techniques for data analysis are divided into, but not limited to, 

Data Fusion, Data Mining, Optimisation and Visualization.  

Data fusion is comprised by approaches that merge and consolidate data coming from 

multiple data sources, such as location data produced by GPS hardware and telecommunica-

tions networks (e.g., via cell triangulation). Data mining, as already described, is a set of tech-

niques that are used to extract patterns and insights from large datasets, such as the inherent 

relationships between single nodes in a road network. Optimisation refers to methods to reor-

ganise complex systems and processes, enabling improvements in their performance regard-

ing one or more attributes, as in the case of fuel efficiency or travel times. Finally, visualization, 

which will be subject of sub-section 2.3.4, is based on the generation of images, maps, diagrams 

or animations to communicate the results of data analysis processes. These techniques are of-

ten used throughout the data analysis process, enabling understanding of information by hu-

mans. 

The first category, data fusion, comprises techniques that enhance the representations of 

reality that can be then used for data mining, by matching and aggregating data coming from 

heterogeneous datasets and different data sources (Figueiras, et al., 2016), being a crucial pro-

cessing step when dealing with inputs from multiple sensor platforms. But high-level data 

fusion tasks, which merge several heterogeneous, unstructured data inputs, such as in the case 

of analogue sensor inputs, is still challenging and constitutes a strong research focus, as ex-

plained in (Khaleghi, Khamis, & Karray, 2013). Examples of preliminary works on this re-

search challenge are presented in (Figueiras, Guerreiro, Silva, Costa, & Jardim-Gonçalves, 

2018; Figueiras, et al., 2016; Figueiras, et al., 2016). Generally, data fusion’s goal is to fuse data 

accuracy and semantics, and to solve issues related to data resolution and granularity. One 

challenge in data fusion is to extract shared features across multiple datasets, which were cre-

ated for different purposes. Hence, data integration and fusion entail the matching and merg-

ing of datasets based on their shared attributes, while each dataset is retained. Integration and 

fusion methods enable knowledge discovery through contextual data analysis. 

 Visualisation, Analysis and Modelling 

Although Big Data visualisation will be presented in sub-section 2.3.5.3, it is necessary to over-

view the analysis and modelling procedures associated with Big Data. The advantages 
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brought by the evolution of Big Data technologies and distributed processing environments 

allow for the exploitation of very large datasets to extract relevant knowledge and insights. 

Classical approaches, such as statistical or traditional optimization techniques are still im-

portant but bring about data processing bottlenecks in the case of voluminous and high-veloc-

ity data. In the last years, knowledge discovery methods have suffered a significant evolution 

in terms of their ability to handle Big Data (OECD/ITF, 2015), such as in the case of data min-

ing and modelling techniques. 

Several works in Big Data Mining and Deep Learning, which take advantage of distrib-

uted processing environments to model and extract insights from large volumes of data, are 

available in the literature. Particularly for Big spatiotemporal datasets, some examples were 

already presented in former sections, and refer to stream processing (Andrienko, Andrienko, 

Fuchs, & Wood, 2017; Galić, 2016; Pan, Demiryurek, Banaei-Kashani, & Shahabi, 2010; Polson 

& Sokolov, 2017; Lin, Keogh, Lonardi, & Chiu, 2003; Giao & Anh, 2015; Giao & Anh, 2016; Guo, 

Huang, & Williams, 2015), Deep Learning (Jain, Zamir, Savarese, & Saxena, 2016; Wang, Gu, 

Wu, Liu, & Xiong, 2016; Chambon, Galtier, Arnal, Wainrib, & Gramfort, 2018; Qiu, Ren, Sugan-

than, & Amaratunga, 2017; Ryu, Noh, & Kim, 2017), application of known Big Data processing 

technologies and methods (Eldawy, Mokbel, Alharthi, Tarek, & Ghani, 2015; Alarabi, Mokbel, 

& Musleh, 2018; Fan & Bifet, 2013; Chen & Zhang, 2014), GPU-based and distributed pro-

cessing (Doraiswamy, Vo, Silva, & Freire, 2016; Luo, Niu, & Zhang, 2018) and evolutions of 

classical approaches to cope with big datasets (Kim, Park, & Chu, 2001; Movchan & Zymbler, 

2015). 

2.3.4.1 Distributed Processing Tools 

Distributed computing is a field of computer science that studies distributed systems. A dis-

tributed system is a software system in which components located on networked computers 

communicate and coordinate their actions by passing messages. The components interact with 

each other to achieve a common goal. Three significant characteristics of distributed systems 

are: concurrency of components, lack of a global clock, and independent failure of components 

(Coulouris, Dollimore, Kindberg, & Blair, 2012). There are three main types of distributed com-

puting systems (Costa C. F., 2019):  

• Batch Processing: This type of processing operation entails time-intensive data pro-

cessing tasks, often applied on high-volume batch data. It involves latencies in the or-

der of minutes or hours; hence they are better suited for running as background pro-

cesses without the need for direct user intervention. Some examples of batch pro-

cessing are the periodic cleaning, harmonization, enrichment and aggregation tasks of 

high volumes of historical data, the creation of complex reports and execution of 
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complex ad hoc queries, the training of data science models, such as predictive or clas-

sification models, and other intensive data mining and machine/deep learning tasks. 

• Stream Processing: This type of processing operation comprises fast processing tasks, 

with latencies in the order of milliseconds to a few seconds, since it is specifically de-

signed for near real-time data throughput. In this case, examples are streaming data 

cleaning, harmonization and enrichment, as well as swift analytics and processing 

tasks, such as data aggregation in micro batches or fast detection of anomalies and 

patterns. Micro batches are very useful when performing specific streaming operations 

as, for instance, small aggregations, sliding window operations, data fusion operations, 

to find trends in the data, or data science models' application tasks. Micro batches are 

really small batches of data records that are used to optimize collection, storage and 

processing tasks, by handling a few records at a time, instead of handling them indi-

vidually, improving the overall throughput of the data flow and enabling the optimi-

zation of database insertion by performing data insertion operations on micro batches, 

instead of on individual streaming records. 

• Interactive Processing: This type of processing operation is focused on user interaction 

and is responsible for answering direct user queries. Like in the case of stream pro-

cessing, query execution times should be in the order of milliseconds to a few seconds, 

depending on the volume of data in the answer, because it is expected that answers to 

user queries should be as swift as possible, due to direct user interaction. Some data-

base solutions provide data distribution and organization strategies to tackle this level 

of latencies, even when data volumes increase exponentially, such as data denormali-

zation, partitioning or inter-storage (Costa C. F., 2019). 

 

When the term Big Data became a buzzword, it applied mainly to batch processing, be-

cause companies had lots of historical data already on their databases to process. But soon, 

companies realized that using distributed computing to process real-time streams of data was 

a necessity (Chen & Zhang, 2014). Below, we present three of the trendiest distributed pro-

cessing technologies available today, although there are several other options (e.g., Apache 

Flink (The Apache Software Foundation, 2014)): 

• Apache Hadoop (batch processing): The Apache Hadoop [193] software library is a 

framework that enables distributed processing of large data sets across clusters of com-

puters using simple programming models, based on the MapReduce paradigm [116]. 

It is designed to scale up from single servers to thousands of machines, each offering 

local computation and storage. From Apache Hadoop, an entire ecosystem of tools has 

been created, to cope with the specificities of Big Data (Figure 2.6). The most well-
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known of such tools, in both academia and industry, will be presented in this and the 

following sections. 

 
Figure 2.6 — The rich ecosystem of Apache Hadoop (Costa & Santos, 2017) 

• Apache Spark (online-stream and offline-batch processing): Apache Spark (The 

Apache Software Foundation, 2018) is a fast and general-purpose cluster computing 

system. It provides high-level APIs in Java, Scala, Python and R, and an optimized 

engine that supports general execution graphs. It also supports a rich set of higher-

level tools including Spark SQL for SQL and structured data processing, Spark MLlib 

for machine learning, Spark GraphX for graph processing, and Spark Streaming. 

• Apache Storm (online-stream processing): Apache Storm (The Apache Software Foun-

dation, 2018) is an open source distributed real-time computation system. Storm makes 

it easy to reliably process unbounded streams of data, doing for real-time processing 

what Hadoop does for batch processing. Storm is used for real-time analytics, online 
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machine learning, continuous computation, ETL, and more. It is scalable, fault-toler-

ant, guarantees data is processed and is easy to set up and operate. 

 Technological and Research Trends 

The inferential techniques being used on Big Data can offer great insights into many compli-

cated issues, in many instances with remarkable accuracy and timeliness. The quality of busi-

ness decision-making, government administration, scientific research and much else can po-

tentially be improved by analysing data in better ways (Bollier, 2010). Hence, Big Data is ex-

pected to have a great impact in several sectors. For instance, the McKinsey Global Institute 

specified the potential of Big Data in five main areas (Manyika, et al., 2011): 

• Healthcare: clinical decision support systems, individual analytics applied for patient 

profile, personalized medicine, performance-based pricing for personnel, analyse dis-

ease patterns and improve public health. 

• Public Sector: creating transparency by providing accessible related data, discover 

needs, improve performance, customize actions for suitable products and services, de-

cision making with automated systems to decrease risks, innovating new products and 

services. 

• Retail: in store behaviour analysis, variety and price optimization, product placement 

design, improve performance, labour inputs optimization, distribution and logistics 

optimization and web-based markets. 

• Manufacturing: improved demand forecasting, supply chain planning, sales support, 

developed production operations, web search-based applications. 

• Personal Location Data: smart routing, geo-targeted advertising or emergency re-

sponse, urban planning, new business models. 

 

In fact, with the advent of the Internet of Things (IoT), the potential of Big Data gets even 

more importance across sectors. In the IoT paradigm, an enormous amount of networking 

sensors is embedded into various devices and machines in the real world. Such sensors may 

collect various kinds of data, such as environmental, geographical, astronomical or logistics 

data. Mobile equipment, transportation facilities, public facilities, and home appliances could 

all be data acquisition equipment in IoT (Chen, Mao, & Liu, 2014). IoT brought to light “Smart” 

areas or scenarios, such as Smart Cities, Smart Buildings, Smart Grids, Smart Mobility, etc., in 

which the Big Data hype is also present, and is considered an important factor for Smart ap-

plications to flourish.  

From all data-gathering areas and contexts, ITS-related data must be one data type in 

which all Big Data characteristics are present, from large quantities of data, captured every 
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day in intervals ranging from hours to seconds, varying from real-time or simulated traffic 

data, floating-car and GPS data, weather and traffic forecasting and history data among sev-

eral others. Big transportation data is also highly variable, since it still presents lots of incon-

sistencies, such as intermittent sensor data (traffic, parking spots, etc.) or outdated data from 

transportation providers (schedules, stops, etc.). These inconsistencies lead to a low veracity 

ratio, since the quality of data is always changing. Finally, complexity refers to Volume-to-

Variety ratio, and to the difficulties to fuse large amounts of data coming from several different 

sources. 

The following sections describe the most common Big Data technological tools to pro-

cess, store and analyse Big Data, and present the state-of-the-art of the application of such 

technologies on whole systems, architectures and frameworks, designed to cope with the chal-

lenges posed by ITS scenarios. 

2.3.5.1 Big Data Storage Technologies 

Regular SQL Engines and databases are not built to support, manage and process today’s Big 

Data. Big Data refers to petabytes of information, and to interact with this amount of data 

through regular SQL solutions is difficult. The first solution for this issue was the creation of 

the NoSQL (Not Only SQL) concept (Schmid, Gálicz, & Reinhardt, 2015): A NoSQL database 

provides a mechanism for storage and retrieval of data that is modelled in means other than 

the tabular relations used in relational databases. Motivations for this approach include sim-

plicity of design, presumed better "horizontal" scaling to clusters of machines, which is a prob-

lem for relational databases. NoSQL databases are increasingly used in big data and real-time 

web applications. 

Lately, several solutions based on SQL but called SQL-on-Hadoop engines (Floratou, 

Minhas, & Özcan, 2014) are coming to the spotlight. With SQL-on-Hadoop technologies, it's 

possible to access Big Data stored in Hadoop by using the familiar SQL language. Users can 

plug in almost any reporting or analytical tool to analyse and study the data. Here are some 

examples of the latest NoSQL and SQL-on-Hadoop solutions: 

• Apache Hive (SQL-on-Hadoop): The Apache Hive (The Apache Software Foundation, 

2011) data warehouse software facilitates querying and managing large datasets resid-

ing in distributed storage. Hive provides a mechanism to project structure onto this 

data and query the data using a SQL-like language called HiveQL. This language also 

allows traditional map/reduce programmers to plug in their custom mappers and re-

ducers when it is inconvenient or inefficient to express this logic in HiveQL. 

• Cloudera Impala (SQL-on-Hadoop): Impala (The Apache Software Foundation, 2015) 

is a fully integrated analytic database architected specifically to leverage the flexibility 
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and scalability strengths of Hadoop - combining the familiar SQL support and multi-

user performance of a traditional analytic database with the rock-solid foundation of 

open-source Apache Hadoop and the production-grade security and management ex-

tensions of Cloudera Enterprise. 

• Apache Cassandra (NoSQL): Apache Cassandra (The Apache Software Foundation, 

2016) is an open-source distributed database management system designed to handle 

large amounts of data across many commodity servers, providing high availability 

with no single point of failure. Cassandra offers robust support for clusters spanning 

multiple datacentres, with asynchronous masterless replication allowing low latency 

operations for all clients. Cassandra also places a high value on performance. 

• MongoDB (NoSQL): MongoDB (MongoDB, Inc., 2015) (from humongous) is a cross-

platform document-oriented database. Classified as a NoSQL database, MongoDB es-

chews the traditional table-based relational database structure in favour of JSON-like 

documents with dynamic schemas (MongoDB calls the format BSON), making the in-

tegration of data in certain types of applications easier and faster. 

 

Another category of databases suited for Big Data is coined NewSQL, which is used to 

classify database solutions aggregate the advantages of the classical relational model with the 

concepts of scalability and fault-tolerance present in NoSQL (Grolinger, Higashino, Tiwari, & 

Capretz, 2013). These databases are based on distinct assumptions and architectures, when 

compared with traditional Relational Database Management Systems (RDBMS), but still sup-

port relational models and use SQL as their native query language. Some of the most used 

NewSQL databases are presented below: 

• Clustrix DB: Clustrix DB (MariaDB, 2018) is distributed relational database built to 

scale horizontally, by adding cores and servers. ClustrixDB can execute one query with 

maximum parallelism and many simultaneous queries with maximum concurrency, 

due the application of the query fragments’ concept. Query fragments are compiled to 

machine code, run on the nodes that contain the data and can perform operations from 

a very rich set available. Query fragments may be different components of the same 

query or parts of different queries. The result is the same: massive concurrency across 

the cluster that scales with the number of nodes. 

• NuoDB: NuoDB (NuoDB, Inc., 2018) is a technologically advanced, distributed SQL 

database for cloud- and container-based environments that appears as a single, logical 

SQL database to the applications. Its two-layer, peer-to-peer architecture retains strict 

transactional consistency and can be deployed across multiple data centres or even 
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different clouds and is optimized for in-memory speeds, continuous availability, and 

elastic scale-out. 

• VoltDB: VoltDB (VoltDB, Inc., 2019) is also based on SQL and the relational model, but 

it is tuned for context, real-time analytics understanding, low latency and strong con-

sistency. VoltDB relies on horizontal partitioning down to the individual hardware 

thread to scale, k-safety (synchronous replication) to provide high availability and is 

packed with real-time stream processing capabilities to cope with the data velocities of 

the upcoming 5G networks. 

 

Finally, there are database solutions that cope with Big Data challenges by focusing on 

specific types of data, as in the case of time series databases. A time series database is specifi-

cally optimized for time-stamped or time series data and for measuring changes in the data 

over time. Time series databases handle metrics and events or measurements that are 

timestamped. Time series databases have key architectural design properties that make them 

very different from other databases. These include time-stamp data storage and compression, 

data lifecycle management, data summarization, ability to handle large time series dependent 

scans of many records, and time series aware queries (InfluxData Inc., 2019). Some of the most 

common time series databases are: 

• InfluxDB: InfluxDB (InfluxData, Inc., 2013) is an open-source time series database that 

supports a very large set of programming languages and operating systems and is op-

timized for heavy writing load and works amazingly well with concurrency. It is built 

on NoSQL concepts and allows for quick database schema modifications.  

• TimeScaleDB: TimescaleDB (Timescale, Inc., 2017) is an open-source time-series data-

base built for fast data ingestion and complex queries. It is fully SQL compliant while 

scaling in ways previously reserved for NoSQL databases. It is built as a PostGreSQL 

extension. It allows for high rates on data write, using batched commits, in-memory 

indexes, transactional support, support for data backfill and parallelized operations 

across servers. 

• Apache Druid: Apache Druid (The Apache Software Foundation, 2019) is a real-time 

analytics database designed for fast analytics on large data sets. Druid uses column-

oriented storage and enables massive parallel processing operations, since it can be 

deployed in clusters of tens to hundreds of servers and can offer ingest rates of millions 

of records per second, retention of trillions of records, and query latencies of sub-sec-

ond to a few seconds. 
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2.3.5.2 Big Data Mining Suites and Libraries 

There are several off-the-shelf technology suites and libraries to handle the Big Data lifecycle. 

Business Intelligence (BI) software is commonly used to analyse and visualize the data. This 

type of software also provides reporting, data discovery, data mining and dashboarding func-

tionality. While most of the Cloud service providers offer their own Business Intelligence tools, 

many independent suites and libraries are available. Some of the most successful open-source 

integrated environments with ETL and BI capabilities are listed below: 

• Talend Open Studio: Talend Open Studio (Talend, 2006) is a versatile set of open-

source products for developing, testing, deploying and administrating data manage-

ment and application integration projects. For ETL projects, Talend Open Studio for 

Data Integration delivers a rich feature set including a graphical integrated develop-

ment environment with an intuitive Eclipse-based interface. The advanced ETL func-

tionality including string manipulations, automatic lookup handling, and manage-

ment of slowly changing dimensions and support for ELT (extract, load, and trans-

form) as well as ETL, even within a single job. 

• RapidMiner: RapidMiner (RapidMiner, Inc., 2013) is one of the leading data mining 

software suites. RapidMiner supports all steps of the data mining process from data 

loading, pre-processing, visualization, interactive data mining process design and in-

spection, automated modelling, automated parameter and process optimization, auto-

mated feature construction and feature selection, evaluation, and deployment. 

RapidMiner can be used as stand-alone program on the desktop with its graphical user 

interface (GUI), on a server via its command line version. 

• GeoKettle ETL: GeoKettle (Open Source GeoBI, 2010) is a powerful, metadata-driven 

spatial ETL tool dedicated to the integration of different data sources for building and 

updating geospatial databases, data warehouses and services. GeoKettle enables the 

extraction of data from data sources, the transformation of data to correct errors, make 

some data cleansing, change the data structure, make them compliant to defined stand-

ards, and the loading of transformed data into a target Database Management System 

(DBMS) in OLTP or OLAP/SOLAP mode, GIS file or Geospatial Web Service. 

• Pentaho Business Analytics: The Pentaho Business Analytics platform (Hitachi Vantara 

Corporation, 2017) covers the entire big data life cycle, from data extraction and prep-

aration of diverse data to scalable processing on Spark and Hadoop, leading to end-to-

end analytics solutions. Pentaho Business Analytics provides a spectrum of analytics 

for all user roles, from visual data analysis for business analysts to tailored dashboards 

for executives. Pentaho is fast to deploy, easy to use, and purpose-built for Big Data 

analytics. 
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Furthermore, several libraries and languages are available to bring Data Mining meth-

ods to the Big Data application area. These are often built upon existing Big Data processing 

engines, enabling parallelization of the Data Mining tasks. Some examples of these libraries 

are presented below: 

• Apache Spark MLlib: MLlib (The Apache Software Foundation, 2018) is Apache 

Spark’s Machine Learning library. MLlib contains high-quality algorithms that lever-

age iteration and can yield better results than the one-pass approximations used on 

MapReduce. The algorithms in MLlib feature common learning algorithms such as 

classification, regression, clustering, and collaborative filtering, featurization methods, 

tools for constructing machine learning pipelines, and other utilities, such as linear al-

gebra, statistics and data handling techniques. 

• Apache Mahout: Mahout (The Apache Software Foundation, 2014) is a distributed lin-

ear algebra framework that offers a mathematically expressive Domain Specific Lan-

guage, allowing to quickly implement custom algorithms. It has implementations of 

clustering, classification, collaborative filtering and frequent pattern mining. It can run 

on top of Apache Hadoop or Spark. 

• Weka: Weka (The University of Waikato, 2005) is a free and open-source machine 

learning and data mining software written in Java, containing a collection of machine 

learning algorithms for data mining tasks, as well as tools for data preparation, classi-

fication, regression, clustering, association rules mining and visualization. Weka is not 

scalable by default, but it has been extended with several connectors for scalable Big 

Data stores and packages for distributed processing engines (e.g., distributedWeka-

Base, distributedWekaHadoop and distributedWekaSpark). 

• MOA and SAMOA: MOA (The University of Waikato, 2010) is a stream data mining 

software to perform data mining in real-time. It has implementations of clustering, 

classification, regression, frequent item set mining, and frequent graph mining. SA-

MOA (The Apache Software Foundation, 2015) is based on MOA and enables devel-

opment of new ML algorithms without directly dealing with the complexity of under-

lying distributed stream processing engines. 

• R Language: Developed by Bell Labs, R (The R Foundation, 2000) is a programming 

language for statistical values, complex data and graphical information that can handle 

large volumes of data. R provides graphical techniques and has many tools to perform 

data analysis. Like Weka, R can be extended with several connectors for scalable Big 

Data analysis and packages for distributed processing engines (e.g., SparkR, RHadoop, 

RHive). 
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2.3.5.3 Big Data Visualisation 

With the exponential growth of datasets and the spread of data across society, classical data 

visualization approaches are not enough. As data sets gets larger and efforts to exploit this 

data seeks to reach more people, the language of data visualisation must adapt and improve 

(OECD/ITF, 2015). The visualization of Big Data entails a complete revision of traditional ap-

proaches, mainly due to the volume and speed at which data must be analysed. Advanced 

data visualizations are necessary enabling the extraction of real value from Big Data, by 

providing the capabilities to scale to millions of data points, handle multiple data types, and 

joining appearance and functionality (Costa & Santos, 2017). Leveraging Big Data visualiza-

tion is challenging due to its inherent characteristics. In these visualizations, data from multi-

ple sources is typically integrated into a single picture. 

The authors of (Wong, Shen, Johnson, Chen, & Ross, 2012) identified the main challenges 

for extreme-scale visual analytics. Firstly, classical approaches that apply visual analytics on 

stored data are not feasible when datasets reach the petabyte scale. Hence, in situ visual ana-

lytics, i.e., performing as much visual analyses as possible over in-memory data, would greatly 

improve the costs in terms of input/output operations and disk use. Second, visual analytics 

interfaces need a revamp to account for the growing differences in data sizes, which are ever 

expanding, and the cognitive capabilities of humans, which remain unchanged. This means 

that better methods for data fusion, reduction, aggregation and summarization are crucial for 

humans to extract insights from great volumes of data. 

Third, the presentation and visualization techniques for big data volumes must account 

for the data reduction pointed out in the last challenge to still present aggregated and fused 

data in ways that can transmit the reality of the whole data being represented. Moreover, even 

if ever-larger displays can be built, human vision accuracy has limitations, also limiting the 

effect of large-screen technologies for visual analytics. Fourth, both classical databases and 

algorithms were not designed to scale above a certain threshold (e.g., exabytes for new data-

base technologies). In the case of databases, even cloud-based solutions may not meet the 

needs for extreme-scale visual analytics and cloud storage costs are still higher than traditional 

hard drive storage. For algorithms, many of these are computationally intensive and are 

mostly focused on post processing of data already available in memory or in disks. New meth-

ods need to be scalable, visually efficient and must be integrated with automatic learning so 

that the visualization output is highly adaptable. Fifth, data movement will become the most 

expensive component of visual analytics since computing costs continue to decrease. One of 

the main challenges for large-scale computing and visual analytics has to do with the efficiency 

of communication networks. Finally, as data sets’ volumes continue to grow, the ability to 

process them will be severely limited. Many analytics tasks will rely on data subsampling to 
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overcome the real-time constraint, introducing even greater uncertainty. Uncertainty quanti-

fication and visualization will be a big challenge, since new analytics methods will have to 

cope with the incompleteness of extreme-scale data, while considering data as distributions. 

Particularly in ITS, the application of real-time and massive scale visualisation tools to 

analyse traffic has increased in recent years, due the availability of data collected by traffic 

management and road infrastructure operators. Perhaps the best-known examples are online 

map services (Google Maps, OpenStreetMap, etc). These services use color-coded paths to in-

dicate traffic speeds derived from road sensors and GPS-enabled vehicles and mobile devices 

(OECD/ITF, 2015). 

As described by (Andrienko, et al., 2010), three main approaches are being adopted to 

cope with the challenges posed by Big Data visualization. One approach is to use data aggre-

gation and summarization techniques prior to graphical representation to modify the number 

of data points directly depicted. The second approach relies on more sophisticated computa-

tional methods based on data mining, in order to (partially or fully) automatically extract in-

sights, features and patterns, specific to the problem at hand, before presenting the data 

through visualization techniques. This approach could apply data mining algorithms over ag-

gregated and summarized data, thus capitalizing on advances in direct depiction. The last 

approach is based on the development of data projections that shift objects from their geo-

graphic locations to fill the visualization space in a more effective way. 

2.4 MobiTrafficBD 

The swift, ongoing sensorisation of the world, from our smartphones to in-situ sensors, has 

brought the two topics already covered in this chapter closer: Spatiotemporal Data and Big 

Data. This closeness is based on the spatiotemporal nature of our world, with more and more 

data, collected by sensing devices, possessing a spatiotemporal signature. The aggregation of 

Spatiotemporal Data with Big Data is often coined in the literature as Big Spatiotemporal Data. 

As clearly presented in (Yang, Clarke, Shekhar, & Tao, 2020), Big Spatiotemporal Data 

has become an important research topic with a ten-year history (with the first publications 

starting in 2009), spanning several research disciplines, such as GIS (Wang, Zhong, & Wang, 

2019; Song, Wang, & Zomaya, 2017), cloud computing (Yang, Yu, Hu, Jiang, & Li, 2017; Yang, 

et al., 2015), data processing (Yang, et al., 2015), Data Mining (Xu, Deng, Demiryurek, Shahabi, 

& van der Schaar, 2015; Vatsavai, et al., 2012), Deep Learning (Cao, et al., 2018; Wang, et al., 

2017; Polson & Sokolov, 2017) and data visualization (Vatsavai, et al., 2012; Cao, et al., 2018), 

and with applications in many societal and economic sectors, as in the case of tourism (Baptista 

e Silva, et al., 2018), mobility and traffic (Xu, Deng, Demiryurek, Shahabi, & van der Schaar, 
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2015; Batran, Mejia, Kanasugi, Sekimoto, & Shibasaki, 2018), climate (Li, et al., 2013; Li, et al., 

2017), environment (He, Gu, Wang, & Zhang, 2017; Zhu, et al., 2018), urbanism and land use 

(Li, Ye, Lee, Gong, & Qin, 2017; Comber & Wulder, 2019), just to name a few. 

Therefore, spatiotemporal data is, at the same time, a prolific research topic and a fuzzy 

one, to say the least. It is fuzzy in the sense that spatiotemporal data is related to so many 

research areas and is applied in so many economic sectors, that it is hard to have a clear picture 

of the directions and approaches that are available in the literature. Moreover, research en-

deavours are more than often directed to application niches, such as in the case of traffic, mo-

bility and ITS. Hence, the focus will fall upon the main theme for this document: the analysis 

and lifecycle management of large-scale GRTS (e.g., traffic sensor data) and ST event (e.g., 

accident or traffic jam data) data for traffic- and mobility-related applications. 

Although mobility- and traffic-related Big Spatiotemporal Data (MobiTrafficBD), in the 

form of GRTS and ST events, may be considered a sub-field of the broader Big Spatiotemporal 

Data research topic, it is also a prolific topic, with several contributions in the areas of Data 

Mining, Machine Learning and Deep Learning and an emphasis on the prediction of traffic 

flow and congestion. The rest of this section will go through the more recent works regarding 

MobiTrafficBD and the general guidelines that can be extracted from the commonality analysis 

between such works. 

 Representation, Modelling and Interoperability 

The representation and modelling of MobiTrafficBD is the first important factor when dealing 

with this kind of data. On one hand, MobiTrafficBD models and representations should ac-

count for the different attributes and heterogeneous nature of data captured by traffic sensors 

(sensors from different manufacturers may capture diverse attributes in many granularities, 

e.g. one sensor may capture travel speed for the entire road segment, in one-minute intervals, 

while another may capture road occupancy for each lane in the road segment, in five-minute 

intervals) or events reported by RITMOs (each RITMO may report traffic events in different 

ways, collecting different attributes), while providing a single, homogeneous model or repre-

sentation that can handle the heterogeneity and diverseness of such data, by harmonizing dif-

ferent data sets into such single model. On the other hand, these data models should be light-

weight, to meet the storage requirements of Big Data, human-readable, for easy understanding 

of the data, and standardized. 

Let us consider a less recent work that paves the way for traffic sensor and traffic event 

data modelling and representation. In (America's Advanced Traveller Information Systems 

Committee, 2000), the authors propose some guidelines for data quality in the representation 

of data related to Advanced Traveller Information Systems, namely traffic sensor data, 
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incident and event reports and road and environmental station data. As already referred, traf-

fic sensor and road and environmental station data are defined as GRTS and incident and 

event reports as ST events. At the time, the author did not define the data attributes for road 

and environmental station data, due to the lack of maturity and consensus support as traffic 

sensor data and incident and event reports. Therefore, Figure 2.7 was adapted for the specific 

needs of this work. 

 
Figure 2.7 — Data types and attributes for traffic sensor and event data. Adapted from (America's Advanced 

Traveller Information Systems Committee, 2000) 

The figure represents the data types and their respective attributes. Traffic sensor data 

is based on measurements used to categorize the flow of vehicles at a particular point or over 

a specific road or highway segment. Such measurements may collect speed, travel time, road 

volume and occupancy data or any other information related to traffic flow. This data type can 

be collected through a panoply of detection systems, such as loop detectors, microwave, sonic 

or infrared sensors or automatic vehicle identification, just to name a few. 

Some of the attributes presented are vital for data quality assessment purposes, but not 

so much for the actual representation of the data. Nevertheless, an overview of such attributes 

is in place. Nature corresponds to the data parameter being collected. Four parameters are 

commonly collected through traffic sensors: 

• Volume: the actual number of vehicles observed passing a point during a given time 

interval (i.e., the data collection interval). 

• Occupancy: the ratio between the time of permanence of vehicles in the detection point 

and the time of sampling (i.e., the data collection interval). 

• Speed: the average rate of motion, as distance per unit of time. 

• Travel time: the elapsed time for a vehicle to traverse the road or highway segment. 
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From these parameters, volume, occupancy and speed are often collected at a single 

point in the roadway and are defined as point data. Travel time is collected over a section of 

roadway and is defined as section data. 

Accuracy accounts for the matching between what is measured and the actual conditions 

on the road, since all traffic sensors are prone to inaccuracies, due to faulty measurements or 

to several other conditions (e.g., weather, interreferences or occlusion). This attribute is often 

represented as a percentage. Confidence describes the degree of belief on the quality of com-

municated data. Delay refers to the time between data collection and its availability for use in 

some application. Availability has to do with the amount of collected data that is made avail-

able. Finally, coverage relates to the span of road infrastructure in which data is being col-

lected. 

Regarding the incidents and event reports, they are characterized by descriptions of 

planned or unplanned occurrences that may affect traffic conditions. This type of data is usu-

ally manually inserted into a database by RITMOs or extrapolated from other types of data, 

such as traffic sensor data (e.g., high occupancy and low speed may be related to an accident 

and consequent traffic jam). In terms of the nature attribute of this data type, the possible 

events that can be collected are crashes, breakdowns or other unplanned vehicle stoppages, 

planned and emergency roadworks and maintenance, special planned events, general road 

and weather conditions or disasters. 

The detail attribute describes additional data that is associated to an event, such as the 

reason of the event, location, severity, impact, status, advice and suggestions for travellers 

impacted by the event, duration and starting time. The timeliness attribute relates to the time 

it takes to detect, verify and update the status of incidents or events. Accuracy, confidence and 

coverage have the same definitions as in the case of traffic sensor data. 

Although the attributes for road and environmental station data are not present in Fig-

ure 2.7, they are also overviewed in (America's Advanced Traveller Information Systems Com-

mittee, 2000). Road and environmental station data refer to data collected from a wide array 

of sensor stations, such as weather, roadway, surface and air quality conditions' monitoring 

stations. The nature of data collected by these stations may be elevation and atmospheric pres-

sure, wind, temperature, humidity and precipitation, radiation and visibility data, air and wa-

ter quality. Finally, coverage also relates to the definition of coverage for traffic sensor data. 

MobiTrafficBD representation and modelling approaches are not often present in the 

literature, since the majority of the available literature works focus on the algorithms to be 

used and frameworks and architectures deployed in the analysis of MobiTrafficBD, and not 

the data models or representations used. Some exceptions exist, such as in (Iamwan, Indi-

kawati, Kwon, & Rao, 2016), in which the authors present the Entity-Relationship diagrams 
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for two datasets (Busan ITS Traffic Sensor Data set and Seattle Traffic Sensor Data set) and 

provide definitions for major concepts (e.g., Road, Road network, Traffic sensor data, etc.), 

with the final goal of querying and extracting timeline information from traffic sensor data. 

Nevertheless, there is no attempt to harmonize data into one single schema that can encompass 

both data sets. Also, the Entity-Relationship diagrams do not translate into the actual database 

representation of the data sets, nor present any metadata about the units for the measure-

ments, coverage, accuracy, etc. 

In fact, mobility- and traffic-related data harmonization, as a research topic, is somewhat 

a neglected topic. Searching for these exact keywords in research works' search engines, such 

as Semantic Scholar or Google Scholar, returns little to none results (as a side note, some of the 

top results are works from the author of this document, such as in the case of (Figueiras, Guer-

reiro, Silva, Costa, & Jardim-Gonçalves, 2018; Figueiras, et al., 2016)). Nevertheless, there are 

a few works that attempt to use standards to represent and model traffic- and mobility-related 

data, and particularly of DATEX II, the European de facto standard for traffic-related data 

exchange, already introduced earlier in sub-section 2.2.3. DATEX II is being used to exchange 

a wide variety of mobility- and traffic-related data, such as origin/destination matrixes, which 

are connected with floating-vehicle data (Melo-Castillo, Canon-Lozano, Herrera-Quintero, Bu-

reš, & Banse, 2016), vehicle parking systems (Melo-Castillo, Bureš, Herrera-Quintero, & Banse, 

2017) or fully fledged ITS frameworks (Westerheim, 2014). But the focus will be on traffic flow 

and traffic event data management, exchange and harmonization. Some examples are de-

scribed below. 

In (Ruiz-Alarcon-Quintero, 2016), the author presents a data model for traffic flow sen-

sor data, which follows the European Commission's INSPIRE (Infrastructure for Spatial Infor-

mation in Europe) directive (European Commission, 2020) guidelines and is based on DATEX 

II. The data model is supported by an Entity-Relationship diagram for a PostGIS (PostGIS Pro-

ject Streering Committee, n.d.) database and SQL scripts are used to transform heterogeneous 

data sources into the harmonized data model. The author presents two use cases for traffic 

flow data harmonization, with data collected from two cities in Spain, Sevilla and Málaga. 

However, the compatibility of the data model with DATEX II and the way that the harmonized 

data is exported to the DATEX II standard are not explained. 

The authors of (Tomás, Castells, Samper, & Soriano, 2013) present an assessment on the 

harmonization of ITS, following the Deployment Guidelines proposed by the EasyWay pro-

ject. These deployment guidelines are thoroughly explained, and the correspondent func-

tional, organizational and technical requirements are presented in order to achieve full har-

monization between different ITS core services that are combined to create added value ITS 

services. The authors present two of these added-value ITS services deployed in Spain, a cross-
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border traffic management planning tool for the Atlantic corridor between Spain and France 

and a web-based real-time traffic information tool called eTraffic. The authors further elabo-

rate by analysing if these services comply with the deployment guidelines proposed by Easy-

Way. The main data exchange format is DATEX II. Even so, the specific usage of DATEX II is 

not presented and it is stated in the conclusions that a deeper analysis on the use of DATEX II 

to improve the information exchange is still underway. 

As a final example, the authors of (Wei-Feng, Wei, & Jian, 2008) present a dynamic, real-

time traffic information publication platform that uses DATEX II as the main data exchange 

format. Firstly, a comparison was made between DATEX II and its American counterpart, the 

National Transportation Communications for ITS Protocol (NTCIP) (National Electrical Man-

ufacturers Association , 1996), from which the authors chose DATEX II as their main data ex-

change standard. Secondly, the framework supporting the data publication platform is pre-

sented. The framework is based on a publish-subscribe paradigm that enables users to sub-

scribe to real-time streaming subsystems for each type of data available in the platform (e.g., 

traffic events, parking information, etc.). The publication of the selected data is done through 

a message queuing software that sends data to the subscribers using the DATEX II format. The 

authors conclude that using the message queuing system and the application of the DATEX II 

standard, the platform becomes highly scalable and the addition of new data exchange sub-

systems into the platform is possible with minor configurations. 

 Processing Engines 

Although there are no Big Spatiotemporal data processing engines specific for the Mobility 

and Traffic domain, it is worth going through the existing Big Spatiotemporal Data processing 

engines. Since this category of processing engines does not fall in neither of the previous sec-

tions (2.2 and 2.3), they will be overviewed in this section. 

There are two main types of Big Spatiotemporal Data processing engines: processing 

engines that already have built-in capabilities to handle Big Spatiotemporal Data or spatio-

temporal extensions for processing engines. Some of the engines presented in sub-section 2.3.5, 

such as Apache Spark (The Apache Software Foundation, 2018) and Apache Storm (The 

Apache Software Foundation, 2018) have some spatial capabilities, namely through their built-

in SQL querying languages (Spark SQL for Spark and Tiny Storm SQL for Storm), but they do 

not provide a full integration for spatiotemporal data.  

A general-purpose Big Data processing engine that provides support for spatiotemporal 

data out-of-the-box is Apache Flink (The Apache Software Foundation, 2014). According to 

(Karim, Soomro, & Burney, 2018), Apache Flink provides several spatiotemporal data han-

dling methods, such as intersection, containment and even clustering, and enables spatial 
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partitioning with and without indexing. One example of works that use Flink as a Big spatio-

temporal processing engine is proposed in (Galić, Mešković, & Osmanović, 2017). The authors 

present a framework for efficient real-time managing and monitoring of mobile objects 

through distributed spatiotemporal streams processing on large clusters. A proof-of-concept 

implementation is based in the Apache Flink stream processing model, which overcomes the 

challenges of current distributed stream processing models and enable seamless integration 

with batch and interactive processing like MapReduce (Dean & Ghemawat, 2008). Apache 

Storm can also be used for monitoring spatiotemporal streams, as proposed by the author of 

this thesis in (Figueiras, et al., 2018). 

Regarding spatial extensions for already existing processing engines, there are several 

options to choose from. For Apache Hadoop, there are Spatial Hadoop (Eldawy & Mokbel, 

2015) and ST-Hadoop (Alarabi, Mokbel, & Musleh, 2018). There are also GIS-specific exten-

sions for Apache Hadoop, such as Hadoop-GIS (Aji, et al., 2013) and GIS-Hadoop (Abdul, 

Alkathiri, & Potdar, 2016). For Apache Spark, some examples of spatial and spatiotemporal 

extensions are Magellan (Sriharsha, 2017), which is officially supported  by Spark, Apache 

Sedona (The Apache Software Foundation, 2015), formerly known as GeoSpark (Yu, Wu, & 

Sarwat, 2015), which is an processing engine project for spatiotemporal data based on Apache 

Spark, Stark (Spatiotemporal Spark) (Hagedorn & Tonndorf, 2016) and the already referred 

GeoMesa (The GeoMesa Project , 2013), just to name a few. For a more thorough survey on 

spatiotemporal extensions for Big Data processing engines and processing engines, please re-

fer to (Karim, Soomro, & Burney, 2018). 

 Analysis, Mining and Visualization 

The analysis and lifecycle management of big spatiotemporal data often depends on the do-

main, since the way big spatiotemporal data is handled will have consequences in the way the 

data is queried, analysed and visualized, and in the value of the knowledge extracted from 

such analysis. For instance, if the domain is related to land information or other macro-do-

mains of Geographic Information Systems (GIS), the spatial and temporal dimensions must 

target big changes in both these dimensions to have a clear picture of the evolution of land use 

and transformation. Or if, as pointed in (Mahood, Burney, Rizwan, Shah, & Nadeem, 2017), 

the objective is to analyse cancer growth in human bodies, which is spatiotemporal in nature, 

then one also must consider the medical concepts and terminologies to formulate a suitable 

analysis. 

Specifically, regarding MobiTrafficBD, namely traffic sensor and spatiotemporal event 

data, there is a panoply of analytic processes that can be applied to these data types, from 

clustering to anomaly detection, providing a set of answers to common questions and 
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problematics that are generic but closely related to traffic management (Atluri, Karpatne, & 

Kumar, 2018). For spatiotemporal events, some examples of such common questions are: 

• How are spatiotemporal points (traffic events) clustered or organized, both in times and space? 

