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Abstract

Configuring Heterogeneous Wireless Sensor Networks under
Quality-of-Service Constraints

Wireless sensor networks (WSNs) are useful for a diversity of applications, such
as structural monitoring of buildings, farming, assistance in rescue operations, in-home
entertainment systems or to monitor people’s health. A WSN is a large collection of
small sensor devices that provide a detailed view on all sides of the area or object one is
interested in.

A large variety of WSN hardware platforms is readily available these days. Many
operating systems and protocols exist to support essential functionality such as communi-
cation, power management, data fusion, localisation, and much more. A typical sensor
node has a number of settings that affect its behaviour and the function of the network
itself, such as the transmission power of its radio and the number of measurements taken
by its sensor per minute. As the number of nodes in a WSN may be very large, the
collection of independent parameters in these networks — the configuration space
— tends to be enormous.

The user of the WSN would have certain expectations on the Quality of Service
(QoS) of the network. A WSN i1s deployed for a specific purpose, and has a number
of measurable properties that indicate how well the network’s task is being performed.
Examples of such quality metrics are the time needed for measured information to
reach the user, the degree of coverage of the area, or the lifetime of the network. Each
point in the configuration space of the network gives rise to a certain value in each of the
quality metrics. The user may place constraints on the quality metrics, and wishes to
optimise the configuration to meet their goals. Work on sensor networks often focuses
on optimising only one metric at the time, ignoring the fact that improving one aspect of
the system may deteriorate other important performance characteristics. The study of
trade-offs between multiple quality metrics, and a method to optimally configure a WSN
for several objectives simultaneously — until now a rather unexplored field — is the main
contribution of this thesis.

There are many steps involved in the realisation of a WSN that is fulfilling a task as
desired. First of all, the task needs to be defined and specified, and appropriate hardware
(sensor nodes) needs to be selected. After that, the network needs to be deployed and
properly configured. This thesis deals with the configuration problem, starting with a
possibly heterogeneous collection of nodes distributed in an area of interest, suitable
models of the nodes and their interaction, and a set of task-level requirements in terms of
quality metrics. We target the class of WSNs with a single data sink that use a routing tree
for communication. We introduce two models of tasks running on a sensor network —
target tracking and spatial mapping — which are used in the experiments in this thesis.

The configuration process is split in a number of phases. After an initialisation phase
to collect information about the network, the routing tree is formed in the second
configuration phase. We explore the trade-off between two attributes of a tree: the
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average path length and the maximum node degree. These properties do not only affect
the quality metrics, but also the complexity of the remaining optimisation trajectory. We
introduce new algorithms to efficiently construct a shortest-path spanning tree in which
all nodes have a degree not higher than a given target value.

The next phase represents the core of the configuration method: it features a QoS
optimiser that determines the Pareto-optimal configurations of the network given
the routing tree. A configuration contains settings for the parameters of all nodes in the
network, plus the metric values they give rise to. The Pareto-optimal configurations, also
known as Pareto points, represent the best possible trade-offs between the quality metrics.
Given the vastness of the configuration space, which is exponential in the size of the
network, it is impossible to use a brute-force approach and try all possibilities. Still our
method efficiently finds a/l Pareto points, by incrementally searching the configuration
space, and discarding potential solutions immediately when they appear to be not Pareto
optimal. An important condition for this to work is the ability to compute quality metrics
for a group of nodes from the quality metrics of smaller groups of nodes. The precise
requirements are derived and shown to hold for the example tasks. Experimental results
show that the practical complexity of this algorithm is approximately linear in the number
of nodes in the network, and thus scalable to very large networks. After computing the
set of Pareto points, a configuration that satisfies the QoS constraints is selected, and the
nodes are configured accordingly (the selection and loading phases).

The configuration process can be executed in either a centralised or a distributed
way. Centralised means that all computations are carried out on a central node, while the
distributed algorithms do all the work on the sensor nodes themselves. Simulations show
run times in the order of seconds for the centralised configuration of WSNs of hundreds
of TelosB sensor nodes. The distributed algorithms take in the order of minutes for the
same networks, but have a lower communication overhead. Hence, both approaches have
their own pros and cons, and even a combination is possible in which the heavy work is
performed by dedicated compute nodes spread across the network.

Besides the trade-offs between quality metrics, there is a meta trade-off between the
quality and the cost of the configuration process itself. A speed-up of the configuration
process can be achieved in exchange for a reduction in the quality of the solutions. We
provide complexity-control functionality to fine-tune this quality/cost trade-off.

The methods described thus far configure a WSN given a fixed state (node locations,
environmental conditions). WSNs, however, are notoriously dynamic during operation:
nodes may move or run out of battery, channel conditions may fluctuate, or the demands
from the user may change. The final part of this thesis describes methods to adapt the
configuration to such dynamism at run time. Especially the case of a mobile sink is
treated in detail. As frequently doing global reconfigurations would likely be too slow and
too expensive, we use localised algorithms to maintain the routing tree and reconfigure
the node parameters. Again, we are able to control the quality/cost trade-off, this time
by adjusting the size of the locality in which the reconfiguration takes place.

To conclude the thesis, a case study is presented, which highlights the use of the
configuration method on a more complex example containing a lot of heterogeneity.
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Chapter 1

Introduction

The area of wireless sensor networks (WSNs) and the configuration problem that is
covered in this thesis, is introduced in this chapter. The first section provides and overview
of wireless sensor networks, some examples of their applications, and the challenges with
respect to Quality-of-Service provisioning. The configuration problem and the goals of
this work are given in Section 1.2, after which an overview of the contributions of this
thesis is presented in Section 1.3. Section 1.4 shows a summary of related work available
in the literature, after which an overview of the thesis is given in Section 1.5.

1.1 Motivation

During the past decade, Ambient Intelligence, also known as pervasive computing or
ubiquitous computing, has become an important topic in university as well as industrial
research. In so-called Ambient Systems, devices in the environment surrounding human
beings work together and try to assist people in any possible way. The more traditional
electronic systems like servers, laptops and handhelds can all be connected in a network;
not only with each other, but also with actuators like displays, speakers or even lighting
and heating. Given the ever-decreasing size of integrated circuits, it becomes more and
more possible to make electronic devices so small that they can easily be hidden in the
environment. These devices are usually wireless and battery operated and therefore easy
to put into place.

The current trend is to make these devices not only small, but also cheap so that they
can be spread around in large numbers. Such devices typically contain sensors to observe
humans or to measure properties of the environment like temperature or humidity. The
small devices may be very simple, but by working together in a wireless network they can
still be very powerful: a wireless sensor network. Combining the base network of more
conventional devices with wireless sensor networks, the system becomes a true Ambient
System: intelligence is embedded in the environment.

Wireless sensor networks have received a great deal of attention over the past years.
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One of the key differences between wireless sensor networks and conventional computer
networks 1s the fact that sensor nodes are very much constrained in energy. Because of
this, low energy consumption is one of the main design goals. Another distinguishing
factor of WSNs is the highly cooperative nature of the nodes: a group of sensor nodes can
be considered as a single entity with a certain task. Further, similar to ad-hoc networks
(but to a lesser extent), sensor networks can be dynamic, because nodes may move and
enter the field, or simply run out of energy.

A scenario in which a wireless network of sensors 1s particularly useful is disaster
recovery. Picture a building or a larger area being destroyed by an earthquake or another
form of violence. People are trapped inside collapsed buildings and need to be rescued
as soon as possible. Because the original communication infrastructure is likely to be
partially or fully destroyed, rescue workers have to rely on flexible ad hoc methods
of communication. And because many places in the area would be poorly accessible,
rescuers could use the help of technology to help them find the victims. Small wireless
devices may be spread over the area, from outside or by rescuers inside. These devices,
a mix of simple and more powerful ones, act as extra eyes and ears for the rescuers,
while at the same time providing an instant wireless communication network. On their
handhelds, rescuers receive all relevant available information. Moreover, the victims and
rescue workers themselves might wear sensors on or even inside the body, to monitor their
health.

It is clear that the network being used in this scenario is very heterogeneous: there
are various types of small, low-power sensor nodes, as well as handheld devices. This
causes the communication to be very diverse and some data streams (like video) have
specific constraints. Sensor nodes that have located a victim need to inform the nearest
available rescue workers and send them as much information as possible. This is made
difficult by the constant movement of rescuers and the dynamic state of the nodes in
between. The goals of a system in such a scenario are about providing information:
the information should be reliable and complete and should be delivered in a timely
manner. Furthermore, the lifetime of the system as a whole should be as long as possible,
without replacing devices. These targets can be formalised into Quality-of-Service (QoS)
performance characteristics. Existing literature on the use of WSNs in disaster recovery
is available [Cayirci and Coplu 2007, Pogkas et al. 2007].

A recent example of a real, both wired and wireless, sensor system that is currently
being developed and tested in The Netherlands is IJkdijk [Stichting IJkdijk 2009]. A
country like The Netherlands, having about 27% of its area and 60% of its population
located below sea level, heavily relies on dikes and other water-management systems to
protect itself from the water. In recent years, dikes broke a number of times, resulting in
the flooding of residential areas. Dike failures mostly occur because dikes are too wet, or
due to erosion. A system to detect the onset of such dike failures by sensors inside the
dikes, such that maintenance work can be carried out in time, might be cheaper and safer
than the alternative of over-dimensioning the dike by adding more clay.

Another interesting project focusing on a real and useful WSN application is COM-
MONSense Net [Panchard et al. 2007]. This project aims to help resource-poor farmers
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in developing countries to monitor their land and crops, such that the use of irrigation
can be made more efficient, and for the prevention of pests and diseases.

Such WSN systems are the main source of inspiration for the research in this thesis,
which investigates the challenging question of how to properly configure and maintain a
heterogeneous wireless sensor network. The networks we consider may contain a diverse
set of sensor nodes, each having various capabilities. Furthermore, our WSNs may be
integrated with more powerful wireless devices, such as cameras and handheld computers.

In the early years, work on WSNs was mainly concerned with the design of the sensor
nodes themselves. Subsequently, a lot of research went into communication schemes,
in-network processing techniques and other higher-level issues [Karl and Willig 2005].
However, it is often assumed that the sensor network is homogeneous and static. Combi-
nations of various types of (sensor) nodes are rarely investigated, let alone the problem of
optimally configuring such a heterogenecous network.

When designing and deploying a WSN, a lot of choices need to be made. Romer and
Mattern [2004] give an overview of the extremely large design space of WSNs, which starts
with the types of nodes to be used and the deployment of these nodes. The configuration
problem that we cover starts at this point: the nodes are in place and ready to start taking
orders. However, they first need to form a network, and figure out exactly how to behave.
Each node has software or hardware settings that may be tuned to adjust the node’s
behaviour.

A typical example of such a parameter of a sensor node is the transmission power
of its radio. Changing this parameter has a number of consequences, such as the com-
munication reliability of the link to a neighbouring node, but also its total power usage
and thus the lifetime of its energy supply. Another example is the sample rate of a node’s
sensor — the number of samples it takes in some period of time. A higher sample rate
could imply that the user of the network receives more regular updates about what they
are monitoring, At the same time, though, this node, as well as the nodes it depends on
to relay data to the user, need to transfer more packets of information, and therefore use
more energy. As each node may have several such parameters, the configuration space
for a whole network of such nodes is enormous: the total number of possible network
configurations grows exponentially with the number of nodes.