This question refers to the autocorrelation between events, such as accidents and con-

sequent traffic jams. 

• Are there any frequent patterns of spatiotemporal points? This question has to do with the 

existence of so called “hot spots” (Levine, 2017), or zones prone to the occurrence of 

traffic events. 

• Is it possible to identify spatiotemporal points that do not follow the general behaviour of other 

points? This question is related to the possibility of having special types of events, such 

as severe accidents or longer traffic jams, which do not correspond to the normal be-

haviour of most events. 

 

In the case of traffic-related GRTS, some example concerns are: 

• Are there time series that present similar temporal activity and have nearby locations? This 

question arises from the fact that traffic flow and speed observations that are contigu-

ous in space and time tend to be related, and often have the same cause. Also, the com-

bination of weather- and traffic-related time series may present similar patterns in 

terms of the traffic situation deterioration due to weather conditions. 

• Are there repeating time patterns for a set of time series? This refers to seasonality, time-of-

day or day-of-week influence in traffic occurrences, such as peak hours, weekday traf-

fic or summer versus winter traffic conditions. 

• Can one find time intervals in which time series deviate from their normal behaviour, even if it 

is for a short period of time? This question is linked to the detection of abnormal traffic 

events such as road obstructions, accidents, traffic jams, etc. in GRTS collected from 

road sensors, or due to abnormal weather patterns. 

 

Another type of questions combines both GRTS and spatiotemporal events to find cor-

relations about traffic situations. One example is: 

• Can one infer some temporal correlation between one or more spatiotemporal points and one or 

more time series that are spatially nearby? This question refers to the consequences that 

traffic events have in the overall traffic status, such as the relation between accidents 

and traffic jams. It can be also related to the correlation between traffic events and 

weather patterns. 
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These, and other pertinent questions for RITMOs may be answered using several ana-

lytical processes, coming from the Data Mining, Machine Learning and Statistics areas, and by 

applying visual analytics techniques to detect such patterns and anomalies. First of all, it is 

worth mentioning that the fact that the spatial dimension in both traffic and weather sensor-

based GRTS and spatiotemporal events is fixed is an advantage in their analysis, since the 

analysis of large volumes of spatiotemporal data without fixing any dimension is very difficult 

and complex (Rao, Govardhan, & Rao, 2012). Secondly, there are already some full-fledged 

framework and platform proposals in the literature for handling and analysing MobiTraf-

ficBD. 

The authors of (Nallaperuma, et al., 2019) present an online and incremental machine 

learning platform for Big Data-driven, near real-time smart traffic management, based on a 

three-layer architecture. The first layer is responsible for data collection and transformation, 

gathering and modelling data from traffic sensor networks, social media and other sources, 

such as CCTV and weather stations. The second layer is composed by an online, incremental 

and decremental machine learning model that is used to achieve unsupervised concept drift 

detection of recurrent and non-recurrent traffic congestions. The first two layers serve as the 

basis for a third layer in which several analyses are done.  

First, an impact propagation analysis of the congestions in the neighbouring road net-

work is done, based on an unsupervised data-driven approach. Second, a traffic forecasting 

approach based on deep neural networks is proposed to predict traffic congestions and their 

impact in road segments in the vicinity. Third, an intelligent traffic control approach, based on 

deep reinforcement learning, is used to optimize the performance of road networks in case of 

congestion and, finally, an emotion analysis algorithm is used when a congestion event is de-

tected, in order to extract the emotional behaviour of commuters to improve transportation 

services. The downside of this proposal is that the authors focus on the algorithms but not on 

the technologies. The authors claim that the platform is capable of handling Big Data, but the 

presented scenario (the vicinity of a shopping centre in the city of Victoria, Australia) may not 

be considered a Big Data use case and no technology stack for the deployment of the proposed 

platform is presented. 

On the other end of the scale, the authors of (Wu, Morandini, & Sinnott, 2015) present a 

cloud-based architecture supported by a technological stack for Big Data processing and vis-

ualization of traffic-related data. The framework is called SMASH and is, in essence, a distrib-

uted software stack that tackles the issues of data replicability, distributed storage and batch, 

offline processing capabilities and spatiotemporal indexing, querying and visualization. The 

technology stack is based on the Hadoop Distributed File System for raw data storage, Apache 

Spark for processing and analytics, Apache Accumulo (The Apache Software Foundation, 
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2008) and GeoMesa (The GeoMesa Project , 2013) for querying and indexing spatiotemporal 

data and GeoServer (Open Source Geospatial Foundation, 2001) for visualization of spatio-

temporal data. Nevertheless, there is no account on the data models used, the way data is 

collected from heterogeneous data sources, nor the type of analyses that are realized by the 

framework except for the visualization of traffic flows. Further, although a benchmark on Big 

Data processing using Apache Spark or Hadoop is presented, it is not clear how the GeoServer 

software copes with effective Big Data volumes. The only comment on this subject is that every 

time a user performs a simple zoom/pan operation, a new request is made to the server and 

a new map is rendered for that request, which may not be the best approach when handling 

higher data volumes. Still, SMASH is the closest academic work to a fully-fledged MobiTraf-

ficBD Framework. 

Finally, another example of a Big Data-based architecture for ITS, and particularly for 

traffic and Mobility analysis is proposed in (Gohar, Muzammal, & Rahman, 2018). The pro-

posed architecture has a built-in storage and analysis capability to work with ITS data and is 

composed of four modules, namely Big Data Acquisition and Pre-processing Unit, Big Data 

Processing Unit Big Data Analytics Unit and Data Visualization Unit. Both the modular ap-

proach and the individual modules' division is similar to the modular approach of the pre-

sented prescriptive methodology, as will be clear in the upcoming chapters. The architecture 

uses several Big Data technologies, such as Apache Hadoop for Big Data processing and Mon-

goDB for NoSQL data storage. The authors finish with a benchmark analysis on the overall 

performance of the proposed architecture, in comparison with the centralized system in place 

in the present day. The benchmark analysis shows that the distributed architecture outper-

forms the traditional, centralized system in analysing ITS data. 

The remainder of this section will go through the different types of analyses that are 

possible using Data Mining and visual analytics techniques, such as pattern discovery, clus-

tering, prediction, classification or visualization, to name a few, in order to try to answer some 

of the questions above and others that might be useful for RITMOs to better understand traffic 

and mobility. 

2.4.3.1 Pattern Discovery and Outlier Detection 

Discovering both patterns and outliers in mobility- and traffic-related data helps RITMOs to 

better understand the spatiotemporal relationships between different traffic and mobility phe-

nomena. On one hand, patterns may help RITMOs to better predict future occurrences of these 

same patterns, and, on the other hand, outliers may also point to some causality, helping RIT-

MOs to be better prepared for the occurrence of future, similar anomalies. 
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In (Banaei-Kashani, Shahabi, & Pan, 2011), the authors present and test two hypotheses 

about traffic flows on road segments through the analysis and pattern discovery in traffic sen-

sor data, collected from the Los Angeles County road network. The first hypothesis states that 

road segments may be categorized based on similar patterns present in their traffic flows and 

the second hypothesis postulates that road segments in each category possess not only similar 

traffic flows but are also similar in other types of characteristics, such as locality or connectiv-

ity. For the first hypothesis, the authors apply the X-Means algorithm, which is an extension 

of the K-Means clustering algorithm, to a dataset of traffic flows, comprised of volume, occu-

pancy and speed attributes for all road segments, spanning the working hours of each day 

(6:00 to 21:00) and with a temporal granularity of 15 minutes between records. The result is 

eleven different signature patterns, corresponding to distinct categories for road segments. 

The authors go even beyond and characterize these eleven categories as residential, down-

town, business, attraction and remote areas, and the subsequent types of road segments be-

tween these main categories (e.g., from residential to downtown, from downtown to business, 

etc.). 

For the second hypothesis, the authors firstly present the intrinsic characteristics, or fea-

tures, of different road segments: Length of the segment, direction of the segment, spatial ca-

pacity (or number of lanes), connectivity (with fan-in and fan-out, respectively, the number of 

nodes that end in the road segment (entries) and the number of nodes that start at the road 

segment (exits)) and density and locality, which are both connected to the neighbouring char-

acteristics of the road segment. The authors developed a feature selection algorithm that uses 

a Bayesian network to evaluate the classification of the features that are strongly related within 

the same category of road segments. They found that the only feature that does not present a 

strong correlation with the type of road segment is spatial capacity, meaning that the number 

of lanes is not correlated with the type of road segment, neither with its traffic flow character-

istics (the number of lanes does not affect the traffic flow behaviour in each type of road seg-

ment). The remaining features present tight correlations with the traffic flow signatures of each 

category of road segments. The idea is to extend this analysis to other road networks to check 

if these are general rules that can be applied throughout the globe and, in that case, to develop 

a traffic data generation tool that generates traffic flow data for those road networks for which 

traffic sensor data is not available. 

2.4.3.2 Clustering, Classification and Prediction 

Clustering can be used to infer about spatiotemporal relationships between traffic-related phe-

nomena and to group together similar mobility-related behaviours and situations. Classifica-

tion goes even further by classifying sets of patterns or clusters into groups that can be 
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recognized as having the same characteristics. But the execution of methods for both clustering 

and classification over large volumes of data or fast streams is not a trivial task, since often the 

execution performance of these methods is directly correlated to the amount of data at hand, 

whether they are batches of historical data or sliding windows of data streams. 

There are few research works in the literature that focus on the Big Data aspects of spa-

tiotemporal data clustering and classification, and in most cases, these aspects are tackled not 

by parallelizing the training and execution of methods through the use of Big Data technolo-

gies, but by proposing new methods or extending existing ones to improve their overall per-

formance, even if the execution remains centralized (Shao, Salim, Song, & Bouguettaya, 2016; 

Choi & Hong, 2021; Tang, et al., 2019). Nevertheless, some example works stand out when 

considering the application of Big Data and Deep Learning technologies to classify and cluster 

Big Spatiotemporal Data.  

The authors of (Cuzzocrea, Gaber, Lattimer, & Grasso, 2016) propose a methodology for 

the design of a spatiotemporal clustering model, based on CRISP-DM and built on top of Weka 

for the analysis of spatial sectors' greenhouse gas emissions, particularly how many sectors 

are high emitters and how many sectors are low emitters. The clustering technique used is the 

K-Means method, which is one of the simpler clustering algorithms and was used in this case 

because the number of clusters (represented by K) was known a priori and equal to 2: low 

emitters and high emitters. The data was retrieved from the European Environment Agency's 

Web site and concerns all greenhouse gas emission data from all European countries, as per 

agreed in the Kyoto Protocol.  

The main drawbacks of this work are the fact that, although Weka supports integration 

with Big Data processing engines, such as Apache Spark, there is no reference to its application 

in the methodology, and the selection of the algorithm, K-Means, may be a good match for 

this use case since the number of clusters is known, but other, more optimized algorithms for 

spatiotemporal clustering could be used, such as ST-DBSCAN (Birant & Kut, 2007) and its 

implementations for distributed environments, RT-DBSCAN (Gong, Sinnott, & Rimba, 2018) 

for real-time Big Spatiotemporal Data stream clustering, and MR-DBSCAN (He, Tan, & Luo, 

2014) for Big Spatiotemporal Data offline batch clustering. While the former is based on the 

implementation of ST-DBSCAN for Apache Spark Streaming (The Apache Software Founda-

tion, 2018) processing engine by using the SMASH (Wu, Morandini, & Sinnott, 2015) platform 

to leverage the execution of the algorithm using Apache Kafka (The Apache Software Foun-

dation, 2017) as streaming source and Spark Streaming for processing, the latter is based on 

the MapReduce paradigm and was implemented Apache Hadoop (The Apache Software 

Foundation, 2018). 
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More recently, Deep Learning techniques have been employed for clustering Big Spati-

otemporal Data. Although these techniques are widely used for prediction, learning and clas-

sification tasks, as will be discussed below, they have been repurposed for Big Spatiotemporal 

Data clustering with promising results. The author of (Konstantaras, 2020) proposes a distrib-

uted Deep learning-based spatiotemporal clustering algorithm that employed a Deep Learn-

ing neural network to cluster seismic events into distinct seismic zones. The neural network 

was developed using the CUDA C language for graphical processing units, which enables 

parallel execution of the neural network's training. This clustering technique detected an un-

known seismic zone under the Ionian Sea.  

In another work (Asadi & Regan, 2019), and focusing particularly on MobiTrafficBD, the 

authors present a deep embedded spatiotemporal clustering model for traffic-related GRTS. 

The model is based on a Deep embedded neural network with cluster weights obtained 

through the application of the K-Means algorithm to iteratively adjust the cluster centres. The 

model then extracts temporal clusters and from correlating these temporal clusters it computes 

the most relevant spatial clusters. The model was implemented using Keras (Chollet, 2015). 

The authors then validate and demonstrate the application of the model by training and exe-

cuting it with traffic loop detector sensor data, and describe several interesting patterns ex-

tracted from the clusters, such as high correlation between Euclidean distance of latent fea-

tures and Dynamic Time Warping distance of GRTS, distinguishable clustering probabilities 

for different timestamps, and dynamic spatial clustering for various hours of a day. 

Although spatiotemporal-specific classification and prediction methods are rare or non-

existent, the existing generic versions can provide good results when applied to Big Spatio-

temporal Data, and particularly to MobiTrafficBD. In these cases, the choice of method or 

model depends on the use case at hand, and on the individual performance benchmarks for 

each method. Namely, in the case of Deep Learning-based classification and prediction, the 

generic models can be modelled to cope with spatiotemporal features of MobiTrafficBD. Some 

examples of the application of Deep Learning techniques for MobiTrafficBD classification and 

prediction were already presented in previous sections (e.g., (Wang, Gu, Wu, Liu, & Xiong, 

2016; Polson & Sokolov, 2017)). 

As a final example that combines several of the above techniques and technologies to 

analyse MobiTrafficBD, the authors of (Dagaeva, Garaeva, Anikin, Makhmutova, & Min-

nikhanov, 2019) propose a Big spatiotemporal data mining framework for traffic- and mobil-

ity-related emergency management information systems. The framework comprises several 

Big Spatiotemporal Data methods, supported by Big Data technologies, that support a number 

of Data Mining tasks, such as i) spatiotemporal clustering to detect areas of high interest for 

traffic issues or emergencies, using FP-Growth and DBSCAN algorithms, ii) spatiotemporal 
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co-location pattern mining to discover new spatiotemporal relationships between different 

data types, through Natural Language Processing methods, iii) spatiotemporal outliers' detec-

tion, by applying ARIMA and LSTM models and iv) spatial autocorrelation analysis and pre-

diction to uncover causal relationships between discovered events.  

The framework is based on a conjunction of several Big Data technologies, from a 

Apache Spark cluster that supports several Spark-based spatiotemporal extensions, such as 

the Spark MLLib (The Apache Software Foundation, 2018) and its implementation of FP-

Growth, STARK (Hagedorn & Tonndorf, 2016) and its implementation of the ST-DBSCAN 

algorithm, and GeoSpark/Sedona (The Apache Software Foundation, 2015) and its spatial par-

titioning features, to Keras (Chollet, 2015) Deep Learning library and its implementation of 

LSTM. As a practical application scenario, the framework was used to extract rules on traffic 

incidents in the city of Kazan and demonstrated that these rules provide useful insights to 

local authorities and emergency services for their decision-making processes, and that the 

framework could be used for transportation-related incidents' management on a city-wide 

level. 

2.4.3.3 Visualisation 

MobiTrafficBD visualization is the last topic of this chapter. It is clear that the performance of 

visualization tools is directly correlated to the amount of spatiotemporal data objects to be 

visualized. Further, due to the visual composition of different data sources that produces spa-

tiotemporal visualizations, such as in the case of the composition of world map data with re-

gional boundaries (e.g., city limits) and with Mobility- and Traffic-related spatiotemporal data 

(traffic events, traffic sensors, trajectories, etc.), spatiotemporal data visualization performance 

is an even bigger issue (Wang, Zhong, & Wang, 2019; Wang S. , et al., 2018). Moreover, spati-

otemporal visualization tools often make use of multiple linked displays to represent multiple 

aspects of spatiotemporal data, since map-based visualizations alone usually are not enough 

and need other visual displays, such as statistical graphs or timelines, to complement the com-

plexities of the spatiotemporal phenomena (Meirelles, 2013). Thus, in recent years, several re-

search and academic endeavours to overcome the obstacles of spatiotemporal visualization of 

large amounts of MobiTrafficBD have been ensued. These do not account for the already ex-

isting GIS visualization tools, some of them already overviewed in this chapter, such as Ge-

oServer (Open Source Geospatial Foundation, 2001).  

One of the more concrete examples is GeoSparkViz (Yu, Zhang, & Sarwat, 2018; Yu, Ta-

hir, & Sarwat, 2019), which was built on top of and by the same authors of Apache Sedona 

(The Apache Software Foundation, 2015) (formerly GeoSpark (Yu, Wu, & Sarwat, 2015)). Ge-

oSparkViz is a large-scale geospatial map visualization framework and extends a massively 
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parallelized cluster computing system (Apache Spark) to provide native support for general 

cartographic design and seamlessly integrates with the GeoSpark spatial data management 

system. The main contributions of GeoSparkViz are i) the encapsulation of the main tasks of 

the geospatial map visualization process (e.g., spatial objects' rasterization, pixel aggregation, 

etc.) into a set of Apache Spark-specific massively parallelized Resilient Distributed Datasets 

(RDD), which are a fundamental data structure of Spark, comprised by immutable distributed 

collections of objects, ii) a map tile-aware data partitioning method that achieves load balanc-

ing for the map visualization workloads among all nodes in the cluster and, iii) an extensive 

experimental evaluation that compares and contrasts the performance of GeoSparkViz with 

state-of-the-art distributed map visualization systems over real large-scale spatial data.  

The validation and demonstration of GeoSparkViz was performed with one set of Mo-

bility- and traffic-related ST events: the New York city taxi trips dataset, which consists of 260 

Gigabytes of data records containing pick-up and drop-off dates/times, pick-up and drop-off 

precise location coordinates, trip distances, itemized fares, payment method and travel dis-

tance. Pick-up and drop-off locations were represented in special spatial RDDs from GeoSpark 

and presented in a heat map to show the overall trends of taxi usage in New York city. More 

recently, GeoSparkViz was integrated with Apache Sedona and Apache Zeppelin to create a 

large-scale spatiotemporal data visualization system, enabling visualization of over 1 billion 

spatial objects (depending on the cluster size) (The Apache Software Foundation, 2021). 

Other research works on this subject point to two main research paths to enable efficient 

visualization of MobiTrafficBD: novel visualization methods that better summarize and ag-

gregate large-scale or extremely fast spatiotemporal datasets, without losing the meaningful-

ness of the underlying information and accounting for the performance aspects of such meth-

ods, or the extension of existing Big Data processing technologies to support large-scale spati-

otemporal visual analytics, such as in the case of GeoSparkViz. Some examples of the former 

are presented in sub-section 2.2.5, such as multiple linked views (Jern & Franzen, 2006; 

Maciejewski, et al., 2010; Plug, Xia, & Caulfield, 2011; Harris, Brundson, & Charlton, 2013), 

animated visualizations (Anwar, Nagel, & Ratti, 2014; Bouattou, Laurini, & Belbachir, 2017) 

and space-time cubes (Kraak, 2003; Gatalsky, Andrienko, & Andrienko, 2004; Kristensson, et 

al., 2008; Nakaya & Yano, 2010). Two examples of applying novel visualization methods, to 

the particular case of MobiTrafficBD, are Traffic Origins (Anwar, Nagel, & Ratti, 2014) and 

TripMiner (Riveiro, Lebram, & Elmer, 2017).  

Traffic Origins is presented as a simple, animated visualization technique that empha-

sizes the effects of traffic events on road congestion. The rationale behind this technique is that 

commercial mapping software typically draws attention to traffic events by placing markers 

at the events' locations. While this is useful for navigation, it is less useful for analysis since it 
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does not focus the user’s attention on the impact that these incidents have on traffic in the 

immediate vicinity before and after the incident happens. Traffic Origins was built with two 

main goals in mind: create an engaging visualization that used an attractive visual language 

to make traffic and congestion data accessible, enjoyable and easily understood by traffic man-

agement controllers, transportation expert and to be used in a walk-up-and-use setting that 

encourages members of the public to walk over and casually explore the data. The authors 

present a case study for loop detector and traffic event data from the city of Singapore, span-

ning one month. The case provided evidence of the applicability of Traffic Origins on a macro 

level, enabling observation of traffic incidents' variation over the course of a single day, week 

or month, and on a micro level, enabling observation of the visual relationship between traffic 

incidents and resulting congestion. 

TripMiner is a visual analytics framework for road traffic data analysis and anomaly 

detection that combines linked views and other novel visualization techniques to enable anal-

ysis over large volumes of highly heterogeneous, feature-rich vehicle data. The dataset com-

prises trip data, contextual data (e.g., road type, maximum speed, weather, etc.) and sensor 

data (e.g., vehicle sensors, road sensors, etc.). The framework uses several Data Mining and 

Machine learning techniques to aggregate and cluster data, in order to optimize the delivery 

of visualizations to the users. The linked views are the Feature and Normal Model Viewer, 

which supports the analysis of anomalous events found by an anomaly detector module and 

allows the identification of the most informative or important features of a cluster, model and 

data set, the Temporal Viewer, which displays the selected features versus time, for one or 

more trips, and a 2D Interactive Map Viewer that allows zooming, panning and area selection, 

and complements the two viewers described above. TripMiner allows the analysis of multidi-

mensional data, the identification of the most informative features of trips, the characterization 

and comparison of driving behaviours and the detection of anomalous behaviour. 

Regarding the latter, there are several works that attempt to apply Big Data distributed 

technologies and architectures to produce visual analytics methods that can cope with large-

scale or extremely fast data. The authors of (Wang S. , et al., 2018; Wang S. , et al., 2018) propose 

a visual analytics framework for Big Spatiotemporal Data, with each paper representing a dif-

ferent counterpart of the overall framework. In (Wang S. , et al., 2018), the authors propose a 

visual analytics framework for large-scale, batch Big Spatiotemporal Data and, in (Wang S. , 

et al., 2018), the same framework and workflow are redeployed for real-time streaming Big 

Spatiotemporal Data. The framework uses a conjunction of technologies to enable distributed 

parallel processing, rendering and provision of visualizations, from NoSQL databases to Big 

Data processing engines (Apache Spark, Apache Hadoop). Although these works represent a 

suitable example for the upcoming prescriptive methodology for developing MobiTrafficBD 
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frameworks, in this case focusing on visualization, they present a major drawback: They are 

based on a commercial, non-open-source software product for GIS services provision, called 

SuperMap (SuperMap Software Co., Ltd., 1997).  

The authors of the SMASH platform (Wu, Morandini, & Sinnott, 2015), already pre-

sented in this section, and described as a cloud-based platform architecture for Big Data pro-

cessing and visualization of traffic data, perform a benchmarking on the performance of the 

overall platform, with an emphasis on data aggregation for visualization and in relation to the 

amount of data to be aggregated versus the number of nodes in the Spark cluster in which 

SMASH is deployed. The visualization tool integrated in SMASH is GeoServer (Open Source 

Geospatial Foundation, 2001). Last but not least, the authors of (Root & Mostak, 2016) present 

MapD (Massive Parallel Database), an in-memory database and Big Data analytics platform 

designed to be deployed on GPU-based environments that can query and visualize Big Spati-

otemporal Data up to one hundred times faster than other Big Data platforms. MapD achieves 

its speed using a variety of novel techniques, such as data rendering and visualization in situ 

on the GPU without the need to copy query result set before rendering it, code vectorization 

that allows the compute resources of a processor to process multiple data items simultane-

ously and highly optimized GPU routines for common database operations. 

To conclude, there are also works that follow simultaneously both research paths: the 

use of novel visualization techniques coupled with Big Data distributed technologies and ar-

chitectures to render the final visualizations. The authors of (Perrot, Bourqui, Hanusse, La-

lanne, & Auber, 2015) propose a visualization system for large interactive visualization of den-

sity functions for MobiTrafficBD. The framework is supported by Big Data distributed tech-

nologies, such as Apache Spark for data aggregation and Apache HBase for data storage, as 

well as GPU-based techniques to render novel density cluster visualizations in the form of 

geographical heatmaps. To benchmark the framework, the authors used four extremely large 

datasets, two of which corresponded to bike users' positions, one corresponded to the whole 

collection of points of interest from OpenStreetMap and another with GPS traces registered in 

the OpenStreetMap database. The benchmark analysis covered clustering, rendering and final 

image quality and concluded that the framework is able to interactively explore sets of points 

of any size, with the only limiting factor being the size of the Big Data infrastructure. 

Finally, the authors of (Guan, et al., 2020) present MAP-Vis, a distributed Big Spatiotem-

poral Data visualization framework based on a novel visualization technique denominated 

Multi-Dimensional Aggregation Pyramid (MAP) model. The MAP visualization model is 

based on the Space-Time Cube (Gatalsky, Andrienko, & Andrienko, 2004; Bach, Dragicevic, 

Archambault, Hurter, & Carpendale, 2014; Kraak, 2003; Kristensson, et al., 2008), extended 

with the attribute dimension to Space-Time-Attribute Cube and providing the building blocks 
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for the proposed MAP model, and on the 2D Tile Pyramid, which implements the idea of 2D 

spatial aggregation and provides a good implication for the simultaneous aggregation of 

space, time, and attributes. The MAP model enables the hierarchical aggregation to be 

achieved not only on the spatial dimension but also on the temporal and attribute dimensions. 

To validate and demonstrate the efficiency and usefulness of the proposed model, the authors 

developed a Big Data framework that uses Apache Spark, as the main processing engine to 

create the visualization model, and Apache HBase, as the distributed storage technology that 

houses the pyramid model. Further, the framework is validated by applying several different 

Big Spatiotemporal Data sets to build visualizations based on the MAP model, such as for 

instance, the 60 Gigabyte-New York city taxi data set. The MAP-Vis realizes millisecond-level 

multidimensional data querying and achieves good interactive visualization. Experimental re-

sults validate the efficiency of both the MAP model and the MAP-Vis framework, both of 

which can provide high scalability for processing capability and online visualization. 
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3  

 

A METHODOLOGICAL APPROACH FOR 

MOBITRAFFICBD FRAMEWORKS 

This chapter describes a data-driven and prescriptive methodological approach for the design 

and development of Mobility- and Traffic-related Big Spatiotemporal Data Frameworks (Mo-

biTrafficBD Frameworks). The intended characteristics are further explored, giving rise to a 

set of functional and non-functional requirements and design considerations for the imple-

mentation of generic, data-driven frameworks that process, manage and analyse Big Spatio-

temporal Data.  

Based on such requirements and considerations, a generic model or conceptual architec-

ture is presented and complemented with logical components, data flows and technological 

stacks that can fulfil the requirements. Finally, a set of general guidelines and best practices 

for the design of MobiTrafficBD frameworks is presented as a wrap-up conclusion for the 

chapter. 

3.1 Characteristics, Requirements and Design Options 

Chapter 1 overviewed some generic characteristics, or requirements, for MobiTrafficBD frame-

works, regarding the Big Data and spatiotemporal nature of such frameworks in the context 

of Intelligent Transportation Systems. These can be seen as the necessary characteristics of 

generic ITS systems and frameworks with the objective of handling and analysing MobiTraf-

ficBD, and are described as follows: 

• Efficient collection and storage of MobiTrafficBD. 

• Application of standards and interoperability tools to tackle the heterogeneity of Mo-

biTrafficBD. 

• Awareness towards the spatiotemporal nature of MobiTrafficBD. 



 82 

• RITMOs' decision support through the application of efficient Big Data, data mining 

and visual analytics tools over MobiTrafficBD. 

• Value extraction from MobiTrafficBD to support RITMOs' monitoring and decision-

making processes. 

 

These characteristics have a clear objective: To bring Big Data and spatiotemporal data 

together to support RITMOs with a clear perspective on mobility and traffic and to optimize 

their decision-making processes. Summarizing the general characteristics described above, a 

generic MobiTrafficBD framework should be able to collect high volumes of heterogeneous 

MobiTrafficBD swiftly, harmonize them into standard formats, store them in databases, apply 

suitable processing and analysis methods and present the results to RITMOs in a meaningful 

and valuable fashion through visual analytics methods. 

Regarding collection and storage, the main requirements are linked to the online versus 

offline characteristics of the data at hand (i.e., if the data is a real-time stream or an offline 

batch of historical data), different functional requirements are imposed. The difference be-

tween stream and batch data will be further explored in the next chapters. One important re-

quirement comprises the need for MobiTrafficBD frameworks to collect data from different 

data sources and data sharing mechanisms, such as Web services, databases or file systems. 

Next, regarding data heterogeneity, requirements comprise the need for harmonize Big 

Spatiotemporal Data according to the data type and using existing data standards. Depending 

on the data type (e.g., traffic sensor data, traffic event data, weather station data), Big Spatio-

temporal Data coming from different data sources and bearing different data formats should 

be harmonized to a single standardized format.  

This means that, for instance, traffic sensor data from two different sources, and having 

different formats and even different attributes, should be harmonized to a single common 

schema that enables the different attributes of different data providers and sources to be stored 

without any loss of the original data. Another requirement is linked to the data collection 

mechanisms in place, since MobiTrafficBD frameworks should be able to access and collect 

data from data sources through different mechanisms, such as, for instance, Web services, file 

systems or database systems. Furthermore, MobiTrafficBD frameworks should enable the ad-

dition of new standard-based data formats for data types that are not initially considered 

within the frameworks. For instance, if a framework cannot handle public transportation data, 

then it should be possible to add new common or standard data formats for this new type of 

Big Spatiotemporal Data. 

The third and fourth points account for both the Big and spatiotemporal natures of Mo-

biTrafficBD: On one hand, MobiTrafficBD frameworks need to employ Big Data technologies 
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that can efficiently process and analyse high-volume and high-speed MobiTrafficBD, in such 

a way that the resulting insights are useful enough and are gathered swiftly enough to be 

effectively used and capitalized upon within RITMOs' decision-making processes and mobil-

ity- and traffic-related optimization tasks. On the other hand, the value of these insights is 

directly linked to the spatiotemporal nature and relationships of the data at hand, hence pro-

cessing and analysis actions must be directed towards the spatiotemporality of MobiTraf-

ficBD. Hence, the tools and methods used to process and analyse MobiTrafficBD must not only 

be compliant with the Big Data technological paradigm but must also be suitable for spatio-

temporal data. 

Only when all the above characteristics are fulfilled, is the fifth and last point possible: 

if heterogeneous MobiTrafficBD, gathered from completely different data sources, is harmo-

nized into common formats, and processed and analysed taking into account both the Big Data 

and spatiotemporal characteristics of MobiTrafficBD, then RITMOs will be able to extract in-

sights with the necessary value to really be useful within decision-making processes. These 

characteristics give rise to the elicitation of MobiTrafficBD framework requirements. 

Requirements may be divided into functional and non-functional requirements. Table 

3.1 and Table 3.2 present respectively the generic functional and non-functional requirements 

for MobiTrafficBD frameworks.  

As formally described in (Chung, Nixon, Yu, & Mylopoulos, 2012), a functional require-

ment is a system requirement that specifies a function that the system or one of its components 

must be capable of performing. Functional requirements define system behaviours, i.e., the 

fundamental processes or transformations that system's components (software plus hardware) 

perform on inputs to produce outputs. Conversely, a non-functional requirement is a system 

requirement that describes not what the system will do, but how the system will do it. This 

includes a system's performance requirements, external interface requirements, design con-

straints and quality attributes. Non-functional requirements are often evaluated subjectively 

because their veracity is hard to validate objectively. 

These requirements are data-driven in the sense that all of them focus on data and on 

the generic actions carried out on such data by MobiTrafficBD frameworks, to produce mean-

ingful and valuable insights for RITMOs. There are other functional requirements that must 

be considered when designing MobiTrafficBD frameworks, such as the case of registering and 

logging users in and out of the framework, so that data access can be secured and private. 
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Table 3.1 — MobiTrafficBD Frameworks functional requirements 

Functional 

Requirement 

ID 

Requirement Description 

FR1 MobiTrafficBD frameworks should be able to collect Big Spatiotemporal 

Data, whether it is comprised by high-volume historical batch data or high-

speed real-time streams 

FR2 MobiTrafficBD frameworks should be able to collect Big Spatiotemporal 

Data from different data sources and through different mechanisms 

FR3 MobiTrafficBD frameworks should store big volumes of Big Spatiotemporal 

Data and high-speed streams of real-time Big Spatiotemporal Data 

FR4 MobiTrafficBD frameworks should harmonize data from similar categories 

(e.g., traffic sensor data) into standardized formats 

FR5 MobiTrafficBD frameworks should enable the addition of new standard-

ized formats for new data categories, not yet present in the framework (e.g., 

public transportation data) 

FR6 MobiTrafficBD frameworks should enable Big Data processing and analysis 

of both high-volume (batch) and high-speed (streaming) MobiTrafficBD 

FR7 MobiTrafficBD frameworks should also enable the analysis of MobiTraf-

ficBD based on their spatiotemporal attributes 

FR8 MobiTrafficBD frameworks should provide visual analytics tools for visu-

alizing processing and analysis results and insights 

 

The non-functional requirements presented in Table 3.2 correspond to intrinsic charac-

teristics a framework must strive for, to achieve the fulfillment of the functional requirements 

presented in Table 3.1. As stated in (Sachdeva & Chung, 2017), non-functional requirements 

are vital to projects involving cloud and Big Data and need to be handled in a suitable manner 

early in the software lifecycle. Table 3.2 presents a description of each non-functional require-

ment and its link to the functional requirements presented in Table 3.1, when appropriate. 

Most of these requirements are transversal subjects in several discussions and in the lit-

erature regarding Big Data. Big Data technologies are now in the spotlight for science, business 

and industry, because of the inherent promise for the creation of a paradigm shift for automa-

tion of all processes within these domains. In fact, Big Data is becoming the envisaged concep-

tual and technological ecosystem for solving different aspects of human activity in areas such 

as industry, society, healthcare, science and mobility, among others. 
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Table 3.2 — MobiTrafficBD Frameworks non-functional requirements 

Non-functional 
Requirement 

ID 

Non-functional Re-
quirement 

Requirement Description 

NFR1 Interoperability 

Addresses the ability of systems and frame-
works that create, exchange and consume data 
to have clear, shared expectations for the con-
tents, context and meaning of that data. Re-
lated to FR2, FR4 and FR5. 

NFR2 Elasticity 

Refers to the ability of systems and frame-
works to adapt to new data types, sources and 
formats, as well as new workload variations, 
opening the application boundaries to new 
use cases. Related to FR1, FR2 and FR5. 

NFR3 Scalability 

Depending on the volume and speed of data 
at hand, systems and frameworks must be 
able to dynamically adapt their infrastructure 
to accommodate higher data volumes and 
higher data speeds. Related to FR1, FR3 and 
FR6. 

NFR4 Robustness 

Concerns the ability of frameworks to recover 
from errors or issues during runtime. The ro-
bustness of the framework must be present 
across all stages and processes. Related to FR2 
and FR6. 

NFR5 
Distributed & Flexible 

Storage 

Linked to the scalability and elasticity, refers 
to the necessary resilience and flexibility that 
storage mechanisms must possess to ensure 
data storage resilience, fault tolerance and 
availability. Related to FR2 and FR3. 

NFR6 
Parallel & Distributed 

Processing 

Also linked to scalability, addresses the per-
formance, fault tolerance and resilience of 
data processing mechanisms by means of dis-
tributing and parallelizing workloads through 
several hardware nodes. Related to FR1, FR3 
and FR6. 

NFR7 Spatiotemporality 

Refers to the focus given to spatiotemporal 
characteristics in data, when applying pro-
cessing, analysis and visual analytics mecha-
nisms. Related to FR7 and FR8. 

NFR8 High-Performance 

Addresses the necessary performance to de-
liver valuable results and insights in a timely 
manner to support decision-making pro-
cesses, in both high-volume (batch data) and 
high-speed (streaming data) cases. Related to 
FR1 and FR6. 
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NFR9 Security & Privacy 

Refers to the necessary security and privacy 
mechanisms to protect personal and commu-
nity data from data leaks, breaches and hacks. 

NFR10 
Minimum Mainte-

nance 

Accounts for the need for easy configuration, 
easy deployment and easy maintenance of the 
solution. Related to the overall framework 

NFR11 User Friendliness 

Points towards the easy-ot-use characteristics 
of the framework. Since most RITMOs do not 
have a IT background, MobiTrafficBD Frame-
works should be intuitive and easy to use by 
other than researchers and practitioners. Di-
rectly related to FR8 in terms of user-friendly 
data visualization. 

 

As already pointed out in Section 2.3, an important step in the design and development 

of MobiTrafficBD frameworks is the choice of a suitable reference architecture, in the case of 

this thesis work, the BDVA-RM (Figure 2.5), and the addition, if necessary, of the spatiotem-

poral components to the reference architecture. Nevertheless, the proposed prescriptive meth-

odology will only focus on some of the horizontal and vertical layers of the BDVA-RM, as 

represented in Figure 3.1. In the data domain, the presented methodology will mainly concern 

structured data, time series and IoT data, geographic, spatiotemporal data and map and ge-

ography data in the form of graph data. 

 
Figure 3.1 — Positioning of the proposed methodology in relation to the BDVA-RM (adapted from (Big Data 

Value Association, 2020)) 
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The necessity of addition of spatiotemporality to the chosen reference architecture has 

to do with the inherent generic nature of most reference architectures. Since, to the best of the 

author's knowledge, there is no reference architecture or model that satisfies both the Big Data 

and spatiotemporal data needs of MobiTrafficBD frameworks, the choice of a Big Data refer-

ence architecture and the posterior addition of spatiotemporal components seems to be the 

best way to tackle the design of these frameworks. 

Spatiotemporal aspects must be present in almost all the layers of the BDVA-RM that 

will be tackled by the proposed methodology (Figure 3.1). MobiTrafficBD is collected from the 

Things/Assets, Sensors and Actuators layer, although the inner workings of this layer (e.g., 

sensor technology, IoT concepts, etc.) will not be the subject of this thesis work. The Data Man-

agement layer is responsible for the actual data collection process, as well as for cleaning, har-

monization and storage processes. Although the data cleaning process is an important step 

towards data quality, it will not be thoroughly approached in this document, but will be dis-

cussed whenever needed. For now, it suffices to say that the spatiotemporal data cleaning 

process is not necessarily done upon the data's spatial and temporal attributes, but mainly 

performed due to unreliable readings on actual measured attributes (Zhou, Li, & Gu, 2020), 

such as those obtained by sensors, for instance. 

Nevertheless, both harmonization and storage processes need to be prepared to handle 

both the spatiotemporal and high-volume, high-speed characteristics of MobiTrafficBD. In the 

case of harmonization, the chosen data modelling standards must comprise spatial and tem-

poral attributes in their data models, and there is also the issue of harmonizing the spatial and 

temporal attributes themselves, whether to a uniform geographic reference system, for spatial 

attributes, or to a uniform temporal representation, as in the case of timestamps. For storage, 

there is also the need for the database system, or any other storage mechanism, to be able to 

cope with both Big Data and spatiotemporal data. 

Next, the Data Processing Architectures layer is responsible not only for the actual data 

processing tasks, but also for the overall architecture that enables these tasks. This point is 

especially important due to the growing need of developing frameworks that enable inte-

grated processing of data-at-rest (high-volume, batch data) and data-in-motion (high-speed, 

streaming data). The problem of achieving effective and efficient processing of data streams 

(data-in-motion) and the integration with already existing batch data in a Big Data context is 

far from being solved. Focusing on MobiTrafficBD, this layer must be able to cope with both 

spatiotemporal data streams and data batches, by leveraging the necessary infrastructural, or-

chestration and performance optimizations to integrate, fuse and aggregate both data batches 

and streams in meaningful and valuable ways, in order to support Big Spatiotemporal Data 

analytics tasks, such as prediction or pattern discovery, to name a few. In this sense, the focus 
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must be to employ already existing Big spatiotemporal data processing frameworks, such as 

Apache Flink (The Apache Software Foundation, 2014), which has already spatiotemporal pro-

cessing and analysis features off-the-box (Karim, Soomro, & Burney, 2018), or Spatial Spark 

(Karim, Soomro, & Burney, 2018), a spatial extension for Apache Spark (The Apache Software 

Foundation, 2018). 

The Data Analytics layer is responsible for data analytics and advanced processing ac-

tivities, namely data mining, knowledge discovery, machine learning and deep learning tasks, 

with the aim of providing insights into the data. Specifically regarding MobiTrafficBD, the 

Data Analytics layer, along with the Data Management and Data Visualisation layers, is where 

the emphasis on the spatiotemporality of data is crucial. There is a need to bring Big Data 

analytics and spatiotemporal data analysis closer together, by implementing already proven 

spatiotemporal data mining and analysis methods within Big Data analytics tools, such as 

Apache Spark MLLib (The Apache Software Foundation, 2018), or distributed algorithm de-

velopment frameworks, such as, for instance, Apache Mahout (The Apache Software Founda-

tion, 2014). 

Finally, the Data Visualization and User Interaction layer is responsible for delivering 

explorable and understandable insights by interacting with users through visual analytics 

methods. Regarding big spatiotemporal data, the main challenges are to develop innovative 

ways to visualise data in the geospatial domain, such as geo-locations, distances and 

space/time correlations (i.e. sensor data, event data) and to tackle the issue of multiple 

scale/granularity spatiotemporal data, facilitating the empirical search for acceptable scales of 

analysis and the verification of results by modifying the scale and the means of any aggrega-

tion (Big Data Value Association, 2020). 

From the vertical concerns presented in the adapted BDVA-RM (Figure 3.1), the only 

one which needs the addition of spatiotemporality is the concern for the use of standards, since 

Data Sharing Platforms are not dependent of any spatiotemporal characteristics of data. As 

expressed by the BDVA, "the ‘variety’ of Big Data makes it very difficult to standardise. Nev-

ertheless, there is a great deal of potential for data standardisation in the areas of data exchange 

and data interoperability" (Big Data Value Association, 2020). Specifically, for MobiTrafficBD, 

the use of data exchange and modelling standards is important due to the heterogeneity of 

spatiotemporal data, not only in terms of their sources but also in terms of data collection 

methods and technologies, formats and schemas, scales and granularities and spatial reference 

systems, just to name a few. Furthermore, different standards for different data types, such as 

traffic sensor data and public transportation data, may be combined in order to enrich the 

portfolio of possible data sources and types that can be used within MobiTrafficBD frame-

works. 
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As a final side note, the Data Protection layer of the BDVA-RM, although not an active 

part of this work as previously stated, is responsible for data privacy, anonymization and se-

curity processes. Hence, there is an increasing necessity for the employment of privacy-pro-

tection and secure data exchange mechanisms that offer guarantees of truly secure, formal 

data privacy. 

3.2 Logical Components and Data Flows 

The logical components included in the proposed approach are defined according to the com-

ponents present in the BDVA-RM, since it aims to be compliant with current standards and 

trends in the Big Data community, namely in Europe. Noticeably, the proposed model of log-

ical components and data flows presents some significant modifications, omits some of the 

layers that are not subjects of this thesis work, such as the case for Data Protection, and extends 

the BDVA-RM with new components.  

The proposed approach also considers relevant principles and guidelines provided by 

previous published works, such as the main Big Data Reference Architectures (e.g., NIST 

(NBD-PWG, 2015), BDVA (Big Data Value Association, 2020)), the Big Data Processing Flow 

proposed by (Krishnan, 2013), the survey named Spatiotemporal Aspects of Big Data, pro-

posed in (Karim, Soomro, & Burney, 2018), the guidelines for quality Advanced Traveller In-

formation Systems data (America's Advanced Traveller Information Systems Committee, 

2000) or the Big Data Warehousing guidelines from (Costa C. F., 2019), just to name a few. 

Furthermore, the proposed logical components and data flows model also encourages con-

formity with three of the main guidelines proposed within the Lambda Architecture (Marz & 

Warren, 2015): first, data should be stored at the highest level of detail possible (i.e. raw data) 

since it may serve future analytical purposes not previously planned and minimizes the threat 

of losing data in the processing and analytics processes; second, whenever possible, data struc-

tures should be modelled and used to store a set of immutable events, avoiding updates to 

existing data; finally, data at different speeds certainly has different requirements and, there-

fore, different logical components for batch and streaming data must be taken into considera-

tion. Furthermore, this work strives to house all the desired properties of a Big Data system, 

as proposed in the Lambda Architecture, and already highlighted as non-functional require-

ments: Robustness and fault tolerance, low latency, scalability, extensibility, ad hoc querying 

and minimal maintenance.  

The logical components and data flows model is presented in Figure 3.2 and is a generic, 

conceptual model of how a MobiTrafficBD framework should be designed and built. The 

model is divided into three distinct main components: Data Providers, such as for instance, 
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physical sensors, law enforcement authorities and road infrastructure operators' databases or 

traffic and mobility data aggregator and provision companies, the MobiTrafficBD framework 

itself and End Users, which comprise RITMOs or any other stakeholders that have access to 

the framework or that use the guidelines to tackle new use cases related to Mobility and traffic, 

as for instance public transportation operators or traffic law enforcement authorities. The ar-

rows represent the flow of data between the framework and the Data Providers and End Users 

components. Each colour represents the type of data that flows through the architecture: blue 

represents batch, historical data, green represents real-time data streams and red represents 

the interactive data accessed through queries to databases containing both streaming and 

batch data. Furthermore, two types of arrows are presented: full lines are mandatory flows of 

data, while dashed lines are optional paths for the data to flow within and across the frame-

work's layers. The distinction between data flows is an important characterization since data 

gathered at different speeds has different requirements, and should be handled differently, 

even if the overall data handling process is the same (e.g., different data storage mechanisms 

and technologies should be used when storing batch or streaming data). 

 Data Providers 

The bottom component of Figure 3.2 marks the beginning of the flow of data through a Mo-

biTrafficBD framework. Data providers are physical entities that capture, aggregate and intro-

duce new data into a MobiTrafficBD framework and can take the form of people, companies, 

sensors, computer systems or Web sources, just to refer a few possibilities.  

Hence, the Data Providers component represents the set of available data sources, 

whether internal or external to the framework, online or offline, and with automatic or manual 

data capture or aggregation. The data may be represented through GRTS (e.g., sensor read-

ings), ST events (e.g., traffic events captured by experts or by automated event processing sys-

tems), graph data (e.g., cartography and map data) or other data types, such as in the case of 

Web services for location awareness and enrichment (e.g., Foursquare [291]). 

Although some of these data types may be more often characterized as data streams or 

batches, it is considered that all data types can be represented by both batches and streams of 

data. Some of the responsibilities of a data provider are to enable data access through suitable 

interfaces, to provide adequate metadata, to enforce access rights and to assure data privacy 

and security throughout the data capturing and transmission processes. 
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Figure 3.2 — Logical Components and Data Flows Model 
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 MobiTrafficBD Framework 

A generic MobiTrafficBD framework is comprised of four horizontal sub-components that 

mimic the horizontal layers of the BDVA-RM, with the exception of the Data Protection layer, 

which is represented in the logical components and data flows model as a vertical concern, in 

the form of Security and Privacy, because it is crucial to guarantee data privacy and security 

throughout the flow of data within the framework. The remaining vertical concerns are Com-

munications, Infrastructure and Orchestration. These vertical concerns must be considered in 

every horizontal layer of the framework since they provide the direct support for Big Data 

collection, storage, processing and analysis processes. 

Communications refers to the communication mechanisms used to enable communica-

tion between different layers in the framework and between physical and virtual infrastruc-

tural resources used by the framework. These communication mechanisms must be able to 

cope with the high-volume, high-speed characteristics of Big Data, while presenting fault tol-

erance and resilience against data loss during data transmission between the different entities, 

components and layers of the framework. Infrastructure represents the hardware and software 

infrastructure that grants the processing capabilities needed for MobiTrafficBD framework to 

perform Big Data management, processing and analysis procedures, and may be categorized 

as on-premises, when the servers are proprietary and are deployed on the premises of the 

company responsible for the MobiTrafficBD framework, or cloud-based, if the framework is 

deployed on a cloud environment. 

Finally, Orchestration symbolizes the "glue" that brings all the vertical concerns and hor-

izontal layers together. It is responsible for managing the framework in terms of workload 

distribution across physical and virtual infrastructural resources, easy configuration and de-

ployment, and development operations (DevOps) in general. It is directly linked with several 

non-functional requirements, such as Scalability, Extensibility, Minimal Maintenance, and 

Low Latency since it controls and optimizes all the processes within the layers of the frame-

work.  

Looking at the horizontal sub-components, the main data-driven processes are repre-

sented by squared boxes and their internal concepts and characteristics are represented by 

rounded boxes. The suggested horizontal sub-components comprise all phases of the Big Data 

lifecycle, already introduced in the previous chapter, and shown in Figure 2.4 (Big Data Lifecy-

cle). Each sub-component will be described in the following sections. Data flows through the 

different sub-components and their processes, on both mandatory (full) and optional (dashed) 

paths.  

The proposed data-driven logical components and data flows model follows two com-

plementary data-handling approaches: bottom-up and top-down. A bottom-up approach is 
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primarily focused on streaming (green arrows) and batch (blue arrows) data. In the bottom-

up approach, data is captured through data collection processes and flows upstream, under-

going processing and analytics procedures that are defined and configured beforehand, and 

results are normally composed by detected anomalies and patterns, through the application 

of anomaly and pattern detection, clustering or classification processes, or by predicted out-

comes, by utilizing pre-trained prediction models. This entails that end users do not have the 

option to directly choose the raw data they want to analyse and visualize. On the other hand, 

in a top-down approach, the data to be processed and analysed is selected by end users, 

through and data querying and access mechanisms. This approach is reserved for interactive 

data, since end users must select the spatiotemporal scope and range of the data to be analysed, 

as well as the attributes of interest for the analysis. 

3.2.2.1 Data Management 

The Data Management sub-component (Figure 3.3) is responsible for all the data processes 

from data collection to data storage, formally known as Extract-Transform-Load (ETL) or Ex-

tract-Load-Transform (ELT) processes (Bala, Boussaid, & Alimazighi, 2016).The choice be-

tween ETL or ELT resides in the strategy undergone for storage of raw data. For instance, in 

the case of streaming data, an ETL approach may be used, entailing that data is extracted, 

transformed and stored via background processes. Nevertheless, a hybrid approach is recom-

mended, meaning that both ETL and ELT should be aggregated so that data is stored before 

(raw data) and after (harmonized, cleaned data) the transformation step. The logical compo-

nents and data flows model of Figure 3.2 only presents harmonization and cleaning as inter-

mediary processes, but in fact there can be other processes in between data collection and 

storage (e.g., data fusion between different data sources). Data is collected from data providers 

and sources through different mechanisms. 

In the case of big volumes of batch data, the most common data collection mechanism is 

the use of data adapters, i.e., adapters specifically developed for the type of data source at 

hand. There is a wide range of possible data adapters, such as database adapters, which are 

specifically designed to collect data from relational and other databases, frequently using 

ODBC (Open Database Connectivity) (Signore, Stegman, & Creamer, 1995) connectors, Web 

service adapters, which are often based on the HTTP (Hypertext Transfer Protocol) (Fielding, 

et al., 1985) or FTP (File Transfer Protocol) (Postel & Reynolds, 1985) protocols, or file adapters, 

which read specific file types, such as CSV (Comma Separated Values) (Shafranovich, 2005), 

JSON (JavaScript Object Notation) (ECMA Technical Committee 39, 2017) or XML (eXtended 

Markup Language) (Murata, St. Laurent, & Kohn, 2001), just to name a few. The main require-

ment for these adapters is the ability to access and collect big volumes of batch data in a fast 
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and effective way. Examples for batch data collection will be presented in Chapters 5 and 6, 

namely the collection of large volumes of GRTS in the form of traffic sensor data (sub-sections 

5.2.2.1 and 6.1.1) and public transportation-related ticketing transactions (sub-section 6.1.1). 

 
Figure 3.3 — The Data Management Sub-component 

For streaming data, the most common data collection mechanism is based on the mes-

sage queuing paradigm. Message queuing is a form of asynchronous communication between 

systems or services in which incoming messages are stored in a queue until they are extracted 

and processed. The basic architecture of a message queue is simple; there are client applica-

tions called producers that create messages and deliver them to the message queue. Another 

application, called a consumer, connects to the queue and gets the messages to be processed. 

Message queues may fall into the publish/subscribe mechanisms category, although pub-

lish/subscribe mechanisms can also be used to transmit batch data. The publish/subscribe 

paradigm is based on the subscription of a data source by a system, and the posterior broadcast 

of messages to all systems that subscribed that data source. In both message queueing and 

publish/subscribe paradigms, data may be transmitted in several data formats, such as the 

ones already presented above, JSON, XML, CSV, etc. Examples for streaming data collection 

will be presented in Chapters 5 and 6, namely the collection of GRTS streams in the form of 

real-time traffic sensor data (sub-sections 5.2.2.1 and 6.1.2) and social media-based ST Events 

(sub-section 6.1.2). 

After its collection, it is advisable to store raw data before undergoing further data man-

agement processes. In the case of batch data, it is mandatory to store raw data to prevent data 

loss errors that may occur when cleaning and harmonizing data, or in other processes further 

down the framework's pipeline. Even in the case of streaming data, it is strongly encouraged 
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for raw data to be stored, directly upon arrival of each message, or through a background job 

that accesses a buffer of individual records to store them in their raw format. A reason for 

storing streaming data is to store it as an historical data set that can be used for creating and 

optimizing streaming analytics models, such as predictive models or anomaly detection rules, 

for instance.  

In the case of GRTS, in which the spatial dimension is static, spatial and time-static at-

tributes (attributes that do not change over time) to be stored in separately of time-variable 

attributes (attributes that change in time). One example is traffic sensor data, in which the 

location of the sensor and time-static attributes, such as road name, road direction, or other 

metadata can be stored in one database table and individual sensor readings, with different 

time-variable attributes along with the reading's timestamp in another table. Practical exam-

ples on how to select a suitable storage mechanism or technology will be presented in sub-

section 5.2.3. 

Following the process of storing it, raw data may need to be cleaned, although it is not a 

mandatory step (marked as a dashed box in Figure 3.3); it was already stated in this chapter 

that the presented work will not delve into the specifics of data cleaning. It suffices to refer 

that data cleaning is an important procedure, especially in the case of spatiotemporal data, like 

ST Events and GRTS, although it should be realized in the data source and not after, meaning 

that data providers should enable data cleaning processes associated to their data gathering 

and provision processes. One new trend regarding the provision of data cleaning procedures 

at the time of data gathering is referred to as data cleaning on the "edge", i.e., directly on the 

data gathering hardware, such as sensor platforms or data gateways (Wang, et al., 2019). An 

example on the use of a standard Data Mining methodology for MobiTrafficBD cleaning will 

be the subject of sub-section 5.1.1.2. 

After storage and optional cleaning, raw data must be harmonized. Data harmonization 

is a critical step because it enables full data interoperability while providing the necessary 

compliance with proven data standards and interoperable models. The harmonization process 

is a procedure in which the attributes present in the raw data format are mapped to the attrib-

utes in the harmonized data model. This mapping procedure is not only based on aligning the 

attributes' names and types (e.g., String, Number, Date, etc.) but also to transform their char-

acteristics into the harmonized model's. For instance, considering an attribute representing 

date and time in a specific format, such as "2020-10-26 14:57:00", when harmonizing such at-

tribute, the date and time format must be provided to the harmonization procedure, so that it 

can recognize the format and transform it to the harmonized one. Another example is the har-

monization of location points, in the form of coordinates. There are many coordinate formats 

and geographic reference systems, and location attributes must be harmonized to be compliant 
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with the chosen harmonized format and reference system. As the subject of MobiTrafficBD 

harmonization has been one of this thesis work's main contributors, several example use cases 

for data harmonization will be explored throughout Chapter 5. 

After harmonization, it is again recommended that the resulting data is stored. For batch 

data this step is mandatory, while for streaming data its strongly advised, since it will form 

the basis for future historical data, as previously highlighted. Although, when working with 

real-time streaming data, there is a need to process such data in real-time and present results 

and insights in an almost immediate fashion, there is also a growing need to store real-time 

streaming data in a swift and efficient way. This subject will be revisited in the following chap-

ters, but it is worth stating that there are several strategies to store streaming data while main-

taining low latencies.  

One of the most popular strategies is to store the incoming streams in a fast writing da-

tabase, such as in the case of in-memory databases (e.g. Redis (RedisLabs, 2015)), time-series 

databases (e.g., InfluxDB (InfluxData, Inc., 2013)) or real-time analytical databases (e.g. Apache 

Druid (The Apache Software Foundation, 2019)), often through the use of background services 

that work in parallel with the main analytics processes to access data streams in order to store 

streaming data without interfering with the fast flow of real-time data analytics. These topics 

will be revisited thoroughly in Chapter 5. 

3.2.2.2 Data Processing 

The next sub-component in the proposed logical components and data flows model is Data 

Processing (Figure 3.4). This component is responsible for all the processing tasks supporting 

the actual application of both Data Management and Data Analytics processes, with the goal 

of supporting Big Data processing tasks. Data processing tasks include data transformation, 

such as data enrichment, data aggregation and data fusion, and data selection, querying and 

access. For both the Data Processing and Data Analytics sub-components, three different types 

of data processing are considered, as overviewed in sub-section 2.3.5, depending on the data 

type at hand (Costa C. F., 2019): Batch processing, stream processing and interactive pro-

cessing. 

As will be evident in Chapters 5 and 6, data processing can be considered as an under-

lying process used by the Data Management and Data Analytics sub-components to enhance 

the Big Data capabilities of their own processes. This means that, often, data processing con-

cerns the Big Data processing engines used as a basis for the Data Analytics and Data Man-

agement processes, such as in the case of Apache Hadoop (The Apache Software Foundation, 

2018) and Spark (The Apache Software Foundation, 2018) for batch processing or Apache 

Storm (The Apache Software Foundation, 2018) and Flink (The Apache Software Foundation, 
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2014) for stream processing. Examples for the use of such Big Data processing engines for Data 

Management and Data Analytics will be presented, respectively, in sub-sections 5.2.1, 6.1.1 

and 6.1.2. Hence, the Data Processing sub-component will be approached in Chapters 5 and 6 

as a necessary dependency of the Data Management and Data Analytics sub-components, 

when it comes to handle, process and analyse MobiTrafficBD. 

 
Figure 3.4 — The Data Processing Sub-component 

Nevertheless, there are processes which are normally carried out by the Data Processing 

sub-component, such as data aggregation, data fusion, data enrichment and data access and 

querying, to point out a few. Within the context of the proposed methodology, data aggrega-

tion primarily focuses on combining spatiotemporal data through the adjustment of their spa-

tiotemporal granularities. Different data sources often present different spatiotemporal gran-

ularities upon their collection as, for instance, in the case of sensor readings, which may be 

captured at different time intervals (e.g., a reading per each five minutes or each few seconds), 

or in the case of meteorological stations, which present different spatial granularities (e.g., 

weather data for a wider region or for a specific city). Hence, it is imperative that, when per-

forming analytical processes over spatiotemporal data, these granularities are adjusted and 

conform to defined spatial and temporal ranges. Therefore, when analysing data from a par-

ticular spatial area at a particular time interval, all data sources available within such spatio-

temporal range should be represented with similar granularities. 

Data fusion refers to the combination of MobiTrafficBD with other data sets, to combine 

the original data sets to produce a more complete data set with more information, containing 

all the data attributes or associated metadata of the original sets. One example is the fusion of 

traffic sensor data with traffic event data and weather station data for a known location, or the 
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fusion of traffic event data with the type of traffic event or the degree of severity of such event. 

Finally, data enrichment entails the creation of new attributes, derived from raw data as well 

as the extraction of patterns in data, resulting from complex event processing or other pattern 

mining methods. For instance, traffic sensor metadata may be fused with more information, 

such as the type of road in which the sensor is placed, the maximum speed allowed, the num-

ber of lanes, or other pertinent information. Data enrichment is useful for further contextual-

ization of MobiTrafficBD, in the sense that it provides semantics and context to MobiTrafficBD. 

For instance, the simple process of reverse geocoding, which consists of getting a physical 

address from geographical coordinates, is considered a kind of data enrichment.  

Finally, data access and querying enable users and external systems to query and select 

data according to their needs. This process is key for the top-down data-handling approach, 

already explained above. The data access and querying process starts with a direct interaction 

with an user or system that wants to access specific data (symbolized by the dashed grey arrow 

in Figure 3.4) in which the user/system resorts to queries and other data access mechanisms 

to limit the data attributes, scopes and ranges of the accessed data so that it better conforms 

with analyses' objectives. Data queries are the main data access mechanisms and enable data 

extraction from databases or other storage technologies using a query language. Queries can 

filter data through their spatiotemporality-defining attributes, filter out unwanted or irrele-

vant attributes and join/aggregate distinct datasets within the same database. Apart from di-

rect queries, there are also visual-aided data access mechanisms, such as interactive filtering 

user interfaces, which use queries in their background processes, but present an intuitive in-

terface for user interaction for data access and filtering. This subject will be revisited thor-

oughly in Chapter 6. 

As a final note, all arrows in Figure 3.4 that come from the Data Management sub-com-

ponent to the Data Processing sub-component are bidirectional because it may be necessary in 

some cases to store any data sets resulting from each of the Data Processing processes, such as 

fusion and aggregation. For instance, it may be necessary to store data in a harmonized tem-

poral granularity, as in the case of traffic sensors, or to store data that was enriched or fused 

with other data sets, such as ST event data that was enriched with type of event, severity, type 

of road in which the event occurred, etc. Furthermore, the bidirectionality of some of the ar-

rows, such as the bidirectional arrow between interactive data and the enrichment process, 

entail that data can go through several of the Data Processing processes. 

3.2.2.3 Data Analytics, Data Visualization and User Interaction 

The two last sub-components within the framework are Data Analytics and Data Visualization 

and User Interaction (Figure 3.5). The Data Analytics sub-component is responsible for 
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applying Data Analytics, Data Mining, Machine Learning, Deep Learning or any other data 

analysis techniques available in the framework. In this component, the emphasis goes to data 

analysis models, methods and tools focused on MobiTrafficBD, such as the ones already over-

viewed in Chapter 2. Some examples are spatiotemporal clustering and classification, mobil-

ity- and traffic-related prediction models or pattern and anomaly detection and complex spa-

tiotemporal event processing. Data may flow through and between processes or it may go 

directly to the next sub-component (Data Visualization and User Interaction), without under-

going any Data Analytics process, such as in the case of query results, in the form of interactive 

data, which may be directly presented via user interfaces and data sharing mechanisms. 

General outcomes from the application of the necessary data analysis processes are rep-

resented as data analytics and data mining methods' results, which can also produce insights 

that will be used in decision-making support tasks, and trained models for classification, pre-

diction or pattern and anomaly detection. The latter may also be stored in the Data Manage-

ment sub-component for future reuse as basis for prediction, classification and other data anal-

ysis processes that are based on model training. These outcomes are then passed to the Data 

Visualization and User Interaction sub-component. 

The Data Visualization & User Interaction sub-component is responsible for all methods 

of data delivery to end users. The User Interaction process is based on user queries. A user 

query is represented by the looking glass icon and the dashed grey arrow connected to the 

Access & Querying process in the Data Processing sub-component. To present information 

about the data available for the query, the User Interaction process receives batch data, in the 

form of metadata and of contextual boundaries for the different data attributes, for instance 

the temporal range, the maximum and minimum spatial coordinates or the numerical bound-

aries of attributes of the whole data stored in the database. The user can then use this infor-

mation to know where to find the necessary data, to better construct the query and to limit the 

query's scope to the contextual boundaries. Users may receive queries' results through visual 

interfaces, which present the queried data in meaningful ways, such as using charts, maps or 

any kind of visual aids to better support data interpretation and understanding, or through 

data sharing platforms, which provide data in specific text formats, such as JSON or XML, but 

with no visual aid to support data interpretation. 
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Figure 3.5 — The Data Analytics and Data Visualization and User Interaction Sub-components 

The Data Sharing process is based on the already mentioned data sharing platforms, 

which use data transmission mechanisms, such as Application Programming Interfaces (APIs) 

and publish-subscribe mechanisms to share data with data consumers that are external to the 

framework. These mechanisms enable the delivery of batch, interactive and streaming data, 

not only as results and insights from the Data Analytics sub-component, but also as data re-

trieved directly from the Data Storage process. These mechanisms are of extreme importance 

because they provide a direct pipeline for data sharing and, working in conjunction with the 

Data Harmonization processes in the Data Management sub-component, enables data interop-

erability across the data sharing process. This is important due to the need to harmonize and 

make data more interoperable, both in terms of data model standards that can be reused across 

platforms, but also, particularly in the case of MobiTrafficBD, in terms of spatiotemporal at-

tributes' characteristics, formats and reference systems. 

The Visual Analytics process works directly with the User Interfaces process, providing 

custom visual aids and tools that better present the necessary data and that extract value and 

insights from the data, such as patterns and outliers, just through the application of visual 
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methods, helping the users in their decision-making processes. Examples of visual aids are 

charts (bar charts, line charts, etc.), graphs (direct, networks, etc.), maps (geographical, 

heatmaps, choropleth, etc.) or any other data presenting method available. These visual aids 

are then integrated in user interfaces, both Mobile- or Web-based, to allow users to interact 

with and navigate through the data. Interaction often occurs through filtering, highlighting, 

clustering and aggregating data within the visual aid, and navigation is often associated to 

zooming or panning through the visual aid. These user-interface interactions are often trans-

lated to data queries or requests to the framework's components, but the user has no direct 

interaction with the query or request per se. 

The User Interfaces process is responsible for providing the user interfaces and the visual 

aids to users in such a way that users are able not only to better interpret and understand the 

results and information presented to them, but also to provide insights that will guide them 

to better decisions and to achieve their goals. Quoting (Cook & Thomas, 2005), "Visual repre-

sentations and interaction techniques take advantage of the human eye’s broad bandwidth 

pathway into the mind to allow users to see, explore, and understand large amounts of infor-

mation at once". Hence, it is important that these visual representations and interaction tech-

niques are applied depending on the specific data at hand and that user experience (UX) is 

considered in order to better customize user interfaces (UI) to users' needs.  

Particularly in MobiTrafficBD frameworks, both Visual Analytics methods and tools and 

User Interfaces must be MobiTrafficBD-driven, in the sense that visual aids, representations, 

interaction techniques or any other method should be applied depending on the nature and 

characteristics of the Big Spatiotemporal Data at hand and the context of Mobility and Traffic 

expert domains. For instance, user interaction through interfaces should be done with visual 

aids that enable spatiotemporal data selection (e.g., bounding boxes), navigation (e.g., zoom 

& pan, timelines) and interaction (e.g., spatiotemporal filtering and aggregation). Further-

more, users should be able to easily locate and contextualize Big Spatiotemporal Data, whether 

through the representation of real-world marks and infrastructure in the visual aids (e.g., 

roads and buildings represented in an interactive map) or using specific symbology associated 

to the Mobility and Traffic domains (e.g., use traffic accident, roadworks or traffic jam icons 

on an interactive map). 

 End Users 

An end user is a person or system, external to the framework, that can execute one or more of 

the following actions: search and download data; analyse data (e.g., execute ad hoc queries, 

train/test data science models and apply Data Mining methods); consume reports, dashboards 

and other data visualization mechanisms; and include data, insights and results in business 
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processes. These interactions more than often follow a demand-based interaction, in which 

end users initiate interactions and then wait for response from the framework (Costa C. F., 

2019). 

As already explained in Chapter 1, the main end users of MobiTrafficBD frameworks 

are RITMOs, the road infrastructure and traffic monitoring operators, since these operators 

are the main recipients of the results and insights provided by these frameworks. But they are 

not the only end users that can capitalize on insights and results coming from these frame-

works. If the use case remains the same, i.e., mobility- and traffic-related data management 

and analysis, two other types of end user are considered.  

First, if RITMOs provide the results to their main clients, or in other words, the everyday 

commuters and drivers, these results and insights may be used by these end users to better 

plan their daily trips (e.g., through traffic sensor data, commuters may know if there are traffic 

jams on their daily path) or to avoid traffic or mobility events (e.g., commuters may have ac-

cess to traffic-related ST event information that show there is an accident or a public demon-

stration on their way, and may choose for a different route). Second, there is a growing need 

to share and integrate data across frameworks of the same of different domains (e.g., a public 

transportation data framework may use traffic information and insights to present delays or 

service abnormalities their clients). Hence, other type of end users are data consumers that 

access the data within the framework through APIs or publish-subscribe mechanisms. 

Finally, other end user scenarios may be created within the Mobility and Traffic do-

mains, such as in the case of Urban Planning, Emergency Management and Environmental 

Action, to name a few, or by changing the frameworks' scope from the Mobility and Traffic 

domains to other domain or area of interest in which Big Spatiotemporal Data is at the centre, 

such as in the case of Geographic Information Systems. This means that the prescriptive ap-

proach, guidelines and models presented in this work can be followed for use cases other than 

the ones related to Mobility and Traffic. 

3.3 Technological Infrastructure Model 

The model of logical components and data flows presented in Section 3.2 represents the start-

ing point for the design of MobiTrafficBD frameworks, whereas the model of technological 

infrastructure presented in this section represents the starting point for their implementation. 

The technological infrastructure model, presented in Figure 3.6, focuses on technologies that 

can be the basis for instantiation of the different logical components and their associated pro-

cesses, while also focusing on the physical infrastructure (hardware) that can be used to de-

ploy MobiTrafficBD frameworks.  
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Figure 3.6 — Technological Infrastructure Model for MobiTrafficBD frameworks 
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Thus, the model of technological infrastructure, including several examples of state-of-

the-art technologies for every logical component of the logical components and data flows 

model presented in Figure 3.2, enabling the direct association between both pictures, which in 

turn provides a consolidated, simple and coherent perspective of the design and implementa-

tion phases of MobiTrafficBD frameworks. This association is achieved not only by the pres-

ence of similar components across both pictures, but also by the application of the colour 

scheme of Figure 3.2 in Figure 3.6. Hence, the colours (blue, green, red) are used to represent 

the different data flows in Figure 3.2 (batch, stream, interactive data, respectively) that each 

technology in the model tackles. 

The bottom part of Figure 3.6 depicts how a scale-out infrastructure, composed of phys-

ical and/or virtual resources and deployed on the cloud or on-premises, can support the ap-

plication of the represented technologies, for each logical component, represented by its re-

spective circled letter (O: Orchestration, C: Data Collection & Transformation, S: Data Storage 

& Access, P: Data Processing & Analytics, V: Data Visualization & Sharing). It is important to 

state that the technologies that are comprised in the technological infrastructure model of Fig-

ure 3.6 must be seen as suggestions and not preferential choices, because on one hand, the 

technological ecosystem for Big Data, although in rapid expansion, is already big enough to 

house a panoply of technologies that present the same characteristics and tackle the same chal-

lenges and issues. 

On the other hand, the suggested technologies were chosen due to the projects and use 

cases in which this work is based upon and cannot be understood as preferred technologies 

over any other that may be suitable for the same data-driven challenges. Therefore, each logi-

cal component comprises several suitable technologies that must be considered as alternatives 

or complementary to other existing technologies, and not as mandatory or the most suitable 

for every implementation. 

Starting from Data Collection & Transformation (Figure 3.7), technologies are divided 

as supporting data streams, data batches or both. On the streaming data side, Flume (The 

Apache Software Foundation, 2009) and Kafka (The Apache Software Foundation, 2017) are 

suitable technologies that can be applied to collect data streams, while on the batch data side, 

Sqoop (The Apache Software Foundation, 2011) can be used to collect data batches from rela-

tional databases and other sources and store them into the Hadoop Distributed File System 

(HDFS). 

Another option to handle the collection of data batches is Apache Spark (The Apache 

Software Foundation, 2018). Although Spark is a Big Data processing engine, it allows for fast 

data collection, transformation and storage in several databases and other data storage para-

digms, i.e., Big ETL, as presented in (Figueiras, Guerreiro, Silva, Costa, & Jardim-Gonçalves, 
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2018). Moreover, it might be necessary to implement custom adapters for specific data collec-

tion scenarios, using well-established programming languages, such as Java, Javascript or Py-

thon. As in the case of Spark, other tools can also be used to build transformation and ETL 

pipelines. This is the case of known Big Data processing engines that can be applied to ETL 

tasks, such as Apache Flink (The Apache Software Foundation, 2014) and Spark itself, for both 

streaming and batch data pipelines, and Apache Storm (The Apache Software Foundation, 

2018) exclusively for streaming data pipelines. 

 
Figure 3.7 — Example Technologies for Data Collection & Transformation 

Finally, there are also fully fledged ETL suites oriented towards Big Data scenarios, such 

as, for instance, Talend Big Data (Talend, 2006), TIBCO Jaspersoft ETL (TIBCO Software Inc., 

2020) and Qlik ETL Solution (QlikTech International AB, 1993) suites, which come packed with 

tools and components for both streaming and batch data ETL. Some suites come with specific 

tools to handle spatiotemporal data, while in other cases, there might be the need to add a 

spatial or spatiotemporal extension to the suite, such as in the case of Talend, which has an 

extension for spatial data (Prunayre, et al., 2007). On the downside, this kind of Big ETL suites 

have paid subscriptions, and their open-source, free or community versions often just provide 

integrated user interfaces to build pipelines and submit tasks, and typically make use of other 

technologies to assure adequate distributed processing, such as the ones already presented 

(Apache Spark, Storm, etc.), since its native tools may not be scalable. 

In the case of Data Storage & Access (Figure 3.8), the example technologies range from 

distributed file systems to data access mechanisms, going through relational database man-

agement systems (RDBMS) and NewSQL and NoSQL database systems. The most common 

distributed file system is the Hadoop Distributed File System (HDFS), as it is the most widely 

used and enables storage of all kinds of data, structured and unstructured, in a file-driven 

approach. HDFS is used by other data access technologies to store tabular data, as in RDBMS, 

such as in the case of Apache Hive (The Apache Software Foundation, 2011), which uses HDFS 
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to store data in a tabular form, using Hive tables. Likewise, HDFS enables storage of data in 

analytics-oriented file formats, such as Parquet (The Apache Software Foundation, 2018) or 

ORC (The Apache Software Foundation, 2020) (both these file formats enable spatial data stor-

age via binary formats (Vonk, 2015) or via spatial extensions (Roche, 2019)). 

When the Big Data paradigm first emerged, RDBMS were the traditional database sys-

tems, widely used across the industrial and academic sectors. But this new paradigm threat-

ened to kill RDBMS, since these systems did not meet the necessary requirements to handle 

large volumes (in the order of Terabytes, instead of the traditional Gigabytes) of often unstruc-

tured data with high variety and, sometimes, generated at unprecedented speeds. RDBMS 

were built to store and access data in tabular form and is based on a centralized architecture, 

meaning that it is vertically scalable (scales by adding more machines) and not distributed. 

These and other characteristics of RDBMS do not work well with Big Data. 

 
Figure 3.8 — Example Technologies for Data Storage & Access 

First, a generous part of Big Data is comprised by unstructured data, and RDBMS are 

more suitable for structured data; Second, vertical scalability is not adequate for distributed 

architectures, as adding more and more computing power to a single machine is not possible, 

whereas Big data takes a "scale out" approach in which new machines can be added to the 

distributed cluster, providing more storage space, processing power and fault tolerance, 

through replication of information across multiple nodes; Third, RDBMS performance de-

grades rapidly when storing increasing data volumes, in terms of throughput and query re-

sponse times. 

Hence, new data storage paradigms emerged to cope with the problems of RDBMS to-

wards Big Data, namely handling ever-growing volumes of batch data or fast-running stream-

ing data. These new paradigms, NoSQL and NewSQL, already introduced in the previous 

chapter, brought new ways of storing and retrieving data from databases. From document-

oriented (e.g. MongoDB (MongoDB, Inc., 2015)) and in-memory databases (e.g. Redis 
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(RedisLabs, 2015)) to big table (e.g. Apache Hbase (The Apache Software Foundation, 2007) 

and Cassandra (The Apache Software Foundation, 2016)) and SQL-on-Hadoop (e.g. Apache 

Impala (The Apache Software Foundation, 2015)) stores, NoSQL presented several approaches 

for distributed database systems that could "scale out" horizontally, instead of the vertical scal-

ing of RDBMS, meaning that NoSQL databases may be replicated across nodes and machines. 

Moreover, NewSQL databases tried to bring the best from both worlds, seeking to provide the 

scalability of NoSQL systems for online transaction processing (OLTP) workloads while main-

taining the characteristics of a traditional RDBMS (Pavlo & Aslett, 2016). Besides the examples 

already presented in the previous chapter, a good example of NewSQL databases are distrib-

uted timeseries databases, such as InfluxDB (InfluxData, Inc., 2013). 

Nevertheless, in the last years, RDBMS are evolving to present new Big Data capabilities. 

For instance, PostgreSQL added several new features such as BRIN indexing, which is based 

on small but very effective indexes for very large, naturally ordered tables, faster sorts and 

query results' summarization techniques, among others (The PostgreSQL Global Develop-

ment Group, 2016). More lately, other enhancements and extensions were created to bring 

PostgreSQL closer to Big Data, such as enabling JSON documents storage or key-value data 

storage, to cope with unstructured and semi-structured data storage, or the creation of Green-

Plum (VMware, Inc, 2020), a massively parallel processing (MPP) database system, based on 

PostgreSQL, specifically designed for fast analytics. On the other hand, cloud service provid-

ers, such as Oracle and Microsoft enabled vertical scalability in the cloud for their proprietary 

RDBMS (Oracle Database (Oracle Corporation, 1979) and Microsoft SQL Server (Microsoft, 

2019), respectively). Even so, RDBMS still have a long way to go, when it comes to handling 

fast streams of data, making RDBMS better suited for batch data storage and interactive data 

retrieval.  

The modularity of the proposed prescriptive approach and technological infrastructure 

model allows for flexible technological choices when implementing MobiTrafficBD frame-

works, while maintaining the architectural construct and data management guidelines. Ulti-

mately, the choice of storage technologies, or any other for that matter, is solely dependent on 

the use case at hand and it is advised that practitioners perform preliminary analyses when 

making technological choices, whether for storage or any other component, due to the fast 

evolution of the Big Data technological ecosystem. This subject will be further explored in the 

next chapter. 

Lastly, data access and querying technologies provide interactive SQL interfaces to 

query both batch- and streaming-based storage systems, focusing on NoSQL and Hadoop-

supported storage technologies. That is why these systems are frequently coined as SQL-on-

Hadoop systems, although they also support other NoSQL and NewSQL systems. From the 
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panoply of existing alternatives, Apache's Hive (The Apache Software Foundation, 2011), Drill 

(The Apache Software Foundation, 2012) and HAWQ (The Apache Software Foundation, 

2020), and Presto (The Presto Software Foundation , 2013) are highlighted in Figure 3.6. All of 

the above have some kind of spatiotemporal querying support, whether through built-in pro-

cedures or through extensions, and evaluating their performance benchmarks, their connec-

tivity with storage technologies and the overall efficiency of spatiotemporal and non-spatio-

temporal queries is of major relevance to implement an adequate data access and querying 

component in MobiTrafficBD frameworks. 

The Data Processing & Analytics component (Figure 3.9) corresponds to the Data Pro-

cessing and Data Analytics components in the logical components and data flows model of 

Figure 3.2. For data processing, the already mentioned technologies for ETL pipelines are, in 

fact, originally built to implement data processing pipelines for enrichment, aggregation, sum-

marization and other processes. These technologies are Apache Hadoop for batch and inter-

active data processing, Apache Storm for streaming and interactive (using sliding windows) 

data processing and Apache Spark and Flink, for both cases. The above data processing tech-

nologies allow for spatiotemporal data processing, whether out-of-the-box or through exten-

sions. For a thorough analysis on the spatiotemporal data processing capabilities of Apache 

Hadoop, Spark, Flink and others, please refer to (Karim, Soomro, & Burney, 2018), while for a 

comprehensive usage example of Apache Storm as an engine for real-time spatial queries, 

please refer to (Zhang F. , et al., 2016). 

 
Figure 3.9 — Example Technologies for Data Processing & Analytics 

Data Analytics technologies differ mainly in terms of their suitability for batch and 

streaming data analytics and the algorithms and methods that each technology comprises. 

There are several data analytics solutions, each of which has its own purpose and specificities. 

The Apache Spark Machine Learning Library (Spark MLlib) (The Apache Software Founda-

tion, 2018) is a machine learning library that makes use of the distributed processing 
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capabilities of Spark to run Machine Learning (ML) methods on large volumes of data, but it 

also provides ML methods for data streams. Other example of a distributed analytics library 

is Apache MADlib (The Apache Software Foundation, 2020), which is built to run directly on 

PostgreSQL or GreenPlum engines, enabling local, in-database ML procedures directly on the 

data side, for RDBMS or MPP. Finally, another example of a Data Mining (DM) and ML library 

is Weka (The University of Waikato, 2005), which allows for distributed DM and ML, using 

Apache Spark as its base processing engine. 

But what happens when the libraries do not comprise the necessary algorithm or method 

for the use case at hand? This issue occurs a lot for spatiotemporal data, since most of the 

libraries and technologies already mentioned are not purposely built for spatiotemporal DM 

and ML. In this case, a custom implementation, using Java, the R language or one of the many 

Python-based DM and ML libraries, such as Scikit Learn (Pedregosa, et al., 2011), may be the 

best solution. Another option is the Apache Mahout (The Apache Software Foundation, 2014), 

which is a distributed linear algebra framework that has a mathematically expressive domain-

specific language to enable the development of distributed DM and ML algorithms, running 

in both Apache Hadoop and Apache Spark. 

Deep Learning is a relatively new concept that has been brought to light by academia 

and industry in the past few years, mainly due to the evolution of computing power, data 

storage and the sheer amounts of data produced nowadays. Today, there is no generic data-

driven framework that does not take into consideration this new class of Machine Learning 

methods (Schmidhuber, 2015). Deep Learning methods are especially relevant for unsuper-

vised learning and pattern discovery from unstructured data, through the use of complex and 

multi-layered implementations of neural networks (e.g., convolutional, recurrent, etc.), which 

mimic the way the human brain is organized into layers upon layers of neurons. Such methods 

need great processing power and huge amounts of batch data to deliver results. The two ex-

amples in Figure 3.6, Keras (Chollet, 2015) and Torch (Collobert, Bengio, & Mariéthoz, 2017), 

are the most used Deep Learning tools by both industry and academia. Keras is a Python API 

for TensorFlow (Google Brain Team, 2015), a Deep learning library developed by Google, 

whereas Torch, and its Python counterpart, PyTorch (Paszke, Gross, Chintala, & Chanan, 

2016), is a scientific computing framework built to run on top of clusters of graphical pro-

cessing units (GPU). Both Keras and Torch can be deployed in clusters or cloud platforms, 

whether they are based on central processing units (CPU) or GPU. For reference, there are 

already several works, many of which use the above example technologies, that demonstrate 

scenarios of deep learning for spatiotemporal analytics (Tan, Liu, & Liu, 2020). 