Since WSNs are increasingly common and practically useful, people’s expectations
about them are rising as well. Hence, the topic of Quality-of-Service provisioning, which
aims to ensure that explicit performance targets are met, is gaining more and more interest.
A heterogeneous network might contain many different types of traffic, each type with
its own constraints. Conventional networking has a notion of Quality-of-Service that
captures these varying requirements in service types, and has methods to make sure the
constraints of all data streams are met. Whether the latter is possible depends on the
availability of network resources. And since resources are limited in practical situations,
trade-offs have to be found between service quality and resource usage. The concept
of Quality-of-Service can be generalised to higher levels of abstraction. We may, for
example, consider the user-perceived quality of a video clip that is playing on a display, or
even the lifetime of (certain parts of) a system. Though some literature is available, QoS
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provisioning for wireless sensor networks is still a rather new and unexplored field.

Surveys suggest that there is a need for a middleware layer that negotiates between
an application and a network to match QoS demands and the availability of WSN
resources [Chen and Varshney 2004, Yu et al. 2004]. This is challenging, because QoS
requirements are often conflicting, and furthermore, adequate ways are needed to predict
the behaviour and performance of a possibly heterogeneous network of nodes, under
various circumstances. The best possible (optimal) trade-offs between the various relevant
QoS demands in a heterogeneous and dynamic WSN should be found. And since the
configuration space is so large, it is not feasible to simply try all possible configurations
and choose the best.

To efficiently solve the complex multi-objective optimisation problem of configuring a
WASN, entirely new methods need to be developed. This thesis introduces such a method,
which does not only efficiently find optimal configurations for large WSNs that satisfy
multiple QoS constraints, it is also able to cope with and adapt to changes in the network
or its surroundings that are imposed by external factors.

1.2 Problem Statement

As wireless sensor networks typically contain a large number of nodes that can be configured
individually, the full configuration space of a WSN is vast. The WSNs that we study may
contain a mix of various types of nodes. In other words, this thesis deals with feterogeneous
wireless sensor networks. We currently target the class of WSNs that use a routing tree
for communication.

A WSN 1s deployed to carry out a certain fask on behalf of the owner of the network,
referred to as the user; examples of practical WSN tasks are given above. The user has
expectations about various aspects of the performance of the network executing the task.
Examples of such performance characteristics, called Quality-of-Service (QoS) metrics,
or simply quality metrics, are the time it takes for measured information to reach the user,
the reliability of the network, or the lifetime of the network. The user may place constraints
on any of these quality metrics. The configuration of the network should be such that
the achieved level of quality for each quality metric is at least as good as specified in the
constraint for the metric. If there is room for an improvement in quality without violating
any of the constraints, the configuration should exploit this opportunity. The process
that computes and implements the configuration should be efficient in terms of time,
processing power and communication, and scalable to very large networks. Furthermore,
if anything changes in the network, its environment, or the demands of the user, the
configuration should be adapted to the new situation.

Definition 1.1 (Main Objective). The main goal of this thesis, in one sentence, is to deliver
an efficient and scalable method for the configuration and maintenance of a heterogeneous wireless sensor
network, such that performance demands are met. A more formal definition of the objectives
and the limitations of the method 1s given in Section 3.3.
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The ultimate goal we envision is to be able to use a WSN as a platform that can be
used to run multiple concurrent tasks under QoS control. While it was not our intention
to solve this much broader problem in this thesis, we do hint on ways to extend the current
work to support multiple tasks.

1.3 Contributions

The main contribution of this thesis is a complete step-by-step procedure to configure a
WSN for a given task as described in the problem statement, and maintain the configu-
ration at run time. We focus on networks that employ a routing tree for communication
between the sensors and a (single) data sink. The phases of the configuration process are
outlined in Section 3.4. This main contribution is sub-divided into the following parts:

o A framework for hierarchical models of a WSN and a task running on the WSN,
and models for spatial mapping and target tracking WSN tasks and nodes within
this framework (see Chapter 3).

e Given a WSN with a routing tree in place, a scalable algorithm to find the Pareto-
optimal configuration, 1.e. the settings for each node that lead to the best possible
trade-offs between quality metrics (see Chapter 4). This algorithm is optimised for
speed and memory usage, and has a centralised as well as a distributed version.
Furthermore, the complexity of the algorithm can be controlled: the cost of the
algorithm can be improved in exchange of a reduced quality of the solutions.

e An algorithm to create a routing tree in a given network of randomly deployed
nodes, such that the conflicting goals of minimising the average path length (from
each node to the root) as well as the maximum node degree (over all nodes) are
jointly optimised (see Chapter 5). The balance between these two goals can be
controlled by the user. Also this algorithm has both a centralised and a distributed
version.

o Methods to maintain a configuration that meets all goals, under changes in the
WSN’s environment or demands from the user (see Chapter 6). Special attention
1s given to a scenario in which the sink moves around in the network. The method
consists of ways to repair and re-optimise the routing tree if needed, and re-analyse
and optimise the settings of the nodes. An important feature of the reconfiguration
method is that is can be made to run locally as well as globally: the number of
nodes that are affected can be controlled.

1.4 Related Work

This section provides an overview of work that 1s related to the general goals of this thesis.
References to other literature that is associated to specific parts of this work are given in
the respective chapters covering these parts.
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1.4.1 WSN Configuration

ASCENT [Cerpa and Estrin 2002] is an early self-configuration scheme for WSNs that
autonomously forms a multi-hop topology that provides sensing and communication
coverage, and is energy efficient. Furthremore, the topology is adapted to cope with
dynamics in the environment.

Another example of WSN configuration is given by Lu et al. [2007], who look at WSN
configuration in their integrated method for node address allocation, and formation and
maintenance of a communication backbone of selected nodes. Their main concern is the
overhead of the configuration protocol itself, while they do not optimise the performance
of a higher-level application, a goal that is central to our approach.

The need for methods that deal with conflicting performance demands and set up a
sensor network properly is recognised by others as well. Pirmez et al. [2007], for example,
suggest a method for selecting a data-dissemination protocol that best suits a given set of
network characteristics and performance demands, based on a fuzzy inference system that
uses a knowledge base of system behaviour acquired through simulation. Also Delicato
et al. [2005] and Wolenetz et al. [2005] use such a knowledge base to make a match
between demands and network protocols.

A major difference with our work is that these efforts choose a mode of operation
that is common for all nodes in the network, while we determine settings for each node
individually. Moreover, we are able to deal with arbitrarily heterogeneous networks,
in which all nodes and their parameters and parameter ranges may be different. We
furthermore explore all optimal trade-offs in the multidimensional design space before
ultimately selecting a fitting configuration. This allows for easy reconfiguration when the
user’s demands change.

1.4.2 Multi-objective Optimisation

The Pareto-optimality criterion, which is used in this thesis to define the optimality of
trade-offs between multiple objectives, i3 a general concept that originally comes from
economics. The Pareto points of a system precisely capture all the trade-offs in a multi-
dimensional optimisation space. In engineering, it is used, for example, in design-space
exploration for embedded systems [Palermo et al. 2006, Thiele et al. 2002]. The develop-
ment of Pareto algebra by Geilen et al. [2007] (also see Chapter 2) offers a very structured
way of analysing the design space.

More traditional ways to find Pareto-optimal solutions include genetic algorithms or
related algorithms like tabu search. SPEA [Zitzler and Thiele 1999], SPEA2 [Zitzler et al.
2002] and NSGA-II [Deb et al. 2002] are well-known examples of genetic algorithms
that search for the Pareto frontier of a multi-objective optimisation problem. Genetic
algorithms are also applied in WSNGs for various configuration tasks [Jourdan and de Weck
2004, Yang et al. 2007]. Usually, these approaches are centralised optimisation techniques.
The exception being MONSOON [Boonma and Suzuki 2008], which is a distributed
scheme that uses agents to carry out application tasks, while the behaviour of these agents
is adapted to the situation at hand according to evolutionary principles. Also particle
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swarm optimisation (PSO), another type of evolutionary algorithm, has been applied
to WSNs [Shen et al. 2006]. However, while PSO can handle multiple parameters, it
only optimises one objective (in this case energy usage), or a weighted combination of
objectives.

The most important difference between our method and the evolutionary approaches
is the fact that we are always able to find the complete set of Pareto-optimal solutions for
a given WSN model. Furthermore, since we are using knowledge about the structure of
the WSN, we are able to selectively search the configuration space, while evolutionary
algorithms ignore any such information and are therefore much slower. Moreover, evolu-
tionary algorithms are randomised and the results are never guaranteed to be complete.

Q-RAM [Lee et al. 1998] is another framework that uses the Pareto-optimality crite-
rion to find QoS trade-offs. However, it does not use algebraic trade-off computation and
it focuses on resource allocation for multiple tasks sharing a single resource, which does
not directly apply to WSN configuration. Other work [Wang et al. 2005b] formulates
a model for cluster-based target tracking as a two-objective optimisation problem. The
paper hints at using Pareto analysis to solve it, but does not give a method to compute the
Pareto front.

1.4.3 QoS Support in WSNs

Chen and Varshney [2004] give an overview of approaches and challenges related to
QoS support in WSNs. There are some network protocols that offer QoS support, often
based on delay constraints. The Sequential Assignment Routing (SAR) protocol [Sohrabi
et al. 2000] is one of the first attempts to introduce a notion of QoS to sensor networks.
It creates and maintains routing trees from one-hop neighbours of a sink node. SAR
optimises a certain additive QoS metric and the energy usage for each path. A sensor
node generally has multiple paths to the sink, and chooses one of them based on the QoS
requirements and available resources on the paths.

SPEED [He et al. 2003b] is another well-known protocol that achieves preliminary
(soft) real-time communication in sensor networks. SPEED is a lightweight protocol
that attains a certain delivery rate across the network by utilising feed-back control and
geographic forwarding.

Akkaya and Younis [2003] present an energy-aware QoS routing protocol, in which
they look at end-to-end delays. Sensors are grouped in clusters with a gateway node.
The paper focusses on QoS routing within a particular cluster, in which the gateway
node determines the routing. Real-time and best-effort traffic may coexist in the network,
and a bandwidth ratio is used to separate real-time and best-effort traffic. The routing
algorithm tries to determine the optimal bandwidth ratio for the best trade-off between
real-time and best-effort traffic.

One example of catering for application-level QoS demands is the work by Perillo and
Heinzelman [2003]. They attempt to guarantee a minimum data-reliability level while
maximising network lifetime, by jointly optimising the sensors’ sleep/wake schedules and
routing.

The problem of WSN configuration with QoS support fits in the broader domain
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of middleware for wireless sensor neworks. While the need of such a middleware is
recognised [Nahrstedt et al. 2001, Rémer et al. 2002, Yu et al. 2004], it is still a mostly
open research problem. Our configuration and maintenance method could be seen as a
specific type of WSN middleware.

MiLAN [Heinzelman et al. 2004] is another middleware framework, which utilises a
trade-off between application performance and network cost. It is, however, described in
more high-level terms, and it is implicit how to actually achieve this trade-off. Other work
on middleware for systems similar to WSN is available from Baliga and Kumar [2005],
Chiang et al. [2005], and Costa et al. [2007a,b].