The Data Visualization & Sharing (Figure 3.10) is the end component of the data pipeline 

that is the basis of MobiTrafficBD frameworks, since it is responsible for delivering to the end 
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user not only the results and insights coming from the Data Processing and Data Analytics 

sub-components of Figure 3.2, through rich visual analytics methods and visualization tech-

niques, but also to deliver data directly to end users and external systems, through data shar-

ing tools, such as APIs or publish-subscribe mechanisms.  

 
Figure 3.10 — Example Technologies for Data Visualization & Sharing 

Hence, besides the visual analytics and visualization technologies, this component also 

comprises the data sharing technologies, such as any Web Service framework built in any pro-

gramming language (primarily for batch and interactive data) or publish-subscribe mecha-

nisms (specifically for streaming data) available in the market. Some examples are the Spring 

Boot framework for Java (VMware, Inc., 2020), NodeJS for Javascript (OpenJS Foundation, 

2009) or the Flask framework for Python (Ronacher, 2010). These frameworks enable fast Web 

Service delivery for data sharing processes. Furthermore, data may also be shared through 

publish-subscribe mechanisms, as in the case of Apache Kafka or other message queuing tools, 

such as RabbitMQ (VMware, Inc., 2007). 

Visual analytics is based on the conjunction of insights originated in the data analytics 

tools and enhanced by data-specific visualization techniques, in such a way that the end user 

recognizes better the patterns and insights in the data, opposed to when these visualization 

techniques are not used. Thus, two main options are possible. The first option is to use com-

plete data analytics suites that comprise all the tools for data collection, transformation, pro-

cessing, analytics and visualization, although these services may be used together or as inde-

pendent services. Examples of data analytics suites are Tableau (Tableau Software, 2003), Mi-

crosoft's PowerBI (Microsoft, 2011) and TIBCO's Spotfire Analytics (TIBCO Software Inc., 

2007). These suites are often proprietary and paid, although some of them have free editions, 

whether for the whole community or for academic purposes, such as in the case of Tableau. 
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The second option is to take advantage of the data analytics technologies chosen in the 

previous Data Processing & Analytics component, and couple them directly with visualization 

tools, developing and applying custom visual analytics solutions. In this case, practitioners 

have full control over customization and implementation of the visual analytics processes, but 

are more prone to less effective visual analytics results, since the choice of visualization and 

analytics methods and tools is not trivial and requires practitioners to be experienced data 

scientists, with know-how in both data analytics and visual analytics. Hence, practitioners and 

researchers may opt to use available, out-of-the-box visualization and reporting solutions, or 

to develop their own custom visualization services, using libraries and tools specific for pro-

gramming languages. 

Examples of the former are the Grafana visual analytics and interactive visualization 

platform (Grafana Labs, 2018), which provides several types of visual tools to build interactive 

data dashboards and supports adaptors and query builders for a wide range of data sources, 

Apache Zeppelin (The Apache Software Foundation, 2016), a Web-based notebook for visual 

discovery and analytics that serves as visualization and reporting suite for a number of data 

storage and processing technologies in the Apache Hadoop ecosystem and other solutions, 

and Jupyter (Project Jupyter, 2014), a Web-based interactive development environment for re-

porting notebooks containing live code, equations and visualizations that can be used for data 

cleaning, transformation, simulation, modelling and visualization. Regarding the latter, visu-

alizations can be custom built using libraries and tools for the most common programming 

languages, as in the case of Javascript and Python. 

The complexity of the technological infrastructure model entails the necessity of deploy-

ing technologies that support communication and networking between the infrastructural re-

sources, optimize setup times and ease deployment, manage and monitor the whole infra-

structure and guarantee data security and privacy. Some examples for these technologies are 

presented on the right side of Figure 3.6. Regarding networking and communications, reverse 

proxies such as Traefik (TraefikLabs, 2016) and Nginx (F5, Inc., 2004), are responsible for user 

requests' load balancing, data compression, provision of access and authentication mecha-

nisms as well as other security features and network management between physical and vir-

tual resources.  

For easily configurable and deployable infrastructures, containerization technologies are 

recommended, such as Docker (Docker, Inc., 2013) and Kubernetes (The Kubernetes Authors 

, 2014) as the most popular solutions, since they bundle application code together with the 

related configuration files, libraries, and dependencies required for it to run in any environ-

ment, eliminating the problem of deploying the same system in different environments and 

resources (on-premises vs. cloud environments, physical vs. virtual resources). Containers are 
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software packages that are abstracted away from any host operating system, and hence, stand 

alone and become portable, being able to run across any platform or cloud, free of configura-

tion issues. Containerization technologies enable automated configuration, deployment, scal-

ing and management of distributed applications, allowing for custom distribution of technol-

ogies across physical and virtual resources. 

There are several technologies that enable security and privacy across all layers of Big 

Data-based frameworks. Besides specific encryption and access control mechanisms, security 

technologies' examples are Apache Knox (The Apache Software Foundation, 2018), Ranger 

(The Apache Software Foundation, 2011) and Sentry (The Apache Software Foundation, 2011). 

Knox enables infrastructure perimeter security, by hiding clusters' access point and blocking 

service details, Ranger is a framework to enable, monitor and manage comprehensive data 

security across the Hadoop ecosystem, whereas Sentry is centralized platform for policy ad-

ministration, authorization, auditing, and data protection. Finally, there is also the need for 

technologies that orchestrate and manage all technological and infrastructural aspects of Mo-

biTrafficBD frameworks. Examples of such technologies are Apache Ambari (The Apache Soft-

ware Foundation, 2019), which enables provisioning, management and monitoring of Hadoop 

ecosystem-based clusters and integration of technologies on the Hadoop ecosystem with the 

existing enterprise infrastructure, Apache Mesos (The Apache Software Foundation, 2012), 

which is distributed systems kernel that enables abstraction of physical and virtual resources, 

enabling fault-tolerant and elastic distributed systems to easily be built and deployed, and 

Rancher (Rancher Labs, 2014), a complete software stack for Kubernetes-based infrastructures' 

management. 

As a final note, the example scale-out infrastructure presented in the bottom part of Fig-

ure 3.6 may be optimized by having the nodes deployed as single containers that can house 

one or more instances of the example technologies, allowing for easy configuration, deploy-

ment and scaling of the whole infrastructure. Communication and networking between con-

tainers should be managed by reverse proxies, and security and privacy technologies should 

also be deployed across the whole containerized infrastructure. 

3.4 General Guidelines and Best Practices 

Concluding, this section presents the most relevant guidelines that should be taken into con-

sideration when deploying an adequate infrastructure for MobiTrafficBD frameworks: 

1. Follow the given requirements throughout the project's lifecycle. 
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2. Choose a Reference Architecture, even if it is only for Big Data, considering that there 

is no reference architecture that consolidates both Big Data and spatiotemporal data 

aspects. 

3. Add spatiotemporality aspects to a Reference Architecture through the use of technol-

ogies, tools and methods that support Big spatiotemporal data lifecycle management 

and analysis. 

4. Spatiotemporality must be represented in all the layers of the developed architecture. 

5. The design of the infrastructure should aim at horizontal scaling ("scale out"), in order 

to reduce costs, optimize performance and to capitalize on the full capacity of existing 

and emergent technologies within the Big Data ecosystem. 

6. Storage of both raw and harmonized data is strongly recommended for both batch and 

streaming data, introducing an ELTL approach (hybridization between ETL and ELT). 

7. The developed architectural model, although based on generic Big spatiotemporal 

data-driven guidelines, should be also driven by the use case at hand, even when the 

use case is not comprised in the Mobility and Traffic domain. Noting the fact that it is 

focused on the Mobility and Traffic domain, the proposed architecture is generic 

enough to cope with other use cases in different, Big spatiotemporal data-based do-

mains. 

8. The technologies comprised by the technological infrastructure model must be seen as 

non-mandatory examples but can serve as initial clues for practitioners and researchers 

when choosing the technology stack, in the design phase of any MobiTrafficBD frame-

work implementation. These clues are the starting point to choose the right technology 

to the specific data-driven use case at hand. 

9. Despite the completely free choice of technologies, it is recommended that, depending 

on the data characteristics and the use case at hand, practitioners should opt for tech-

nologies that can be reused, "recycled" and repurposed to different goals, shortening 

the framework's technology stack. This will enable not only the reduction of complex-

ity and time for technological infrastructure configuration processes, but also will min-

imize the risk of poor compatibility between technologies, models and data formats, 

for instance. 

10. Easy deployment and dynamic configuration supported by containerization strategies 

and technologies. 

11. The logical components and data flows model (Figure 3.2) can be seen as a modular 

architecture, which enables the selection of individual modules (components) depend-

ing on the data flows to be managed and explored, the use case at hand and according 

to the selected data analysis and exploration methodology, as will be evident in 
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Chapters 5 and 6. This modularity of the prescriptive methodology is further enabled 

by the application of technology distribution and containerization guidelines provided 

in the technological infrastructure model (Figure 3.6). 

12. Follow the best practices for optimized technology distribution across containers. 

 

The way technologies are distributed across containers should be optimized by taking 

into account the following best practices: 

• All technologies should be replicated on two or more containers to enable fault-toler-

ance and better computing performance. Emphasis is given to orchestration, storage 

and processing technologies. 

• Certain technologies should be co-located in the same container to avoid unnecessary 

data movement across nodes. The main example is the co-location of storage and pro-

cessing technologies, preventing network bottlenecks. 
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4  

 

MOBITRAFFICBD FRAMEWORKS IN 

PRACTICE 

Now that the model for logical components and data flows (Figure 3.2) and for the technolog-

ical infrastructure model (Figure 3.6) for MobiTrafficBD frameworks are presented, this chap-

ter explores several MobiTrafficBD frameworks' contexts and scenarios, as it may be necessary 

to use more practical examples for researchers and practitioners to master the proposed gen-

eral guidelines, presented in the previous chapter. But the examples presented in this chapter 

will primarily serve as real-world demonstrators for the applicability of the proposed prescrip-

tive methodology in real scenarios. Furthermore, the examples will be used to clarify some of 

the guidelines provided previously, and to evaluate their suitability in a broader scope of Mo-

bility- and Traffic-related applications focused on Mobility and Traffic Monitoring Services for 

Intra-city, Inter-city and Country-wide scenarios, Proactive Improvement of Transport Sys-

tems Quality and Efficiency, Proactive Charging Schemes for Freight Transport and Public 

Transportation Network Monitoring and Optimization. 

Hence, this chapter introduces examples of research-driven, real-world use cases for the 

design and development of MobiTrafficBD frameworks, following the proposed models, 

guidelines and best practices of the previous chapter. The technical details of these use cases 

will then be further explored in the next chapters. 

4.1 FP7 MobiS Project 

As already mentioned in Chapter 1, the main goal of the EC's Framework Programme 7 (FP7) 

MobiS project (European Commission, 2012) was to create a new concept and solution of a 

federated, customized and intelligent mobility platform by applying novel Future Internet 

technologies and Artificial Intelligence methods that monitor, model and manage the urban 

mobility complex network of people, objects, natural, social and business environments in 
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real-time. MobiS federation and intelligence was based on the symbiotic relation between 

these stakeholders, innovative prediction and reasoning methods that use learned multi-crite-

ria function to provide more efficient, energy-aware and environmentally friendly citizen mo-

bility. MobiS aimed to federate novel artificial intelligence services and traditional information 

platform services coming from (i) existing transport private or public service providers, (ii) 

ambient data, based on sensor infrastructures, and (iii) social networking data. 

To achieve its objectives, the project developed the MobiS federated platform, predic-

tion/planning/reasoning services, multi-criteria decision function and federated mobility-

based services that correspond to the above-mentioned information sources. Solutions were 

tested in three pilots: 

• An inter-city mobility scenario in Sweden (Stockholm-Hudiksvall-Sundsvall). 

• An intra-city scenario in Greece (Thessaloniki). 

• A country-wide (inter-city) mobility scenario in Slovenia. 

 

Since only a specific use case on the detection of traffic events through the application of 

Data Mining over Twitter data is going to be described as an example for the presented meth-

odological approach, the author will not go deeper into the specifics of each pilot. For more 

information about the MobiS project, please refer to (European Commission, 2012). The use 

case will be presented in Section 4.4. 

4.2 Horizon 2020 OPTIMUM Project 

The Horizon 2020 OPTIMUM project (European Commission, 2015) is the major contributor 

to this thesis work. It was a European Commission-funded project that started in May 2015 

and ended in August 2018 and had the grand objective of establishing a largely scalable, dis-

tributed architecture for the management and processing of multisource Big Data-enabling 

continuous monitoring of the transportation systems needs and providing data-driven mobil-

ity services based on proactive decisions and actions in an (semi-) automatic way, following a 

cognitive approach based on the Observe, Orient, Decide, Act (OODA) loop of the big data 

supply chain for continuous situational awareness (Galinec & Steingartner, 2013; Chan, Gaw-

lick, Ghoneimy, & Liu, 2014). 

The overall OPTIMUM architecture and the OODA loop for Big Data situational aware-

ness may be directly mapped to the model of logical components and data flows proposed in 

Figure 3.2. The Observe phase can be mapped to the Data Management component of Figure 

3.3 and accounts for the capture and ETL tasks over Big Data sets produced from a panoply of 

data sources, such as novel types of sensors and communication capabilities in vehicle and the 
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traffic infrastructure, social networks or public transportation and mobility in general, just to 

name a few. The Orient phase corresponds to the Data Processing component of Figure 3.4, 

providing data fusion, aggregation and contextualization services, supported by online stream 

analytics and the Big Data framework that allow fusion of historical and real-time information 

from multiple sources, but this phase has already certain aspects of the Data Analytics com-

ponent, since it is responsible for the traffic forecasting engine, complex event processing 

methods and a suite of statistical and stochastic techniques that support the predictive func-

tionality of the forecasting engine. The Decide phase represents the Data Analytics component 

of Figure 3.5, comprising advanced analytics methods for system aware optimization, such as 

system-optimal multi-modal routing algorithms and innovative charging models, and contex-

tualization, through on analytics methods for ecological footprint calculation and dynamic toll 

charging schemes and models. Finally, the Act phase may be mapped to both the Data Ana-

lytics and the Visualization and User Interaction components of Figure 3.5  with a strong focus 

on personalization, application of persuasive and user profiling strategies and recommenda-

tion services. 

The project comprised a consortium of eighteen partners from eight European countries 

and was responsible for deploying and validating the proposed OPTIMUM architecture in 

three distinct pilot studies, each of which with specific use cases. The first pilot study was 

coined as proactive improvement of transport systems' quality and efficiency and was de-

ployed in three different countries, namely in the city of Vienna, Austria, in the city of 

Ljubljana, Slovenia and in the city of Birmingham, United Kingdom. The second pilot study 

was deployed in Portugal and had the objective of creating a dynamic highway tolling system 

for freight transport, to reduce congestion by shifting some traffic to alternative times, routes 

or modes, or by eliminating trips. Finally, the last pilot study was held in Slovenia and had the 

objective of building an interactive Car2X (car to car, car to infrastructure) communication 

platform, using next-generation campervans. Since the author was directly involved in the 

first two pilots, these will be further explored in sub-sections 4.2.1and 4.2.2. 

 Pilot Study 1: Proactive improvement of transport systems quality 

and efficiency 

As described in the OPTIMUM project's Web site (OPTIMUM Consortium, 2015), "complex 

urban transportation networks already offer a multitude of modalities and options, including 

public means such as trains, metros, buses, taxis, shared bicycles, shared cars and electric ve-

hicles. New types of modalities are also expected to emerge within a diverse ecosystem of 

public, private and non-profit entities. Ideally, an integrated transportation network allows 

citizens to move easily from point “A” to point “B” regardless of mode or service provider, 
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while sustaining overall user well-being and keeping greenhouse emissions to a minimum. 

Nonetheless, current systems are fragmented, and attaining a high quality of service while 

providing a safe, dependable, convenient and comfortable experience for all individuals — 

while also taking into account ITS optimisations — is not an easy task. 

The OPTIMUM platform's instantiation for Pilot Study 1 was deployed in three major 

EU cities, each one with different characteristics in terms of data sources and transportation 

system particularities. The main aim of the study was to improve the quality and efficiency of 

multimodal trips, and Intelligent Transportation Systems as a whole, by supporting proactive 

decisions driven by transportation network and crowdsourcing information data. A multitude 

of information can be retrieved from the mobility data of people using multimodal and in-

teroperable transport systems. Recent data collection technologies and analysis methods, in 

combination with modern transport telematics systems, allow for the identification of 

transport modes and the study of user habits. This provides the basis for transport information 

systems and models, which in turn increases the efficiency of an entire transport system. 

The main aim of the three urban pilot studies was to proactively facilitate decision mak-

ing for efficient integration of transport modes. This was achieved by implementing a smart 

multimodal transit concept, which lead to improved quality, accessibility and utilisation of 

interconnected transport systems. Thus, a complex model of the current traffic conditions, and 

a short-term prediction of these conditions, was realised on top of advanced real-time predic-

tive analytics and a multitude of transport information".  

This pilot study was supported by several data sources for every use case (city), most of 

them being characterized as MobiTrafficBD, and with records collected throughout the period 

of the project. The data sources relevant for the examples of the next chapters are described in 

the following sections. 

4.2.1.1 Data Sources: Birmingham City, UK 

The Birmingham City Council provides various open data sets to the public, sharing data 

through Representational State Transfer (REST) Web services. Some examples of data types 

shared by the council are vehicle flows, average speeds, road occupancy, travel times and con-

gestions', incidents' and roadworks' information, coming from circa 3500 traffic sensors. Figure 

4.1 presents two sample sensor readings from the Birmingham City Council REST Web ser-

vices, represented in JSON. 
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Figure 4.1 — Birmingham City Council sensor data source examples. a) flow sensor reading; b) average speed 

sensor reading 

Both examples are similar in their structure, but they are retrieved from different Web 

services, each of which is specific to one of the available data types. In terms of data availabil-

ity, Table 4.1 presents the average daily availability for each of the data types. 

Table 4.1 — Birmingham City Council Web service data types, record volumes and size 

Data Type Average Daily    

Records 

Average Hourly   

Records 

Daily Storage 

Size (MB) 

Flows 99.948 4.164 134,80 

Average Speeds 2.117.476 9.062 293,32 

Travel Times 103.812 4.326 140,02 

Congestions 11.881 495 16,02 

Occupancies 5.088 212 6,86 

Total 438.205 18.259 591,02 

 

Besides the data sources provided by the Birmingham City Council, nation-wide data 

sources were also provided, mainly through UK's National Traffic Information System (NTIS) 

(Highways England, 2015). NTIS provides Web services to push both real-time and historic 

data to subscribers. These services publish data from a panoply of sensor types, such as Mo-

torway Incident and Automatic Signalling (MIDAS), Traffic Management Unit (TMU), Auto-

matic Number Plate Recognition (ANPR) and fused sensors, totalling 2928 sensors scattered 

across UK's road infrastructure, with a temporal range starting at April 2016 and ending in 
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October 2016. Table 4.2 presents the average hourly and daily number of records for each NTIS 

sensor type. 

Table 4.2 — Average daily and hourly record number per NTIS sensor type 

Sensor Type Average Daily Records Average Hourly Records 

MIDAS 720.000 30.000 

TMU 144.000 6.000 

ANPR 432.000 18.000 

Total 1.296.000 54.000 

 

Data records are collected at different temporal granularities, with MIDAS and fused 

sensor data being collected every minute, and TMU and ANPR sensor data being captured 

once every five minutes, totalling more than 55 million records. Detailed specifications can be 

found in (Highways England, 2008) and examples of these data sources, provided in the DA-

TEX II standard format, are presented, respectively, in Appendixes A.1 (page 235) to A.4 (page 

240). 

4.2.1.2 Data Sources: Ljubljana, Slovenia 

As in the previous case, Slovenia provides nation-wide information about traffic and mobility, 

from traffic sensor and event data to wind conditions and public transport information, 

through public APIs (Žejn, et al., 2015). Traffic sensor, event and wind conditions data are 

provided in JSON format and example data representations are depicted in Appendixes A.5 

(page 241), A.6 (page 243) and A.7 (page 245), respectively, whereas public transportation data 

is shared in the General Transit Feed Specification (GTFS) (Google, Inc., 2006) format. Table 

4.3 presents the average hourly and daily record number per data type (traffic and wind) for 

the Slovenian use case. 

Table 4.3 — Average hourly and daily record number per data type for the Slovenian use case 

Data Type Average Daily Records Average Hourly Records 

Traffic Sensors 85.200 3.550 

Wind Sensors 5.040 210 

Total 86.240 3.760 

 

The temporal range for traffic sensor and wind information data types span from Janu-

ary 2017 to November 2017. Traffic sensor records are collected every five minutes from a total 
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of 355 sensors, with information for both directions (i.e., 710 data collection points) corre-

sponding to more than ten million sensor readings, and wind conditions are captured every 

two minutes in seven major cities and highways, for a total of 30000 records. In the case of 

traffic events, the information is collected only when an event occurs, and the temporal range 

spans from January 2011 to November 2017, with a total of 6265 event records. 

 Pilot Study 2: Proactive Charging Schemes for Freight Transport 

The second pilot study proposes a dynamic toll charging system for shadow-toll highways in 

Portugal (Figueiras, et al., 2019), supported by Big Data technologies, to induce changes in 

heavy freight vehicles' behaviour by diverting heavy vehicle traffic from urban and national 

roads to underused tolled highways. This is accomplished by attracting or discouraging the 

use of specific highways through toll prices’ variability, according to the quality-of-service 

prediction on those highways and adjacent alternative roads. The system is fed by traffic flow 

conditions of both tolled highways and their national road alternatives, combining historical 

and real-time data collected from traffic sensors scattered throughout highways and alterna-

tive national roads, to calculate the toll pricing of highways in advance, depending on traffic 

congestion conditions on both road types.  

The design and development of the dynamic toll pricing model considers the traffic flow 

now-casts (including traffic events, maintenance, accidents and weather-related situations) 

and traffic flow forecasts, resulting in more accurate predictions for highways and national 

roads. Since traffic data quantity and quality are crucial to the prediction of road networks’ 

statuses, real-time and predictive Big Data analytics methods are used. 

Hence, the dynamic toll charging system needs to be supported by the latest Big Data 

technologies to efficiently collect and process big amounts of traffic data, and swiftly perform 

traffic now-casts and forecasts to feed the dynamic charging model. Therefore, the main con-

tributions of the work presented here can be highlighted as follows: 

• Development of a Big Data infrastructure capable of collecting and processing large 

volumes of traffic data in real-time, and swiftly perform forecasting analytics to pro-

duce traffic predictions. 

• A mathematical model for dynamic toll price calculation, which takes into account 

both the traffic in the tolled highway and in its toll-free, alternative roads. 

• Integration of real-time toll pricing results of the dynamic toll charging system with 

logistics operator fleet management systems through dynamic toll information user 

interfaces. 

• Test and validation of the system in a real-world scenario, targeting heavy freight ve-

hicles. 
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The pilot focused on the highways and national road alternatives in the north of Portu-

gal. For a more detailed view on this pilot, please refer to (Figueiras, et al., 2019). 

4.2.2.1 Data Sources 

Infraestruturas de Portugal (IP), the public road infrastructure operator, installed vehicle-

counting sensors throughout their road network. For the Portuguese use case, which covers 

only the northern portion of Portugal’s highways, IP selected 1127 active vehicle counting both 

in highways and their national road alternatives. The temporal range for counter data spans 

from January 2014 to December 2014. The metadata for the sensors is provided in an Excel 

spreadsheet, and a sample is presented in Figure 4.2. The metadata parameters are "Grupo", 

defining the highway group, "Nome Equipamento", the unique ID for the sensor, "Estado", the 

status of the equipment (e.g. active, not active), "Silego Antigo", the name of the road, "PK", the 

kilometre point, "Sublanço" the highway section name, "Latitude" and "Longitude", the latitude 

and longitude, expressed in the World Geodetic System (WGS) coordinate system, "sentido", 

the bearing or direction ("c": from lowest to highest road kilometre; "d": from highest to lowest 

kilometre) and "holder", the highway operator. 

 
Figure 4.2 — Sample IP sensor metadata records 

Counter data is delivered in two main ways: by Secure File Transfer Protocol (FTP), in 

CSV format (example and description in Appendix A.8, page 247) and via SQL dumps (exam-

ple and description in Appendix A.9, page 249) Sensor data in CSV format only possess vehicle 

counts, while sensor SQL dumps contain vehicle counts, average speeds and highway occu-

pancy percentages. Furthermore, IP granted access to proprietary electronic toll sensor data, 

spanning from October 2010 to February 2017, from 204 toll sensors for the tolled highways, 

which can record vehicle passages. The electronic toll data is property from the concession 

holders for each highway selected for the pilot, namely Via Livre and Ascendi. Examples for 

these data sources are presented in Appendixes A.10 (page251) and A.11 (page 252), respec-

tively. All sensor readings have a sample rate of five minutes. These vehicle-counting and 
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electronic toll sensors aggregate vehicle counts by vehicle class, since there are five classes of 

vehicles in Portugal: 

• Class 1 vehicles are all motorcycles and vehicles with two axes that have the distance 

between the front axis and the road surface of less than 1,10 meters. 

• Class 2 vehicles are all vehicles with two axes that have the distance between the front 

axis and the road surface of greater or equal than 1,10 meters. 

• Class 3 vehicles are all vehicles with three axes. 

• Class 4 vehicles are all vehicles with four or more axes. 

• Class 5 is a special class for motorcycles that possess electronic toll charging systems 

(exclusive for electronic toll data). 

 

Moreover, IP also provided traffic event data spanning from September 2010 to July 

2016, both in batches, through SQL dumps, and real-time streams, through XML-based Web 

services, totalling at 9416 traffic events. Examples of both data types are represented in Ap-

pendixes A.12 (page 254) and A.13 (page 256), correspondingly. 

4.3 Portugal 2020 Mobile Security Ticketing Project 

Mobile Security Ticketing is a Portugal 2020-funded project (Portugal 2020, European Union, 

2020) aiming to achieve an implementation of an alternative support for contactless ticketing 

based on Host Card Emulation (HCE) technology available in the latest smartphones, this so-

lution is independent of Mobile Network Operators (MNO), but perfectly integrated in the 

existing infrastructure operators. This development enables the following innovations, which 

are all high added value: replacement of the ticket card with a Mobile application; use the 

smartphone to make the purchase and display ticket availability rather than the use of tradi-

tional sales channels; consultation of helpful information on the smartphone instead of dedi-

cated panels available in some places. 

Mobile Security Ticketing involves technological developments that must be achieved 

in two distinct areas: development of a safe mobile app and creation of an automatic detection 

system and event handling. For transport operators in general, the solution to develop will 

justify its introduction as a complementary system to the existing ticketing systems and an 

easy introduction due to the low impact on the ticketing infrastructure already installed even 

if they are provided by other integrators. The mobile app, which is the visible project compo-

nent to the user, intends to be an innovative model of interaction with the passenger, consoli-

dating on the Smartphone the purchase, security storage and integrated publication of infor-

mation to the passenger. These features are now scattered on multiple channels and without 
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the omnipresence offered by the permanent network connection of the smartphone. The 

georeferenced information collected automatically from the user community, will, in addition 

to providing the passenger's state of the network in real time, provide operators with addi-

tional data on the use of transport (source / destination) that they currently have difficulty in 

obtaining by the traditional methods. 

Therefore, the mobile app is supported by data consolidation services, such as data ex-

ploration and inference mechanisms, that have the objective of obtaining insights about the 

public transport infrastructure in two different flavours: commuters' paths within the public 

transportation network and the network's performance status through online monitoring of 

network's sections. These services must be able to cope with various data sources, both real-

time and batch, and are supported by Big Data technologies to perform ETL, data analytics 

and visualization tasks, to provide public transport operators with patterns and insights about 

their networks. 

 Data Sources 

The association of public transport operators for the city of Lisbon, Portugal (OTLIS), main-

tains a close connection with almost all state-owned and private public transport operators, 

and stores all the monthly validation data for monthly profiles and single-use tickets from 

these operators. Profiles are monthly paid public transport subscriptions, often charged based 

on the social profile of the commuter (e.g., children, elderly, student, military, etc.) whereas 

single-use tickets are anonymously bought for single public transport rides. In the case of sin-

gle-use tickets, no data about the user is gathered, while in profile-based smart cards, several 

data parameters about the user are stored, such as gender and age, residency postal code, etc. 

An example for OTLIS validation data, along with the respective parameters' description, can 

be found in Appendix A.14 (page 258). The data corresponds to the month of May 2018, cor-

responding to more than 55 million validation records. 

4.4 Examples’ Overview and Cross-reference Table 

This section provides an overview of each of the example use cases for the different projects 

and pilots presented in this chapter. Table 4.4 presents the cross-reference between the differ-

ent use cases that will serve as examples in the following chapters, the project and pilot that 

supported their development and validation (marked with the symbol "✓") and the chapter in 

which the example will be overviewed (marked with the symbol ""). For the OPTIMUM 

project, the pilot scenarios' countries are represented by their abbreviations (UK - United 
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Kingdom, SL - Slovenia, PT- Portugal). It is worth to note that all the references for each ex-

ample are research works performed by the author of this thesis. 

Table 4.4 — Example-Project-Chapter Cross-reference Table 

Example 

Project / Scenario Chapters 

OPTIMUM M
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Big Data harmonization pipeline (Figuei-

ras, Guerreiro, Silva, Costa, & Jardim-Gon-

çalves, 2018; Figueiras, et al., 2016; Figuei-

ras, et al., 2016) 

✓ ✓ ✓ ✓    

CEP for traffic event detection (Figueiras, 

Antunes, Guerreiro, Costa, & Jardim-Gon-

çalves, 2018; Antunes H. A., 2017) 

 ✓      

Real-time traffic flow analysis (Figueiras, 

et al., 2018; Rosa, 2017) 
 ✓ ✓     

Public transport network status analysis 

and visualization (Antunes, Figueiras, 

Costa, Teixeira, & Jardim-Gonçalves, 2019; 

Antunes, Figueiras, Costa, Teixeira, & 

Jardim-Gonçalves, 2019; Antunes, Figuei-

ras, Costa, Teixeira, & Jardim-Gonçalves, 

2019) 

   ✓    

Twitter mining for traffic event detection 

(Gutiérrez, Figueiras, Oliveira, Costa, & 

Jardim-Gonçalves, 2015) 

✓    ✓   

 

The rationale behind Table 4.4 is to not only contextualize the examples that will be used 

to elucidate and instantiate the guidelines and best practices provided to practitioners and 

researchers in the following chapters, but also to broaden the spectrum of opportunities ena-

bled by the usage of the prescriptive methodology, guidelines and best practices presented in 

this thesis work, by providing practitioners and researchers with concrete examples that have 

specific contexts, use cases and data-driven objectives and use different methods, techniques 
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and technologies, but all fit into one or more of the components presented in the logical com-

ponents and data flows model in Chapter 3 (Figure 3.2).  The references for the examples are 

all taken from research works realized by the author of this thesis. 

The "Big Data harmonization pipeline" example (Figueiras, Guerreiro, Silva, Costa, & 

Jardim-Gonçalves, 2018; Figueiras, et al., 2016; Figueiras, et al., 2016) proposes an architecture 

for a Big Data harmonization pipeline to extract, harmonize to standard formats and store 

efficiently traffic- and mobility-related data. The proposed architecture is able to deal with raw 

data in many formats and sizes and to address interoperability at the data level, enabling the 

development of additional added-value services for highways users. It will be overviewed 

throughout Chapter 5, as it is the main example for the design and development of harmoni-

zation, standardization and interoperability processes for MobiTrafficBD. It will also serve as 

an example for data visualization towards an initial exploratory analysis for large volumes of 

data. 

The objective for "CEP for traffic event detection" example (Figueiras, Antunes, Guer-

reiro, Costa, & Jardim-Gonçalves, 2018; Antunes H. A., 2017) is to categorize and detect com-

plex events based on a repository of road traffic data. Data is collected by road flow sensors 

placed along major roads and motorways. As an output of this study a traffic event detection 

application prototype was developed, using CEP techniques. This example will be used to 

promote guidelines and best practices regarding the use of data exploration methodology 

standards to guide the design and development of data cleaning tasks in Chapter 5, and data 

analytics of MobiTrafficBD, in Chapter 6. 

The purpose of the "Real-time traffic flow analysis" example (Figueiras, et al., 2018; Rosa, 

2017) is to study the existing mechanisms for treatment and management of large volumes of 

data, techniques of real time processing and visualization of data, and to implement an appli-

cation that reunite these techniques to analyse traffic flow and congestion in real-time. It will 

serve to exemplify the use of data exploration methodology standards to guide the design and 

development of data cleaning tasks in Chapter 5 and the methods for real-time data stream 

processing, analytics and visualization in Chapter 6. 

The challenge addressed by the "Public transport network status analysis and visualiza-

tion" example (Antunes, Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 2019; Antunes, 

Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 2019; Antunes, Figueiras, Costa, Teixeira, & 

Jardim-Gonçalves, 2019) is to analyse the supply-demand trends of the transportation network 

of Lisbon’s metropolitan area as well as the ability of Big Data technologies to cope with data 

collected from transport operators, by inferring automatically and continuously complex mo-

bility patterns in the form of insightful indicators (such as connections, transhipments or pen-

dular movements). This example will be used in Chapter 5, as a second example in which the 
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Big Data Harmonization pipeline was used to perform data harmonization tasks over Mo-

biTrafficBD, this time for public transportation data, and in Chapter 6, to demonstrate the ap-

plication of the proposed prescriptive methodology in the batch processing, analytics and vis-

ualization of big volumes of MobiTrafficBD. 

Finally, the main objective of the "Twitter mining for traffic event detection" example 

(Gutiérrez, Figueiras, Oliveira, Costa, & Jardim-Gonçalves, 2015) is to detect traffic events from 

Twitter messages, called "tweets", by combining a mix of Natural Language Processing, clas-

sification, clustering, name-entity recognition and geolocation methods to not only detect a 

traffic event, but also to detect the type of event (e.g., traffic jam, accident, etc.) and to locate 

the spatial position of the event, with some degree of uncertainty, based on extracted infor-

mation about roads, road sections or place names. This example constitutes a good example 

of using a sequential architecture for streaming ST Events (tweets can be considered a ST 

event, since they possess, along with the tweet message, spatiotemporal information in the 

form of the location at which the tweet was published and the timestamp for the publishing). 

This sequential approach enables a data-driven pipeline in which data streams are further 

evaluated and transformed in each step, making it a suitable example for sequential processing 

and analysis of streaming data. 
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5  

 

MODELLING, COLLECTION AND  

HARMONIZATION OF HETEROGENEOUS  

MOBITRAFFICBD 

Now that the overall prescriptive methodology, guidelines and best practices were described 

and the use cases that will be used as examples in this and the forthcoming chapter are pre-

sented, it is time to drill down into the specifics of the Data Management component of Figure 

3.3. This chapter will focus on interoperability issues, since it is in the Data Management stage 

that interoperability is achieved using standards, harmonization methods and storage tech-

nologies. Particularly, data interoperability, which addresses "the ability of systems and ser-

vices that create, exchange and consume data to have clear, shared expectations for the con-

tents, context and meaning of that data" (Data Interoperability Standards Consortium, 2021), 

must be achieved in the Data Management stage to provide already fully interoperable data 

to the upcoming Data Processing, Data Analytics and Visual Analytics stages. These compo-

nents are more than often use case-driven, meaning that the Big Data processing, analytics and 

visualization processes have a short range of application in other use cases, since they are too 

specific towards solving a concrete problem or challenge. Moreover, data harmonization and 

interoperability enable practitioners and researchers to apply the same processing, analytics 

and visualization methods to data coming from different data sources, captured from different 

technologies with different hardware and software specifications, and spanning different geo-

graphic locations and temporal ranges. 

5.1 The use of Standards in Modelling Strategies 

As already discussed in sub-section 2.2.3, the selection and application of standards, specifi-

cally data modelling and formatting standards, enable data interoperability by supporting 
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data harmonization of heterogeneous data sources towards unified and widely used data 

models and formats. But data modelling and formatting standards are not the only standards 

that are crucial to build any data processing framework, and MobiTrafficBD frameworks are 

not an exception.  

Other standard types that are useful for MobiTrafficBD frameworks are, for instance, 

data exploration and mining standard methodologies or, for a more general case, traffic- and 

mobility-related standards that are not directly linked to data, such as in the case of traffic 

control standards (e.g., road types, signalling, vehicle categories, etc.) or commuting and mo-

bility standards (e.g., crosswalk distribution across the road network, public transit standards, 

etc.). This section will focus on the data modelling and formatting standards available for Mo-

biTrafficBD, specifically DATEX II, and on data-driven methodologies for data exploration 

and understanding, which the author considers vital for data cleaning and harmonization 

tasks' design and development. 

 The Importance of Data Exploration Methodologies in Data Mod-

elling & Harmonization 

Before going through the actual data modelling standards for MobiTrafficBD, it is worth to 

highlight the importance of following a standard methodology for data exploration when de-

signing and developing data harmonization, cleaning and storage processes, i.e., the processes 

comprised in the Data Management component of Figure 3.3. The design stage for data man-

agement processes starts from the elicitation of available data sources and business scenario 

requirements and research challenges and involves finding solutions for a panoply of issues 

related not only to the data being collected but also to the domain, field of study and context 

for which the overall solution is built.  

From a business scenario perspective, popular data-driven issues are "what data sources 

are relevant for answering the business scenario's research challenges?", "from the relevant 

data sources, which data parameters and characteristics can be used to solve the business sce-

nario's challenges?" or "are the relevant data sources enough, in terms of quality and quantity, 

to ensure the proper analysis and insight creation to support decision making tasks and to 

provided definitive answers to the research challenges?", for instance. From a data perspective, 

common issues comprise "what data types are available?" (e.g., traffic sensor data, traffic event 

data, public transport data, etc.), "can the data sources be clustered by similar data types?" 

(e.g., two or more sources represent traffic sensor data), "what is the overall data quality?" 

(e.g., traffic sensor data is not complete due to sensors' down times and failures), "are there 

any data sources already represented in one or more standardized formats?”, "are there any 

data modelling standards that are suitable for representing the available data sources?" or 



 131 

"what are the main characteristics of the available data and how can they be leveraged in order 

to better answer to the research challenges at hand?", just to name a few. 

More than often, these questions are difficult to answer without a proper methodology 

to explore and understand both the data and the data-driven business scenarios, due to a pan-

oply of reasons. First, there is an inherent difficulty to ensure ongoing and effective engage-

ment of both business and ICT professionals throughout the project's lifetime, since data man-

agement tasks are highly iterative, and the issue of data management practitioners and re-

searchers to drift away from business and other ICT professionals is a harsh reality. Because 

these tasks are not broadly understood or accessible, the business partners cannot participate.  

Furthermore, data-centred projects come in a wide variety of flavours, from non-infer-

ential business intelligence and data warehousing solutions to real-time Big Data analytics 

solutions, which present more exploratory and interactive scenarios. Hence, no two projects 

are alike in their data management processes. Lastly, variability across data-driven projects 

poses challenges for project managers, who need to hire suitable people and make time and 

cost estimates. Exploratory activities require expert data scientists and increase time and cost 

uncertainty, whereas data management activities require more data engineers and are more 

easily contained within a fixed time interval and budget.  

There is not a single methodology that can be applied in every scenario, but a data ex-

ploration methodology would help to mitigate the above issues by, on one hand, giving the 

data management development team a framework within which each iteration must fit—if the 

iteration is not moving toward a better decision, then it is not helping (Taylor, 2018) — and, 

on the other hand, support project planning by clearly separating the various data manage-

ment and exploration activities (Martínez-Plumed, et al., 2019). Although not specific to data 

harmonization and management processes, there are several data exploration methodologies 

available in the literature. Some examples are the older Knowledge Discovery in Databases 

(KDD) methodology (Fayyad, Piatetsky-Shapiro, & Smyth, 1996), the Sample, Explore, Mod-

ify, Model, Assess (SEMMA) methodology (Azevedo & Santos, 2008) and the well-known 

Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology (Wirth & Hipp, 

2000). 

These methodologies were initially developed to guide IT researchers, practitioners and 

professionals through all stages of Data Mining and Analytics projects, throughout their de-

sign and implementation, from business-related tasks, such as requirements' elicitation, busi-

ness understanding and mapping of business objectives, to data-related tasks, such as data 

exploration and understanding, selection, cleaning and harmonization, analysis, modelling 

and mining (Azevedo & Santos, 2008). Since then, and due to the evolution of data science and 
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engineering, these methodologies have been also evolving to cope with the new paradigms 

for these fields (Martínez-Plumed, et al., 2019).  