An important difference between our configuration method and the protocols and
algorithms above, is that we can handle any number of QoS metrics, and simultaneously
optimise the configuration WSN for all these metrics within given constraints. Further-
more, if there is a configuration possible within the constraints, we are always able to find
1t.

1.5 Thesis Overview

The thesis commences in Chapter 2 with an introduction to Pareto algebra, a mathe-
matical framework and approach to multi-objective optimisation that is heavily used by
the algorithms in this thesis. Subsequently, Chapter 3 gives a detailed overview of our
hierarchical modelling framework, which includes models for the nodes and task, and
the relation between parameters (node settings) and metrics (optimisation targets), and
constraints. Furthermore, this chapter contains two example models that are used in the
experiments in this thesis. Finally, a formal definition of the objectives of the configuration
process, as well as a breakdown of the process into phases are specified.

Chapter 4 constitutes the core of the configuration method: the description, analysis
and experimental evaluation of the QoS optimiser. The chapter includes the basic
approach, as well as specific implementation details to improve the speed and memory
usage of the algorithm. Also explained is how the algorithm, which is initially defined as
a sequential algorithm, can be executed in a distributed way on the nodes of the WSN.
Next, we describe how the quality of the configurations that are found by the optimiser
can be traded for a cheaper execution of the algorithm, and present preliminary ideas
about how the optimiser may be used to work with multiple tasks that are simultaneously
mapped to the WSN platform. The chapter closes with an experimental evaluation of
the algorithms.

Ways to construct a routing tree are introduced in Chapter 5. The chapter contains
centralised and distributed algorithm to construct a routing tree with a given root node
on a network of randomly deployed nodes. All aspects of the algorithms are analysed
and evaluated by simulation. An overview of results on the full configuration process
(comprising all phases) is given at the end of the chapter.

As WSNs are often dynamic, the configuration may need to be adapted at run time,
in order to ensure that all nodes remain connected to the sink, and the quality of service is
according to the specifications. Chapter 6 describes efficient methods to reconfigure the
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network to cope with run-time changes. The practically relevant and interesting case of
a mobile sink is treated in detail, and simulations illustrate the feasibility of the approach.
Chapter 7 gives an overview of the thesis and provides pointers for future work.



10

1.5. Thesis Overview




Chapter 2

Pareto Analysis

Fareto optimality 1s an important criterion for evaluating potential solutions of a multi-
objective optimisation problem. Such a problem has multiple conflicting optimisation
objectives, and the relative preferences of the various objectives are usually not known.
The concept of Pareto optimality was introduced by the Italian economist Vilfredo Pareto
in his work on economic efficiency and income distribution [Pareto 1906]. A solution is
said to be Pareto optimal (or Pareto efficient) if no Pareto improvement can be made, that
1s, if there is no improvement possible in any of the objectives of the problem without
worsening some of the other objectives. In system optimisation, it is generally accepted
that only Pareto-optimal solutions — often called Pareto points — are worth considering, and
all others can be ignored. The Pareto points of a system precisely capture all the trade-offs
in a multi-dimensional optimisation space.

A rigorous mathematical foundation for exploiting Pareto optimality was introduced
by Geilen et al. [2007]. Their Pareto algebra provides a framework to work with sets
of configurations, the potential solutions to a multi-objective optimisation problem. The
main motivation was to be able to compute the Pareto solutions to parts of a problem
first, and then combining them. In the design-space exploration for a mobile phone, for
nstance, system components such as the wireless transceiver, memories and processing
elements, are analysed separately where possible, and their Pareto-optimal configurations
are then put together in order to find the Pareto points for the system as a whole. Such a
step-by-step approach is usually more efficient than an approach that analyses solutions
for the whole system all at once. Moreover, where conventional methods (e.g. genetic
algorithms [Zitzler and Thiele 1999]) normally give an approximation of the Pareto-
optimal set, the Pareto-algebra method is exact: the set of solutions found is guaranteed to
be complete and the best possible. Our method to configure an WSN is strongly related
to this method and Pareto algebra.

This chapter gives a brief introduction of all the concepts and operations of Pareto
algebra that are needed in this thesis (Section 2.1). Section 2.2 shows ways to compare
multiple sets of Pareto points. This is needed at a number of places in this thesis,
for example when comparing heuristics. A complete and efficient implementation of

11
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Pareto algebra, which is also used for the experiments in this thesis, is available from
http://www.es.ele.tue.nl/pareto and has originally been described by Geilen
and Basten [2007].

2.1 Pareto Algebra

The basics of Pareto algebra are explained in this section. We also introduce some new
notation that is useful for the pseudo-code fragments of the algorithms in this thesis.

2.1.1 Configurations and Minimisation

Consider a system with various aspects of interest holding values in a specific range or
domain that is determined by the characteristics of the hardware and its environment.
Such a domain is called a quantity, which is a set @) of values, with a partial order =¢ (if
the quantity is clear from the context, we simply write <). If ¢1,¢2 € @, then ¢1 =g g2
means that the value g is considered at least as good as ga2. The ordering of a quantity
allows to express a preference of certain values over others. For a quantity Q) that is totally
ordered, any pair of values in the quantity are mutually comparable under <¢. In this
thesis, we use quantities for system aspects that we call parameters and metrics. Parameters
are the “inputs” of the system, while metrics are interesting system characteristics that
we can measure; for a more precise definition, see Chapter 3. TFor example, a sensor
node may have a quantity Reliability = {20,40, 60,80} for a reliability metric, with
80 <60 < 40 = 20 (= 1s equal to > for greater-is-better).

A configuration space S is the Cartesian product Q1 X ... X @y of a finite number
of quantities, and a configuration ¢ = (cy, ..., ¢y) is an element of such a configuration
space. The configuration space holds all possible configurations of a system, given a set
of quantities. An example of a configuration space for a sensor node is S = Lifetime x
Reliability, with Lifetime = {50,100, 150, 200, 250, 300} and Reliability as above, is
shown in Figure 2.1 (all dots of any colour together). We denote the value of quantity () in
a configuration ¢ by ¢(Q). Since the space can be very large, it is desirable to select only
potentially useful configurations for further analysis, instead of analysing all possibilities.
Pareto analysis is able to make such a selection, given the preferences expressed in the
ordering of the values of the quantities.

A dominance relation is used to find configurations that are clearly worse than others
and do not have to be considered any further. For ¢1,¢2 € S, configuration ¢; is said to
dominate 3, denoted by € =s €2, if and only if for every quantity Q of S, ¢1(Qr) =g,
¢2(Qk). Dominance is a partial order and hence a reflexive relation: every configuration
dominates itself. The irreflexive variant, strict dominance, is denoted by <'. Configuration
¢1 dominates an other configuration ¢z, when it is better in at least one quantity and
not worse in any of the other quantities. For example, given the configuration space of
Figure 2.1 and < = > for both quantities, then (100, 80) < (100, 60), which means that

'Note that some authors use the term “dominance” in a slightly different way, for example by defining “Go
dominates €17 as “Cg s strictly better than ¢1”. This thesis follows the definition by Geilen et al. [2007]
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Figure 2.1: An example configuration space for a sensor node, with dominated points (grey), infeasible
points (white), and Pareto points (black). The grey and black points logether form a configuration set C.
The Parelo points in min(C) dominate all other points in the shaded area. The dashed line represents
a safe lower-bound constraint on the lifetime quantity of 225 h. Only the points to the right of the line
satisfy the constraint.

we do not have to consider the second configuration. However, (100, 80) A (200, 60)
and also (200, 60) £ (100, 80), implying none of the two is clearly better.

Definition 2.1 (Pareto-Minimal Set). A set C of configurations is Pareto minimal iff for any
1,62 €C, ¢ A Co.

We denote the Pareto-minimal subset of an arbitrary configuration set C by min(C)
and call the process of computing it minimuisation. For every configuration in C, there is
an element of min(C) that dominates it. The selected configurations are called Pareto
(optimal) configurations or Pareto points. The Pareto-minimal set is unique for finite sets of
configurations. Hence, when using a finite configuration set C, we only need to consider
the subset min(C) and we can ignore all the other configurations. We assume in the
remainder of this thesis that all configuration sets that we minimise have finite sizes (while
quantities and spaces can be infinitely large).

Return to Figure 2.1 for an example. White points in the figure are considered
infeasible (they can not be realised in the real system), and all the others are part of a
configuration set C. The dominated points in C are grey, while the Pareto points (the set
min(C)) are drawn in black. The Pareto points lie at the border of the shaded are that
encloses all configurations in C. This is why the Pareto-minimal set is often referred to as
the Pareto frontier.
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ol

Figure 2.2: A network of three sensor nodes and a sink.

2.1.2 Derived Quantities

A system often has metrics that depend on other metrics: high-level metrics could be
derived from lower-level metrics, while these lower-level metrics themselves may depend
on parameters. For example, the lifetime of a network (high-level metric) depends on the
lifetimes of the nodes in the network (low-level metric), which in turn depend on parameters
like the transmission power levels of the radios in the nodes. For a configuration space
S, we define a function f : § — @, where the new quantity Q) is called a derived quantity.
In this work, we call f a mapping function. We can extend a configuration set C using f,
to create Cy = {¢- f(¢) | ¢ € C}, where the dot (-) denotes concatenation of tuples.
However, an extra restriction needs to be imposed on mapping functions in some cases.
Suppose we have two configurations ¢1, ¢z € C, with ¢; = ¢2 and f(¢1) A f(¢2). This
would mean that for configurations ¢ ¢ min(C), ¢ - f(¢) could be in min(Cy). This
is undesirable, because when minimising before adding the new quantity, potentially
optimal configurations may get lost. The key idea of Pareto algebra is that dominated
configurations are never interesting and can therefore be removed (by minimising) at any
time, at intermediate steps of the analysis. The Pareto algebra approach to optimisation
and the method introduced in this thesis depends on this idea.

As a result, mapping functions that are applied after minimisation should be monotone.

Definition 2.2 (Monotonicity). Given two partially ordered sets X with ordering < » and
Y with ordering <y, a function f : X — Y is monotone iff for any x1, z2 € X, z1 <x T2
implies f(z1) 2y f(x2).

This is the generic definition of monotonicity for partial orders. In Pareto algebra, X
would be a configuration space S, and Y would be a quantity ) or another configuration
space. Another term for monotone is order preserving, as the definition says that the
ordering of the of a partially-ordered set does not change after the applying the function.
A function h on real numbers (with = equal to >), for instance, is monotone if z > y
implies h(z) > h(y) for all z,y € R (h is a non-decreasing function).

For an example of a monotone mapping function, refer to the three-node network in
Figure 2.2, where the triangle is the sink that is supposed to receive measurements from
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the sensors. Each node has a configuration space as in Figure 2.1. Pick a configuration
(¢;,r;) € Lifetime x Reliability for each node i. We assume for this example that the
sink does not need to be configured, as its lifetime would be infinite and reliability is not
applicable (the sink does not need to forward the data anymore). A mapping function to
compute the lifetime of the network as a whole is f¢(¢1, {2, ¢3) = min(¢1, {2, £3), which
is monotone. Another high-level metric is the average end-to-end path reliability, which
depends on the link reliabilities as follows: f;(r1,79,7r3) = w Also this is a
monotone function. Our WSN models given in Chapter 3 feature both functions.

2.1.3 Other Operations

Free product. A configuration set can be constructed by adding derived quantities, but
we can also combine two configuration sets from different spaces. For example, the
configuration sets of two sensor nodes may be combined into one joint configuration set.
This is done by the free product operation. The free product of configuration sets C; C S;
and Cy C s is the Cartesian product

Ci xCy={c1-C2 |1 €C1,c€Ca}, 2.1

which is a subset of the free product of their spaces S1 x So. If C; and Cy respectively
contain n and m configurations, then C; x Ca contains n - m configurations. The free
product preserves minimality: min(C; x C2) = min(Cy) X min(Cs).

In this thesis, the free product is used to combine the configuration sets of multiple
sensor nodes into a single configuration set containing all combinations. A configuration
in the product set of three nodes with configuration sets as in Figure 2.1, for example, 1s

(300, 20, 150, 60, 250, 40).

Abstraction.  After adding derived quantities or combining configuration sets, some quan-
tities in the current configuration set may no longer be necessary. These quantities can
be removed by an operation called abstraction. If & = (a1, ag, - . ., a,) is a tuple of length
nand 1l < k < n, then

alk=(a1,...,05-1,0k11,.-,0n). (2.2)

Thus, the abstraction operator | removes one value from the tuple. Likewise, A | k =
{a | k|ae A}. Let C be a set of configurations of configuration space S = @1 X Q2 X
... X Qp. Then, C | k is a set of configurations over configuration space

Slk=0Q1 x ... X Q-1 X Q41 X ... X Qn,

so having dimension k removed from each configuration in the set. We also write S | K,
with K asubsetof{1,2,...,n}, toabstract from multiple quantities at the same time. This
1s unambiguous, as the order of abstraction is irrelevant. After abstraction, configurations
that were previously Pareto optimal may become dominated. Thus, minimisation is
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required after abstraction in order to ensure that a configuration set is minimal. Consider
the Pareto-minimal set min(C) in Figure 2.1, and abstract away the reliability quantity:

Cabs = min(C) | 2 = {50, 150, 250, 300}.

The set Caps is not minimal; minimising again gives min(Caps) = {300}.

Constraints.  Another important operation of Pareto algebra thatis needed to include QoS
requirements, is the ability to apply constraints to quantities. A set D of configurations
from configuration space S is called safe if and only if for all ¢, ¢ € S such that ¢; < ¢a,
¢2 € D implies that ¢; € D. A safe set of configurations is also called a safe constraint.
Applying a safe constraint D to a configuration set C C S yields configuration set C N D.
Unsafe constraints go against the fundamental idea that dominated configurations are
never to be preferred over Pareto-optimal configurations. Moreover, applying an unsafe
constraint after minimisation may result in the loss of Pareto points. For example, given
the configuration space S and set C in Figure 2.1 (grey and black points), and a unsafe
constraint Dypsate = {C | ¢(Lifetime) < 225,¢ € S} (all points left of the dashed
line are included). Then, min(C N Dynsate) = {(200,40), (150, 60), (50,80)}, but
min(C) N Dypsate = {(150,60), (50,80)} so we have lost one point.

Therefore, if we want to minimise intermediate results, only safe constraints should
be used. Also, a safe constraint preserves minimality. An example of a safe constraint for
a quantity @ C R that has a greater-is-better order is a lower-bound constraint, such as
[225,...). A safe constraint in Figure 2.1 is Dgate = {C | &(Lifetime) > 225,¢ € S}
(the points to the right of the dashed line). The two Pareto points to the right of the line,
(250, 40) and (300, 20), form the Pareto-minimal set of the constraint-satisfying points,
min(C) N Dgafe, which is equal to min(C N Dgafe)-

2.1.4 Pareto Algebra in Algorithms

Hiding. In algorithms that use Pareto algebra it is often convenient to have some extra
information attached to configurations that is not taken into account in operations such
as minimisation. This is useful, for example, to separate parameters and metrics in our
algorithms in Chapter 4. In these algorithms, metrics are used for computations and dom-
inance checking, while the parameters remain part of the tuple and can therefore easily
be found back after a final configuration has been chosen. To facilitate this behaviour, we
use an operation called /iding: C V k hides quantity k from all configurations in config-
uration set C. It behaves just like abstraction, but the hidden quantities are not actually
removed, but remain as meta-information. These quantities are effectively hidden to all
operations, and minimisation in particular. Similarly, we can resurrect a quantity by the
unhide operator: C A k. The operators are also defined for individual configurations— ¢V k
and € A k — with analogous behaviour. Hiding the lifetime quantity in the configuration
set C of Figure 2.1, and then minimising, results in min(C v 0) = (50, 80).

Now consider the configuration set C = {(1,1),(2,1)}, and hide the first quantity.
If we do not touch the tuples, but simply ignore the first quantity, two quantities remain
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with the same value in the non-hidden quantity. These configurations dominate each
other, while they are not the same, which violates the definition of a partially ordered set.
After abstraction of the first quantity, only one configuration remains: (1). To ensure
the hide operator properly fits in the theory of Pareto algebra, we therefore keep only
one (arbitrary) configuration of the configurations with a common non-hidden part after
hiding and remove the others, just like abstraction does (and |C | k| = |C V k|). Note that
the implication is that, in general, (C V k) A k # C.

Indexing. Another practically useful property is the ability to enumerate configurations
sets and select a configuration by its index in the set. In our algorithms, we use square
brackets to do this: C[k] returns the k' configuration in the set C. We assume that a
configuration set is internally totally ordered (in some arbitrary way) and each configu-
ration in the set is uniquely identified by its index. We use the same notation to index
configurations: ¢[k] returns the value of the k*" quantity in configuration €. After hiding
a quantity, the indices in the configurations do not change, so a hidden quantity keeps its
index (and can be unhidden with it).

2.2 Comparing Pareto Sets

For quality metrics in the WSN models in this thesis, we often use real-valued quantities,
which are totally ordered by considering greater values as better. Because of the ordering,
it i3 very easy to compare two values of the same quantity. However, suppose we have
a configuration set C and two approximations of min(C), and we wish to compare these
approximations, and express the difference in a single number. As we are comparing sets of
multiple points with trade-offs across various quantities, this is not straightforward. Various
performance indices to compare solution sets have been proposed in the literature [Okabe
et al. 2003].

We would first like to compare a given approximated Pareto set Ca for some configu-
ration set C, with the exact Pareto-minimal set Cg = min(C) as a reference. This is useful
when comparing various heuristic-based methods of approximating the exact Pareto set,
used to trade-off analysis speed and accuracy. We employ an adapted version of the average
distance _from reference set performance index [Okabe et al. 2003].

Definition 2.3 (Quality Loss). For a configuration space S and two Pareto-minimal con-
figuration sets Cr,Ca C S, the quality loss L(Cr,Ca) of Ca compared to Cg is

1
L(Cr,Ca) = —— min d(7, a). (2.3)
|CR| TECR S

The function d returns the normalised distance between two points:

d(F,a) = (2.4)

x| =

k—1 _ _ +
[7(Q:) — a(Qi)]
; 7(Qi) 7
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where k is the number of quantities, and the function [z]" is zero if # < 0 and z

otherwise. All quantities contain solely real values with a greater-is-better order.

The distance between two points, d(7, @), is defined as the average relative difference
over all dimensions with respect to 7. Dimensions in which @ dominates 7 are are given a
zero relative difference (the closest point to 7 does not need to be dominated by 7, though
it will be dominated by at least one point in Cr, if Cr is the exact Pareto set). For each
point 7 in the reference set, the closest point @ in the approximated set is found, and the
average distance over the resulting pairs 1s computed. Negative distances are set to zero,
and thus, the index counts only quality loss. The index is a value in the range [0,1], where
the value 0 means that set Ca contains for any point 7 in the reference set a point a that
dominates it. That is, Ca is at least as good as Cr (which typically cannot be expected
when approximating Cr). An index value of g roughly means that on average, for every
point 7 in Cr the nearest point to 7 in Ca has metrics that are a factor ¢ lower than those
of 7.

Note that the function L is not symmetric with respect to the configuration sets it
compares. If all points in the reference set Cr are dominated by points in Ca, then
L(Cr,Ca) = 0 (where typically L(Ca,Cr) # 0). If two sets have points that are not
dominated by points from the other set, for example when comparing two approximated
sets, it 1s meaningful to look at the difference.

Definition 2.4 (Quality Difference). For a configuration space S and two Pareto-minimal
configuration sets Cp,C; C S, the quality difference between the two sets is

D(Co,C1) = L(Co,C1) — L(C1, Co). (2.5)

If D(Cy, Cy) is positive, Cy may be considered better than C;, and vice versa.

To be useful, the definition of quality difference must satisfy the minimum requirement
for an indicator that compares two Pareto-set approximations: if a configuration set Cy
completely dominates a configuration set Cy, that is each point in C; is dominated by a
point in Cy, then D(Cy,C1) > 0 (indicating that C; is not better than Cp). See the work of
Zitzler et al. [2003] for more results on such indicators.

Proposition 2.1 (Requirement for Pareto-set comparison). If each configuration in a configura-
tion set C1 C S is dominated by a configuration in another configuration set Co C S, the quality
difference D(Co,C1) > 0.

Proof For two configurations ¢g,¢; € S, if ¢g = ¢1, then by (2.4), d(¢p,¢1) > 0
(the normalised distance is never negative), while d(¢;,¢y) = 0 (for each quantity 7,
¢1(Q;) < ¢(Q;), and thus the numerator of (2.4) is zero for all 7). Hence, if each
¢ € C; is dominated by some configuration in Cy, we are sure that mingec, d(¢1,¢) =
0, and therefore by (2.3), L(C1,Co) = 0, while L(Cy,C1) > 0. This implies that
D(Cy,Cy) = L(Cy,C1) — L(C1,Co) > 0. O
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Figure 2.3: Quality Loss and Dyfference.

Figure 2.3 shows examples of the concept of quality loss and difference in a con-
figuration space of two quantities, Lifetime and DetectionSpeed. In Figure 2.3(a), the
configuration set drawn with cross markers is the reference set, while the other one is an
approximated set. The arrows indicate which points in the approximated set are nearest
to the points in the reference set. These are the distances, determined by (2.4), that are
averaged to compute L(Cx,Cs) equal to 0.067 in the example. The shaded area repre-
sents the part of the configuration space that is dominated by the reference set; it is clear
that the approximated set is completely dominated by the reference set, and therefore
L(C,,Cx) = 0. Figure 2.3(b) shows two Pareto sets that do not dominate each other. As
D(C«,Cn) is positive, set Cx is considered better than set C.

2.3 Summary

This chapter gives a brief introduction to the concept of Pareto optimality and its impor-
tance for solving the multi-objective optimisation problem we encounter in the search for
suitable WSN configurations. It also contains an overview of Pareto algebra, a mathemat-
ical framework and accompanying optimisation strategies targeted at Pareto optimality,
and some extra conventions and notation to ease the use of Pareto algebra in algorithms.
The following chapters of this thesis make extensive use of Pareto algebra. Finally, a way
to compare different sets of Pareto points with each other is introduced.
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Chapter 3

The Configuration Process

Configuring a WSN, what exactly does this involve? This chapter lays the foundation
that is needed for the configuration algorithms in this thesis. First, in Section 3.1, the
configuration space for a WSN task is defined in general. To explore the configuration
space in a sufficiently efficient manner, models are needed. Practical models are given in
Section 3.2 for two specific tasks: target tracking and spatial mapping. In Section 3.3,
precise optimisation goals are specified, and finally the configuration process is defined in
a number of phases in Section 3.4.