In several of the examples presented in Chapter 4, CRISP-DM was used to guide the 

several stages of Data Management processes' design and development (Figure 3.3), as pro-

posed by the author in (Figueiras, Guerreiro, Silva, Costa, & Jardim-Gonçalves, 2018; Figuei-

ras, et al., 2016; Figueiras, et al., 2016) ("Big Data harmonization pipeline" example), (Figueiras, 

Antunes, Guerreiro, Costa, & Jardim-Gonçalves, 2018) ("CEP for traffic event detection" exam-

ple) , (Figueiras, et al., 2018) ("Real-time traffic flow analysis" example) and (Antunes, Figuei-

ras, Costa, Teixeira, & Jardim-Gonçalves, 2019; Antunes, Figueiras, Costa, Teixeira, & Jardim-

Gonçalves, 2019; Antunes, Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 2019) ("Public 

transport network status analysis and visualization" example). CRISP-DM was chosen solely 

because it is still one of the most commonly used Data Mining methodologies by both industry 

and academia (Martínez-Plumed, et al., 2019; Azevedo & Santos, 2008), and the choice for a 

specific methodology, such as the ones presented as examples or any other available, depends 

on the specificities of the scenario and data at hand. 

In (Azevedo & Santos, 2008), authors draw a detailed parallel overview of KDD, 

SEMMA and CRISP-DM. In the case of data cleaning and harmonization tasks of the Data 

Management component in Figure 3.3, the goal is clear: to provide the upcoming sub-compo-

nents of the logical components and data flows model of Figure 3.2 (Data Processing and Data 

Analytics) with clean, harmonized and interoperable data. Hence, CRISP-DM can be used as 

a guide in the design and development of these tasks. 

5.1.1.1 CRISP-DM: Brief Overview 

CRISP-DM (Wirth & Hipp, 2000) is based on a cyclic process with six stages: Business Under-

standing, Data Understanding, Data Preparation, Modelling, Evaluation and Deployment, as 

shown in Figure 5.1. The Business Understanding stage focuses on exploring the project Chal-

lenges and requirements, define the business goals, converting them to a clear data exploration 

and mining problem definition, and create a preliminary plan to solve the proposed objectives. 

The Data Understanding stage comprises data collection, sampling, quality analysis and ex-

ploration tasks to familiarize with the data, discover initial insights, detect data quality issues 

and identify relevant subsets that enable hypotheses formulation and unravel hidden 

knowledge. The Data Preparation stage, according to the Data Mining perspective, corre-

sponds to the preparation of the final dataset from the initial raw data. Data preparation tasks 

are likely to be performed multiple times, and not in any prescribed order. Tasks include table, 

record, and attribute selection, data cleaning, and construction of new attributes. But, from a 
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data harmonization perspective, it also corresponds to the preparation of the data access tools 

and adapters. 

 
Figure 5.1 — The CRISP-DM cycle (Wirth & Hipp, 2000) 

The Modelling stage corresponds to the Data Mining modelling tasks, in which analyt-

ics, mining and machine learning models are selected, applied and their parameters are cali-

brated to optimal values, to tackle the business challenges collected during the Business Un-

derstanding stage. This stage, from a data management perspective, defines the creation and 

transformation of data into the standardized, interoperable data models. The Evaluation stage, 

as the name entails, comprises all evaluation procedures to assess if the selected models are 

the most effective to tackle the aforementioned business challenges: if so, then the models will 

be deployed in the Deployment stage; otherwise, practitioners should return to the Business 

Understanding stage to understand what was wrong with the selected models. Finally, the 

Deployment stage is generally not the end of the project. More than often, the gained insights 

will need to be organized and presented in a way that final users can capitalize on. Depending 

on the requirements, the Deployment phase can be as simple as generating a report or as com-

plex as implementing a repeatable data mining process. 

The following sections will present some examples of the application of the CRISP-DM 

methodology, or at least some of its steps, as support to the Data Management component 

(Figure 3.3) of the logical components and data flows model and the comprised harmonization 

and cleaning tasks. 
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5.1.1.2 CRISP-DM for Data Cleaning 

The Business Understanding and Data Understanding stages of CRISP-DM can serve as the 

basis for data cleaning tasks, since the design and execution of these tasks need strong business 

and data knowledge, in the form of concrete business challenges, a clear picture of how the 

available data sources may provide solutions to such challenges, how the overall quality of 

the data at hand may pose issues to the envisaged solutions or which are the major data quality 

flaws in the data and how can they be mitigated. Further, the Data Preparation stage is also 

vital to the data cleaning phase, since it comprises the initial decisions around the data quality, 

namely which datasets have enough quality to be useful for the upcoming analysis tasks and 

which sets do not meet the required quality and must be discarded. Finally, the Modelling 

stage refers to the selection of data cleaning strategies and techniques that will mitigate the 

data quality issues, already explored in the Data Understanding stage, and their application 

to the data selected during the Data Preparation step. 

The first instantiations of the above approach of using CRISP-DM to support data clean-

ing tasks are based on the "CEP for traffic event detection" example [284] and on the "Real-

time traffic flow analysis" example (Figueiras, et al., 2018). In the first example, the business 

challenge was to develop a complex event processing system that could find anomalous events 

in traffic sensor data that could correspond to severe traffic events, such as accidents, traffic 

jams or other public events that would have an impact in the traffic, and correlate the detected 

events with known traffic events, already reported by RITMOs, and stored in a traffic event 

database. In the second example, the business challenge was to develop a real-time data col-

lection and processing framework that could serve as a basis for the application of Data Ana-

lytics and Mining mechanisms over data streams to monitor and analyze traffic in real-time 

on Slovenian highways. 

The data sources used in both examples were the Slovenian Traffic Sensor Data dataset 

(Appendix A.5, page 241), used in both examples, and the Slovenian Traffic Event Data dataset 

(Appendix A.6, page 243), used only in the CEP for traffic event detection, and the Data Un-

derstanding stage focused on the analysis of the data characteristics and quality of these da-

tasets. The initial step was to do a preparatory data exploration process that described the 

data's structure, parameters and metadata of both data sources. Structurally, the traffic sensor 

data presents two different formats for different time intervals: from January 2016 to Novem-

ber 2016, a JSON schema that was based on an older XML schema was used, but the API's data 

format was updated to a more user-friendly JSON schema, which corresponds to the temporal 

period from December 2016 to May 2017. Despite the difference in formats, the data contents 

represented in both schemas are the same, although the data acquisition time intervals are also 

different for both schemas, with an interval between sensor readings of 5 minutes for the 
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period between January and November of 2016, and of 10 minutes for the period between 

December 2016, and May 2017. 

The second step was to perform a spatiotemporal coverage analysis. Firstly, a spatial 

dispersion analysis of both datasets was made, as presented in Figure 5.2. The spatial disper-

sion analysis shows that both datasets have a country-wide dispersion, although they are fo-

cused on the main road infrastructure arteries and cities of Slovenia, and that there are some 

good overlapping points between the two datasets, namely near the capital, Ljubljana (centre 

left cluster of points in the figure), the second biggest city, Maribor (upper right cluster of 

points in the figure) and some highway sections near the country's borders. 

 
Figure 5.2 — Spatial dispersion analysis for the Slovenian Traffic Sensor dataset (top) and the Slovenian Traffic 

Event dataset (bottom) 

 

Afterwards, a temporal coverage and availability analysis was performed. Temporal 

coverage represents the temporal range (i.e., minimum-maximum time limits) of the acquired 

data whereas temporal availability depicts a percentual relation between the available 



 136 

quantity of acquired data records and the expected number of acquired records, as represented 

in Equation 1. 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
# 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑑𝑎𝑡𝑎 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

# 𝑜𝑓 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
∗ 100 (1) 

 

Hence, for an interval between readings of 10 minutes, the expected number of readings 

for each sensor per hour is 6 readings, corresponds to 144 readings per day and 4.320 readings 

per month (in the case of the 5-minute interval, the values are doubled). If, for instance, a sen-

sor has an average of 116 records per day for a given month, it means that its availability per-

centage equals 80%. Table 5.1 presents the monthly average data availability percentage for 

all 355 available sensors. 

Table 5.1 — Monthly average data availability percentage for the Slovenian traffic sensor data 

Month Data Availability (%) 
Time interval between sen-

sor readings (minutes) 

January 2016 96,2 5 

February 2016 91,4 5 

March 2016 0,25 5 

April 2016 98,6 5 

May 2016 99,2 5 

June 2016 88,4 5 

July 2016 88,8 5 

August 2016 90,4 5 

September 2016 92,7 5 

October 2016 96,4 5 

November 2016 26,4 5 

December 2016 86,3 10 

January 2017 97,2 10 

February 2017 82,7 10 

March 2017 86,4 10 

April 2017 63,8 10 

May 2017 18,4 10 
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In fact, in the Data Preparation stage, this percentage value was chosen as the quality 

threshold for sensor data: if the overall data availability percentage for one month is equal or 

higher than 80%, its data is cleaned and stored to be used by both examples; otherwise, that 

month's data is discarded. The same data selection exercise was then performed for individual 

sensors, as represented in Figure 5.3: the data availability percentage (y-axis) for a sample of 

nine sensors, represented by their unique IDs (x-axis), and for the first five months of the data's 

overall temporal range. 

 
Figure 5.3 — Monthly availability for the first five months of 2016, for a random sample of nine sensors 

There are clearly four months with availability percentages below 80% as represented in 

Table 5.1 and Figure 5.3 and were discarded: March and November of 2016 and April and May 

of 2017. In the case of March 2016, November 2016 and May 2017, the availability issue is that 

these months only have sensor readings for one (March 2016, as shown in Figure 5.3) or a few 

days only, which may mean that the sensor network was down due to maintenance or repair-

ing tasks, energy shortage or communication problems between the network and the data ac-

quisition server. For the case of April 2017, there are sensor readings for all sensors for every 

day of the month, but most of the days, there are only a few records acquired, usually between 

21:00 and 23:00. Besides these availability issues, other issues were discovered during the Data 

Understanding stage and that were tackled through data selection in the Data Preparation 

stage and cleaning strategies in the Modelling stage: 

• Duplicate readings: There were some cases of duplicate readings, i.e., readings for the 

same sensor and the same date and time. Duplicate readings were removed. 
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• Mismatch between time gap between vehicles and road occupancy: There are some 

cases in which the time gap between vehicles (steci_gap) and the road vehicle count 

(stevci_stev) do not match, as for instance, if the time gap between vehicles is 999 sec-

onds and the vehicle count for the same reading is 24 vehicles, which is not possible. 

In this case, the adopted strategy was to divide the time interval between readings by 

the vehicle count, giving an equal average time gap between all vehicles for that read-

ing. 

 
Figure 5.4 — Hourly correlation between the traffic status code and the actual vehicle count, for the 27th of April, 

2017 

• Mismatch between traffic status code and road occupancy: the traffic status code inte-

ger parameter (stevci_stat), which goes from 1 (lowest traffic concentration) to 6 (high-

est traffic concentration), should be directly correlated with the vehicle count parame-

ter. However, some readings do not comply with this rule. For instance, Figure 5.4 

represents the hourly data correlation between the status code and the vehicle count 

for a randomly chosen day and for a single sensor, in this case the 27th of April 2017. 

At 1:00 o'clock the status code equals 2 and the vehicle count equals 12, whereas at 2:00 

o'clock the status code is 1 but the vehicle count equals 132, which is a breach of the 

above rule. The decision was not to rely on the status code parameter for the subse-

quent analyses, discarding it. 

• Mismatch between average speed and road occupancy: There are anomalous cases, 

such as an average speed of 255 kilometres per hour for one sensor reading i.e., for a 

period of 10 minutes, or average speeds of 2 kilometres per hour for a road occupancy 

of 50 vehicles in 10 minutes. These cases were treated as outliers. 

 

Finally, the Data Selection stage comprised the selection of the data to be used in both 

the examples, which will be overviewed in Chapter 6, and what data to discard, and the 
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Modelling stage corresponded to the creation and application of data cleaning strategies, such 

as the ones already cited. As mentioned, the data cleaning processes are not the focus of this 

work and so, this subject will not be further discussed. For a thorough guide and best practices 

on data cleaning, the author recommends (Osborne, 2013).  

This example illustrates the value of the application of a data exploration methodology, 

in this case CRISP-DM, on the design and implementation of data cleaning tasks, by providing 

a guiding framework with concise stages for business and data understanding, data selection 

and cleaning, and driven by both the available data and business challenges. Furthermore, the 

methodology stages are also well defined, enabling a better understanding of the role of each 

stakeholder in the process, such as RITMOs on the business side and data scientists and re-

searchers on the data side, with clear bridges between both: data sources and business chal-

lenges. 

5.1.1.3 CRISP-DM for Data Harmonization 

As in the case of data cleaning tasks, a data exploration methodology like CRISP-DM can be 

particularly useful, especially when considering a wide set of data sources that must be har-

monized. Harmonization processes for geographically scattered, multi-schema data sources 

are not easy to design and develop since, due to the difference between formats, data param-

eters and even spatial and temporal representations of these parameters, it is not trivial to find 

a common ground for the creation of a single harmonized schema that can encompass all the 

available data sources for the same data type (e.g., traffic sensor data).  

Therefore, the application of the CRISP-DM stages to data harmonization may be im-

portant to better understand the data at hand, its commonalities and differences, whether 

structural or parametric, and to choose a data schema or model that suits these differences and 

commonalities in a single package. Moreover, the exercise of transforming data into a harmo-

nized format is not straight-forward, as it entails several data comprehension, matching and 

filtering processes. 

For the "Big Data harmonization pipeline" example (Figueiras, Guerreiro, Silva, Costa, 

& Jardim-Gonçalves, 2018; Figueiras, et al., 2016; Figueiras, et al., 2016), there was the need to 

explore all the project's data sources and try to find the so said common ground between them. 

The example will focus on traffic sensor and event data, but other data sources were also sub-

mitted to the same process, such as car parking and bike sharing data sources. The first step 

of the Data Understanding stage was to perform a thorough report on the available data 

sources, catalogued in terms of pilot or provided by third parties (DTC: Dynamic Toll Charg-

ing pilot; MMR: Proactive Improvement of Transport systems pilot; TPP: Third party-
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provided) and country (POR: Portugal; UK: United Kingdom; SLO: Slovenia), by their name 

tags, as presented in Table 5.2.  

Table 5.2 — Data sources list, catalogued by name tag 

Data Source ID Description 

DTC_POR_ConcessionToll-

CrossingVolumes 

1 Toll crossing volume of vehicles for each conces-

sion 

DTC_POR_HighwayCounters 2 Highway counter data (5-minute granularity) 

DTC_POR_RoadVolume 3 Counter Data on National Roads (5-minute gran-

ularity) 

DTC_POR_TrafficEventsDB 5 Historical traffic events database 

DTC_POR_TrafficEventsWS 43 Real-time Traffic events Web Service 

MMR_UK_AverageSpeeds 9 Average vehicle speeds from approximately 963 

locations within the West Midlands conurbation 

MMR_UK_Congestion 10 Congestion levels at 98 locations within the West 

Midlands conurbation 

MMR_UK_Flows 11 Traffic flows from 743 loop detectors within the 

West Midlands conurbation 

MMR_UK_JourneyTimes 12 Travel times data from Automatic Number Plate 

Recognition (ANPR) cameras located at 237 loca-

tions within the West Midlands conurbation 

MMR_UK_Occupancy 13 Occupancy levels from 82 loop detectors within 

the West Midlands conurbation 

MMR_UK_TravelTime 14 Travel times data from 437 locations within the 

West Midlands conurbation 

TPP_UK_TrafficEvents_INRIX 34 Feed that provides snapshot of all vehicles within 

a fleet –only available with key provided by Brit-

ish Traffic 

TPP_UK_MIDASTrafficCounts 44 NTIS collects traffic data from Highways 

Agency’s MIDAS Gold servers every minute. 

MIDAS Gold data including speed, flows, occu-

pancy and headway is reported on a per lane basis 

where the site is configured for counting 
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TPP_UK_ANPRJourneyTimes 45 Travel data from Automatic Number Plate Recog-

nition (ANPR) cameras located at strategic loca-

tions on the network 

TPP_SLO_LoopSensorsFeed 38 Sensor feed from Slovenian roads –including av-

erage speed, number of vehicles, gap between ve-

hicles, occupancy, etc. 

TPP_SLO_TrafficEvents 41 Slovenia, coverage of current road traffic events 

(roadworks, accidents, traffic jams etc.) 

 

Values in the "ID" columns are not sequential since the list had more data sources, and 

other data sources were added later to the project, but the example will only focus on the ones 

in the list, which correspond to the example data sources already presented in Chapter 4 and 

in the Appendixes. Two examples of the data source exploration reports are presented in Ap-

pendix A.15 (traffic sensor data example, page 260) and Appendix A.16 (traffic event data ex-

ample, page 262). After the thorough exploration reports, the next step was to analyse the 

commonalities, structure- and parameter-wise, between the data sources described in Table 

5.2. The result of this analysis in Appendix A.17 (page 264). 

The table in Appendix A.17 (page 264) is divided into three data structures: road sensor 

metadata, road sensor values and traffic events. The different data sources of Table 5.2 were 

distributed between each of these structures according to their data types (road sensor data 

and traffic event data) and road sensor data was divided into two linked structures: road sen-

sor metadata, containing all information of each traffic sensor and common for all data read-

ings, such as the sensor's unique ID, location and bearing, and road sensor values, containing 

the sensors' captured values along with the capture timestamp. Additionally, the different 

data sources IDs were mapped to common parameters, shared by one or more data sources, 

corresponding to the "Data Sources" column of Appendix A.17. 

This analysis, equivalent to the Data Preparation stage of CRISP-DM, was fundamental 

to not only select the appropriate harmonized schema but also to identify how raw data pa-

rameters could be mapped to a common, harmonized schema, as will be presented in the next 

section, which will cover the schema selection and the Modelling stage. 

 Data Modelling & Formatting Standards for MobiTrafficBD: DA-

TEX II & Others 

As already pointed out in Chapter 2, data modelling standards for ITS, such as DATEX II for 

traffic-related data or GTFS for public transportation-related data, are crucial to promote data 
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interoperability on ITS. But why is data interoperability important for ITS? The main answer 

to this question is the fact that if all data were to be represented and exchanged in interopera-

ble, standardized formats, there would be no need for the application of harmonization and 

cleaning processes, as these require a certain degree of processing power and time. Further, as 

in any digitalization venture, implementing data harmonization processes have associated 

costs. In an era in which real-time access to data is becoming more important, both for deliv-

ering quality data to users on time (e.g., public transport schedules, delays and disruptive 

events in the network) and for effective application in decision-making processes (e.g., taking 

actions to optimize the road infrastructure), the less time and computational power are con-

sumed, the better. 

This means that if the harmonization and cleaning processes would be bypassed, then 

data would flow directly to processing and analytics processes, which would involve shorter 

data analysis times and, consequently, quicker responses, in the form of new insights and 

knowledge, to the users/stakeholders and, ultimately, would translate in financial savings for 

RITMOs, whether direct, by saving in digitalization processes, or indirect, by enabling deci-

sions that would lead to infrastructure and network cost reductions. Hence, the application of 

data modelling and formatting standards should be generalized and performed directly upon 

data collection, whether at the edge (i.e., at the devices that capture the data) or soon after (i.e., 

before the initial storage of raw data after its collection). Since this "interoperability-by-design" 

concept is still far from generalization, there is the need for cleaning and harmonization pro-

cesses that drive interoperability of heterogeneous data sources forward.  

Picking up on the "Big Data harmonization pipeline" example in the previous section 

and, particularly, the table of Appendix A.17 (page 264) that ensued the analysis of the data 

sources, the next step was the Modelling stage. In this stage, the parameters for each data type 

(traffic sensor metadata, traffic sensor value and traffic event), presented in Appendix A.17, 

were mapped to DATEX II standard model's parameters, whenever there was a direct match 

between both the raw data parameter and the DATEX II parameter, in terms of meaning (i.e., 

the parameters have the same meaning and context), representation (i.e., the raw parameter 

can be represented by the standard parameter as, for instance, in the case of common enumer-

ations) and type (i.e., the data types of both parameters are the same, e.g. numeric, or the raw 

data parameter's type can be transformed to the standard parameter's type, e.g. string repre-

senting a number transformed to a numeric type). The result of this mapping is presented in 

Appendix A.18 (page 267).  

For the cases in which no match was found for a specific raw data parameter, and de-

pending on the relevance of the parameter, it was either discarded or proposed for a DATEX 

II "Level B" extension. For instance, when the parameter was an enumeration retrieved from 
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an actual numeric measurement, as in the case of trends and status flags (e.g. "flowTrend" or 

"flowStatus"), the parameter was discarded, since it could be reproduced through the numeric 

measurement; In cases in which the parameter was relevant for future analyses, but did not 

matched any of the parameters in the standard model, such as in the case of the vehicle count 

for the five Portuguese vehicle classes, a "Level B" extension was proposed, as shown in Ap-

pendix A.18 (page 267). 

The next step was to build the proper harmonized schema and harmonize the data ac-

cording to it. In this example, a JSON document-based database system (MongoDB (Mon-

goDB, Inc., 2015)) was used due to the characteristics of the data sources, as will be explained 

in sub-section 5.2.3. For now, it suffices to mention that the choice had primarily to do with 

data unevenness and heterogeneity between data sources corresponding to the same data 

type, as in the case of traffic sensors that capture different measurements (e.g., traffic flow, 

occupancy, average speed) in different spatial granularities (e.g., entire road, per lane), and 

the spatiotemporal support provided by the selected system. Document-based systems, in op-

position to RDBMS, enable schema flexibility, meaning that some data records (documents) 

may have values for all the parameters in the schema while other records may only have val-

ues for some parameters. 

Hence, the selected system, besides providing spatiotemporal support, should enable 

storage of a JSON schema that could encompass different parameters and granularities for the 

same data type and should be compliant and easily mapped to the DATEX II standard model. 

At the time of development of this example, the JSON-based DATEX II Light specification, 

already overviewed in Chapter 2, was not yet available and so, this intermediate mapping step 

between the harmonized JSON-based schema and the XML-based DATEX II model was a ne-

cessity.  

Table 5.3 presents the most relevant DATEX II parameters, their description and the 

mapped JSON parameters, when applicable, to transform the JSON sample in the DATEX II 

model-based format of Appendix A.19 (page 271). If the mapping of parameters is not appli-

cable, these values are often automatically added to the DATEX II standardized output data 

(e.g., in the case of the "confidentiality" parameter). 

The JSON-based schemas for traffic sensor metadata and readings and for traffic events 

are presented in Appendix A.19 (traffic sensor metadata, page 271), Appendix A.20 (traffic 

sensor reading, page 274) and Appendix A.21 (traffic event, page 277), along with the corre-

sponding DATEX II mapping for each data type. In Appendix A.19 (page 271), the JSON-based 

schema is the original MongoDB database record and is composed by all parameters that can 

be mapped (directly or via extensions) to the DATEX II model. XML parameters marked with 
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"**********" correspond to the vehicle classes in Portugal and are represented by the extensions 

to the "Level A" model. 

Table 5.3 — DATEX II traffic sensor metadata's (Appendix A.19) most relevant parameters, descriptions and cor-

responding mapped JSON-based parameters 

DATEX II XML 

Parameter 
Description 

Mapped 

JSON  

Parameter 

country Country of origin country 

nationalIdentifier National authority identifier N.A. 

publicationTime Time of publication N.A. 

confidentiality Confidentiality level N.A. 

informationStatus Information veracity status N.A. 

measure-

mentSiteTable "id" 

Unique ID for the measurement sites list (all sensors) N.A. 

measure-

mentSiteTableRef-

erence 

Unique name for the measurement sites list (all sen-

sors) 

N.A. 

measure-

mentSiteRecord 

"id" 

Unique ID for the measurement site, comprised of 

country, concession holder and sensor ID 

country, 

conces-

sion_holder, 

sensor_id 

measurementE-

quipmentRefer-

ence 

Unique name for the site measurement sensor_id 

measurementSiteI-

dentification 

Unique ID that serves as site identification _id 

measurementSite-

Name 

Name for the measurement site section 

measurementE-

quipmentType-

Used 

Type of the measurement equipment sensor_type 

measurementSide Side of the road (bearing) for the measurement site bearing 

period Time period between measurements N.A. 
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specificMeasure-

mentValueType 

Measurement type (TrafficFlow, Occupancy, Head-

way, Speed, Volume), extracted from the available 

measurements for the sensor 

N.A. 

vehicleType Measured vehicle type (All, heavy, light, vehicle clas-

ses), extracted from the available measurements for the 

sensor 

N.A. 

latitude Latitude expressed in WGS coordinates 

[0] 

longitude Longitude expressed in WGS coordinates 

[1] 

 

Traffic sensor metadata sets for all pilots (UK, Slovenia and Portugal) were harmonized 

to the JSON-based MongoDB schema shown in Appendix A.19. As an example of the required 

transformations from raw sensor metadata to harmonized sensor metadata, Figure 5.5 pre-

sents the harmonized format for the raw data record in Figure 5.5 a). 

 
Figure 5.5 — Traffic sensor metadata harmonization example from raw data (a) to harmonized data (b) 

Table 5.4 presents the transformation rules applied to the raw data format (Figure 5.5 a)) 

to transform it into the harmonized format (Figure 5.5 b)). This short example is just a sample 

of the transformation rules for all data sources and data types. Some of the transformations 

are as simple as changing the name of the parameter and maintaining the original value, while 

other transformations are more complex, such as in the case of dates or locations. The more 

complex cases can be divided into five rules: 

• For date parameters, the date format of the original raw parameter is required before-

hand. 
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• For locations, the coordinates may need to be translated in terms of their reference sys-

tem. Other option is to extract locations from a location list, which is independent of 

the raw data sources. 

• In the case of DATEX II predefined enumerations, such as in the case of measurement 

types (flow, occupancy, average speed, etc.) or traffic event types (accident, traffic jam, 

roadworks, etc.), there must be a mapping between the raw data parameters' values to 

the corresponding enumeration. 

• Other transformations are related to raw data parameters' types (character string, nu-

meric, etc.). In these cases, a type-based transformation is required, as for instance from 

string-typed parameters representing numbers to numeric types. 

• In some cases, further information may be necessary to complete the transformation. 

for instance, some information may be appended to one parameter, as in the case of 

road lane numbers being represented in the ID parameter of the measurement device, 

or in the case of needing other data sources to complement the raw data (refer to the 

"bearing" parameter in Table 5.4). 

 

These transformation rules must consider the selected standard model to ease the pro-

cess of outputting the harmonized data via the standard model, in this case DATEX II. This 

means that, if the harmonized parameters' value is already harmonized according to the 

model, whether is a date, a number, an enumeration or a location, the process of transforming 

the JSON-based harmonized format to the DATEX II model is significantly simplified. The 

major concern then is to have a complete map of JSON-based parameters' names to the corre-

sponding DATEX II XML tags, as presented in Table 5.3. With both the transformation rules 

and the parameters map, it is easy to build a semi-automatic algorithm that performs the trans-

formation process for all data sources, as will be presented in Section 5.2. 

Thus, a thorough example on the use of data modelling and formatting standards is pro-

vided in this section, along with the description of the necessary processes to harmonize raw 

data sources and output them in standardized formats. For a complete guide of the harmoni-

zation processes for the examples in Appendixes A.20 (page 274) and A.21 (page 277) and 

other, please refer to the OPTIMUM project's deliverables (OPTIMUM Consortium, 2016; OP-

TIMUM Consortium, 2018) and to (Figueiras, et al., 2016).  

Section 5.2 will focus on the design and development of a generic, semi-supervised sys-

tem that performs the collection, harmonization, storage and standardized data sharing pro-

cesses described in previous sections and following the guidelines provided in Chapter 3 and 

in the end of this chapter. 
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Table 5.4 — Applied transformations' list for the harmonization of raw traffic sensor metadata from the UK 

Original param-

eter 

Harmonized 

parameter 
Transformation 

SCN sensor_id The SCN parameter changes its name to sensor_id. 

Description road_name The Description parameter changes its name to 

road_name. 

Type sensor_type The Type parameter changes its name to sensor_type. 

Status state The Status parameter changes its name to state. Map-

ping for the enumerations takes place as part of the 

transformation process. For instance, ‘green’ from the 

original parameter is mapped to ‘active’ for the harmo-

nised parameter. 

N/A bearing The bearing parameter is not available in the raw mes-

sage. Further processing is required based on additional 

information (some sensors have been tagged in Open 

Street Map (OSM) files, while others required visual in-

spection) to define this. This parameter is set to ‘unde-

fined’ and is later updated following additional pro-

cessing. 

Northing, East-

ing 

location The Northing, Easting values are to the location param-

eter (latitude and longitude). The original parameter is 

using the British National Grid reference system and 

therefore it is converted to WGS84. 

5.2 Data Collection, Harmonization and Storage from Hetero-

geneous Sources 

To bring all the aforementioned standards and examples into one system that is able to per-

form data collection, harmonization and storage of heterogeneous data sources, some require-

ments have to be met: 

• Data Volume/Speed: The system must be able to cope with voluminous and fast data 

equally efficiently. 

• Data Heterogeneity: The system must be able to tap into almost any data source, inde-

pendent of the communication medium used. 
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• All-in-one: The system should enable easy reconfiguration and generic reuse across 

different scenarios, data sources and harmonized models and formats. 

• Data Sharing: The system should provide mechanisms for harmonized data sharing, 

to promote data interoperability. 

• Data Understanding: The system should promote data understanding by providing 

visual reports about the data being harmonized. 

 

Data harmonization works in the literature are normally based on a few data types and 

data sources and on the harmonization of data into a single standard. This section proposes 

the design, development and deployment of a generic Big Data harmonization pipeline that 

can be easily repurposed and reused to cope with different data types and data sources, and 

harmonize data into any custom or standardized format, by enabling the insertion of new for-

mats through their description in a meta data format. This harmonization pipeline is also able 

to support a better understanding about the data, by providing initial insights and statistics 

about the data being harmonized, in real-time. Further, it enables data sharing through the 

inclusion of custom APIs that allow for other researchers, practitioners or RITMOs to access 

fully harmonized data. 

 Big Data Harmonization Pipeline 

The proposed Big Data harmonization pipeline's conceptual and technological architecture is 

represented in Figure 5.6.  

 
Figure 5.6 — Big Data harmonization pipeline's conceptual architecture 
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The pipeline comprises the data adaptors that will collect data from data sources, two 

databases, the raw data database and the harmonized database, the data harmonizers, algo-

rithms that implement the required transformation rules to map raw data parameters to the 

harmonized model, and APIs to share the harmonized data, whether internally, if the pipeline 

is part of a bigger framework, as proposed in the logical components and data flows model of 

Figure 3.2, or is used, for instance, to produce visual reports about the harmonized data, or 

externally, through the provision of web services to share the harmonized data in standard or 

custom formats with external platforms, serving also as a harmonization pipeline that can be 

used by third-party entities to standardize their data sets. 

Data adaptors collect data from a panoply of data sources, whether they are provided 

via files, web services, publish-subscribe mechanisms or database dumps, and store the raw 

data into the raw data repository. Data harmonizers get the raw data form the repository and 

transform it into harmonized formats, saving the newly harmonized data into the harmonized 

database. The Big Data harmonization pipeline relies on Apache Spark (The Apache Software 

Foundation, 2018) for batch processing, taking advantage of Spark's libraries for data acquisi-

tion from files and distributed processing power, and on Apache Storm (The Apache Software 

Foundation, 2018) for stream processing, relying on Storm's streaming capabilities and easy 

connection to publish-subscribe mechanisms and streaming databases. The data repositories 

are built with MongoDB (MongoDB, Inc., 2015), which adopts a NoSQL paradigm for non-

structured and scalable storage. The main platform supporting the development of algorithms 

and APIs is Spring Boot (VMware, Inc., 2020) platform and the pipeline has a modular and 

distributed architecture, enabling parallel distribution of processing and storage tasks via 

Docker's containerization and orchestration tools (Docker, Inc., 2013). 

The Big Data harmonization pipeline was reused in several projects, such as in the case 

of the "Public transport network status analysis and visualization" example (Antunes, Figuei-

ras, Costa, Teixeira, & Jardim-Gonçalves, 2019; Antunes, Figueiras, Costa, Teixeira, & Jardim-

Gonçalves, 2019; Antunes, Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 2019), and some of 

these projects outside the Mobility and Traffic domain (e.g., Horizon 2020-funded project 

BOOST 4.0 (European Commission, 2018)). For user interaction, the pipeline was coupled with 

a Web application, that will be the subject of sub-section 5.2.2. 

 Big Data Harmonization Web Application 

To ease the necessary human interaction and supervision on the collection and harmonization 

process of third-party data, a specific Web application was built, instantiating the conceptual 

architecture of Figure 5.6. The main objective of this application is to facilitate the upload, 
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harmonization and export of MobiTrafficBD, supported by the methodological approach in-

troduced in this work, and using the harmonized formats presented in previous sections. 

In its first version the Web application handled batches of traffic sensor metadata and 

data, traffic events and weather data. The latter will not be overviewed in this work, but it is 

considered a GRTS and so, it is also harmonizable using the pipeline. Following versions 

added the ability to add new custom schemas and the ability to handle data streams. The ap-

plication is composed by a collection of views, each of which is a direct interface to one of the 

processes in the Big Data harmonization pipeline. Hence, the Web application contains four 

views: Data Collection, Data Harmonization, Data Visualization and Data Export. These views 

are thoroughly overviewed in the following sections. 

5.2.2.1 Data Collection 

The data collection view enables users to upload files or configure the connection to Web ser-

vice- and pub-sub mechanism-provided data, while choosing the type of data being uploaded. 

The permitted extensions for both cases are JSON, CSV or XML. In the case of Web services 

and pub-sub mechanisms, the interface provides input fields for the configuration of the ser-

vices, such as the Web service method (e.g., GET, POST), URL for the services and any addi-

tional parameters required to access both Web services and pub-sub mechanisms. The view is 

presented in View 1(Appendix A.22, page 279) and View 2 (Appendix A.22, page 279), Ap-

pendix A.22, and is built to be intuitive: tabs to choose between File and Web service upload, 

limited number of input fields, usually with built-in options (without the need for textual in-

put). In View 1, Appendix A.22 (Appendix A.22, page 279), the interface presents the File up-

load tab, which is composed by the “Select Data Type” and the “Browse Files” fields. The first 

field is a dropdown with the available data types (sensor metadata, sensor readings, traffic 

events, etc.), and the latter is a special file upload input, with capacity for four files with up to 

4GB in size, each. Also, the validation of file sizes and extensions is handled by the input. The 

Web Service tab, shown in View 2, has four fields: the “Select Data Type” field, as in the File 

upload tab, the “Select Method” field, which lets the user choose between Web service meth-

ods, and the “Your URL” fields, which include the URL field and the additional parameters 

field, for both Web services and pub-sub mechanisms, such as Apache Kafka. 

The backend collection process can be decomposed in two sub-processes: Upload and 

Storage. In the Upload phase, files are stored into a temporary server-side location, even in the 

case of web services, in which the input is converted into a file and stored. This enables mod-

ularity within the processing tasks, which is important in the case of adding new custom data 

parsers or data schemas, as explained later in this section. This process is bypassed in the case 

of streaming data to speed up the stream processing tasks. In the Storage phase, each file 
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format (e.g., JSON, CSV) has its specific parser, each of which implements a single common 

interface, with a single procedure. Again, this ensures that new parsers may be added later, 

for more complex data formats (e.g., JSON arrays, multiple relational tables, etc.), adding mod-

ularity and flexibility to the solution.  

After the storage process is done, another task extracts the schema from the stored raw 

data, with parameter name and type (e.g., number, string, date, etc.), which will be used in the 

harmonization step, for schema parameter matching between the newly retrieved schema and 

the chosen harmonized data schema. An example the retrieved raw data schema for a traffic 

sensor reading is shown in Figure 5.7. 

The parameter type is represented as an array because sometimes the same parameter 

may be represented in different types depending on, for instance, the version and date of the 

files or Web services, since these data sources may change the format in which they share data, 

as shown in sub-section 5.1.1.3. 

 
Figure 5.7 — Traffic sensor reading's raw data schema 

 

5.2.2.2 Data Harmonization 

The Data Harmonization view (View 3, Appendix A.22, page 280) is the next step of the Big 

Data harmonization pipeline instantiation, by enabling users to perform parameter and data 

type matches between the schemas for uploaded raw data and the harmonized schemas. Data 

sources coming from different pilots have different measurements or parameters. For instance, 

the Portuguese traffic sensor data has the occupancy percentage parameter, whereas the Brit-

ish sensor data has traffic headway parameter. These parameters only exist in their own coun-

try’s sensor data. The following data structures are prepared to be dynamic in that sense, al-

lowing for the presence of all the relevant parameters contained in all the data sources in the 

project related to the same data type. 
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The view enables users to map raw data’s parameters to harmonized schemas' parame-

ters, by creating connections between the tables on both sides. On the left side the Raw Format 

represents the raw data format, and on the right-side, Harmonized Format is the harmonized 

schema for the data type selected on the Collection View. Depending on the connected param-

eters' data types, the connection options and dependencies are shown in the box below the 

schemas. An example for the options of an Array object connection is shown in the view. In 

the example, the user connected CLASS1 (flow reading for category 1 vehicles) to the Array 

box, and so the following options in the Connection Settings box are presented: 

• Select Reading Type: select the sensor reading type (e.g., flow, speed, occupancy, etc.). 

• Select Lane: select the road lane(s) from which the reading was extracted (optional). 

• Select Vehicle Class: select the vehicle class, if any. Also valid for heavy and light ve-

hicle categories. 

 

The options are only shown for special data types (e.g., date, GeoJSON coordinates, ar-

rays and enumerations). So, for instance, the connection to a date parameter would show the 

option Select Date Format, so that the user could input the ISO 8601 date format that would 

enable the conversion to date. For simple data types’ conversions (e.g., number to number, 

string to number, etc.), there is no need for any additional information for the conversion. 

Table 5.5 shows an overview of these options. 

Table 5.5 — Special transformations' input options 

Schema Key name Input needed 

Readings Schema 

datetime 
Date Format:  

ex. (ddMMyyyy’T’HHmmssZ). 

reading 

Reading Type: flow, occupancy, vol-

ume, speed, headway. 

Lane Number: all or lane number. 

Vehicle Class: all, light, heavy, Por-

tuguese Classes 1, 2, 3, 4 and 5. 

Sensor Schema location Latitude and Longitude; 

Event schema 
start_date_time/end_date_time 

Date Format  

location Latitude and Longitude 
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The available schemas are represented as meta-schemas in JSON format, within a Javas-

cript file, as shown in the following figures. Each meta-schema is a Javascript object, with 

nested objects defining the properties of each parameter in the original schema. These proper-

ties represent the parameter's type, the minimum number of occurrences within one data rec-

ord, defining if the parameter is required or not, and the maximum number of occurrences, 

which defines if the parameter may be present multiple times in one data record. Two exam-

ples of meta-schemas are provided below. Figure 5.8 represents the JSON meta-schema for 

sensor metadata. 

 
Figure 5.8 — Schema definition for traffic sensor metadata 

Besides the regular types for each parameter (e.g., number, string), this schema presents 

two different types: the first is a variable, bearingEnum, which is an array that represents an 

enumeration for the road bearing, as shown in Figure 5.9, and geojson, which, along with date 

and array in the schema presented in Figure 5.10, is a special data type, which must be handled 

individually. So, in the case of geojson, it represents a GeoJSON point with two values, for 

latitude and longitude, which means that often two fields in the uploaded raw data’s schema 

(latitude and longitude) must be mapped to the geojson field. In the case of the date, the ISO 

8601 date format must be provided to parse the uploaded raw data’s date parameter. The min 

parameter defines the required parameters in the schema: these are sensor_id_holder, 

road_name, road_type, sensor_type, section, bearing, country and location, which means that these 

fields must be present in the raw data. 

 
Figure 5.9 — Enumeration definition for the bearing parameter 

Figure 5.10 represents the schema for traffic sensor readings, and it is a bit more complex 

than the one in Figure 5.8. The complexity arises from the fact that this schema has an array of 

objects within it. This means that often multiple parameters in the raw data schema will be 
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mapped to objects within this array. Furthermore, there is also several enumeration variables, 

a date type and a parameter property named keys. This last property defines that an elabo-

rated_reading can have multiple entries, represented by the keys within the enumeration and 

with numerical values associated to them (e.g., total flow, total occupancy, etc.). 

While the meta-schema of Figure 5.8 enables the harmonization process represented in 

Figure 5.5, the meta-schema of Figure 5.10 enables the harmonization process of the data ex-

ample presented in Appendix A.11 (page 252), transforming it into the data format shown 

below, in Figure 5.11. 

 
Figure 5.10 — Schema definition for traffic sensor readings' data 

The toll sensors, from which the data record of Figure 5.11 was collected, only measure 

the flow of vehicles for each vehicle type, already described in previous sections. Hence, the 

elaborated_reading parameter of Figure 5.10 is given the name total_flow, retrieved from the read-

ingTypeEnum enumeration, while the readings array is used to represent individual flow read-

ings for each vehicle type. 