3.1 The Configuration Space

This section starts by defining a fask, which is the entity that is to be optimised by the
configuration system. It elaborates on the handles that the optimiser can control and
what are the effects of adjusting these.

3.1.1 The Network, Tasks and QoS Requirements

The concept of QoS is used in various domains: in networking, we talk about end-to-end
connections that may have QoS requirements, and in the Multiprocessor System-on-
Chip domain we have hardware platforms that run independent jobs we could place QoS
requirements on. We need a meaningful comparable entity in a WSN: an independent,
possibly user-initiated program that “runs” on the WSN and has QoS requirements. We
define a task in the general sense as the interaction between one or more sensor nodes,
actuator nodes, and input nodes, located in a certain (target) area, with the aim to achieve
a certain predefined goal. A sensor node is equipped with one or more sensors that can
take measurements from the node’s environment. An actuator may be a speaker or light
source, or a display that shows measured data to the user. The user can initiate a task at
an input node, which could be a simple button or switch, or a more powerful device such
as a laptop (which is in fact an actuator as well). This task could be a one-time request for
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information or action, or a request for periodic measurements or actions. Alternatively, a
task could be sensor-initiated, caused by some triggering event.

In this thesis, we specifically look at a type of task comprised of a possibly very large
number of sensor nodes and one sink node (an actuator/input node), where the nodes
are organised in a tree network with the sink at its root. The communication topology is
referred to as the routing tree. A node 7 is a descendant of a node j in the routing tree, if 7 is
on the path from 7 to the root of the tree. Conversely, j is called an ascendant of 1.

We allow sensor nodes of various types and capabilities in the same network, and
it is also possible to include dedicated compute nodes without sensors. For example,
a query task may address a group of sensors in a certain area that collect and gather
data at a leader node (a cluster head). The data may be processed partly by the sensors
themselves and the group leader;, and then communicated via a multi-hop path to a sink
node (operated by the user that needs the information), where it is displayed. In the
disaster-recovery scenario, sensor nodes are instructed to detect victims and observe the
area around them, and report information back to a rescue worker’s handheld sink device.
Another example is a so-called sense & respond system, in which sensors are observing an
area (for instance health monitoring sensors in a person’s body), process the measurements
and communicate commands, based on the result, to an actuator to take a specific action
(e.g release insulin when a diabetic’s sugar level is too high).

QoS requirements can be applied to each of the task’s components, but are typically
applied to the task as a whole, at fask level. QoS constraints are usually probabilistic
and soff; a soft requirement has a given bound, but a certain percentage of violations is
accepted. We could for example demand that at least a certain percentage of the target
area is covered by sensors, that this area is covered for at least 2% of the time and that
the reliability of the measured data is at least y%. Or the communication delay is in %
of the cases smaller than a given bound; data loss is at most ¥%. QoS constraints are
generally considered soft, because the unpredictable nature of wireless networks makes it
practically impossible to give hard guarantees.

We do not make any assumptions on the type of placement (deployment) of the nodes
in the field (grid, random, or any other design), other than that it must be possible to form
a fully-connected network. We do assume that all nodes have similar communication
capabilities and that all links are symmetric (we believe that this holds in many cases, espe-
cially when distances are short and the transmission power sufficiently high); asymmetric
links are not yet supported by our configuration method.

3.1.2 Model Components

To analyse a task and its expected behaviour models are needed. We use a hierarchical
system of requirements and hardware parameters, where the task that runs on the network
forms the highest level (the task level) and each node is an entity at the lower node level.
Intermediate levels are used for groups of nodes called clusters.

Definition 3.1 (Cluster). A cluster is a sub-set of the nodes involved in the task that forms
a sub-tree of the task’s routing tree (also see Figure 3.2).
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model

(mapping)

controllable  uncontrollable quality resource

Figure 3.1: Basic structure of a model component. The inputs are parameters, of which some are
controllable (a vector p) and some are not (u). Measurable behaviour follows from the inputs: the
quality metrics (performance characteristics that are important to the user) and resource metrics
(measuring the usage of physical resources).

CD\A :' -|ec1f node, ";() Tt

Q """""" clusier
network root

Figure 3.2: A network with an example cluster; as well as root and leaf nodes.

Note that also individual nodes, as well as the network as a whole, are clusters. As becomes
clear in Chapter 4, we use this hierarchy to incrementally compute metrics from lower to
higher levels. This is an important feature of our optimisation method.

For each level of the model hierarchy, we define a model component. The structure
of a model component is the same for each level and given in Figure 3.1. The inputs
are parameters, of which some are controllable (captured in a vector p) and some are not
(w). Controllable parameters are hardware or software settings that can be set by the
configuration system. These are the “knobs” that should be tuned such that the task-level
goals are met. Examples are the sample rate and the transmission power of a sensor
node. Uncontrollable parameters usually stem from the environment and may fluctuate
at run time. The contention-loss probability of the wireless channel and the transmission
delay are possible examples of uncontrollable parameters. The hierarchy implies that the
cluster-level parameters comprise all parameters of lower levels, that is, the parameters of
all nodes in the cluster.

Each parameter is bound to a certain domain of possible values. We assume this
is a discrete domain of a limited number of values, and it is specified as a quantity in
Pareto algebra (see Section 2.1). A transmission-power parameter, for example, could
have a quantity TzPower = {0, —5, —10}, where the values are power levels in dBm.
Consequently, all possible vectors of parameters are elements of a parameter space Sp,
which is the free product of the parameter quantities. The parameter space is defined as
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being unordered, since we do not have a preference for any parameter value as such; what
matters is the effect of parameters on metrics. We also define separate parameter spaces
for controllable and uncontrollable parameters, respectively called Sp. and Spy, such that
SPc X Spu = SP.

A certain combination of p and % vectors leads to measurable behaviour expressed
in metrics (the outputs in Figure 3.1). Some of these metrics, the quality metrics, are the
performance characteristics that are important to the user, such as a delay or a lifetime
estimation. These quality metrics may have QoS constraints attached to them, and they
are the optimisation targets for the configuration system. An example is the lifetime of
a node or the network, or the reliability of the link between a child and parent node
(see the next section for more examples). The resource metrics reflect the usage of physical
resources. For each resource of interest there is a resource metric as well as a resource
constraint that specifies a bound on the use of this resource!. A resource metrics is, for
example, the packet transmission rate of a node. Resource metrics play an important role
if multiple tasks, which share resources, are to be mapped to the same network. Each
model component, at any level of the model hierarchy, has its own metrics. A node-level
model, for instance, could have a quality metric that indicates the reliability of sending a
packet to the next node, while a task-level model may include an end-to-end reliability
metric. Eventually, the task-level metrics are the only ones that matter, since they give the
performance for the task as a whole.

We assume that each metric can be derived from parameters by a mapping function,
which is defined as a function f : Sp — Q¢ that maps a parameter vector from the
parameter space Sp to a derived quantity Q7 (see Section 2.1.2 and Section 3.2 for
examples). The quantity @ contains all possible metric values for any combination
of controllable and uncontrollable parameter values, and is partially ordered. The free
product of all metric quantities is called the metric space Syr. There are mapping functions
for quality as well as resource metrics; the corresponding spaces are denoted Syyq and
Swrr respectively, and Syiq X Sy = Sm. The constraints on quality and resource metrics
are defined as feasible and safe (as defined in Section 2.1.3) sub-sets of the metrics spaces:

Dq g Squ and Dr g SNIr-

Definition 3.2 (Mapping). A mapping F' : Sp — Sy, for parameter space Sp and metric
space Swm, derives a vector of metrics from a vector of parameters. More precisely, F'is a
tuple of mapping functions f; : Sp — @;, one for each metrici: F = (fo, f1,-- -, fr—1),
with k the number of metrics. The function F' can be lifted to sets: F'(C) = {F(¢) | ¢ €
C}, with C C Sp.

We further denote separate mappings for quality and resource metrics by Fy and F}
respectively.

Resource constraints are set when the hardware is designed, and can therefore also be seen as design-time
parameters. Since we focus on the configuration of pre-selected existing hardware, however, we consider them
as fixed resource constraints.
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3.1.3 Configurations

Our WSN task consists of a large number of nodes organised in a tree network. In general,
the metrics defined for such a task (and thus the mappings) depend on the node locations
and the way nodes are connected in the tree. We assume that the placement of nodes is
beyond our control, and therefore the node locations fit in the model as uncontrollable
parameters. The routing tree, on the other hand, while it is obviously restricted by node
placements and transceiver capabilities, can be constructed by ourselves (more about this
in Chapter 5), and hence we can include a controllable parent node parameter for each
node. Besides these two parameters, models may vary widely.

Definition 3.3 (WSN Configuration). A configuration for a given model component (pa-
rameter spaces Sp. and Spy, and quality and resource mappings Fy and F;) is a tuple

(p'ﬂ'Fq(ﬁ'ﬂ)'Fr(ﬁ'ﬁ)%

with p € Sp. and u € Sp,.

Note that a WSN configuration is a configuration as defined in Pareto algebra (see
Chapter 2).

At any point in time, the WSN is in a certain configuration (also see Figure 3.1). For
a given model, the configuration system can only set the controllable-parameter vector
P, as the vector of uncontrollables % is imposed by external sources. It is therefore useful
to consider the subsets of a metric quantity ) or space Sy, given the current value of
@. We denote these subsets by Qf|z and Sm|g respectively. Thus, quantity Qflz € Qf
(space Snm|z € Swm) is the set of metric values that results from mapping all controllable-
parameter vectors in Sp, for a certain uncontrollable-parameter vector & € Spy, and this
quantity (space) has a partial ordering that reflects the relative preference of configurations

in this situation.

Moreover, % is subject to changes over time?, and therefore also the metrics in the
current configuration are. Hence, when the controllable parameters of a configuration
are kept constant, the metrics of this configuration may move in the metric space. This
move could be such, that another configuration would become better than the current
one. This suggests that the configuration system should be dynamic and adapt the chosen
P to the new situation that arises if % changes, to ensure that the configuration remains
the best possible. Chapter 6 goes into this in detail.

The configuration system needs to select one task configuration from the total config-
uration space given a vector U, which means it needs to choose a vector p from the space
Sp. for the task. Hence, the size of the configuration space is equal to |Sp.|. Note that
Spe is the free product of the controllable-parameter spaces of all nodes involved in the
task. Suppose each node in a network of n nodes has a controllable-parameter space of

2We could actually write @(#), to make the time dependency explicit. In the Pareto analysis, however, we
may consider all possible values of @ and their effects, together, disregarding the time factor. In these cases, we
do not use the time index.
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Figure 3.3: Hierarchical trade-off model: relations between parameters (lefl), node-level quality metrics
and task-level quality metrics (in the shaded boxes).

size k; the total configuration space for the task then has size k™, which implies that the
complexity of finding a suitable configuration increases exponentially with the number of
nodes. Solving this problem efficiently is a central goal of this thesis.

3.2 Spatial-Mapping and Target-Tracking Tasks

Now the basic structure of a task model has been laid out, we introduce two practically
useful examples of WSN tasks, which are used in experiments in this thesis. Furthermore,
these are elementary sensor-network tasks, which can be used as building blocks for more
complex tasks and models. The example models only contain quality metrics; resource
models are left as future work.

Consider a network that consists of a collection N of identical sensor nodes. The
nodes are randomly scattered in an area, and do not move once deployed. We define the
following two tasks for this network. Firstly, spatial mapping (SM), in which all nodes peri-
odically take samples that are sent to the user, for instance to determine the temperature
profile over the area. The second task is target tracking (I'T), in which the objective is to
detect and follow target objects. The main difference is that nodes in SM continuously
transmit data, while a node in T'T only sends a report if it detects a target.
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Table 3.1: Node-level mappings (Fy,) for a node n

Reliability

Comm. reliability

Time

Lifetime
Reporting rate (SM)

Detection speed (T'T)
Space
Coverage degree

Additional metrics

Output rate (SM)

Output rate (TT)

Average power

b

(functions Py and @ as in (3.2) and (3.3))

i~
r(n) = rs(n)
1
S(n) = rs(n)—l + Dy
C(n) = f(n)

ro(n) = ri(n) + f(n)rs(n)
2

ro(n) =ri(n) + mﬂfs fn)rg(n)

P(n) = Esrs(n)f(n) + Pueuf(n)

+ Eix(Pix(n))ro(n) + Eixri(n)

(3.1a)

(3.1¢)
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3.2.1 Node-Level Trade-off Models

The left side of Figure 3.3 gives an overview of parameters and how they relate to node-
level quality metrics (on the right, in the box). The figure only shows the TT task; as
explained below, the parameters of the SM task are the same, while the metrics are slightly
different. Rectangles and rounded rectangles represent uncontrollable and controllable
parameters respectively, while ovals are quality metrics. Important quality metrics are
grouped in three different dimensions: reliability, time and space. Lines with a filled circle
at the end represent positive relationships: if the incoming parameter/metric becomes
larger, the other also becomes larger. Likewise, lines with an open circle are negative
relationships, while lines with an arrowhead are relations that are not clearly positive or
negative. The diagram shows that configuring a node means making trade-offs: adjusting
parameters has a positive influence on some quality metrics and a negative influence on
others.

The node-level models for the SM and TT tasks are explained below. For every
metric we give a mapping function in Table 3.1, which explicitly defines its relation to
the parameters. The relations do not necessarily need to be defined analytically. Other
ways to obtain mappings for a set of parameter vectors are, for example, simulations or
neural networks. Here, we use explicit equations mainly for speed and ease of use. Our
simulations described in Section 3.2.3 show that the mapping functions are sufficiently
precise to accurately predict the quality metrics for both tasks.

The first parameter of a node 7 is its sensor’s sample rate rs(n), the number of times
per second measurements are taken and processed. The transmit power Piyx(n) is the
power level at which the node’s radio transmits data. Lastly, a node employs a periodic
sleep/wake schedule, with fixed period and duty cycle f(n), the latter being the fraction
of the time the node 1s awake (active). When the node is in sleep mode, it does not
take samples and its micro-controller unit (MCU) is in low-power mode. We assume the
transceiver (including the MAC protocol) does its own power management. Finally, each
node has a parent, which is the node it sends its reports to according to the routing tree.
The metrics are defined below, and summarised in Table 3.1.

Reliability. When a packet is transmitted from a child to a parent node, it is received
without error with a probability depending on the received signal-to-noise ratio and the
size of the packet. According to a path-loss model, the signal power at the receiver depends
on Pix(n) (at the sender) and the distance between sender and receiver d, according to

Px(Pix(n),d) = k. Pix(n) (Cf;)a, (3.2)

for constant gain factor k,, path-loss coefficient & > 2 and reference distance dg. More-
over, transmissions may interfere with transmissions of other nodes. For simplicity, we
assume a constant contention-loss probability L. Then, the communication reliability I(n)
(the probability of correctly transferring a data packet) assuming a fixed packet size b (in
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bits) and QPSK signalling, is expressed as (3.1a) in Table 3.1, with

1 x

Q) 2erfc( \/5), (3.3)
and noise level N [Haykin 1989]. Hence, we need to know the distance from sender to
receiver, which could be obtained from knowledge of the deployment, or measurement
by the node itself (e.g. [Priyantha et al. 2000] or [He et al. 2003a]). A more practical way
may be to simply have an calibration phase for parent and child, in which for various
transmission-power levels, the received power, or even the communication reliability, is
directly measured. In the latter case, the mapping function for I(n) simply becomes a
look-up table.

Time. The node’s battery has a limited capacity Epatt. The ffetime T'(n) of a node
follows from the average power level P(n) via (3.1b). We define the average power P(n)
as (3.1h), with constant energy to take and process a sample (E), power of the MCU in
active mode (Ppcy), and energy to transmit and receive a packet (Eix and Eyy). The
energy to transmit a packet depends, among other things, on the transmit power, which
is why it is written as a function of Pix(n) in (3.1h). For the precise relation, one generally
needs to revert to the datasheet of the transceiver; see Table 3.4 for a conversion table
for TelosB sensor nodes. We assume the transceiver uses a MAC protocol that minimises
idle listening, such as B-MAC [Polastre et al. 2004]. The power level depends on all three
parameters, as well as on the additional metric output traffic rate ro(n), which is the average
rate of packet transmissions ((3.1f) for SM, (3.1g) for T'T). This rate includes the node’s
own generated traffic, but also traffic that is to be relayed on behalf of other nodes: the
received traffic rate ri(n). Since TT nodes only transmit when a target is in range, 7, (n)
does not only depend on the sample rate and duty cycle, but also on the target’s trajectory.
The fraction of the time that a target is expected to be near is assumed to be equal to the
number of targets m times the fraction of the total area A that is covered by the sensor
(with sensing range R).

A quality metric unique to the SM task is the reporting rate r(n), a measure of the rate
at which the spatial map is updated. It is taken equal to the sample rate in (3.1c). Since
TT nodes do not continuously report information, the reporting-rate metric is not used.
Instead, we are interested in the defection speed. We define the detection delay for a sensor
node in the active mode, as the time it takes from the arrival of a nearby target until its
detection. This delay depends on sample rate r5(n), and (combined in the constant D)
the duration of sampling and detection. The (worst-case) detection speed S, given by
(3.1d), is the inverse of the detection delay. The detection delay and reporting rate are
defined for the node in the active mode; the trade-off between active and sleep is expressed
in the coverage-degree metric below.

Space. A sensor is said to cover the area within its sensing range when it is active. Since
a sensor node 1s typically asleep most of the time, it does not continuously cover this area.
We therefore define the metric coverage degree C'(n) in (3.1¢) as the fraction of the time the
sensor is switched on.
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Table 3.2: Cluster-level mappings (Gye) for a cluster ¢

Reliability
Information completeness If(c) = Lice HTCTH p 1) (3.4a)
Time
Reporting rate (SM) r¢(c) = Zle;r(l) (3.4b)
Detection speed (T'T) S¢(c) = an€1£1 IOR —il- 71D (3.4¢)
Lifetime T<(c) = minT(3) (3.4d)
Space
Cloverage degree C(c) = rznel? C(1) (3.4€)
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3.2.2 Task- and Cluster-Level Trade-off Models

The mapping functions for the task- and cluster-level metrics, as shown in Table 3.2, are
explained below. The functions in the table are for a cluster ¢, and use the node-level
metrics of Table 3.1 as a short-cut, instead of deriving them directly from the parameters
(which is of course possible as well). Task-level mapping functions are obtained by
substituting the network A for c.

Reliability. In both scenarios, nodes send reports to the user. However, because the
communication of reports usually has a limited reliability, not all reports may reach the
destination. We want to know how complete the data is that is received by the user: the
information completeness I¢(c) is the fraction of all generated reports that arrive. This is
approximately equal to the average end-to-end communication reliability over all nodes,
given by (3.4a), where p' is the path from node i to the root node.

Time. For an SM task, we are interested in the reporting rate r°(c) of the network/ cluster,
which is defined by (3.4b) by the average reporting rate over all nodes. A common
timeliness metric of a WSN that does target detection is the time it takes from the
appearance of a target until the detection report reaches the user. For each node, this
delay depends on its detection speed and the hop count |p¢| to the root node. The worst-
case detection speed S°(n) is given by (3.4c), where Dy is the transmission delay (including
MAC delay).

Further, we use (3.4d) for the 4fetime T°(c), a definition that considers all nodes in the
network/cluster as essential. This definition of lifetime as “the time until the first node
dies” may be not the best estimate of the actual system lifetime, since the network may
still function properly even with fewer nodes. However, as an optimisation objective, the
definition is very useful, as maximising the minimum lifetime over all nodes essentially
balances the node lifetimes. In the theoretical case that the optimisation system is ideal,
this implies that all nodes expire at the same time, which is certainly the end of the network
as a whole. If a node dies at run time, the network may reconfigure (see Chapter 6), and
the same lifetime metric would again tend to balance the workload across network, and
thus maximise its lifetime.

Space. The area that is covered by the nodes, if all nodes would be active, is called the
covered area. However, a sensor node only covers the area in its range for a fraction of the
time. We therefore introduce the metric coverage degree C°(c). For a point in the covered
area, C°(c) is defined as the percentage of the time that it is covered by at least one sensor,
during a certain period. The coverage degree for the whole covered area is the minimum
coverage degree over the whole area. To calculate C°(c) for the network/cluster, we
would need the locations and sensing ranges, plus the coverage degrees of all the nodes.
We could approximate the target area by a grid of points and take the minimum coverage
degree for each point. For this example, however, we use the form of (3.4e), which is
accurate if every sensor covers some area that cannot be covered by any other sensor.
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Table 3.3: Model constants for TelosB nodes

Reliability Time Space
k. 1000 Dy 120 ms Ry 10 m
o 3 Dy 35 ms | A 100-|N] m?
do I m E 0.15 mJ] |m |N]/100
N -18  dBm | Epaty 12 Wh
b 288  bit Pocu 5.4 mW
L 0.015 D 8.2 m]J
ri(n) T  (l¢] —1)-0.005 st
ri(n) M) (Je| —=1)-0.02 s7!

Table 3.4: Conversion of transmat power to energy per sent packet for TelosB nodes
Pix (dBm) Eiy (m])

-25 3.1
-15 3.6
-10 4.0
-5 3.0
0 6.6

Finally, a cluster’s output traffic and parent node are defined as the output traffic and
parent node of its root node.

3.2.3 Model Accuracy

Large model inaccuracies may lead to two different types of problems. Firstly, if the
computed metrics are different from the real values, this may result in incorrect conclusions
about the compliance of configurations with constraints. If the constraints are soft, and
the deviations small, this may not be a problem. Otherwise, the model should yield
conservative metrics, which may turn out better in reality, but not worse, such that
constraints are always satisfied. Another potential problem is that wrongly computed
metrics may change the dominance order of configurations. Configurations that are
computed as being Pareto points, may then actually be dominated by other configurations.
In both cases, model inaccuracies may lead to a WSN configuration that is not optimal
in terms of the quality metrics.