The total_flow parameter accounts for the aggregation of all flow readings in the array, 

whereas the flow readings in the readings array represent the flow for each Portuguese vehicle 

category and aggregated flows of heavy and light vehicles, which are themselves aggregations 

from the Portuguese vehicle categories (heavy vehicles correspond to categories 3 and 4; light 

vehicles correspond to categories 1, 2 and 3). Another consideration has to do with the lane 

parameter of Figure 5.10. Since the Portuguese toll sensors measure flows for the entire road, 

and not per lane, the lane parameter is not added to the data record. 
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Figure 5.11 — Example data record for the Portuguese toll sensor readings 

When all required parameters are connected via View 3 (Appendix A.22, page 280), a 

Submit button is activated on the bottom right of the view, to send the connections’ infor-

mation to the server and to start the harmonization process. For each connection, the required 

information for the conversion (e.g., parameter names and types, plus special input options) 

is stored in a JSON object and added in the conversion data array, which will be sent to the 
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server, to support the harmonization process. An example of the conversion array is shown in 

Figure 5.12. 

 
Figure 5.12 — JSON map between source raw data parameters and target harmonized data parameters 

After these transformations, the harmonized data is stored into MongoDB harmonized 

repository. This process can be performed on data batches, through bulk insertions, or on data 

streams, through single record optimized insertions. 

5.2.2.3 Adding New Custom Schemas 

In addition to the harmonized schemas already provided within the pipeline, it is possible to 

add new data schemas (e.g., for a new data type). This is an especially important asset due to 

the flexibility it brings to the Big Data harmonization pipeline. To add a new schema, which 

will be added to the “Select Data Type” dropdowns of the Collection View’s tabs and used in 

the harmonization process, the user clicks the “+” button in the Collection View and selects 

"Add New Schema “. The "Add New Schema" view is presented in View 4 (Appendix A.22, 

page 280). 

This view has two inputs: the “New Data Type” field, in which the user is prompted to 

insert the new schema’s name, which will be available in the “Select Data Type” dropdowns, 

and the “New Schema” text area, which inputs the new schema in JSON format. The main rule 

of the JSON format for a new schema is that the schema is a JSON object containing other 

objects with three parameters (except in the case of arrays of objects): type, min, max. As previ-

ously explained, type defines the parameter type (e.g., number, string, GeoJSON coordinates, 

array, enumeration, date), min the minimum occurrences of the parameter and max the maxi-

mum limit of occurrences of the parameter. An example of a custom schema being added is 
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shown in View 4, named “lxParkingStatusSchema” for the Lisbon's parking data. By passing 

the verification process successfully, the new schema is added to the available schemas on the 

collection view, and can be used in the Harmonization view, just as any other default schema. 

5.2.2.4 Data Visualization and Sharing 

The final step of the pipeline consists of the Data Visualization and Sharing/Export views, 

presented respectively in View 5 (Appendix A.22, page 281) and View 6 (Appendix A.22, page 

282). The Visualization view, which will be further discussed in sub-section 6.2.1, presents 

some data quality, availability and pattern statistics about the freshly harmonized data. This 

view is not a fully-fledged data visualization tool, but a static dashboard-like approach to give 

the user some feedback and initial insights about the harmonized data. The presented infor-

mation is divided into: 

• Statistics: Identified fields, number of records, maximum and minimum values, aver-

age and median, minimum and maximum record dates. 

• Plots: Limits and average of records (box plot), number of records (line plot) and a 

sample plot, limited to the first ten thousand records. 

 

The Data Export view enables users to export the harmonized data in JSON or DATEX 

II-compliant XML formats, once the harmonization pipeline's processes (collection, harmoni-

zation) are finished. This service is essential concerning data interoperability with external 

services/applications. In View 6 (Appendix A.22, page 282), the user provides the data type 

for the data to export and then, depending on the data type, some other inputs are required to 

export data from the server: 

• Sensor Metadata: Returns the list of sensors. No further inputs needed. 

• Sensor Readings: Returns the readings for one sensor and one day. Sensor ID and date 

inputs needed. 

• Events: Returns the traffic events active for one day. Date input needed. 

For JSON exports, and since MongoDB stores data using its custom JSON format, the 

export process is straight-forward. For DATEX II exports, special parsers were developed. Ex-

ample conversions to DATEX II are presented in Appendixes A.19 (page 271), A.20 (page 274) 

and A.21 (page 277). 

 Which Storage Technology to Use? Data-driven Choices 

Before wrapping up the chapter, it is worth discussing the choice of storage technology, de-

pending on the characteristics of the data at hand. Data storage technologies are more differ-

entiated nowadays than ever, as was already discussed in Chapter 2. A few years back, 



 158 

RDBMS were the de facto technology for data storage, but now, the panoply of types of data-

base systems is growing, from document-based, big columnar and in-memory to specific time 

series-based and spatial databases. Hence, the choice between any of these data storage sys-

tems can be a great support to handle specific data characteristics and to deliver data to the 

processing and analytics tasks ahead. 

In the Big Data harmonization pipeline example, the choice was MongoDB. MongoDB 

is a JSON document-based storage system, which brings some relevant advantages for the 

pipeline scenario, when compared with other solutions. The first advantage is MongoDB's 

ability to tackle Big Data's "variety" aspect, storing data without defining rigid schemas, which 

means schemas can change as data, application and business requirements evolve. This is es-

pecially important due to the volume, geographical spread and specific characteristics (e.g., 

national vehicle categories, measurements by lane or entire road, etc.) of the different data 

sources that can be mapped to the same data type. In column-based systems, such as RDBMS, 

the schema must be defined a priori and must comprise all necessary fields for all the param-

eters in the various data sources. Further, a strategy to fill fields in the case of missing or null 

parameters must be defined also before data ingestion.  

Another advantage is the fact that MongoDB is a distributed storage system through 

replica sets, enabling better input/output performance for both batch and streaming data, con-

trasting with traditional RDBMS. As previously explained in Chapter 2, there are several new 

storage systems that are designed for distributed architectures, which enables better perfor-

mance and input/output times. Although there are some cases of traditional RDBMS reinvent-

ing themselves to enable distributed storage, such as the PostgreSQL-based Greenplum 

(VMware, Inc, 2020), the norm for distributed storage systems was newly developed systems 

based on new storage paradigms, such as the document- and file-based or in-memory con-

cepts. 

Other data-driven choices depend still on the performance of the chosen system depend-

ing on the Big Data "volume" and "velocity" traits. For instance, when applied on high-velocity 

streaming data, the Big Data harmonization pipeline may use an in-memory database, such as 

Redis (RedisLabs, 2015), to optimize input/output processes when collecting data streams and 

passing them to the harmonization process. In this case, the in-memory database would serve 

as a buffer for parallel processes that, on one side, hand the data to the harmonization process 

and, on the flipside, store the data in an historical raw database that can be used in the future 

for other tasks, such a machine learning model training. In the case of large volumes of batch 

data, depending on the data characteristics, the chosen system could be a big-column system, 

such as Apache HBase (The Apache Software Foundation, 2007), when the schema is prede-

fined and rigid, such as in the case of RDBMS, HDFS (The Apache Software Foundation, 2018), 
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when the data is mainly unstructured (e.g., files, documents, etc.), or MongoDB, as already 

discussed.  

Furthermore, the spatiotemporal characteristics of data may be relevant in the choice of 

database system, especially depending on the business goals and analytics challenges that will 

be tackled. If both space and time dimensions matter, then PostgreSQL (The PosgreSQL Global 

Development Group, 1996) or any equivalent or based system are recommended, due to the 

spatiotemporal functions offered by PostgreSQL and its spatial library, PostGIS (PostGIS Pro-

ject Streering Committee, n.d.), which also works with Greenplum. If the processing and ana-

lytics tasks will focus on the time dimension of the data, then a time-series database, such as 

InfluxDB (InfluxData, Inc., 2013), should be considered. More complex choices may comprise 

a personalized approach in which several systems are chosen to perform different functions, 

such as in the case of an in-memory system as a buffer and other system as a main historical 

database, or a central, big column storage system that passes the appropriate data to other 

independent systems, such as time-series systems, to optimize the analytics processes over 

such data.  

These are some examples of the importance of data when choosing the data storage sys-

tem or systems for the framework. Researchers, practitioners or any stakeholder that has the 

goal of designing a MobiTrafficBD framework must have a clear understanding of the data at 

hand, besides their business and research goals, to be able to choose the correct storage system, 

as it will significantly affect the performance and the modus operandi of the framework. Re-

garding performance, certain systems and paradigms are better suited for certain tasks, as al-

ready discussed, while the way MobiTrafficBD frameworks organize data flows (Figure 3.2) 

is highly dependent on the type of storage system chosen, in terms of scalability, availability, 

performance and ability to tackle the business and research challenges that were at the basis 

of frameworks' creation. 

5.3 Guidelines and Best Practices 

In conclusion, this chapter presented the relevance of using standards throughout the design 

and creation of MobiTrafficBD collection, cleaning, harmonization and storage, as well as 

providing illustrative examples on how to apply these standards and the methodological ap-

proach presented in Chapter 3. Further, the example of the data analysis performed during 

the Data Understanding stage (or equivalent), presents strategies to mitigate the data interop-

erability issues discussed in the sub-section 2.2.3, while providing a complete example, from 

start to finish, on how to build a generic Big Data harmonization pipeline. As discussed in sub-



 160 

section 2.4.1, regarding MobiTrafficBD, harmonization processes are often a neglected re-

search topic, despite its importance in data pre-processing and interoperability.  

Hence, this chapter aims at providing a methodological approach for MobiTrafficBD 

harmonization and storage, along with concrete examples of each of the phases that comprise 

the design and development of such processes, for researchers, practitioners and RITMOs to 

follow when building their own harmonization processes. Furthermore, the examples demon-

strate the benefits of using the proposed methodological approach, discussed in Chapter 3, the 

appropriate standards for development support (CRISP-DM) and data modelling (DATEX II) 

and how to coordinate the choice of preliminary data analyses, the way of developing the 

harmonization processes from these preliminary analyses and the suitable data storage sys-

tem. The fusion of all these guidelines, standards and approaches are, from the perspective of 

the author, crucial for the research panorama of MobiTrafficBD, since there are no similar 

works in the literature, as already discussed in Chapter 2. 

The following guidelines and best practices serve as a summary of the main recommen-

dations made in this chapter: 

1. The use of standards should be pervasive in the design and creation of standards, from 

requirement elicitation modelling languages, Data Mining stage-based methodologies 

and other generic standard practices for building data-driven frameworks, to specific 

data-driven standards, such as data modelling standards (e.g., DATEX II, GTFS) to pa-

rameter formatting standards (e.g., coordinate reference systems, ISO 8601 for date for-

mats, etc.). 

2. The application of standard data exploration methodologies, such as, but not limited 

to, CRISP-DM, to guide the design and development of data-driven platforms is highly 

recommended, particularly when developing Data Management components (i.e., col-

lection, harmonization and storage). 

3. The chosen data exploration methodology is intended to serve as a conceptual guide 

and not a strict rule. Depending on the data and scenario characteristics, some stages 

of the methodology may be sidestepped, such as for instance if the data is already har-

monized and provided in standardized formats, bypassing CRISP-DM's Data Prepara-

tion and/or Modelling stages. 

4. The Data Understanding stage (or equivalent) should define the basis for data cleaning 

and harmonization processes, by enabling a clear analysis on the data quality and 

availability issues, such as spatiotemporal dispersion, availability percentages, or any 

other analysis that enables proper data cleansing, and on harmonization and interop-

erability challenges, either structural or parametric, by undergoing a thorough analysis 
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on the commonalities and differences between datasets representing the same data 

type, and designing  or finding a schema that tackles these challenges. 

5. The Data Preparation stage (or equivalent) allows researchers and practitioners to per-

form the necessary data transformations prior to the actual harmonization processes 

start. This stage comprises the application of data cleaning strategies and the prepara-

tion of data for the next steps, such as categorization of data sources into the corre-

sponding data types, correlation between parameters across data sources or mapping 

of these parameters to standard models, in order to infer if the chosen model is ade-

quate for the available data sources. 

6. The Modelling stage (or equivalent) comprises the actual modelling tasks, which in-

clude the application of cleaning strategies over raw, unclean data and the execution 

of harmonization processes over cleaned data. This is the main stage for the chosen 

methodology, since it puts into practice all insights and strategies collected and de-

signed in the previous stages. 

7. When preparing for transformation tasks, such as cleaning and harmonization, thor-

oughly defining all the necessary transformation rules is a big support for the devel-

opment of systems to perform these transformations semi-automatically. 

8. The transformation process is often semi-supervised, since there are transformations 

that need specific human inputs to be accomplished. 

9. In the logical components and data flows model of Figure 3.2, the Data Cleaning and 

Harmonization are separated purposely, since it is advisable that data cleaning pro-

cesses are performed before actual harmonization processes take place. This strategy 

provides a way for cleaning tasks to be applied over raw data without the issue of 

corrupting harmonized data, enabling error-free data harmonization processes. 

10. The Big Data harmonization pipeline is presented as an example of a generic harmoni-

zation platform that promotes standardized data interoperability. The presented ex-

ample for the design and development of such a platform throughout its stages, from 

Business and Data Understanding (or equivalent) to Deployment (or equivalent), is 

suggested as a practical step-by-step guide for practitioners and researchers to apply 

the prescriptive approach presented in Chapter 3. 

11. The choice of data storage systems depends heavily on the characteristics of the data 

at hand, as well as on the business and research goals. This means that the data drives 

the choice of storage technology, since it also drives the choice for the processing and 

analytics processes that should be applied in order to achieve the business and research 

challenges. Therefore, depending on the Big Data aspects (volume, variety, velocity) 

and on the way the data can present solutions to the business and research goals, 
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different storage systems may be more suitable than others. Some examples for this 

dependency were discussed in sub-section 5.2.3. 
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6  

 

BRINGING TOGETHER BIG AND  

SPATIOTEMPORAL CHARACTERISTICS 

TO DATA ANALYTICS 

This chapter will not go as deep as the previous one, since Data Analytics and Visualization, 

although strongly data-driven, are closer to the business stakeholders, their challenges and 

goals, and often present a bigger focus on particular scenarios and problems, relegating data 

to second place. Even so, there are some generic guidelines and best-practices that are partic-

ularly relevant for MobiTrafficBD-driven analytics and visualization. 

The massive volumes and unprecedented speeds of data being collected nowadays have 

relevant consequences on the ways Data Analytics and Visual Analytics techniques are ap-

plied. Especially in the case of MobiTrafficBD, in which the spatiotemporal components are of 

the utmost importance, when applying spatiotemporal-aware analytics processes and visual-

izations that must cope with datasets that present wide spatial coverages and encompassing 

large time intervals. Due to these implications, the traditional methods to process and visual-

ize spatiotemporal data have been reinventing themselves and new strategies and methods 

have been created to handle Big Spatiotemporal Data. This chapter covers some strategies and 

methods to handle these implications on Big Spatiotemporal Data Analytics and Visualization 

processes. 

6.1 MobiTrafficBD Analytics: Considerations about Tools and 

Methods 

The growing availability of both large-volume and fast streaming datasets brought the end of 

traditional data analysis methods and algorithms and has enabled the emergence of computa-

tional models that capture various aspects of massive data computations. Some examples of 
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such models are streaming and distributed algorithms, sublinear time and query time algo-

rithms or complex event processing and deep learning methods. These computational models 

may be classified depending on their suitability for batch data or for streaming data. There are 

also some computational models that introduce hybrid approaches that use both batch and 

streaming data, such as continual learning models (Karim, Soomro, & Burney, 2018). This sec-

tion will focus on examples and guidelines for these three categories. 

In the case of batch data, distributed computational models, such as the ones from the 

Apache Hadoop ecosystem (and Hadoop itself), and deep learning techniques, such as Ten-

sorFlow (Google Brain Team, 2015) or Torch (Collobert, Bengio, & Mariéthoz, 2017), have been 

the most widely disseminated technological solutions. These models rely on linear time or 

higher order algorithms that run on top of high-performance, distributed clusters of pro-

cessing machines, whether deployed on premises or on Cloud-based environments, to per-

form time-consuming and computation-intensive tasks over large volumes of historical data. 

For data streams, the goal is to perform processing and analysis tasks in sublinear time ranges, 

enabling real-time analytics results for time critical decision-making support. In this case, sub-

linear time, query time, property testing and complex event processing methods on one side, 

and stream processing models on the other, are the most common topics found in the litera-

ture. These methods are designed to produce results in near real-time independently of the 

size of the input data being analysed. 

Besides temporal complexity, already overviewed in Chapter 2, there is also spatial com-

plexity, which denotes the memory space usage proportional to the number of inputs. This 

type of complexity is tackled by the provision of extreme-scale processing hardware, which 

possess high memory capacity, along with linear or greater processing times for batch data, 

enabling better memory management, and "sliding window" strategies for streaming data, i.e., 

methods for traversing data sets by moving a fixed-size window (subset) over a sequence in 

fixed steps, which enable the optimization of memory space used by only processing the fixed 

window data subset. In the case of spatiotemporal data, such sliding windows could even 

traverse the data set within both dimensions, by dividing the whole temporal and spatial 

ranges into smaller, fixed time intervals and spatial bounding boxes, limiting the volume of 

data to be processed on each window. 

Finally, there are hybrid approaches that take advantage of both batch-only and stream-

only methods to be able to handle streaming and batch data at the same time. Some examples 

of these methods are continual learning methods that continuously learn and evolve based on 

the input of increasing amounts of data while retaining previously learned knowledge or hy-

brid processing engines, which can process both stream and batch data, such as Apache Spark 
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(The Apache Software Foundation, 2018) or Flink (The Apache Software Foundation, 2014), 

for instance. The following sections will take a closer look at each of these options. 

 Batch Data Analytics Strategies 

When analysing batch data, the main goal is to process and analyse huge amounts of data in 

one sweep. This means that short execution times are not the main goal; rather, execution times 

need only to be short enough to produce timely insights from such amounts of data, depend-

ing on the use casa and data-driven goals at hand. Usually, batch processing and analysis tasks 

are scheduled for specific times of day, week or month. With traditional, centralized pro-

cessing systems/frameworks, the time to process and analyse such amounts of data have be-

come unfeasible; thus, distributed, parallel processing alternatives entered the game. The per-

formance difference between centralized and distributed alternatives is a common perfor-

mance benchmark of many research works and point to a better performance of distributed 

systems to process large sets of batch and historical data, as discussed in sub-section 2.3.5. 

Moreover, the performance of these distributed systems is always dependent on the per-

formance of the distributed cluster of machines that supports it, and its characteristics, such as 

available memory, number of nodes (machines), number of cores per machine, etc. So, de-

pending on the temporal and spatial complexities of the algorithm and its execution time, the 

scale and performance of the distributed environment supporting processing and analysis 

tasks may or may not be enough for the processing task at hand. Therefore, even in the case of 

batch data, the choice of the data processing and analysis methods and algorithms must take 

into account the performance of the distributed environment. 

Besides scalability of the distributed environment, there are other strategies to make 

batch data processing and analysis methods more efficient. One optimization strategy was 

already overviewed in Chapter 3 and relates to the distribution of the various technologies 

(databases, processing engines, visualization tools, etc.) in relation to each other in a distrib-

uted environment. One example was to have the database instances in the same node as the 

processing instances, in order to optimize the exchange of data between such instances.  

This strategy is often based on Big Data processing engines' and Deep Learning plat-

forms' new batch data processing paradigms. In the case of processing engines, such as Apache 

Hadoop and Apache Spark, the shift in paradigm occurred with the introduction of the 

MapReduce paradigm (Dean & Ghemawat, 2008), the basis for Hadoop. The term "MapRe-

duce" refers to two separate and distinct tasks: the first is the map job, which takes a set of data 

and converts it into another set of data, where individual elements are broken down into tu-

ples (key/value pairs); the reduce job takes the output from a map as input and combines 

those data tuples into a smaller set of tuples.  
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The main drawback of MapReduce is that it takes the whole data set and performs the 

map and reduce tasks on the whole data set. This means that the system responsible for pro-

cessing and analysis must have access to the whole data set at the time of performing such 

tasks. It also entails that, if new data is collected, the MapReduce job must be repeated for the 

whole data, i.e., the complete old data set plus the new data collected. Newer paradigms, based 

on or evolving from MapReduce also exist, some of them tackling the drawback above. One 

example is the Directed Acyclic Graph paradigm (Foraita, Spallek, & Zeeb, 2014), used by 

Spark, which will be revisited in this section.  

Regarding Deep Learning platforms, such as TensorFlow (Google Brain Team, 2015) or 

Torch (Collobert, Bengio, & Mariéthoz, 2017), the idea is to use distributed environments to 

create neural networks with more than one processing layer, which is something that tradi-

tional artificial neural networks, running in centralized, single-server environments cannot do, 

since the processing layer, also called hidden layer, is tightly coupled with the server machine 

it is running on. In Deep Learning, the neural networks may have three or more layers, in their 

simplest form, to thousands of layers (Huang, Sun, Liu, Sedra, & Weinberger, 2016), due to 

the distributed environment's ability to parallelize multiple layers across machines or pro-

cessing nodes. 

Both these paradigms are now fully prepared to perform almost all classical Machine 

Learning and Data Mining processes, such as clustering, classification, prediction learning, 

anomaly and pattern detection, among others, in distributed environments, as already over-

viewed in Section 2.4. The extension of processing engines, such as Hadoop or Spark, with 

other libraries and platforms enables a vast range of Data Mining, Machine Learning and Data 

Analytics tools and methods to run on top of these processing engines to optimize their per-

formance through parallelization of tasks via distributed environments. Further, specific spa-

tiotemporal analysis methods and tools have also been used in conjunction with these pro-

cessing engines, such as Apache Sedona (The Apache Software Foundation, 2015), as pre-

sented in Section 2.4. Some examples of these libraries and platforms are the Apache Spark 

Machine Learning Library (The Apache Software Foundation, 2018), which contains pre-im-

plemented algorithms for a wide range of Machine Learning, Data Mining and Data Analytics 

methods, Apache Mahout (The Apache Software Foundation, 2014), which enables to re-

searchers and practitioners to implement their own methods to run on distributed processing 

engines such as Spark, and Weka (The University of Waikato, 2005), which provides an exten-

sion for running methods on top of a Spark cluster, just to point out a few. 

Another way to enable efficient access to data is data indexing techniques, already cov-

ered in Chapter 2. Data indexing in databases is a technique to optimize data access, which 

consists of a table containing the index column, which is often the primary key column for the 
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original table to be indexed, and a column with pointers that hold the address of the memory 

block where each specific index is stored. Spatial, temporal and spatiotemporal indexing is 

also recurrently used by having the spatial data (e.g., longitude and latitude columns) and/or 

temporal (e.g., the timestamp column) columns indexed in the index column (Li, et al., 2017). 

Data sampling, i.e., the extraction of a data subset, or sample, that statistically represents 

the complete data set but significantly smaller in size, is also a strategy to optimize execution 

times for batch data processing and analysis methods. In the case of MobiTrafficBD analysis, 

it is usual for RITMOs to provide a spatially or temporally bounded sample of the entire data 

set, which can span wide geographical areas (e.g., region, country, etc.) across large intervals 

of time (e.g., years). This sample can be used to extract underlying, preliminary insights, trends 

and relationships that can be extrapolated to the entire data set. Such extrapolation is mainly 

due to the cyclic and seasonal trends characteristic of MobiTrafficBD.  

This means that, for instance, a sample of loop sensor data, in the form of a GRTS that 

contains vehicle counts, speeds and road occupancy information for a specific road segment, 

collected in short time intervals, can be used to extrapolate useful information about road us-

age that represent the whole data set. Depending on the size of the sample, different insights 

can be extrapolated: if the sample corresponds to a month of data, daily trends about the move-

ment of vehicles, usage of the road during weekdays and weekends or peak hours can be 

extrapolated; if the sample corresponds to one year of data, then more comprehensive insights 

may be extracted, such as monthly and seasonal trends. Hence, the sample size choice is al-

ways dependent on the type and comprehensiveness of the analysis and, ultimately, of in-

sights that the researcher or practitioner wants to achieve.  

The choice of the right mix of strategies to apply, whether it is the data processing para-

digm(s), the tools and technologies that implement such paradigm(s) or other strategies such 

as data sampling and indexing, is always dependent on a panoply of factors. The three most 

important ones, according to the author's view, are: 

1. the data at hand: data characteristics are the most important element of data-driven 

frameworks. Data quantity, i.e., the volume of the data at hand, and data quality, i.e., 

the completeness, accuracy, error count and any other quality measures applied to data 

sets, are key factors to support the researchers' and practitioners' decision process in 

terms of the suitable strategies to handle the data at hand. Nevertheless, in the case of 

large-scale volumes of data, there are some strategies that are always recommended, 

such as in the case of data indexing or the optimized orchestration of the distributed 

environment and the allocation of technological instances across the environment. 

2. the final goal or objective of the data analysis process: only second to the data at hand, 

the use case and final goal of the data processing and analysis tasks is always a crucial 
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factor for the choice of strategies to handle, process and analyse large volumes of data. 

If researchers point to a preliminary, exploratory data analysis, then data sampling 

may be a suitable strategy; for more complex analyses that take into account the whole 

data set, then the mix of strategies chosen must comprise the type of processing and 

analysis methods and their relative performance in terms of the time needed to achieve 

the required processing and analysis results. This execution time is crucial for timely 

support on decision making processes towards the final goal of the use case. 

3. the overall characteristics of the distributed environment: last, but not least, and alt-

hough this is the only customizable and scalable factor of the three (e.g., the system can 

be scaled with new processing nodes/machines, physical memory, etc.), the hardware 

and software specifications of the distributed environment are also an important factor 

for the selection of the strategies to adopt, in order to optimize the performance of batch 

data processing and analysis tasks. Depending on the quantity and quality of the data 

and the final goal of the use case at hand, several strategies may be chosen to optimize 

the distributed environment to cope with both these factors. The way technologies are 

distributed across nodes in a distributed environment was already discussed in this 

section, but the choice of processing and analysis methods is also dependent on the 

environment's specifications. There are different methods that may be used for the 

same processing and analysis goals (for instance, there are several density-based clus-

tering algorithms), each of which with its own reliability, accuracy and performance 

characteristics and hardware and software requirements. More than often, methods 

that produce more accurate and reliable results have greater hardware and software 

requirements. Hence, the interdependence between the requirements of the analysis to 

perform, the methods to accomplish such analysis and the distributed environment's 

specifications in which the analysis is performed must all be considered for the opti-

mization of the overall analysis. 

 

Now that a general overview of the context and recommendations for batch data pro-

cessing and analysis is given, it is time to go back to the examples presented in Chapter 4 and 

show the application of such recommendations in real-world scenarios. A general best-prac-

tice, also adopted on both the examples that will be presented in this section is to always per-

form data indexing when dealing with large volumes of batch MobiTrafficBD. Since access to 

batch data is usually performed via queries to the database, data indexing techniques are rec-

ommended so as to optimize data access through database queries. Indexes should be imple-

mented for all data parameters that will be used in database queries, such as unique identifier 
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or primary key parameters and spatial and temporal parameters. Both the examples used data 

indexing techniques to improve data access performance. 

The first example is the "CEP for traffic event detection" example (Figueiras, Antunes, 

Guerreiro, Costa, & Jardim-Gonçalves, 2018; Antunes H. A., 2017). The conceptual architecture 

of the proposed complex event processing framework is presented in Figure 6.1. The frame-

work's goal is to detect traffic events from a historical data set of road sensor data. In order to 

achieve its goal, the framework comprises a set of layers, or steps, that enable the collection of 

real-time data from traffic sensors, the analysis and understanding of the mobility patterns in 

the data, i.e., recurrent patterns in the traffic sensor data that denoted normal daily traffic and 

mobility processes, and the application of the analysis results in the detection of anomalies on 

these normal behaviours in everyday mobility, in the form of traffic events (e.g., accidents, 

abnormal traffic intensity, etc.). 

 
Figure 6.1 — Conceptual architecture of the "CEP for traffic event detection" example (Figueiras, Antunes, Guer-

reiro, Costa, & Jardim-Gonçalves, 2018) 

The Data Layer comprises the real-time sensor data collection process. real-time data 

collected from traffic sensors were stored in a MongoDB database, building a historical data 

set of several months, spanning hundreds of sensors. In this example, two data sets were used: 

the Slovenian traffic sensor data set (Appendix A.5, page 241), in the form of GRTS data, con-

taining data captured in 10-minute intervals for 355 sensors scattered throughout Slovenian 

roads and highways, and spanning from January 2016 to May 2017 (16 months); and the Slo-

venian traffic event data set (Appendix A.6, page 243), in the form of ST Event data, which 

was used to validate the overall performance of the framework by comparing complex event 

detection results with actual traffic events collected by authorities. 

The Analysis Layer is responsible for a preliminary analysis on the data set to extract 

mobility patterns that can then be used to formulate the complex event processing rules to 

detect traffic events. A traffic event is an occurrence within the road network, which affects 

the normal behaviour of such network. Examples of events are the occurrence of an accident, 

traffic jams, repairs on the road, etc. An example of road use behaviour when an event happens 

is illustrated in Figure 6.2.  
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The vertical axis is divided into two metrics, average number of vehicles (blue line) and 

average speed (red line), and the horizontal axis represented a timeline in hours. The green 

ellipse represents the period in which an event occurred. It is possible to perceive the effects 

of an event, mainly marked by the decrease of the average speed and number of vehicles pass-

ing through. 

 
Figure 6.2 — Traffic event behaviour in traffic sensor data 

The analysis process comprised the extraction of data samples to analyse the mobility- 

and traffic- behaviour and road use patterns on weekends, weekdays, holidays and seasonal 

periods. After this analysis, the hourly and daily patterns were created, and the mobility pat-

terns, i.e., the patterns extracted in the analysis, were stored in the MongoDB database. All 

processes performed in the analysis layer were based operations of queries in MongoDB and 

Java.  

The Processing Layer is supported by two steps: modelling rules for event identification 

and optimization of these rules. The rules modelling process, based on the analysis process, 

approached the creation of rules that allow to automatically identify the diverse types of 

events, through the influence they cause in the use of roads. As for the optimization process, 

it involves the evaluation and analysis of results, applying precision, recall and F-Measure 

algorithms for optimization of event identification rules. All the data processing is performed 

by WSO2 CEP tool (WSO2, 2005). The WSO2 CEP tool is not a Big Data tool per se, but it 

presents good performance benchmarks and, since recent releases, provides a distributed 

mode, in which it leverages Apache Storm (The Apache Software Foundation, 2018) as the 

support distributed engine, although this mode was not used in the example. Finally, a Visu-

alisation Layer was developed to show the results of the complex event processing tool. 
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This example is a good example of how to tackle the development of a MobiTrafficBD 

Framework for traffic event detection without using so called Big Data technologies. Since 

performance and response time were not the main requirements in the use case, and although 

WSO2 presents good performance with large data sets, the choice for a traditional complex 

event processing tool was based on the simplicity of the tool itself and for being an open-

source, free-to-use tool. Nevertheless, since the data set was large, some strategies were 

needed in order to at least validate the framework in a timely manner.  

Hence, data indexing was used in MongoDB to index temporal and spatial data fields 

for easy access. Since, WSO2 relies on SQL-like language to build the CEP rules and directly 

queries the database to find events, data indexing was considered a good strategy to optimize 

the performance of the framework. Even so, the validation was performed with only one 

month of traffic sensor data (February 2017) for only five sensors. Thus, data sampling was 

used on order to assess the reliability of the framework in capturing traffic events, supporting 

not only the optimization of the rules to be applied over the whole data set, but also providing 

insights about the applicability of the framework on the whole data set. 

Figure 6.3 presents the results of the validation. On the left side, (a), a comparison be-

tween the number of detected events (blue) and the number of traffic events comprised in the 

Traffic Events data set for the same sensor/road segment (orange), and corresponding 

matches between the detected events and the database events (grey). On the right side, (b), 

Precision, Recall and F-Measure validation results considering the different levels of event de-

tection, given by the 10, 20 or 30% variation of the average speed of the vehicles in comparison 

with the average values of mobility patterns. The speed variation value which obtained better 

results in the events detection was for 20% of the speed variations. 

 
Figure 6.3 — CEP for traffic event detection results. (a) comparison between detected events and the traffic events 

data set, gathered by authorities; (b) Precision, Recall and F-Measure values for speed variations of 10%, 20% and 

30% 
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Except for one sensor (174), the number of road events detected by the prototype is often 

higher than those entered in the database, which indicates that the framework detects events 

that were not gathered by the authorities or road concessionaires. Figure 6.3 also shows that 

not all events entered in the road events database correspond to those detected by the proto-

type. This occurrence is due to the fact that although the events occurred, the variations de-

tected did not shift enough from normal behaviour, making it impossible to detect them by 

the framework. 

The second example corresponds to the "Public transport network status analysis and 

visualisation " example (Antunes, Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 2019; An-

tunes, Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 2019; Antunes, Figueiras, Costa, 

Teixeira, & Jardim-Gonçalves, 2019). The main goal of this example was to design and develop 

an open-source Big Data framework for the analysis and visualisation of large volumes of 

public transportation data. Thus, this is a case in which the proposed prescriptive methodol-

ogy was applied to a scenario other than the ones supporting RITMOs, although it maintains 

the intrinsic connection to Mobility and Traffic. Specifically, the public transportation data 

analysis focus on three main Mobility-related indicators: 

• Connections: the commuter (passenger) changes to another route on the same mode of 

transport (e.g., changing lines at a subway station). 

• Transhipments: the commuter changes to another mode of transport (e.g., after exiting 

the subway, the commuter catches a bus at the subway station’s exit). 

• Pendular movements: the commuter uses the same route and modes of transport from 

and to the origin location at different times of day (e.g., going to work and coming back 

home). 

 

This example used two data sets: the first set contains the ticketing data of seven differ-

ent public transport entities operating in Lisbon; the second dataset represents the General 

Transit Feed Specification (GTFS)-based (Google, Inc., 2006) data from Lisbon, Portugal. Both 

datasets cover a temporal dispersion of a month, May 2018. The ticketing data is the biggest 

data set, containing more than 55 million records, representing entry and exit validation in 

Lisbon’s public transportation network. These records are acquired by different public 

transport operators daily, through the acquisition of data from smart cards. All the data rec-

ords were gathered from more than 4500 different stop stations, combined with 1500 different 

types of tickets. The second dataset is represented in GTFS, a specification that defines a com-

mon format for public transportation schedules and associated geographic information. GTFS 

was firstly introduced by Google to handle Google Maps’ public transportation information 

and contains information of urban public transportation schedules, stops and routes. In this 
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example, the dataset corresponds to GTFS information about public transportation in Lisbon 

and is used to geographically pinpoint the validations and associate the validations to existing 

routes and stations. 

Figure 6.4 presents the adopted architecture for the proposed framework that can be 

mapped to the logical components and data flows model in Chapter 3 (Figure 3.2). The Data 

Collection and Ingestion Layer is responsible for the ingestion of ticket validation data from 

different public transport operators and, since data comes from multiple sources, the first data 

harmonization procedures are performed. 

 
Figure 6.4 — Big Data architecture for the " Public transport network status analysis and visualisation " example 

(Antunes, Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 2019; Antunes, Figueiras, Costa, Teixeira, & Jardim-Gon-

çalves, 2019; Antunes, Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 2019) 

The second layer is the Data Storage Layer, which is responsible for storing all data. In 

this layer, data presents different schemas and formats (e.g., validations, station locations, tick-

eting). The Data Processing Layer, based on Apache Spark, is responsible for heavy, demand-

ing and intensive data processing tasks. Finally, the data querying and visualization layers 

expose the processed insights through query engines, such as Apache Spark SQL, and visual-

ization tools, such as Tableau. For easy, scalable deployment and management, the entire Big 

Data architecture was built on top of a Docker Swarm environment, which is easily scalable to 

distributed clusters. 

The focus will be given to the Data Processing layer. The first task for this layer deals 

with grouping different validations per trip. A trip is a set of one or more validation records 

gathered from the same user during a defined time frame. To define the optimal timeframe 

between validation s five different time intervals (30 minutes, 45 minutes, one hour, one hour 

and 15 minutes and one hour and 30 minutes) were analysed, concluding that the one-hour 
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interval was the optimal time interval to gather validations corresponding to the same trip. 

The definition and organization of validation data into trips was the first step to create and 

automatically analyse complex mobility patterns in ticketing data. At this stage, all trips with 

only one validation were excluded because such trips did not contain any insightful indicators, 

such as connections or transhipments. 

The second processing task is performed in parallel with the first. This task encompassed 

the complex process of mapping stops and stations in the ticketing data with stops and stations 

in GTFS data, to be associated with public transportation routes, in order to associate the sta-

tion where the user validates the ticket with certain routes. Thus, the location in GTFS data is 

linked to the stops and stations, connecting the stations and stops with one or more routes. To 

create this mapping, a proximity algorithm was used to enable the matching between both 

data sets. 

After these two tasks, it is now possible to combine the two resulting data sets and ana-

lyse them in order to identify complex indicators such as connections, transhipments and pen-

dular movements. A custom algorithm that analyses individually each trip was developed for 

Apache Spark. This algorithm maps route and station data with validation records for each 

trip and identifies whether the user made a connection or a transhipment. To identify connec-

tions all trips that change route but keep the same public transportation mode were consid-

ered. To identify transhipments all trips that combined more than one public transportation 

mode were considered. Finally, the last step consisted in the identification of pendular move-

ments, through the creation of an origin-destination matrix for each trip, based on the routes, 

and whenever a user made two trips with origin-destination pairs reverse to each other in the 

same day, these trips were identified as being a pendular movement. 

The framework was tested on a single machine, but distributed across twelve CPU cores, 

achieving much better performance, producing useful insights in just four hours, comparing 

with traditional Data Warehousing processes, which performed similar analyses in a few days, 

using a Cloud-based proprietary environment. The framework used data indexing and sam-

pling (only one month of data was used in the validation), but further optimizations could be 

done, shrinking the execution time to less than four hours for one month of data (e.g., the 

framework is reading/writing to MongoDB on each task, which is an unnecessary intermedi-

ate step for the final roll out of the framework). 

 Streaming and Hybrid Data Analytics Strategies 

Most Data Analytics techniques assume a finite amount of data, persisted in a database or data 

storage tool, and perform their analysis in multiple steps by applying a batch method. Batch 

methods may pass multiple time through the same data instance along the analysis and entail 



 175 

that the whole data set is known and available before the analysis process begins (Galić, 2016). 

But these techniques are not applicable to spatiotemporal data streams due to constraints im-

posed by the characteristics and nature of the streams. These characteristics pose several chal-

lenges: 

• Single pass: Since streaming data arrives continuously, analysis must be done in a sin-

gle pass and in real-time over the data. 

• Limited memory: Since data streams are possibly unbounded, i.e., may be infinite, stor-

ing each arriving data object is not possible. 

• Limited time: The chosen methods must cope with the speed of the stream, meaning 

that the execution time should be less than the average arrival time between two con-

secutive objects in the stream. 

• Varying time: Since the arrival time between two objects in the stream can vary greatly, 

the execution time will also vary according to the arrival time. 

• Concept drift: When using model-based methods (e.g., clustering, classification, pre-

diction), the underlying data model may change over time and the changes should be 

detected by streaming methods. 

• Parametrization: Some methods need information about the data set a priori to be par-

ametrized before execution. Some examples are the number of clusters in some clus-

tering algorithms, or the training data sets for prediction methods. Streaming methods 

must be free of a priori parametrization since the whole data set is not known before-

hand. 

 

Although these challenges were initially proposed for data stream clustering methods 

in (Galić, 2016), they can be extended to all Data Analytics tasks, from clustering and classifi-

cation to prediction or anomaly detection. In fact, the definition of data stream clustering used 

in (Galić, 2016) "to maintain a continuously consistent good clustering of the sequence observed so far, 

using small amount of memory and time", can be generalized to cope with all types of data stream 

analysis: "to maintain a continuously consistent good analysis of the sequence observed so far, 

using a small amount of memory and time". This definition can be broken down into several 

important considerations for processing and analysing stream data. Firstly, to maintain a con-

tinuously consistent good analysis entails that the analysis must consistently present good 

analysis results across the whole streaming data set, but this benchmark must be evaluated for 

all the observations (data records) registered until the present moment. Furthermore, the anal-

ysis process must consider the requirements of limited memory and limited time already over-

viewed. 
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There are several streaming analysis methods' types that have been used to cope with 

data streams, such as sublinear time, query time or property testing methods. Sublinear time 

methods produce results slower than the size of the problem, i.e., the output is produced in 

less time than the time between two consecutive data objects in a stream. Query time methods 

are used when a query is performed to get each data object in the stream. Queries take some 

time to deliver data inputs, and query time methods produce outputs at the same rate as the 

query delivers inputs. Finally, property testing methods classify individual data objects that 

arrive in the stream as conforming to a certain property or not. 

The main advantage of these methods is that the execution time for these algorithms is 

equal or lower than the time to deliver data objects from the stream to the method, whereas 

the main drawback is that, due to the time and memory limits, these methods do not produce 

accurate results, delivering approximations or probabilities as output. But, although they are 

still valid strategies to tackle the challenges of streaming data, new strategies for analysing 

such data have been introduced more recently, with the advent of distributed processing en-

gines. Stream processing engines, such as Apache Storm (The Apache Software Foundation, 

2018) and Apache Flink (The Apache Software Foundation, 2014), have been broadly used in 

research works in the last years.  

These stream processing engines enable not only the application of already existing sub-

linear time, query time and property testing methods but also the implementation of stream-

ing versions of traditional batch data methods, through the use of programming abstractions, 

such as in the case of open-source Apache Samoa project (The Apache Software Foundation, 

2015) or the research work presented in (Abeykoon, et al., 2019), in which authors extend two 

known methods, the Support Vector Machine classification method and K-Means clustering 

method, to produce online versions able to run on top of stream processing engines, such as 

Storm and Flink. 