In case model inaccuracies stem especially from wrongly estimated uncontrollable
parameters, which are the constants in the model equations, run-time adaptation may
offer a solution. Certain uncontrollables, such as the contention-loss probability and
transmission delay, can be measured at run time, or perhaps even the whole mapping
function can be adjusted orlearnt while the network is operating. Such renewed knowledge
can be used in a reconfiguration process to find a better configuration. Chapter 6 explores
this idea.
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Table 3.5: Accuracy results for 900-node example network. Differences with simulation in parentheses.

Information Completeness  Detection Speed Lifetime Coverage Degree
I¢ (%) Se(1.10%) T° (h) ce
84 (-3) 41 (-0.4) 3481 (+8) 0.2
63 (-2) 41 (-0.4) 3773 (+120) 0.2
2.0 (+0.5) 41 (-0.4) 4073 (+388) 0.2
78 (-1) 41 (-0.3) 1821 (+3) 0.4
59 (+1) 41 (-0.4) 1970 (+54) 0.4
2.0 (+0.3) 41 (-0.4) 2123 (+195) 0.4
78 (+9) 41 (-0.2) 1214 (-76) 0.6
59 (+6) 41 (-0.1) 1313 (-40) 0.6
2.0 (+0.4) 41 (-0.4) 1415 (+55) 0.6

We tested the SM and T'T models by simulation of a network of 900 nodes, randomly
positioned in an area of 300 x 300 m. The constants in the nodes’ mapping functions
were chosen to match Crossbow TelosB [Crossbow Technology 2007] sensor nodes (the
power usage and transceiver parameters). The constants L and Dy, which are actually
uncontrollable parameters, were estimated by simulation (it is reasonable to assume that
certain constants can be determined empirically at WSN deployment time). Likewise, the
received traffic rate r;(n) for a node n, is considered to be proportional to the size of the
node’s sub-tree, where the scale factor is obtained by experiment. The simulations were
implemented in the OMNeT++ simulator [Varga 2008]. The nodes use B-MAC [Polastre
et al. 2004] to communicate. See Tables 3.3 and 3.4 for an overview of the used constants.

The method introduced in Chapter 4 was then used to find the Pareto points of
the tasks. The quality metrics of the Pareto points for the TT task are shown in Ta-
ble 3.5. Subsequently, we tested these configurations in a network simulator based
on OMNeT++ [Varga 2008], by configuring the network accordingly. Energy usage,
data loss and delay were determined by simulating each configuration, after which the
quality-metrics information completeness, detection speed and lifetime were computed
(the mapping function for coverage degree is accurate by definition, and therefore not
tested). The difference between computed and simulated values is given in brackets in Ta-
ble 3.5 (e.g. ‘-10’ indicates that the computed value is 10 lower than the simulated value).
The deviations are relatively small in general (within 10%). The same tests were done for
18 other random networks of different sizes, for both SM and T'T (5 random configura-
tions per network). On average, the deviations were 1.5% (percentage point), 0.9% and
5.4%, for completeness, speed and lifetime respectively. For information-completeness,
the deviation is reported in percentage points, because the completeness percentages may
become very small (see Table 3.5). In such a case, an acceptable small absolute deviation
in percentage points would result in a misleadingly high relative deviation.
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3.3 Objectives

Given the definitions of a task and WSN configuration, we specify the following objectives
for the task-configuration process. The configuration system should:

1. At any time, optimise task quality, while meeting all quality and resource constraints.
This means that for a point in time with a given vector of uncontrollable parameters
4, the task should be in a configuration with controllable-parameter vector p, such
that

o(p-u) = min(val({Fq(ﬁ/ ~a) | p' € Sect N Dy)), (3.5)

and
F.(p-u) €D,. (3.6)

The former requirement means that the quality metrics of the configuration need
to satisfy the quality constraints, and they need to be optimal for the value function
val as well. The value function val : Sy — V' (often called objective or cost
function) is a monotone function that assigns a value in a totally ordered quantity
V to a quality-metric vector. Here, val is lifted to sets of metric vectors: val(C) =
{wal(¢) | € € C}. Note that constraints have priority over value. Furthermore,
the latter requirement says that the resource metrics need to satisfy the resource
constraints.

2. Optimise the cost of the configuration process. We measure the cost in terms of the
total configuration time, and the processing and communication overhead per node. The total
configuration time is the absolute time spent from the point that configuration is
started until all nodes have set the correct parameters. The processing overhead
per node is measured in GPU seconds spent, while the communication overhead
comprises the amount of data transmitted over the node’s radio. For both per-
node cost metrics we look at the mean and maximum values across nodes. Finally,
the configuration process should scale well to large networks, even though the
configuration space is inherently exponentially large (see Section 3.1).

Note that the value function val does not need to be a weighted sum of the metrics.
It can be any function that places a total order on the metric space, as long as it is a
monotone function. Another example is a function that prioritises some metrics over
others (e.g. a higher speed is always more important that a higher lifetime).

We consider the configuration process and the WSN task to be completely decoupled
as if they run on separate platforms, such that both of the above objectives do not interfere.
Besides the trade-offs between the metrics of a task, there exist high-level mefa trade-offs
between task quality and the cost metrics of the configuration process. There are several
choices (meta parameters) in the configuration algorithms that affect this trade-off.

The above objectives are specified for a single task running on a WSN. We may extend
it to multiple tasks that share the platform. While this thesis does not cover this case in
detail, Section 4.5 gives a brief introduction to the problem.



3. The Configuration Process

35

Algorithm 3.1: QoS optimisation: one-step method

1 C—{p-Fi(p-u)|p€ESp|r}VIp compute metrics for given @, T'; hide parameters

2 C—CND, determine metrics that meet resource constraints
3 C—C| Iur abstract from resource metrics
4 Copt < min(C) find Pareto points of quality metrics

3.4 Configuration Phases

At any point in time, the configuration system should make sure that a vector p of
controllables that satisfies (3.5) and (3.6) is installed in the network. Our configuration
method splits the optimisation problem in two parts: it first constructs the routing tree —

it sets the parent node controllable parameter of each node — and subsequently determines

values for the remaining controllables based on that tree. This means that we limit the part
of the configuration space that we search and therefore may miss out on some potentially

good solutions. However, by fixing the tree we are able to view the network as a hierarchy

of clusters (see Definition 3.1), such that we can incrementally find all Pareto-optimal

configurations of the remaining space in a very efficient way.
We distinguish five phases in the configuration process:

1. Initialisation. Information about the network needs to be gathered at places where

the configuration system needs it. This involves the node locations, node types and
capabilities (the controllable-parameter space Sp. and mappings to metrics), details
about their local environment and state (uncontrollable-parameter space Sp, and
current vector u), and the constraints (Dy and D).

. Routing-Tree Construction. The parent node controllable parameter of each node needs
to be set to construct a tree T'. Properly choosing the tree is important, because
it has an impact on both the metrics of the task as well as the performance of the
next configuration phase (see Chapter 5). It is therefore a parameter that affects
the meta trade-off introduced in Section 3.3.

. QoS Optimisation. Analysis of the remaining configuration space after setting the
tree in order to find all resource-constraint satisfying and Pareto-optimal configu-
rations in this space. This phase produces a set of configurations Copt according
to the program in Algorithm 3.1, where Sp|T is the controllable-parameter space
in which the parent node quantities have collapsed to a single value each, according
to the tree T, F} is the mapping to task-level metrics, and Ip and Iy, are the
sets of indices to the controllable-parameter and resource-metric quantities in C
respectively. This program, however, does not scale due to the exponential size of
the configuration space. Chapter 4 gives an efficient solution.

. Selection. A configuration that meets the task-level constraints needs to be selected
from the set found in the previous phase. Of'the configurations that meet the quality
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constraints, this is the configuration that has the best value according to the value
function val. Thus, the selected WSN configuration is ¢* = min(val(Cops N Dy)),
and the controllable-parameter vector p* of ¢* is used to configure the network.
The vector p* contains the settings for all nodes in the network. Note that quality
constraints can be applied after minimisation (in the previous phase), since the
constraints are safe.

5. loading. The nodes need to be informed of the selected configuration, such that
they can apply the chosen settings.

The configuration process configures the network for a given situation (set of nodes,
1, constraints, value function). If the situation changes, some of the above phases have to
be repeated to arrive at an updated configuration. However, not all the work needs to be
redone. Chapter 6 explores ways to reconfigure the network efficiently.

The configuration phases describe a high-level overview of the configuration process,
but do not yet make two important decisions: where do the computations take place, and
what s the locality of the algorithms. Computations take place in configuration phases 2, 3,
and 4; we assume the initialisation and loading phases need communication only. There
are two extremes: all computation is done by a single node (centralised computation) versus
all nodes — including sensor nodes — do a part of the work (fully-distributed computation).
Tor the centralised case, we assume the compute node is the root of the network, or
an external node that is directly connected to the root. Another possibility is to have a
number of dedicated configuration nodes scattered throughout the area of deployment.
The algorithms introduced in this thesis all come in centralised as well as distributed
forms, and both forms have their own benefits and disadvantages.

An important parameter to control the meta trade-off between task quality and
configuration efficiency is locality. The best case for task quality is when an algorithm
1s globalised, which means that it has access to information from the whole network and
has control over all nodes in the network. At the other end of the spectrum are localised
algorithms, which involve only the nodes in a certain region around a compute node. In
general, only global algorithms can be optimal in terms of task quality, but they are also the
most expensive in computation and communication. Especially when reconfigurations
are frequently needed, localised algorithms become attractive, which is why they are given
special attention in Chapter 6 on adaptation.

3.5 Summary

In this chapter, a precise definition of the configuration space for a WSN is given, involving
the network, the task running on the network, parameters and metrics. The networks we
consider have a single data sink, and use a routing tree for communication.

Parameters can either be controllable by the configuration system, or uncontrollable
(imposed by the environment). Mandatory parameters for the class of networks we
consider are the parent node (controllable) of a node in the routing tree, and the node location
(uncontrollable). Metrics appear in two flavours: quality metrics reflect the performance
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of the task in terms that are relevant for the user, while resource metrics indicate the
utilisation of physical resources in the nodes. Parameters and metrics are linked via
mappings; a vector of parameters plus the resulting vector of metrics is called a WSN
configuration. The size of the configuration space is equal to the number of possible
vectors of controllable parameters for the whole WSN. Also defined are constraints on
quality and resource metrics.

Quality metrics are specified not only at the task level, but also for groups of nodes
called clusters. We view such clusters as hierarchical elements of the network, and define
a model component for each level in the hierarchy. A model component for a cluster
comprises the parameters of the nodes in the cluster, the metrics of the cluster as a whole,
and the mappings between these. The existence of such a hierarchy is essential for the
configuration method in Chapter 4.

We further defined hierarchical models for two specific WSN tasks: spatial mapping, in
which all nodes periodically take samples that are sent to the user, for instance to determine
the temperature profile over the area, and target tracking, in which the objective is to
detect and follow target objects. We also assess the accuracy of the models by simulation,
and discuss the effects of inaccuracies on the configuration process in general. The
simulations show that our models are accurate up to a few percent.

Section 3.3 precisely defined the objectives of the configuration exercise. The objec-
tives are twofold: firstly, quality metrics should be optimised for some value function, while
quality and resource constraints should be met, and secondly, the costs of the configuration
process itself, in terms of time, processing and communication, should be minimised. As
these two objectives are conflicting, there exists a meta trade-off between task quality and
configuration cost.