These otherwise batch data-driven methods are extended for streaming data by apply-

ing a specific strategy to data stream processing and analysis: the sliding window model. For 

sublinear time and similar methods, the main stream processing model is the stream model, 

which is based on processing and analysing each individual data object in the stream at a time. 

On the other hand, the sliding window model aggregates and processes a set, or micro-batch, 

of data objects that were received from the stream within a fixed time interval - the window. 

After the processing of this set is finished the fixed time window is "slided" to the next set of 

data objects received. 

This strategy allows streaming methods to have bigger execution times since, instead of 

the execution time being limited to the time of arrival of each data object, it becomes limited 

to the time range of the sliding window. This allows for methods to process and analyse all 
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data objects on the window's time frame and to synchronize the outputs into a data model that 

comprises the outputs for all observed data objects in the stream until the present window. 

Thus, it is possible to implement more accurate model-based methods, such as classification 

and prediction methods, that take into account not only data comprised in the present time 

window, but also the whole data observed up to the present. 

Therefore, the decision between sublinear time and similar methods and online versions 

of batch data-driven algorithms or between a stream processing model or a sliding window 

one, must consider data stream characteristics, such as the rate of reception of each data object, 

and requirements for the analysis to be performed over the stream, as in the case of execution 

time and accuracy of the method.  

Hybrid methods, i.e., methods that can cope with both batch and streaming data pro-

cessing and analysis are often based on micro-batches and the sliding window model, with 

the sliding window size varying depending on the nature of the data and the use case at hand. 

In the case of data stream-based scenarios, the window size will be shorter whereas for data 

batch-based scenarios, the window size will be longer. 

To exemplify the application of the proposed methodology on streaming or hybrid data 

analysis scenarios, two use cases will be presented: the "Real-time traffic flow analysis" 

(Figueiras, et al., 2018; Rosa, 2017) and "Twitter mining for traffic event detection" (Gutiérrez, 

Figueiras, Oliveira, Costa, & Jardim-Gonçalves, 2015) examples. In the "Real-time traffic flow 

analysis" (Figueiras, et al., 2018; Rosa, 2017) example, the main goal was to monitor and ana-

lyse traffic in real-time, by applying stream processing tools and methods over real-time traffic 

sensor data, in the form of GRTS. The data set used was the Slovenian Traffic Sensor data set 

(Appendix A.5, page 241), which provides data, collected in 10-minute intervals from 355 sen-

sors throughout Slovenia, comprising information about average speed, average time gap be-

tween vehicles and occupation percentage per lane in each direction. Hence, each sensor read-

ing for a three-lane road, such as a highway, will provide six different data objects, one per 

lane in each direction. 

The "real-time traffic flow analysis" example had the main objective of swiftly perform 

different types of aggregation processes over data coming from real-time data streams to ena-

ble efficient analysis and visualisation of GRTS for RITMOs. The focus was on the delivery of 

added value insights that were simple and quick to process and aggregate but that would 

provide more useful insights to RITMOs, when compared with insights extracted from raw 

real-time data.  

Two main aggregation tasks were addressed in this scenario: First, each sensor reading 

had the lane-specific data objects aggregated in terms of average values for speed, occupancy 

and gap between vehicles, creating an aggregated view of the entire traffic in each direction. 
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For instance, for a three-lane highway, six lane-specific data objects (three in each direction) 

were aggregated to create two direction-specific data objects. This aggregation process was 

performed each time a new sensor reading was received from the stream. Second, an hourly 

aggregation task was performed for each sensor, thus six sensor readings had to be aggregated 

per hour. In contrast with the previous aggregation task, this task had to maintain information 

each sensor in order to correctly aggregate readings belonging to the same sensor, hence re-

quiring an hourly aggregation model for each sensor. Therefore, the first task represents a 

simple streaming data task and the second task, a hybrid data task.  

The chosen data flow and technologies are presented in Figure 6.5. In this use case, the 

traffic sensor data was already available and stored in a MongoDB instance and the real-time 

stream had to be simulated. RabbitMQ (VMware, Inc., 2007) is the technology responsible for 

collecting data from MongoDB and creating the data stream, sending the data as stream mes-

sages to Apache Storm. Each message comprises readings for all sensors at a specific time. 

Apache Storm (The Apache Software Foundation, 2018) is the main streaming processing en-

gine and is responsible for the data aggregation tasks, and also for sending the aggregated 

outputs to the visualisation component, which will be overviewed in Section 6.2. 

 
Figure 6.5 — Real-time Traffic Flow Analysis technical architecture 

Each aggregation task was performed by a specially purposed Apache Storm topology. 

These topologies represent graphs representing the entire computation flow to be followed by 

Storm and comprise spouts, the data sinks that connect to message queues and other stream-

ing data provision mechanisms, and bolts, the individual processing steps of the topology. The 

base topology graph for both topologies is shown in Figure 6.6.  
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Figure 6.6 — Base topology graph for streaming data aggregation tasks 

The RabbitMongoSpout verifies the arrival of messages provided by RabbitMQ every 

millisecond and serializes messages into data objects to be used by the bolts. GetterMongo-

Bolts are a set of distributed processing tasks that randomly consume data objects provided 

by the spout and separate readings by sensor, through the sensor's unique identification num-

ber. FieldsBolts perform aggregation tasks on data objects for each individual sensor, meaning 

that there is one FieldBolt per sensor. 

This is where the main difference between both topologies is noticeable: for the stream-

ing data use case, in which there is no need to keep information from past readings and data 

objects, the grouping, i.e., the distribution of data objects to each bolt, was done through a 

FieldsGrouping strategy in which data from each sensor is divided by the fields in the data 

(timestamp, sensor ID, average speed per lane, occupancy percentage per lane and gap be-

tween vehicles per lane); for the hybrid processing task, in which there was the need to store 

past information to aggregate individual sensors' readings hourly, a custom grouping had to 

be developed to guarantee that each bolt would keep some sensor data for the same sensor, 

for the necessary period of time. Finally, the AggregationBolt aggregates all the output data 

from previous bolts for storage or visualisation purposes. 

To test and validate the proposed architecture, seventeen months of traffic sensor data 

for 350 sensors were fed into the topologies in the fastest way possible, using a distributed 

environment on a single machine. Two setups for Storm were used, one with one worker node 

and another with four worker nodes. The average difference in performance between both 

setups is around 0.2 milliseconds. In each of the setups, 200 GetterMongoBolt instances and 

350 (number of sensors) FieldsBolt instances were used. 

The first topology was able to ingest and process 8.8 messages per second, which means 

that the aggregation task took 114 milliseconds per message, while the second topology was 

able to ingest 8.6 messages per second, which means that the second aggregation process took 



 180 

116 milliseconds. These results could be further improved with the deployment of the pro-

posed architecture on a more powerful distributed cluster environment. This example shows 

the relevance of using novel stream processing engines to efficiently process and analyse 

streams of MobiTrafficBD, in the form of GRTS, by providing a wide range of performance 

optimisation strategies, such as the distribution of tasks among worker nodes, processing 

threads and other resources available for the processing and analysis tasks. 

The second example corresponds to the "Twitter mining for traffic event detection" 

(Gutiérrez, Figueiras, Oliveira, Costa, & Jardim-Gonçalves, 2015) use case. This example com-

prises a traffic event detection framework that processes and analyses Twitter messages to 

extract information about traffic events, such as their type, location and severity. The rationale 

behind the example is that Twitter messages, also known as tweets, may be seen as ST event 

data that contain useful information regarding traffic events which were created by people 

who witnessed the events. Social networks can be seen as a mechanism which allows the de-

tection of very small events, such as a damaged car in a side street. In addition to that, the 

interval between the occurrence of a traffic incident and the publication of a tweet about such 

incident usually tends to be much less, when compared to the time required for a news agency 

to share information about such event. 

Nevertheless, this source of information is often flawed in many ways. One of the most 

important limitations in extracting useful information from a tweet is its 14-character limit. 

Additionally, users can make spelling mistakes, and use varying conventions and abbrevia-

tions; the quality of content is not as good as in news articles, for instance. In addition to the 

credibility of the content, the credibility of user profiles and their geo-references are question-

able as well. Not all users have to provide their locations, or their city of residence in their 

profiles. As a result, the most obvious problem is uncertainty and the lack of rich and reliable 

data. Moreover, tweet density depends heavily on the population and Twitter usage in a re-

gion. Location estimation using the content in social networks has its own challenges, namely 

the uncontrolled and the limited content. Tweets enable writers to add geo-referenced loca-

tions to the tweet, but there are no guarantees regarding the spatiotemporal closeness to the 

traffic event's location and time (e.g., the user may be driving at the time of the event, and just 

tweets about it after reaching the destination). 

The proposed computational framework shown in Figure 6.7 is able to: (i) classify a 

stream of traffic-related tweets adopting machine learning techniques, (ii) extract a set of con-

textual information such as: the location and type of event, (iii) geolocate the event on a map 

and (iv) the follow up of the incident i.e., monitoring incidents’ evolution. 
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Figure 6.7 — Twitter Mining for Traffic Event Detection framework concept (Gutiérrez, Figueiras, Oliveira, Costa, 

& Jardim-Gonçalves, 2015) 

This framework retrieves the data stream from Twitter's API and only uses a Big Data-

based tool, one of the earlier versions of Apache Storm, to track tweets belonging to the same 

traffic event. All the other tools are traditional machine learning technologies, such as the 

RapidMiner (RapidMiner, Inc., 2013) Data Mining suite, the name-entity recognition engine 

NERD (Rizzo & Troncy, 2012), geocoding Web services and Part-of-Speech (StanfordPOS 

(Stanford NLP Group, 2003)) and temporal (HeidelTime (Strötgen, Zell, & Gertz, 2013)) tag-

gers. The framework is a sequential pipeline in which each task is performed in a queue for 

each received tweet. The framework has the following modules: 

• Classification: RapidMiner was used to implement the SVM learning model and the 

classification of new tweets. The SVM was trained with a dataset of 10.000 tweets, 5.000 

tweets "positive" i.e., containing relevant information about traffic events and 5.000 

tweets considered "negative", i.e., not containing traffic-related information. When a 

new tweet arrives in the stream, it is classified as positive or negative. If positive, the 

tweet continues through the pipeline, otherwise it is discarded. This model achieved a 

95,5% accuracy in classifying tweets (Gutiérrez, Figueiras, Oliveira, Costa, & Jardim-

Gonçalves, 2015). 

• Event Type Classification: The event type classification is a multi-classification mech-

anism that relies on matching synonyms with terms available in the tweet to classify 

the type and cause of a traffic event. Several Web thesauri and dictionaries were used 

to extract synonyms regarding a list of traffic events, comprising traffic event types and 

words and synonyms that relate to each of the types (e.g., road closure event may be 
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matched with words such as "obstruction" or "barrier"). For instance, the tweet "N2 - 

one lane closed due to snow" contains the words "closed" and "snow", which will be 

matched to "Road Closure" event type and "Wind & Snow" event cause. 

• Name-Entity Recognition: To extract locations from tweets, NERD was used for name-

entity recognition. NERD extracts possible location names, such as names of streets, 

highway junctions, etc. This task was able to recognise 81% of the location-related en-

tities in tests performed (Gutiérrez, Figueiras, Oliveira, Costa, & Jardim-Gonçalves, 

2015). 

• Temporal Information: To extract temporal information, such as time of day, from 

tweets, Part of Speech and temporal expression taggers were used. The idea is to un-

derstand the grammatical tense of the tweet message and to find temporal expressions 

in order to extract insights about the event timeline. These taggers are examples of 

sublinear time methods used for stream processing. 

• Geolocation: For the task of extracting the location from the entities detected by NER 

engine, several geocoding Web services were used. The goal is to have the most accu-

rate information about where the event has occurred. Several levels of accuracy are 

being considered here, namely: road, city, region and country level. It is possible that 

an event involves several places at the same time, such a serious accident which pro-

duces a traffic jam on a highway linking two cities. The more similar tweets about a 

particular event are analysed, the more accurate the geolocation of the event itself. 

• Real-time Clustering: A first version of a real-time clustering mechanism that would 

aggregate over time tweets concerning the same traffic event was developed in an ear-

lier version of Apache Storm. This step enabled the tracking of the traffic event, from 

the first tweet posted about the event to the last reference to the event. 

 

The main conclusion taken from this example is that it is possible to have a framework 

based on traditional technologies able to tackle MobiTrafficBD. In this case, a mix of fast clas-

sification and matching methods, POS and temporal taggers that have sublinear time com-

plexities, and the use of geolocation Web services, enable the discovery, classification, root 

cause analysis and spatiotemporal insights' extraction from simple, limited and unstructured 

text messages, such as tweets. This example brings to light several of the points tackled in this 

section: the use of sublinear time or similar methods over streaming data, in the case of the 

taggers, the modular application of both traditional and early versions of Big Data technolo-

gies to analyse streams of MobiTrafficBD, depending on the performance and accuracy re-

quirements, and a combination of strategies to optimize stream processing tasks. 
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6.2 MobiTrafficBD Visualization: Tools and Methods 

The final component of the logical components and data flows model in Figure 3.2 is the Data 

Visualisation and User Interaction component. Visualisation of MobiTrafficBD presents sev-

eral challenges related to the Big Data and spatiotemporal characteristics of the data at hand. 

Since the subject of data modelling and standardization, which is a crucial factor for sharing 

MobiTrafficBD, was already discussed, this section will not delve into Data Sharing; rather, it 

will focus on Visualization, Visual Analytics and User Interfaces. 

Aiming once again for a data-driven perspective, the choice for the right visualization 

strategy. i.e., the strategy that will grant a better understanding of the data itself and of under-

lying patterns and insights to RITMOs and other stakeholders, depends heavily on the nature 

and characteristics of the data set at hand. A visualization strategy involves the choice of a mix 

of techniques, tools and technologies that range from how data is casted to the visualization 

interface to the visualization method itself. Some common strategies for MobiTrafficBD visu-

alization were overviewed in Chapter 2, such as animated visualizations, linked views and 

space-time cubes. 

Batch, streaming and interactive data visualization strategies present different chal-

lenges depending on the volume and speed of MobiTrafficBD, while the spatiotemporal di-

mensions of MobiTrafficBD have a crucial role in the decision over the visualization strategies 

to use. Depending on both the data at hand and the scenario for which the visualization strat-

egy is aimed, the guidelines and best practices will be focused on three main aspects: 

• How will the data be communicated between a distributed environment to the inter-

face or front-end? This is a major challenge when dealing with Big Data in general, but 

even more important due to the volume, speed and complexity of MobiTrafficBD. It 

focuses on data access and querying. 

• What data will be applied to the visualization method? This challenge focuses on how 

data is prepared for visualization, dealing with spatial and temporal granularities (e.g., 

temporal granularities: hour, day, week; spatial granularities: road point, road section, 

entire road), data aggregation and summarization. 

• What visualization methods to apply? The challenge of choosing a visualization 

method is the main challenge of data visualization, since it is dependent on the data 

characteristics, the use case to tackle and the challenges to surpass, and the final audi-

ence of the visualization. 

 

These points are not exclusive, but complementary: for instance, in the case of batch data 

visualization, in which the volume of data to visualize can be substantial, a mix of the right 
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data communication and data aggregation/summarization strategies may be one option to 

optimize the time to render the final visualization. Thus, it is time to dig deeper into the dif-

ferent data visualization strategies. 

 Batch Data Visualization Strategies 

When the use case deals with batch data exploration, processing and analysis tasks, the visu-

alization of the tasks' outputs presents several challenges specific to the data volumetry. First, 

the communication of data from the processing tasks to the visualization interfaces, more than 

often meaning a communication between servers and final users' machines through the Inter-

net, is highly dependent on the volume of the data to broadcast. Second, even when the data 

is efficiently broadcasted to the client side (the user's machine), the data volumetry has conse-

quences on how to select, filter and query the data to overcome several challenges, such as the 

overplotting problem: when visualizing very large data sets, the visualization may become 

hard to understand, due to the overlap and extreme density of data points. Third, the visuali-

zation strategy must account for what is being analysed, what are the main goals of the use 

case, and how can the visualization best support the use case. 

Regarding the data communication between server and client, there are several strate-

gies that can be adopted to ease the load of communicated data, depending on the goal of the 

analysis. One important batch data analysis is the exploratory analysis of data to uncover un-

derlying patterns, trends, and anomalies that will lead to the actual data processing and anal-

ysis processes development. This is a crucial task for practitioners and researchers, since it 

provides an initial view on patterns and trends that leverage the design and development of 

the final processing and analysis methods. 

In the case of exploratory analysis, the best practice is to use data sampling before com-

munication, to reduce the volume of communicated data. For instance, if the data set com-

prises traffic sensor readings, in the form of GRTS, spanning years of data records and cover-

ing several types of roads and highways in a country, the strategy to adopt is often to select 

and analyse a data sample and extrapolate the outputs and insights of the sample's analysis to 

the whole data set. In the case of a data set spanning several years and covering a wide range 

of roads in a large geographical area, the sample must be chosen according to several consid-

erations: 

• The temporal span of the sample should enable the extraction of insights under several 

temporal granularities. This means that the sample must contain daily (e.g., traffic peak 

hours), weekly (e.g., weekdays versus weekends), monthly (e.g., monthly traffic pat-

terns) or seasonal (e.g., traffic in the Summer versus traffic in the Winter) insights. 
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• The spatial cover of the sample should account for the different types of roads (e.g., 

national road, highway, freeway) and regulatory boundaries (e.g., urban setting versus 

rural setting). When extracting the sample, it must contain enough spatial information 

to characterize the spatial dispersion in the original data set. 

 

For data sets with shorter time spans and shorter spatial dispersions, the latter consid-

erations remain, although insights from higher granularities may not be possible to uncover. 

For instance, if the data set's time span is one year and the sensors are only deployed on high-

ways, then insights about seasonality and about different traffic behaviours according to road 

type may be impossible to obtain. Hence, the shorter the spatial and temporal dispersion of 

the data set, the smaller the set of granularities from which insights can be obtained. 

In other types of batch data processing and analysis tasks, more than often the outputs 

for such tasks are already aggregated or summarized as a result of the analysis method used, 

such as in the case of clustering, classification, pattern and anomaly detection, to name a few. 

Nevertheless, data aggregation, sampling and summarization techniques may still be used to 

further ease the load of data to be communicated. As an example, in the case of visualizing 

outputs from prediction methods, only a sample of the final predicted data set may be com-

municated for visualization. 

Regarding the challenges of data volume on visualization, such as the overplotting prob-

lem, several strategies can aid in the resolution of such challenges. Data aggregation, summa-

rization and sampling represent not only valid strategies in this case, but also can be seen as 

the main strategies to tackle these challenges. Other strategies often use data aggregation, sum-

marization and sampling as the basis for tackling data volume-related challenges in visualiza-

tion. Some examples are interactive, linked views and other visual querying methods. In, 

multi-window strategies, such as interactive and linked views (Figure 2.3), the spatial and 

temporal windows can be used to filter data by performing "pan" and "zoom" actions over 

them. For instance, if the user zooms in on or pans to a particular geographical area on the 

spatial view, the data shown in other views should reflect the spatial bounds chosen by the 

user (e.g., showing average speeds collected from sensors in roads within a limited geograph-

ical area), through data aggregation, summarization and sampling techniques. The same 

should happen when selecting a particular time range for the data visualization (e.g., visual-

izing traffic events occurring in a specific week or month). This means that each user interac-

tion corresponds to a visual query, created from the pan and zoom actions. Linked views are 

a type of visual query method, but other examples are also relevant. For instance, a visual 

query method can be used a priori of the final visualization method in order to select what 

data (spatiotemporal range) to process, analyse and render through such method. 
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Another consideration should be the Level of Detail (LoD) for different spatial (e.g., city-

wide spatial granularity) and temporal (e.g., hourly aggregated data points) granularities, as 

described in (Silva R. A., 2017). When visualizing large volumes of data in spatial and temporal 

views, the LoD needed for a good visualization, i.e., the best granularity for a specific spatial 

or temporal range, changes according to that range. The spatial or temporal ranges are selected 

by panning and zooming the spatial and temporal views, respectively. For instance, when vis-

ualizing a GRTS that spans several years on the temporal view, the higher the range, i.e., the 

more years to be shown in the visualization, the lower the LoD needed, i.e., the data can be 

aggregated in a higher granularity (e.g., if the range spans several years, a monthly aggregated 

granularity should have the necessary LoD, while if the range only spans one month, the gran-

ularity should be aggregated by hour, for instance). Hence, zoom and pan interactions per-

formed by users on a particular view (spatial or temporal) dictates how data is aggregated or 

disaggregated on all other views. Data range and granularity in all views should be updated 

whenever an user interaction occurs. 

Finally, the final visualization method to apply depends on the data set, on the use case 

and specifically on the processing and analysis methods used and outputs obtained. Regard-

ing the data set, and in the specific case of MobiTrafficBD, the visualization needs to account 

for the spatiotemporal characteristics of the data set, by using interlinked, interactive spatial 

(maps), temporal (timelines) and other views, and for the high-volume nature of the data set, 

by using visual query methods and aggregatable or summarizable views, according to spati-

otemporal pan and zoom user interactions. The scenario and the underlying challenges to ad-

dress also play a key role in the decision about the visualization strategy to apply. For instance, 

the authors of (Wang S. , et al., 2018) define a correspondence between spatiotemporal analysis 

methods and visualization of big spatiotemporal data, under the scope of visual analytics. 

An example of batch data visualization for exploratory analysis is comprised in the "Big 

Data harmonization pipeline" use case (Figueiras, Guerreiro, Silva, Costa, & Jardim-Gon-

çalves, 2018; Figueiras, et al., 2016; Figueiras, et al., 2016). After the collection, harmonization 

and storage of MobiTrafficBD, the Big Data Harmonization pipeline provides a visualization 

dashboard to be used as a preliminary exploratory analysis tool for RITMOs and other stake-

holders. View 5 (Appendix A.22, page 281) presents the resulting dashboard for data collected 

from toll sensors, registering the number of vehicles per vehicle class. 

The top view in View 5 presents a box plot chart for several sensors (horizontal axis) and 

the dispersion of the number of light vehicles passing through the sensors (vertical axis). The 

second view presents the number of records (vertical axis) per sensor for several sensors (hor-

izontal axis). Then, a table presents several statistics about the harmonized data set, such as 

minimum, maximum and average values for the number of passing vehicles captured by the 
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sensors, per vehicle class, and the maximum and minimum record dates, i.e., the temporal 

range for the data set. The bottom view presents a sample corresponding to the first 10.000 

records of the data set and shows the aggregated behaviour of the number of light and heavy 

vehicles for all sensors in the first 10.000 records.  

Other views could be developed, such as a map view showing the spatial dispersion for 

the sensors in the data set. Again, the goal of this tool was to provide to researchers and prac-

titioners an initial overview about the characteristics and ranges of the harmonized data set. 

They could then use this information to decide about the adequate processing and analysis 

strategies to apply over the harmonized data set. In this case, the tool was built using tradi-

tional Web-based programming languages and tools. Since the visualized data corresponded 

to a sample of the whole data set, there was no need to use Big Data tools or special commu-

nication and visualization strategies. 

Another example of visualization of large volumes of batch data is comprised in the 

"Public transport network status analysis and visualization" use case (Antunes, Figueiras, 

Costa, Teixeira, & Jardim-Gonçalves, 2019; Antunes, Figueiras, Costa, Teixeira, & Jardim-Gon-

çalves, 2019; Antunes, Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 2019). In this scenario, 

the main goal was to understand the commuting behaviour and the interdependence between 

different public transportation operators in the city of Lisbon. Particularly, the framework 

would analyse three types of behaviours: connections, transhipments and pendular move-

ments (see sub-section 6.1.1). The visualization component of the framework was based on the 

Tableau data visualization desktop application (Tableau Software, 2003), which enables the 

construction of spatiotemporal visualization dashboards with interactive views, animated 

views and visual query methods.  

The data set used in this scenario was the output of several processing and analysis pro-

cesses, described in sub-section 6.1.1, and aggregated to obtain daily and weekly trends, fo-

cusing on workdays. Hence, prior to visualization, the outputs of the processing and analysis 

tasks were aggregated and stored in a database, for easy access from the visualization tool. 

Tableau was chosen as the main visualization tool since it provides built-in data access and 

visualization tools and techniques and, since the scenario goal was an offline analysis on the 

large volumes of public transportation data, the response times for rendering and presenting 

the visualization could be in the order of minutes. This broader response time requirement 

enables the extraction of larger visual querying results, the addition of more linked views and 

the visualization of larger data volumes, spanning bigger spatial and temporal ranges.  

The visual query methods used enabled the creation of filters in relation to individual 

public transportation operators or specific stops and stations, besides the common temporal 

and spatial selection filters. These filters supported the application of data aggregation, 
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sampling and summarization techniques that resulted in data-rich visualizations that do not 

present the issue of overplotting, for instance. The versatility in terms of visual querying ca-

pabilities, resulted in visualization insights that enable real-world changes in everyday public 

transportation commuting.  

Some examples of insightful visualizations obtained in this use case are presented in 

Figure 6.8 and discussed below. For privacy reasons, the identification of each public trans-

portation operator is hidden. Also, Figure 6.8 only presents examples of visualizations for 

transhipments and pendular movements because, connections within the same public trans-

portation operator were a least significant insight than the other two. For instance, as expected 

in any city with a subway network, the operator with more connections, i.e., changing lines 

within the same operator, was the subway operator.  

Figure 6.8 presents three sets of views. These are just a few examples of the overall num-

ber of visualizations created for this scenario, but they show the importance of batch data vis-

ualization for insight gathering and decision support. The first two views, 1. a) and 1. b), show 

the percentage of transhipments per destination operator, when the origin operator is Lisbon's 

subway operator. 1. a) shows transhipment percentage from 0h to 14h and 1. b) presents tran-

shipment percentages from 15h to 23h. This division was made taking into account the daily 

movements to (in the morning) and from (in the afternoon) Lisbon's city centre. This set of 

views shows that when people use the subway to go to work in the morning, the perform 

transhipments to other operators that do "last mile" routes within the city centre (e.g., the sea 

blue coloured slice corresponds to a tram and bus operator that only operates in Lisbon's city 

centre) (1. a)), while when people go back home with the subway, in the afternoon/evening, 

the last public transportation operators used are the ones operating in the suburbs and areas 

outside the city centre (e.g., the green coloured slice represents a train operator that operates 

in the south area outside Lisbon's city centre) (1. b)). 

This indicator is very important to understand the correlation between entities, enabling 

the creation of new combined tickets through the analysis of such information, for instance. 

This trend is also present in the second set of views, 2. a) and 2. b). These views show the 

average weekly number of transhipments (workdays) per operator (vertical axis), per hour of 

day (horizontal axis), following the same colour code for each operator. View 2. a) presents 

the number of transhipments starting operators, while view 2. b) represents the number of 

transhipments ending operators.  
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Figure 6.8 — Three sets of views from the public transport network status analysis and visualization framework 

(Antunes, Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 2019; Antunes, Figueiras, Costa, Teixeira, & Jardim-Gon-

çalves, 2019; Antunes, Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 2019). 1. a) Transhipments percentage in the 

morning (0h - 14h) per destination operator, when the origin operator is an intra-city operator; 1. b) Transhipments 

percentage in the evening (15h - 23h) per destination operator, when the origin operator is an intra-city operator; 

2. a) Hourly sum of weekly (workdays) average transhipments per origin operator; 2. b) Hourly sum of weekly 

(workdays) average transhipments per destination operator; 3. a) Spatial dispersion and quantity of pendular 

movements in the morning (0h - 14h) starting from/ending in Fogueteiro station (red circle); 3. b) Spatial dispersion 

and quantity of pendular movements in the evening (15h - 23h) starting from/ending in Fogueteiro station (red 

circle); 
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The main insights taken from this set of views reinforces what was previously stated: 

intra-city operators (operating inside the city centre) are characterized by being the main start-

ing points for transhipments in the afternoon, evening, when people are commuting back to 

their homes outside the city, and the main ending points in the morning, when people enter 

the city and perform their "last mile" journeys to work within the city centre; contrarily, extra-

city operators (operating outside the city), are the main transhipment starting points in the 

morning, when people commute from their homes in the outskirts of the city to the city centre, 

and the main ending points, when people return home. 

Finally, the third set of views analyses the pendular movements from the south area 

outside the city to Lisbon's city centre, in the morning (3. a)) and in the afternoon (3. b)). Par-

ticularly, the pendular movements' origin and destination station in the south area is the 

Fogueteiro train station, marked with a red circle, whereas Lisbon's city centre is marked with 

a green rectangle. When pendular movements start from Fogueteiro in the morning, in view 

3. a), they occur more frequently and end up in Lisbon's city centre, while if the pendular 

movements start in the afternoon from the same station, the number of pendular movements 

is smaller and the main destination are stations in the same geographical area, to the south 

and outside of Lisbon's city centre. This indicator is important because it can be used to acquire 

a better understanding of human mobility in cities. 

These examples are just a fraction of the possible visualizations with this framework, 

since these and other visual analyses could be performed for every specific station or stop, for 

every operator. The total number of data points presented in these visualizations ascended 

seventeen million, since the framework presented in Figure 6.4 detected 9,304,132 connections, 

6.212.659 transhipments and 2.644.569 pendular movements for one month of data. 

 Streaming Data Visualization Strategies 

If the biggest challenge of batch data visualization was the large volumetry of the data to vis-

ualize, in the case of streaming data visualization, the main challenge is the speed at which the 

data streams arrive. This challenge is also extended to the same three aspects described in sub-

section 6.2.1: data communication, data preparation and data visualization methods to apply. 

Although each of these aspects have their own specificities, the main requirement is that the 

total execution time, for data preparation and access and rendering and presenting the final 

visualizations, must not exceed the stream arrival time or the sliding window time interval 

discussed in sub-section 6.1.2. 

When visualizing data in real-time, which is a regular requirement for streaming data 

visualization use cases, the data communication between the stream processing engine and 

the visualization tool is a crucial factor, since depending on the speed of the stream, traditional 
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communication protocols, such as the Hypertext Transfer Protocol (HTTP) (Fielding, et al., 

1985) for communication over the Internet, may not be able to cope with the extremely fast 

arrival of data objects. In this case, publish-subscribe mechanisms and other fast message de-

livery strategies may be the adequate choice. One such case, which can be used as a data stream 

communication protocol over the Internet, and is complementary to HTTP, is the WebSocket 

protocol (Internet Engineering Task Force (IETF), 2011).  

The HTTP protocol requires a request and a response for every communicated message 

between a server and a private computer. This means that, for a data stream, communication 

of each individual data object in the stream needs to be requested to the server and the server 

then sends the data object message as the response. This creates high latency in terms of data 

stream communication. In contrast, the WebSocket protocol resembles a publish-subscribe 

mechanism in which the user's machine opens a direct communication channel to the server 

once, and the server can then send the data stream to the user's machine without the need for 

a request for each single message in the stream. Other option is to use message queueing tools, 

such as Apache Kafka, to feed data to the visualization tools. 

Regarding data preparation, the speed at which data is communicated also poses chal-

lenges on how the data is prepared, aggregated and summarized prior to visualization. Since 

data streams normally arrive at minute, second or even millisecond granularities, the time to 

process, analyse and prepare visualizations is short. Again, this time will always depend on 

the stream processing model adopted: stream or sliding window. The time for processing, an-

alysing and presenting the data through visualization methods is shortest in the stream model, 

since each data object in the stream is individually processed and sent to visualization. In con-

trast, the processing and analysis time is extended in the sliding window model according to 

the sliding window's time range. 

Streaming MobiTrafficBD, particularly in the case of GRTS, are often complex data sets, 

i.e., the Big Data and spatiotemporal nature of MobiTrafficBD introduces complexity to these 

data sets in the form of the spatial and temporal dimensions, the interrelations between these 

two dimensions and the measured values and the speed at which these complex data sets must 

be processed. Such complexity entails that the processing time for streaming MobiTrafficBD 

must be extended by performing data preparation and aggregation tasks prior to sending data 

streams for processing, i.e., data gathered in sensors can be aggregated in minute-range win-

dows in an intermediate hardware system (e.g., a gateway) and then sent in a data stream to 

a stream processing framework. This is a common procedure, as represented by the traffic 

sensor data sets used in the example use cases: these data sets recurrently present 5-minute or 

10-minute granularities, which result from the aggregation of all sensor readings in each 5-

minute interval.  
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Hence, visual analytics for extremely fast MobiTrafficBD streams (in the order of milli-

seconds or less to seconds) should revolve around real-time, raw data visualization without 

any underlying processing or analysis, or performing very simple analyses, supported by sub-

linear time or similar processing and analysis methods. For slower MobiTrafficBD streams (in 

the order of tens of seconds to minutes), more accurate, complex visual analytics methods may 

be used, such as clustering, classification, etc. For MobiTrafficBD streams that do not have a 

fixed time between data objects, which is the main case for ST Events or for the outputs of 

complex event processing mechanisms, both simple and complex processing strategies may 

be used, as long as the chosen strategy is adequate for the shortest time possible between ob-

jects in the stream. For instance, if the ST Event data corresponds to traffic events, such as 

accident, traffic jams, road closures, etc. then the minimum time between two events in the 

stream should be in the order of minutes, while if the ST Event data corresponds to public 

transportation ticket validations, the minimum time between two events in the stream may be 

in the order of milliseconds. 

Finally, regarding the methods and strategies for data stream visualization, the most 

common strategy to visualize data streams is through animated views. These animated views 

are realized through the overlap of consecutive snapshot views, creating a "film" of snapshots, 

each of which pertains to a specific message or group of messages, depending if the timeframe 

for the visualization is based on a stream or sliding window model. These animated views 

may be based on different visualization methods, such as maps, charts or any other method. 

The method's choice depends mainly on the type of processing and analysis tasks performed 

prior to the application of the visualization method, as described in (Wang S. , et al., 2018). 

The "Real-time traffic flow analysis" example (Figueiras, et al., 2018) is a scenario that 

comprises all of the above considerations, such as the application of the WebSocket protocol 

for data stream communication, fast data aggregation and streaming data visualization sup-

ported by animated views. The visualization goal for the stream processing framework pre-

sented in Figure 6.5 was to provide animated views in real-time for visualization of extremely 

fast streaming data with different temporal granularities. As described in sub-section 6.1.2, in 

the first topology setting the goal was to aggregate lane-specific data objects in the stream, 

captured by traffic sensors in Slovenian roads and highways, into direction-specific data ob-

jects, while in the second topology, data was also aggregated in an hour-based sliding win-

dow, each window containing six data objects (each data object has a 10-minute temporal 

granularity).  

Since the framework's objective was to process, analyse and render visualizations for 

extremely fast data, an extremely fast data stream was simulated by fast feeding data objects 

to a RabbitMQ instance, which could produce a data stream of 8.8 data objects per second. The 
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stream was then passed to both Apache Storm topologies, already described in sub-section 

6.1.2, and the outputs of these topologies had to be rendered in meaningful real-time visuali-

zations. To be able to communicate the data stream to the Web-based visualization component, 

several streaming tools were integrated. The first step was to add one more Storm bolt to the 

workflow of Figure 6.6, as presented in Figure 6.9. The JmsBolt's goal is to write the outputs 

of both topologies, gathered from the AggregationBolt, into an Apache ActiveMQ (The 

Apache Software Foundation, 2004) queue. ActiveMQ is similar to RabbitMQ but is based on 

the Java language and integrates a Java Message Service (JMS) (Oracle Corporation, 1998) in-

stantiation, which is a message-oriented middleware API. 

 
Figure 6.9 — Apache Storm Topology updated with a stream communication bolt, for streaming data visualization 

Second, Apache Camel (The Apache Software Foundation, 2007) was integrated to han-

dle the connection between JMS and WebSocket message communication. Apache Camel is a 

routing rules creation and mediation system that converts messages from and to several mes-

sage transport models, such as HTTP, ActiveMQ and JMS, among others. Finally, a WebSocket 

client was developed in JavaScript to connect the users' machines to the framework. This suite 

of tools and technologies enabled the rendering of animated views for fast data streams. Figure 

6.10 and Figure 6.11 present some snapshots of animated views created by the framework. 

In Figure 6.10, the top map view (1) is an animated view in which road occupancies for 

several traffic sensors in Slovenia are represented by animated three-dimensional vertical bars. 

The height of the bars changes in real-time depending on the information regarding the road 

occupancy. In the same way, the bottom map view (2) presents real-time variations in vehicle 

speeds for several traffic sensors as circles, in which real-time speed values are represented by 

varying the colour intensity and diameter of the circle (the bigger the speed, the bigger the 

circle's diameter and stronger the colour intensity). 
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Figure 6.10 — Snapshots of map-based animated views for several Slovenian traffic sensors: 1. Road occupancy 

represented by three-dimensional bars with varying heights; 2. Average vehicle speed (Km/h) represented by col-

oured circles, with varying colour intensity and circle diameter 

In Figure 6.11, two animated bar chart visual approaches were used to visualize the real-

time fluctuations of vehicle speed and road occupancy values. View A represents the hourly-

aggregated outputs of the second topology for average speeds (top) and average road occu-

pancies (bottom), whereas View B presents the outputs for the first topology, providing real-

time variations for vehicle speed (left) and road occupancies (right) in each road direction. 

These views enable visual comparison analyses between several sensors simultaneously, 

whether focusing on a sliding window model to slow down the animation (View A) or by 

comparing several sensor readings in both directions. 
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Figure 6.11 — Snapshots of real-time animated bar charts for real-time visualization of speed and occupancy: A. 

Real-time visualization of hourly aggregated data (second topology) for speed (top) and occupancy (bottom); B. 

Real-time visualization of direction-specific (first topology) speed (left) and occupancy (right). 

6.3 Guidelines and Best Practices 

This chapter served as a prescriptive, methodological approach for batch and streaming Mo-

biTrafficBD processing, analytics and Visual Analytics processes. Although Data Analytics 

and Visualization methods and strategies can vary greatly according to the specific data and 

use case at hand, some general considerations were discussed towards the choice of tools, 

strategies and techniques to be integrated in the design and development of any MobyTraf-

ficBD Framework. The general methodology and discussion about considerations, strategies 

and tools was further reinforced with the example use cases, which showcase some of the 
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discussed strategies and tools. The following guidelines and best practices serve as a summary 

of the main recommendations made in this chapter: 

• MobiTrafficBD Analytics 

1. The three main considerations when choosing the adequate tools for MobiTraf-

ficBD processing and analysis should be: 1. The data at hand; 2. The use case at 

hand or analysis to be performed; 3. The performance and scalability of the distrib-

uted environment in which the MobiTrafficBD Framework will be deployed. 

2. When processing and analysing large volumes of MobiTrafficBD, several strategies 

are recommended, such as distributed data processing strategies or efficient data 

access strategies (data indexing in databases, data sampling for data exploration 

tasks, etc.). 

3. In the case of the application of distributed processing and analysis technologies, 

the choice of the data processing and analysis methods and algorithms must take 

into account the performance of the distributed environment. 

4. When processing and analysing large volumes of MobiTrafficBD, it is highly rec-

ommended the definition of spatiotemporal and unique identifier indexes in data-

bases, for easier data access and querying. 

5. When performing exploratory analyses over large batches of MobiTrafficBD, it is 

highly recommended the application of data sampling techniques, to extract un-

derlying, preliminary insights, trends and relationships that can be extrapolated to 

the entire data set. 

6. When using data sampling techniques, the sample size choice is always dependent 

on the type and comprehensiveness of the analysis and, ultimately, of insights that 

the researcher or practitioner wants to achieve. 

7. When processing and analysing fast streams of MobiTrafficBD, the decision be-

tween sublinear time and similar methods and online versions of batch data-driven 

algorithms or between a stream processing model or a sliding window one, must 

take into account data stream characteristics, such as the rate of reception of each 

data object, and requirements for the analysis to be performed over the stream, as 

in the case of execution time and accuracy of the method. 

8. Hybrid methods for both batch and streaming MobiTrafficBD processing and anal-

ysis, are often based on micro-batches and the sliding window model, with the 

sliding window size varying depending on the nature of the data and the use case 

at hand. 

• MobiTrafficBD Visualization 
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1. Data aggregation, summarization and sampling are recommended strategies to 

tackle the challenges of visualization of large volumes of MobiTrafficBD, such as 

the overplotting challenge. Other existing strategies often use data aggregation, 

summarization and sampling as the basis for tackling data volume-related chal-

lenges in visualization, such as in the case of visual querying methods or linked 

views. 

2. In the case of an exploratory analysis of large volumes of MobiTrafficBD, it is rec-

ommended for data sampling techniques to be applied before data communication 

to visualization tools, to reduce the volume of communicated data. 

3. When using data samples for exploratory MobiTrafficBD visual analyses, samples 

must contain insights and trends for multiple temporal granularities and enough 

spatial information to characterize the spatial dispersion in the original data set. 

4. When using linked views for MobiTrafficBD visualization, zoom and pan interac-

tions performed by users on a particular view (spatial or temporal) dictates how 

data is aggregated or summarized on all other views. Data range and granularity 

in all views should be updated whenever a user interaction occurs. 

5. When visualizing data in real-time, which is a regular requirement for streaming 

MobiTraffiBD visualization use cases, the data communication between the stream 

processing engine and the visualization tool is a crucial factor, since depending on 

the speed of the stream, traditional communication protocols may not be able to 

cope with the extremely fast arrival of data objects. 

6. The complexity of MobiTrafficBD entails that the processing time for streaming 

MobiTrafficBD must be extended by performing data preparation and aggregation 

tasks prior to sending data streams for processing. 

7. Visual analytics for extremely fast MobiTrafficBD streams (in the order of millisec-

onds or less to seconds) should revolve around real-time, raw data visualization 

without any underlying processing or analysis, or performing very simple anal-

yses, supported by sublinear time or similar processing and analysis methods.  

8. For slower MobiTrafficBD streams (in the order of tens of seconds to minutes), 

more accurate, complex visual analytics methods may be used, such as clustering, 

classification, etc.  

9. For MobiTrafficBD streams that do not have a fixed time between data objects, 

which is the main case for ST Events or for the outputs of complex event processing 

mechanisms, both simple and complex processing strategies may be used, as long 

as the chosen strategy is adequate for the shortest time possible between objects in 

the stream.
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7  

 

CONCLUSIONS 

Mobility- and Traffic-related Big Spatiotemporal Data processing, analysis and lifecycle man-

agement is already an important research area and is expected to grow even further along with 

new advances in the ICT domain, and particularly on the ITS field of study, such as autono-

mous and electrical vehicles or "smart" road infrastructure, traffic management and public 

transportation, just to name a few research areas under evident growth. Such growth must be 

complemented with standard or de facto methodologies, tools, techniques, methods and tools 

that serve as a basis for researchers and practitioners to push the evolution of ITS and, specif-

ically, to support Mobility and Traffic-related stakeholders, such as RITMOs, seeking to man-

age, leverage and capitalize on extremely large and extremely fast MobiTrafficBD sources 

available, in their decision-making processes. 

The work presented in this document strives to be a step forward towards this end, by 

proposing a data-driven, prescriptive methodology that supports the design, creation and de-

ployment of any framework that tackles MobiTrafficBD lifecycle management and/or pro-

cessing and analysis challenges. Such challenges reflect the Big Data and Spatiotemporal char-

acteristics that define MobiTrafficBD: 

• Parallel/distributed storage and processing of large amounts of spatiotemporal data, 

particularly GRTS and ST Events. 

• Scalability (accommodate more data, users, and analyses) and elasticity, using distrib-

uted hardware to lower the costs of implementation and maintenance and optimizing 

the overall performance of MobiTrafficBD lifecycle management, processing and anal-

ysis processes. 

• Flexible storage that can cope with Big Data nature and spatiotemporal characteristics 

of MobiTrafficBD. 

• Real-time capabilities for MobiTrafficBD (stream processing, low-latency and high-fre-

quency updates), even in the presence of complex, highly dimensional data sets. 
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• MobiTraffiBD interoperability, through the use of standard or de facto methodologies, 

models and methods, in and integrated environment with multiple technologies. 

• Mixed and complex analytics for MobiTrafficBD (e.g., ad hoc or exploratory analysis, 

data mining, text mining, statistics, machine learning, reporting, decision-making sup-

port, visual analytics, advanced visualizations, and linked and animated views). 

 

Considering the state-of-the-art in MobiTrafficBD, it can be concluded that there is no 

common approach for the design, development and deployment of MobiTrafficBD Frame-

works. Furthermore, there are panoplies of Big Data- and spatiotemporal data-driven consid-

erations, requirements, tools, technologies, models or methods, which generate barriers in the 

design and implementation of MobiTrafficBD Frameworks, whichever the individual frame-

works' requirements are. Current reference and logical architectures for both Big Data and 

spatiotemporal data only solve their own part of the barriers, but ambiguity regarding the 

adequacy of MobiTrafficBD lifecycle management, processing and analysis techniques and 

technologies according to the context and scenario at hand, still prevails. 

Due to the ever-growing and increasingly faster volumes of Big Data, a shift from a use 

case-driven paradigm to a data-driven one has become pervasive across all fields that seek to 

capitalize on this Big Data explosion, such as in the case of ITS. Traditional spatiotemporal 

data processing and analysis systems are based on use case-driven approaches, in which the 

selection of strategies, tools and methods is enforced by the scenario itself and its characteris-

tics and requirements. While scenario requirements and contextual characteristics were the 

main concern, current Big Data-driven spatiotemporal data processing and analysis systems, 

such as MobiTrafficBD Frameworks, are turning their focus to data-driven approaches. For 

instance, if, in traditional systems, the focus was to select or develop the most adequate 

method for processing and analyzing spatiotemporal data, depending on the use case's goals 

and requirements, nowadays, the main concerns for researchers and practitioners are the 

choice of adequate Big Data tools, techniques and models to better handle Big Spatiotemporal 

Data and how to optimize existing spatiotemporal data modelling and analysis processes to 

cope with the Big Data and spatiotemporal characteristics of data, as in the case of MobiTraf-

ficBD. 

Thus, until now, there is no structured and general-purpose approach describing and 

guiding researchers, practitioners and other interested stakeholders, on how to design and 

implement a MobiTrafficBD Framework, independently of the specific MobiTrafficBD or the 

scenario at hand, and with adequately evaluated models (representations of logical and tech-

nological components and data flows), methods (strategies, guidelines and best-practices), 

and instantiations (e.g., demonstration cases through prototyping and benchmarking). This 
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scientific and technical gap is the main motivation for the presented work, since, in the author's 

modest opinion, existing logical architectures, guidelines and best practices, in the specific 

contexts of Big Data and spatiotemporal data, did not provide an integrated, general-purpose, 

detailed and evaluated approach that practitioners could rely on to design and implement 

MobiTrafficBD Frameworks according to their characteristics. 

Further, a clear gap between "this is what a MobiTrafficBD should be", i.e., the presen-

tation of individual MobiTrafficBD Framework instances in the literature, and "this is how you 

design and implement a MobiTrafficBD Framework" motivated the proposal of this approach, 

an integrated, detailed, general-purpose, data-driven and prescriptive contribution to design 

and implement MobiTrafficBD Frameworks, using strategies, methodologies, standards, mod-

els and methods that were adequately evaluated through different demonstration scenarios. 

Nevertheless, the author recognizes the possibly large ambition of the proposed ap-

proach, but also considers that the approach's main goal was achieved, since researchers and 

practitioners now have a set of artifacts that can be used to design, build and deploy any Mo-

biTrafficBD Framework and to promote future research endeavours in this field, as techniques 

and technologies evolve and new strategies emerge. The following sections describe the staged 

work and achieved results, the main contributions to current state-of-the art knowledge and 

possible future work pathways. 

7.1 Staged Work and Achieved Results 

Considering the research goal and objectives of this doctoral thesis, one can state that the 

staged work and achieved results are divided into six main work fronts, namely the proposed 

approach for MobiTrafficBD Frameworks and the five example use cases: Big Data harmoni-

zation pipeline (Figueiras, Guerreiro, Silva, Costa, & Jardim-Gonçalves, 2018; Figueiras, et al., 

2016; Figueiras, et al., 2016); CEP for traffic event detection (Figueiras, Antunes, Guerreiro, 

Costa, & Jardim-Gonçalves, 2018; Antunes H. A., 2017); Real-time traffic flow analysis (Figuei-

ras, et al., 2018; Rosa, 2017); Public transport network status analysis and visualization (An-

tunes, Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 2019; Antunes, Figueiras, Costa, 

Teixeira, & Jardim-Gonçalves, 2019; Antunes, Figueiras, Costa, Teixeira, & Jardim-Gonçalves, 

2019); Twitter mining for traffic event detection (Gutiérrez, Figueiras, Oliveira, Costa, & 

Jardim-Gonçalves, 2015). These six work fronts encompassed several activities of the DSRM 

research methodology for Information Systems (Figure 1.1), including design and develop-

ment, demonstration, and evaluation. 

The creation of the proposed approach, consisting of the prescriptive data-driven meth-

odology for designing, developing and deploying MobiTrafficBD Frameworks, comprised the 
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definition of common models, design considerations, requirements, strategies, guidelines and 

best-practices to design and develop a MobiTrafficBD Framework. These artifacts went 

through a continuous refinement process, in which example use cases supported not only the 

evaluation and validation of the approach, but also the iterative refinement of the overall 

methodology. Finished this doctoral thesis, the following artifacts can be highlighted: 

1. A set of generic characteristics, design considerations and functional and non-func-

tional requirements that are common to any MobiTrafficBD Framework (Section 3.1), 

serving as a starting point for the design of such frameworks. 

2. A model of logical components and data flows (Figure 3.2, Section 3.2), which illus-

trates and describes the components that should be considered in the design and de-

velopment of a MobiTrafficBD Framework, how they interoperate and how data flows 

through the framework. The model comprises modular components related to Data 

Management (data collection, harmonization, cleaning and storage), Data Processing 

(data access and querying, aggregation, fusion and integration), Data Analytics (Ma-

chine Learning, Deep Learning, Data Mining), Data Visualization and User Interaction 

(data sharing, user interaction and Visual Analytics) as well as transversal Communi-

cation, Infrastructure, Orchestration, Security and Privacy components. 

3. A technological infrastructure model (Section 3.3), resulting from an extensive research 

and development to identify and test several technologies suitable to instantiate the 

different components proposed in the model of logical components and data flows. 

The technological infrastructure model presents several alternatives that can be used 

to implement a MobiTrafficBD Framework, including data collection and transfor-

mation and ETL pipelines, storage, querying and access, data processing and Data An-

alytics, and data visualization and sharing technologies.  

4. A set of general, methodological guidelines and best practices concerning logical com-

ponents and data flows and technological infrastructure models (Section 3.4), such as 

on how to deploy MobiTrafficBD Frameworks on cloud environments or on-premises. 

5. Sets of guidelines and best practices about data collection, modelling, harmonization 

and storage (Section 5.3), and data processing, Data analytics and visualization (Section 

6.3) of MobiTrafficBD, along with real-world example use cases of the definition and 

application of such guidelines and best practices. 

 

Taking these contributions into consideration, the proposed approach can be used by 

practitioners and researchers as a structured, integrated, and general-purpose approach that 

can be prescribed to solve several real-world MobiTrafficBD challenges, aiming to support 

MobiTrafficBD management, processing and analytics on Big Data environments while taking 
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advantage of MobiTrafficBD characteristics. Furthermore, the approach was evaluated and 

refined across several demonstration scenarios applied in this doctoral thesis, which provides 

a solid scientific and technical basis. Particularly, one may consider that there is a symbiotic 

relationship between the proposed prescriptive methodology and the demonstration scenar-

ios: If, on one hand, the artifacts contained in the proposed methodology were defined during 

the research work performed by the author throughout the years, in the various projects from 

which the example scenarios were extracted, on the other, these artifacts were already applied 

in the design, development and deployment of each individual framework that served as so-

lution to the example scenarios. Some frameworks that fit as examples of the possible applica-

tion of the proposed methodology are the SMASH framework (Wu, Morandini, & Sinnott, 

2015) or the OPTIMUM project's OODA framework (Figueiras, et al., 2019). Hence, the pro-

posed hypothesis that answers the initial research question is affirmative and is proposed as a 

proper thesis. 

7.2 Contributions to the State-of-the-art 

As stated in Section 7.1, to the best of the author's knowledge, the conclusion is that the pro-

posed methodological approach represents a relevant contribution to the scientific and tech-

nical community, by providing a set of artifacts for MobiTrafficBD Framework design and 

implementation that not only paves the way for future research but can also support research-

ers and practitioners build these complex systems, which otherwise would typically fall into 

a use case and ad hoc driven process.  

The models, strategies and guidelines proposed in this work were scientifically backed 

up by a DSRM for Information Systems research process using five demonstration cases that 

allowed the evaluation of the methodological approach mainly in terms of the Big and spatio-

temporal characteristics of MobiTrafficBD, suitability, effectiveness, complexity, latency, and, 

when applicable, resource considerations. Consequently, this approach successfully fulfills the 

scientific gap previously identified, i.e., the lack of a prescriptive and integrated methodolog-

ical contribution for the design and implementation of MobiTrafficBD Frameworks, with ad-

equately evaluated models, guidelines and best practices. 

Nevertheless, this work was mainly supported by previously existing contributions, rea-

son why this approach is built upon some general constructs and guidelines in the areas of Big 

Data and Spatiotemporal Data, provided by the BDVA-RM (Big Data Value Association, 2020), 

the NIST Big Data Architecture (NBD-PWG, 2015), the Big Data Processing Flow proposed by 

(Krishnan, 2013), the guidelines for quality Advanced Traveller Information Systems data 

(America's Advanced Traveller Information Systems Committee, 2000), the Spatiotemporal 
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Aspects of Big Data proposed in (Karim, Soomro, & Burney, 2018) or the Big Data Warehous-

ing guidelines from (Costa C. F., 2019), just to name a few. 

Further, this work’s contribution to the state-of-the-art in MobiTrafficBD Frameworks 

was only possible due to previously explored paths and the relevant contributions of several 

related works including the vast amounts of scientific and technical works related to Big Data, 

Spatiotemporal Data, Data Processing and Analytics, Visualization, Data Harmonization and 

Interoperability, Data Storage, Data Collection or Knowledge Discovery and Data Mining, 

among others fields, ranging several academic and professional areas, whose absence would 

otherwise make unfeasible the advancements regarding MobiTrafficBD Frameworks. 

Science and technology mainly owe their progress to disruptive discoveries, but these 

are more than often supported by solid scientific and technical foundations defined by re-

search works that formalize previous knowledge in a methodological way. This work strived 

to propose such a foundation for the design and implementation of MobiTrafficBD Frame-

works, which was relatively difficult to accomplish, considering the lack of maturity when it 

comes to the integration of Big and Spatiotemporal data in Mobility and Traffic contexts.  

Focusing on the communication activity of the DSRM for Information Systems method-

ology, several scientific publications related to this research work have been positively re-

viewed and accepted by the scientific community, which allowed the dissemination of several 

results. Moreover, technical content related to the work proposed here was also presented in 

practice-oriented forums and released as a book chapter. The following publications (summa-

rized in Table 7.1) represent the communication activity associated with this doctoral thesis: 

• Journal Publications: 

o Figueiras, P.; Gonçalves, D.; Costa, R.; Guerreiro, G.; Georgakis, P.; Jardim-

Gonçalves, R. “Novel Big Data-supported dynamic toll charging system: Im-

pact assessment on Portugal’s shadow toll highways”. In Computers & Indus-

trial Engineering, 135, September 2019, 476-491, 2019. DOI: 

10.1016/j.cie.2019.06.043 

• Conference Proceedings: 

o Costa, R.; Figueiras, P.; Oliveira, P.; Jardim-Gonçalves, R. “Understanding Per-

sonal Mobility Patterns for Proactive Recommendations”. In OTM 2015: On the 

Move to Meaningful Internet Systems: OTM 2015 Workshops, Rhodes, Greece, 

2015.  DOI: 10.1007/978-3-319-26138-6_16 

o Figueiras, P.; Guerreiro, G.; Costa, R.; Bradesko, L.; Stojanovic, N.; Jardim-Gon-

çalves, R. “Big Data Harmonization for Intelligent Mobility: a Dynamic Toll-

charging Scenario”. In OTM 2016: On the Move to Meaningful Internet 
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Systems: OTM 2016 Workshops, Rhodes, Greece, 2016.  DOI: 10.1007/978-3-

319-55961-2_8 

o Figueiras, P.; Silva, R.; Ramos, A.; Guerreiro, G.; Costa, R.; Jardim-Gonçalves, 

R. “Big Data Processing and Storage Framework for ITS: A Case Study on Dy-

namic Tolling”. In ASME 2016 International Mechanical Engineering Congress 

and Exposition (IMECE), Phoenix, Arizona, USA, 2016. DOI: 

10.1115/IMECE2016-68069 

o Costa, R.; Jardim-Gonçalves, R.; Figueiras, P.; Forcolin, M.; Jermol, M.; Stevens, 

R. “Smart Cargo for Multimodal Freight Transport: When “Cloud” becomes 

‘Fog’”. In 8th IFAC Conference on Manufacturing Modelling, Management and 

Control (MIM), Troyes, France, 2016. DOI: 10.1016/j.ifacol.2016.07.561 

o Guerreiro, G.; Figueiras, P.; Silva, R.; Costa, R.; Jardim-Gonçalves, R. “An archi-

tecture for big data processing on intelligent transportation systems. An appli-

cation scenario on highway traffic flows”. In IEEE 8th International Conference 

on Intelligent Systems (IS), Sofia, Bulgaria, 2016. DOI: 10.1109/IS.2016.7737393 

o Costa, R.; Figueiras, P.; Guerreiro, G.; Bradesko, L.; Stojanovic, N.; Georgakis, 

P.; Bothos, E.; Magoutas, B. “Proactive recommendations for Intelligent Mobil-

ity - An approach based on real-time big data processing”. In I-ESA 2016 - In-

teroperability for Enterprise Systems and Applications, Guimarães, Portugal, 

2016.  

o Figueiras, P.; Costa, R.; Guerreiro, G.; Antunes, H.; Rosa, A.; Jardim-Gonçalves, 

R. “User interface support for a big ETL data processing pipeline an application 

scenario on highway toll charging models”. In 2017 International Conference 

on Engineering, Technology and Innovation (ICE/ITMC), Madeira, Portugal, 

2017. DOI: 10.1109/ICE.2017.8280052 

o Figueiras, P.; Herga, Z.; Guerreiro, G.; Rosa, A.; Costa, R.; Jardim-Gonçalves, R. 

“Real-Time Monitoring of Road Traffic Using Data Stream Mining”. In 2018 

IEEE International Conference on Engineering, Technology and Innovation 

(ICE/ITMC), Stuttgart, Germany, 2018. DOI: 10.1109/ICE.2018.8436271 

o Figueiras, P.; Antunes, H.; Guerreiro, G.; Costa, R.; Jardim-Gonçalves, R. “Vis-

ualisation and Detection of Road Traffic Events Using Complex Event Pro-

cessing”. In ASME 2018 International Mechanical Engineering Congress and 

Exposition (IMECE), Pittsburgh, Pennsylvania, USA, 2018. DOI: 

10.1115/IMECE2018-87909 

o Antunes, H.; Figueiras, P.; Costa, R.; Teixeira, J.; Jardim-Gonçalves, R. “Analyz-

ing Public Transport data through the use of Big Data technologies for urban 
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mobility”. In 2019 International Young Engineers Forum (YEF-ECE), Caparica, 

Portugal, 2019. DOI: 10.1109/YEF-ECE.2019.8740816 

• Book Chapters: 

o Figueiras, P.; Guerreiro, G.; Silva, R.; Costa, R.; Jardim-Gonçalves, R. “Data Pro-

cessing and Harmonization for Intelligent Transportation Systems: An Appli-

cation Scenario on Highway Traffic Flows”. In Learning Systems: From Theory 

to Practice, Springer International Publishing AG, Cham, Switzerland, 2018. 

DOI: 10.1007/978-3-319-75181-8_14 

Table 7.1 — Scientific Publications 

Type Number  Detail 

Scimago Q1 

Journals 
1 publication  

(1) Journal of Computers & Industrial Engineer-

ing 

Core b confer-

ences or similar 
4 publications  

(2) ASME International Mechanical Engineering 

Congress and Exposition 

(1) IFAC Conference on Manufacturing Model-

ling, Management and Control 

(1) IEEE International Conference on Intelligent 

Systems 

Book chapters 1 publication  
(1) Learning Systems: From Theory to Practice, 

Springer 

Other confer-

ences of inter-

national scien-

tific circulation 

and review 

6 publications  

(2) On the Move to Meaningful Internet Systems 

(2) International Conference on Engineering, 

Technology and Innovation 

(1) Interoperability for Enterprise Systems and 

Applications 

(1) International Young Engineers Forum 

7.3 Prospects for Future Work 

Regarding future work, there is space for further exploration and contributions, namely in 

terms of the encompassing of new data sources outside the scope of GRTS and ST Events, the 

emergence of new technologies, tools and techniques for both Big Data and spatiotemporal 

data analysis and lifecycle management and, ultimately, the evolution of new paradigms that 

may enable the extension of the proposed approach with new components, data flows and 

inherent guidelines and best practices to be adopted in the near future. 
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Although the proposed approach only contemplates GRTS and ST Events, it may en-

compass other MobiTrafficBD types or even data outside the realm of ITS, although new, spe-

cific guidelines and best practices may apply. Nevertheless, the logical components and data 

flows model (Figure 3.2) and the technological infrastructure model (Figure 3.6) were purpos-

edly designed to be generic enough to be applied in other contexts and to different data types. 

Specific guidelines and best practices should be presented for these new contexts, but both 

models could be directly applied. The main data types that can be encompassed correspond 

to spatially and temporally dynamic data types mentioned in sub-section 2.2.1(Figure 2.1), 

such as trajectories or moving points, and will enable new types of analyses through the fusion 

of different data sets from specific types. One possible use case could be the analysis of the 

"heartbeat" of urban mobility based on public transportation trajectories (e.g., taxis), GRTS 

derived from traffic sensors, ST events representing different events in the urban fabric (e.g., 

traffic-related, such as accidents and traffic jams, or social, such as public events that may have 

consequences for urban traffic) and meteorological moving point data (e.g., mobile weather 

stations scattered throughout the city). The addition of new data types would also account for 

new data-driven challenges and the necessary guidelines and best practices to mitigate them. 

As in the case of new data types, new technologies and tools may also be encompassed 

in the proposed approach. The technological infrastructure model presents some example 

technologies and tools that can be combined and used in a framework to tackle the lifecycle 

and analysis of MobiTrafficBD, but it is not limitative, since other, present or future, technol-

ogies, tools and associated methods may be applied. Even so, and since the several layers and 

components of the model of Figure 3.2 are based on generic Reference Architectures, it is en-

visaged that new technologies that fall under the scope of such layers and components can be 

easily applied under the proposed approach. Whether or not the addition of these new tech-

nologies presents new challenges to the overall logical components and data flows model and 

to the technological infrastructure model, it may also impose the addition of new guidelines 

and best practices for the adoption of such technologies in MobiTrafficBD-driven scenarios. 

Moreover, the evolution of both data and technology and the emergence of new para-

digms in the IT sector, offer an opportunity for the proposed methodology to be extended with 

self-awareness mechanisms, so as to monitor the gap between existing models, guidelines and 

best practices and future paradigms on both technology and data. This extension could be 

fashioned in two distinct flavors: The self-awareness mechanisms could be applied to the 

methodology itself or to a MobiTrafficBD framework that is designed using the methodology. 

In the first case, a formalization of the methodology would be in place, encompassing 

the various models, guidelines and best practices, and the recommended technologies, tools 

and data flows. This formalization would then serve as a baseline for further 
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recommendations of a self-monitoring system that would advise on the changes needed for 

the methodology to be updated with new technologies, data types and flows. This would al-

low the methodology to be aware of new paradigms or evolutions and propose the update of 

both the models and the guidelines and best practices. In the second case, the self-awareness 

mechanisms would be added as a component in the orchestration layer of a MobiTrafficBD, 

which should be transversal to all components in the framework, enabling the framework's 

self-monitoring and awareness about the main paradigm shifts in terms of data types and 

flows or emerging technologies, according to the framework's use case requirements. These 

self-awareness mechanisms can leverage frameworks' context knowledge and new technolo-

gies and tools to control platform and application functions and their interaction, in terms of 

performance (e.g., by recommending more efficient resource allocation or new technological 

paradigms that have better performance), security (e.g., through the addition of security 

guidelines and best practices for the usage of the technologies and data flows by the frame-

work) or even continuous self-configuration of data storage (e.g., to cope with new data types 

and flows and emerging storage technologies, such as in the case of extreme analytics data-

bases). 
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APPENDIXES 

A.1. Example NTIS MIDAS Traffic Sensor Data DATEX 

II XML Format (Highways England, 2008) 
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A.2. Example NTIS TMU Traffic Sensor Data DATEX II 

XML Format (Highways England, 2008) 
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A.3. Example NTIS ANPR Traffic Sensor Data DATEX II 

XML Format (Highways England, 2008) 
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A.4. Example NTIS Fused Traffic Sensor Data DATEX II 

XML Format (Highways England, 2008) 
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A.5. Example Slovenian Traffic Sensor Data 
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Parameter Description 

stevci_gap Gap time between vehicles (in seconds) 

stevci_statOpis Traffic status (e.g normal, heavy) 

stevci_hit Average speed (in Km/h) 

stevci_stev Occupancy 

stevci_pasOpis Bearing, direction 

stevci_smerOpis Start and end locations for the road stretch 

where the sensor is located 

stevci_stat Numerical traffic status 
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A.6. Example Slovenian Traffic Event Data 

 

Parameter Description 

Cesta Road name 

Description Event description 

SmerStacion-

aza 

Bearing, direction 

IsRoadClosed True if the road is closed after the event occurred; False otherwise 

SideContent N.D. 

Prior-

itetaCeste 

Road priority 

Stacionaza Road kilometre mark 

x_wgs, y_wgs Latitude and longitude expressed in the World Geodetic System (WGS) 

coordinate system 

Odsek Road section 

isMejniPre-

hod 

True if it is a border cross; False otherwise 

X, Y Latitude and longitude 



 244 

Kategorija Road category 

CrsId EPSG ID for the X and Y parameters (MGI/Slovenia Grid coordinate sys-

tem) 

Updated Date and time of last update 

Title Type of event 
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A.7. Example Slovenian Wind Conditions Data 
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Parameter Description 

x_wgs, 

y_wgs 

Latitude and longitude expressed in the World Geodetic System (WGS) co-

ordinate system 

Description Text description of the wind conditions (in Km/h) 

Title Name of the location 

Content-

Name 

Name for the content data (burja means wind) 

CrsId EPSG ID for the X and Y parameters (WGS coordinate system) 

sunki Gust speed (in Km/h) 

veter Wind speed (in Km/h) 

X, Y Latitude and longitude 
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A.8. Example IP Traffic Counter Data in CSV Format 

 

 

 

 

 

 

 

 

 

 

 

 



 248 

Parameter Description 

SensorID The unique ID for the sensor 

Row Labels This column presents the temporal range of each row. The first row, 

"Janeiro", corresponds to the aggregated values for the entire month of Janu-

ary. The second row represents aggregated values for the 1st of January. The 

next rows correspond to five-minute time intervals starting at mid-night 

and ending at 23:55 

Comple-

tude 

The percentage of completeness (real record number vs. expected record 

number) 

Class A Total number of class 1 vehicles (height of front axis <1,10m) 

Class B Total number of class 2 vehicles (height of front axis >=1,10m) 

Class C Total number of class 3 vehicles (3 axis) 

Class D Total number of class 4 vehicles (more than 4 axis) 

Ligeiros Total number of light vehicles 

Pesados Total number of heavy vehicles 
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A.9. Example IP Traffic Counter Data Database Dump 

Parameter Description 

IDENTIF The unique ID for the sensor 

CAT01 Total number of class 1 vehicles (height of front axis <1,10m) 

CAT02 Total number of class 2 vehicles (height of front axis >=1,10m) 

CAT03 Total number of class 3 vehicles (3 axis) 

CAT04 Total number of class 4 vehicles (more than 4 axis) 

ESTADO Road state ("0": open road; "1": closed road) 

FECHA Date and time of the sensor reading 

ID_REG Unique ID for the sensor reading 

INTEN-

SIDAD 

Traffic intensity 

LIGEROS Total number of light vehicles 

OCUPACION Highway occupation percentage 

VELOCIDAD Average speed 

VOLUMEN Traffic volume 

PESADOS Total number of heavy vehicles 
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A.10. Example Electronic Toll Sensor Data from Via Livre 

 

 

Parameter Description 

CONCESSAO The unique ID for the sensor 

PORTICO Toll gate ID 

SUBLANCO Highway section 

DATA Date and time for the sensor reading 

CLASSE1 Total number of class 1 vehicles (height of front axis <1,10m) 

CLASSE2 Total number of class 2 vehicles (height of front axis >=1,10m) 

CLASSE3 Total number of class 3 vehicles (3 axis) 

CLASSE4 Total number of class 4 vehicles (more than 4 axis) 

CLASSE5 Total number of motorcycles with toll charging systems 
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A.11. Example Electronic Toll Sensor Data from Ascendi 
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Parameter Description 

CONCESSAO The unique ID for the sensor 

PORTICO Toll gate ID 

DATA Date and time for the sensor reading 

CLASSE1 Total number of class 1 vehicles (height of front axis <1,10m) 

CLASSE2 Total number of class 2 vehicles (height of front axis >=1,10m) 

CLASSE3 Total number of class 3 vehicles (3 axis) 

CLASSE4 Total number of class 4 vehicles (more than 4 axis) 

CLASSE5 Total number of motorcycles with toll charging systems 
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A.12. Example IP Batch Traffic Event Data Database SQL 

Dump 

Parameter Description 

TIPO DATEX II-based event type 

ESTRADA Road name 

KM Kilometre on which the event happened/started 

SENTIDO Direction ("Crescente": from lowest to highest road kilometre; 

"Decrescente": from highest to lowest kilometre; "Ambos": both 

directions) 

DATA INICIO Event starting date and time 

DATA FIM Event ending date and time 

COORD_X Latitude expressed in the World Geodetic System (WGS) coor-

dinate system 

COORD_Y Longitude expressed in the World Geodetic System (WGS) co-

ordinate system 
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A.13. Example IP Real-Time Traffic Event Data in XML 

Format 
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Parameter Description 

Id Unique ID for the event 

Data Event date and time 

DataInicio Event starting date and time 

DataFim Event ending date and time 

CodigoPais Country code 

Tipo DATEX II-based event type 

Estado Event status 

Descricao Event description 

DistritoInicial Township in which the event started 

DistritoFinal Township in which the event ended 

ConcelhoInicial Municipality in which the event started 

ConcelhoFinal Municipality in which the event ended 

Estrada Road name 

Direcao Direction ("Crescente": from lowest to highest road kilometre; 

"Decrescente": from highest to lowest kilometre; "Ambos": both 

directions) 

X Latitude expressed in the World Geodetic System (WGS) coor-

dinate system 

Y Longitude expressed in the World Geodetic System (WGS) co-

ordinate system 

Km Kilometre on which the event happened/started 
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A.14. Example OTLIS Ticket Validation Data in Excel For-

mat 

Parameter Description 

validation_date Validation date 

card_data Flag parameter indicating that the record has ticket/card data 

card_serial_number Unique serial number for the validated card 

validation_type_name Type of validation (Entry, Exit, Reentry) 

entity Entity code for the public transport operator 

product Type of card product (e.g. elderly, children, tourism) 

entity_stop_location_id Unique ID for the stop/station location 

x_coordinate Latitude expressed in the World Geodetic System (WGS) coor-

dinate system 

y_coordinate Longitude expressed in the World Geodetic System (WGS) co-

ordinate system 

gender Card holder's gender 

age Card holder's age 

desc_age Card holder's age group 

postal_code Card holder's residency postal code 

val_type Validation type (profile, ticket) 

profile_code Card holder's profile code (for profile validations) 

profile_entity_code Card's holder's profile entity code (for profile validations, e.g., 

child, third age, retired, military, student, etc.) 
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A.15. Example Data Source Exploration Report for Data 

Source DTC_POR_RoadVolume 
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A.16. Example Data Source Exploration Report for Data 

Source DTC_POR_TrafficEventsDB 
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A.17. Common Data Parameters between all Data Sources 

Divided by Structure 

DATA STRUC-

TURE 
PARAMETER TYPE DATA SOURCES 

ROAD SENSOR 

VALUE 

valueId Integer 
1, 2, 3, 9, 10, 11, 12, 13, 

14, 38, 44, 45 

sensorId String 
1, 2, 3, 9, 10, 11, 12, 13, 

14, 38, 44, 45 

dateTime Timestamp 
1, 2, 3, 9, 10, 11, 12, 13, 

14, 38, 44, 45 

number-

OfClass1Vehi-

cles 

Integer 1, 2, 3 

number-

OfClass2Vehi-

cles 

Integer 1, 2, 3 

number-

OfClass3Vehi-

cles 

Integer 1, 2, 3 

number-

OfClass4Vehi-

cles 

Integer 1, 2, 3 

number-

OfClass5Vehi-

cles 

Integer 1, 2, 3 

totalNumber-

OfVehicles 
Integer 1, 2, 3, 38 

gapBetween-

Vehicles 
Float 38, 44 

totalPerHour Integer 38 

occupancy Integer 13, 38, 44 
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averageSpeed 
Integer 

9, 12, 38, 44 
Float 

occupan-

cyTrend 

StringEnum (rising, fall-

ing, equal) 
13 

occupancySta-

tus 
StringEnum (colors) 13 

flow Float/Integer 11, 44 

flowTrend 
StringEnum (rising, fall-

ing, equal) 
11 

flowStatus StringEnum (colors) 11 

congestion Float/Integer 10 

congestion-

Trend 

StringEnum (rising, fall-

ing, equal) 
10 

congestionSta-

tus 
StringEnum (colors) 10 

averageSpeed-

Trend 

StringEnum (rising, fall-

ing, equal) 
9, 12 

averageSpeed-

Status 
StringEnum (colors) 9, 12 

travelTime Float/Integer 12, 14, 45 

travelTime-

Trend 

StringEnum (rising, fall-

ing, equal) 
12, 14 

travelTimeSta-

tus 
StringEnum (colors) 12, 14 

ROAD SENSOR 

METADATA 

sensorId String 
1, 2, 3, 9, 10, 11, 12, 13, 

14, 38, 44, 45 

roadType 
String Enum (highway, 

nationalRoad) 

1, 2, 3, 9, 10, 11, 12, 13, 

14, 38, 44, 45 

road String 
1, 2, 3, 9, 10, 11, 12, 13, 

14, 38, 44, 45 

concession String 1, 2, 3 
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section String 
1, 2, 3, 9, 10, 11, 12, 13, 

14, 38, 44, 45 

bearing 
Integer (Angle) 1, 2, 3, 9, 10, 11, 12, 13, 

14, 38, 44, 45 String Enum 

latitude Double 
1, 2, 3, 9, 10, 11, 12, 13, 

14, 38, 44, 45 

longitude Double 
1, 2, 3, 9, 10, 11, 12, 13, 

14, 38, 44, 45 

country String 
1, 2, 3, 9, 10, 11, 12, 13, 

14, 38, 44, 45 

frequency Integer 
1, 2, 3, 9, 10, 11, 12, 13, 

14, 38, 44, 45 

sensorType String 
1, 2, 3, 9, 10, 11, 12, 13, 

14, 38, 44, 45 

source String 
1, 2, 3, 9, 10, 11, 12, 13, 

14, 38, 44, 45 

TRAFFIC EVENT 

eventId Integer 5, 34, 41, 43 

road String 5, 34, 41, 43 

section String 5, 34, 41, 43 

type String 5, 34, 41, 43 

bearing String 5, 34 

latitude Double 5, 34, 41, 43 

longitude Double 5, 34, 41, 43 

country String 5, 34, 41, 43 

startDateTime Timestamp 5, 34, 41, 43 

endDateTime Timestamp 5, 34, 41 

description String 34 

source String 5, 34, 41, 43 

version String 5, 34, 41, 43 

severity String 34 
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A.18. Mapping Common Data Parameters to DATEX II 

Model Parameters 

DATA STRUC-

TURE 
PARAMETER STANDARD CORRESPONDENCE 

ROAD SEN-

SOR VALUE 

valueId Not applicable (N.A.) 

sensorId datex:SiteMeasurements(measurementSiteReference) 

dateTime datex:DateTimeValue(dateTime)* 

numberOfClass1Ve-

hicles 
Needs "Level B" extension 

numberOfClass2Ve-

hicles 
Needs "Level B" extension 

numberOfClass3Ve-

hicles 
Needs "Level B" extension 

numberOfClass4Ve-

hicles 
Needs "Level B" extension 

numberOfClass5Ve-

hicles 
Needs "Level B" extension 

totalNumberOfVehi-

cles 
datex:TrafficFlow(vehicleFlowValue) 

gapBetweenVehicles datex:TrafficHeadway(averageDistanceHeadway) 

totalPerHour datex:TrafficFlow(vehicleFlowValue) 

occupancy datex:TrafficConcentration (occupancy) 

averageSpeed 
datex:TrafficSpeed(averageVehicleSpeed) 

datex:MeasuredOrDerivedDataTypeEnum(trafficSpeed) 

occupancyTrend N.A. 

occupancyStatus N.A. 

flow datex:TrafficFlow(vehicleFlowValue) 

flowTrend N.A. 

flowStatus N.A. 

congestion datex:TrafficConcentration (concentration) 

congestionTrend N.A. 
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congestionStatus N.A. 

averageSpeedTrend N.A. 

averageSpeedStatus N.A. 

travelTime datex:TravelTimeData(travelTime) 

travelTimeTrend datex:TravelTimeData(travelTimeTrendType) 

travelTimeStatus N.A. 

average_speed_lane1 datex:TrafficSpeed(averageVehicleSpeed) 

traffic_head-

way_lane1 
datex:TrafficHeadway(averageDistanceHeadway) 

traffic_concentra-

tion_lane1 
datex:TrafficConcentration (occupancy) 

flow_lane1_uk_vehi-

cle_class1 
Needs "Level B" extension 

flow_lane1_uk_vehi-

cle_class2 
Needs "Level B" extension 

flow_lane1_uk_vehi-

cle_class3 
Needs "Level B" extension 

flow_lane1_uk_vehi-

cle_class4 
Needs "Level B" extension 

flow_lane1 datex:TrafficFlow(vehicleFlowValue) 

average_speed_lane2 datex:TrafficSpeed(averageVehicleSpeed) 

traffic_head-

way_lane2 
datex:TrafficHeadway(averageDistanceHeadway) 

traffic_concentra-

tion_lane2 
datex:TrafficConcentration (occupancy) 

flow_lane2_uk_vehi-

cle_class1 
Needs "Level B" extension 

flow_lane2_uk_vehi-

cle_class2 
Needs "Level B" extension 

flow_lane2_uk_vehi-

cle_class3 
Needs "Level B" extension 

flow_lane2_uk_vehi-

cle_class4 
Needs "Level B" extension 
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flow_lane2 datex:TrafficFlow(vehicleFlowValue) 

average_speed_lane3 datex:TrafficSpeed(averageVehicleSpeed) 

traffic_head-

way_lane3 
datex:TrafficHeadway(averageDistanceHeadway) 

traffic_concentra-

tion_lane3 
datex:TrafficConcentration (occupancy) 

flow_lane3_uk_vehi-

cle_class1 
Needs "Level B" extension 

flow_lane3_uk_vehi-

cle_class2 
Needs "Level B" extension 

flow_lane3_uk_vehi-

cle_class3 
Needs "Level B" extension 

flow_lane3_uk_vehi-

cle_class4 
Needs "Level B" extension 

flow_lane3 datex:TrafficFlow(vehicleFlowValue) 

average_speed_lane4 datex:TrafficSpeed(averageVehicleSpeed) 

traffic_head-

way_lane4 
datex:TrafficHeadway(averageDistanceHeadway) 

traffic_concentra-

tion_lane4 
datex:TrafficConcentration (occupancy) 

flow_lane4_uk_vehi-

cle_class1 
Needs "Level B" extension 

flow_lane4_uk_vehi-

cle_class2 
Needs "Level B" extension 

flow_lane4_uk_vehi-

cle_class3 
Needs "Level B" extension 

flow_lane4_uk_vehi-

cle_class4 
Needs "Level B" extension 

flow_lane4 datex:TrafficFlow(vehicleFlowValue) 

ROAD SEN-

SOR 

METADATA 

sensorId datex:measurementSiteRecord(id) 

roadType 
datex:measurementSiteRecord(affectedCarriage-

wayAndLanes) 

lane 
datex:measurementSiteRecord(affectedCarriage-

wayAndLanes) 
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road N.A. 

concession datex:nationalIdentifier 

section N.A. 

bearing 
datex:DirectionBearingValue(directionBearing) 

datex:Direction 

latitude datex:PointCoordinates(latitude) 

longitude datex:PointCoordinates(longitude) 

country datex:CountryEnum 

frequency datex:measurementSpecificCharacteristics(period) 

sensorType N.A. 

source N.A. 

   

TRAFFIC 

EVENT 

eventId datex:SituationRecord(id) 

road N.A. 

section N.A. 

type datex:SituationRecord(type) 

bearing datex:DirectionBearingValue(directionBearing) 

latitude datex:Location(locationForDisplay(latitude)) 

longitude datex:Location(locationForDisplay(longitude)) 

country datex:CountryEnum 

startDateTime 
datex:Validity(validityTimeSpecification(validi-

tyTimeSpecification(overallStartTime))) 

endDateTime 
datex:Validity(validityTimeSpecification(validi-

tyTimeSpecification(overallEndTime))) 

description N.A. 

source datex:SituationRecord(source) 

version datex:SituationRecord(version) 

severity datex:SeverityEnum 
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A.19. Traffic Sensor Metadata Harmonized Schema & Cor-

responding DATEX II Model Example for a Specific Toll 

Sensor (Portugal) 
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A.20. Traffic Sensor Reading Harmonized Schema & Cor-

responding DATEX II Model Example for a Specific Toll 

Sensor (Portugal) 
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A.21. Traffic Event Harmonized Schema & Corresponding 

DATEX II Model Example for a Specific Event (Portugal) 
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A.22. Big Data Harmonization Web Application: Views 

 
View 1 — Data collection from files 

 
View 2 — Data collection from Web services and pub-sub mechanisms 



 280 

 
View 3 — Mapping raw data parameters to harmonized schemas 

 

 
View 4 — Adding new custom harmonized schemas 
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View 5— Insight visualization of harmonized data sets 
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View 6 — Selecting harmonized data to export 
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