Finally, the configuration process is divided in five phases. The process commences
with an initialisation phase, which is followed by a phase in which the routing tree is
constructed. Subsequently, the Pareto-optimal WSN configurations are determined, one
of these that satisfies the constraints is selected based on the value function, and loaded
into the network. These phases are worked out in detail in the following two chapters.
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Chapter 4

QoS Optimisation

A crucial step in the configuration process as outlined in Chapter 3 1s the QoS-optimisation
phase (phase 3). In this phase, we determine the set of Pareto-optimal configurations for
the WSN task, given a routing tree. The basic program to compute Pareto points, given
in Section 3.4 does not scale. In this chapter, we provide a practical solution that does
scale to large networks.

The main section of this chapter is Section 4.1, in which the scalable QoS-analysis
is introduced. A detailed overview of the method is given, and its complexity is derived.
Next, Section 4.2 discusses optimisations of the algorithm, that are necessary for a practical
implementation. The analysis algorithm is initially given as a sequential program for
centralised execution, but it can easily be executed in a distributed way as well. Section 4.3
shows how the algorithm can be run on the nodes of the WSN itself. Even though it
is efficient in many practical cases, in the worst case, the complexity of the suggested
algorithm is still exponential, and thus not scalable. Moreover, when the algorithm is
executed directly on the resource-constrained sensor nodes, it may be wise to sacrifice
some quality for a more efficient execution of the algorithm. Section 4.4 introduces ways
to control the complexity of the algorithm in order to choose a suitable point in the
quality/configuration-cost trade-off space. Subsequently, Section 4.5 provides ideas on
how to map multiple tasks together on a single WSN;, and experimental results that verify
the scalability and other aspects of the algorithm are given in Section 4.6.

cluster
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,,,,, I Cluster
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Figure 4.1: A hierarchical model of parameters, metrics and incremental mappings.
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Figure 4.2: Cluster-level quality metrics can be derived from the parameters of the nodes in the cluster by
a mapping F. Alternatively, they can be derived from node-level quality metrics (Gpc).

4.1 A Scalable Approach

To find the set of Pareto-optimal configurations using a flat system model, we would
have to map every parameter vector in Sp;|r to a vector of metrics by means of task-level
mapping functions, apply constraints, and Pareto minimise the resulting set of quality
metrics. For the target-tracking and spatial-mapping tasks, the task mappings are defined
by the combination of the functions in Tables 3.1 and 3.2. However, the size of Spc|r
increases exponentially with the number of nodes in the network, so such an approach
would not be scalable. We consider the procedure to find the Pareto points scalable, if the
run time of the algorithm does not grow faster than linearly with the size of the network
(the number of nodes).

As explained in Section 3.1.2, we use hierarchical models, where nodes form the
lowest level, clusters form intermediate levels, and highest level is the task running at the
network. The models at each level have the same structure (see Figure 3.1): they are
mappings from parameters to metrics. Figure 4.1 illustrates this structure. This hierarchy
can be exploited, by building and minimising sets of configurations step by step: start
with individual nodes, and then incrementally combine nodes into clusters, until the task
level is reached. This solution may be seen as an example of dynamic programming, as
we optimally solve sub-problems, which are then (again optimally) joined together. We
expect that minimisation discards a significant number of dominated configurations in
each step, such that only the resulting (Pareto-optimal) configurations need to be kept
for the next level. The correctness of this approach — the resulting set of configurations
from the one-step and clustered approaches should be identical — and its complexity are
investigated in this section.

4.1.1 Overview of the Cluster Method

The first step in the cluster method is to find the Pareto points for each node as one-
node clusters. We skip the node metrics and straightaway use cluster metrics, essentially
merging the first two boxes in Figure 4.1. We denote the controllable-parameter space of a
node i by Spc ;| 1, so for an n-node network, Spe|1T = Spe,0|lT X Spe, 1|17 X - - - X Spe,n—1]7-
This space maps to a cluster-level metric space by a mapping Fi : Speilr — Swi.
In the target-tracking and spatial-mapping examples, the mapping is specified by the
combination of the mappings Fy, (Table 3.1) and Gy (Table 3.2): F, = Gy o Fy, (see
Figure 4.2). From the resulting set of metric vectors, only the ones that meet the resource
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constraints are kept, and the remaining set is minimised on quality metrics. Hence, the set
of Pareto-optimal node-level configurations of a node 7 is calculated as in Algorithm 4.1.
In this algorithm, D, ; is the set of configurations for node % that satisfy the resource
constraints. Ip, Iy, and Iyiq are sets of indices to the parameter, resource-metric, and
quality-metric quantities in the configurations respectively; we assume that these sets are
automatically updated to contain the right indices after any operation.

Note that the procedure in Algorithm 4.1 1s similar to the basic algorithm of Section 3.4,
but then for a single node instead of the whole task, as those are only specified at the task
level. We assume that resource constraints are applied at the node level, as they reflect
physical limitations. While they can just be applied in the final step (at task level), it is
more efficient to use resource constraints at each step of the algorithm, as it leads to a
further reduction of the size of parameter sets. The result of Algorithm 4.1 is that the
initial set of node parameter vectors is pruned by the minimise and constraint operations.
Only the remaining parameter vectors are considered in the next step, in which clusters
are combined.

The basic form of the cluster method is shown as Algorithm 4.2. The main loop of
the algorithm in lines 4-11 incrementally combines clusters. The configuration sets of
the clusters are stored as variables C;, where 7 is the index of the root node of the cluster.
Before and after each loop iteration, these configuration sets are equal to the Pareto-
optimal configurations in the product of the parameter sets of the nodes contained in the
cluster. This invariant is initialised in lines 1-2, in which the function CreateOneNode
of Algorithm 4.1 is used to prune and store the parameter sets for each node. In each
iteration, two or more clusters are chosen to be combined (line 6). This choice is very
important for the correctness of the algorithm, as will become clear in Section 4.1.2.
The cluster step further involves putting the parameter sets together (line 7), deriving
metrics with the mapping F¢. in which we assume only quality metrics are computed since
resources only play a role at node level (line 8), and minimisation (line 9). Subsequently,
the cluster metrics are removed, as they are no longer necessary. The clustering loop
terminates when all nodes are in a single cluster. In our examples of Section 3.2, the
resulting cluster metrics are also the task-level metrics; if not, the task-level metrics are
derived by a mapping F} (line 13). The algorithm terminates after minimising the resulting
set (line 14). Note that in each step of this algorithm, again, the sets of parameter vectors
for each node are pruned, and only the remaining parameter vectors are used in the
following steps.

Clusters can be combined into a larger cluster by constructing the free product of
the parameter sets of those clusters, and deriving new cluster quality metrics from the
parameters with F; as done in Algorithm 4.2. However, it is sometimes possible to
incrementally derive new metrics from the metrics of the clusters that are combined instead
(see Figure 4.3). Such an incremental mapping is usually more efficient in terms of
computation and storage needs.

Definition 4.1 (Incremental mapping). An incremental mapping is a mapping G : Syr,1 —
S,2 that derives a vector of metrics from another vector of (possibly different) metrics.
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Algorithm 4.1: Creation of a one-node cluster

1 function CreateOneNode(i):

2 Ci — Spe,ilT

3 Ci—{p-Fc(p-u)|peC}VIp
4 Ci — (C;NDyyi) | Inar

5 Ci — min(C;)

6 Ci — (Ci | IMq) A Ip

7 return C;

initial set of parameter vectors for node %
add derived metrics and hide parameters
constrain and abstract from resource metrics
minimise on quality metrics

remove quality metrics and unhide parameters

Algorithm 4.2: Computing task-level Pareto points by combining clusters incrementally

| for all nodes i EN:

2 C; — CreateOneNode (i)

3

4+ Cl—N

5 while [CI| > 1:

6 S «— remove sub-set from Cl
7 Cprod — HjeS C;

8 Corod = {P Fe(p- 1) | P € Cproa} V Ip
9 Corod < min(Cprod)

10 Cri(sy < (Cprod | Intq) A Ip

11 Cl — ClU{rt(S)}

12

14 C—{m-F(m-u)|meCo}VlIp

15 Copt «— min(C

create one-node cluster set for node 1

initial set of clusters: all nodes

repeat until a single cluster remains

choose indices of clusters to combine
create product set

derive cluster metrics and hide parameters
minimise quality metrics

remove metrics and unhide parameters
update set of clusters

(rt gives the root node of a cluster)

derive task metrics and hide parameters

obtain task-level Pareto points
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cluster A /\AFC cluster B /‘\Fc
| parameters | Wusler metrics | | parameters | musrer metrics |
cluster AB GCC
| parameters | cluster metrics |
F

Figure 4.5: Clusters A and B are combined into cluster AB. The cluster quality metrics of AB can
always be directly derived from the parameters of the nodes in the cluster (F). If they can also be derwed
from the cluster-level metrics of A and B and this mapping G . is monotone, the combining action is also
monotone.

The function G can be lifted to sets: G(C) = {G(¢) | ¢ € C}, withC C Spy 1.

We use the letter F' for mappings from parameters, and the letter G for incremental
mappings. For a mapping F', we use subscripts ‘n’, ‘¢’ and ‘t’ for a mapping to node-,
cluster- and task-level metrics respectively (as done above). For G, we use a two-letter
subscript, to indicate the source and destination level. One example of an incremental
mapping has already been used: the mapping Gy, from node metrics to cluster metrics
(Table 3.2). Figure 4.3 shows the two ways of computing metrics of the new cluster after
combining two clusters: first combining the parameters and then applying F¢, or directly
applying G to the cluster metrics of the two clusters (the mapping G for the example
tasks is given later). The mapping G is a tuple (go, g1, - - - , gk—1) of k mapping functions
for k metrics.

Node-level parameters, metrics and mappings can be different for any node, but to
make combining clusters easier, it is convenient to have the same cluster-level metrics for
all clusters. The result is that we need only one type of cluster-to-cluster mapping Gec. In
the remainder of this thesis, without loss of generality, we assume that this is the case. If
certain groups of nodes need different metrics, the cluster metrics used should then be the
union of all metrics needed in the network. See Section 4.5 for an example of this. If the
cluster-metric space is given by Sy for all clusters, and ¢ clusters are being combined, the
mapping G is defined as (Sy;)* — Syr. This means that for clusters with k metrics, Gec
is a tuple of k mapping functions on vectors of k - £ metric values. This number is bounded
if the number of clusters that are simultaneously combined is bounded. The mapping
functions in F¢, on the other hand, operate on vectors of parameter values for all nodes
in the combined cluster, which is a number that grows with the size of the clusters. This
implies that incremental mappings are more efficient. Moreover, Section 4.2.3 shows how
we can also make use of this to significantly reduce the memory demands of the algorithm.

4.1.2 Monotonicity

It is generally not possible to combine any arbitrary groups of nodes as clusters. Firstly,
all mapping functions to cluster metrics need to be defined for the compound cluster.
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We are targeting networks that use a routing tree, and some metrics — such as nformation
completeness in our example — may be defined with respect to this tree. Therefore, each
cluster needs to form a tree: a sub-tree of the network’s routing tree, as in Definition 3.1.

Secondly, we need to check for monotonicity: we need to make sure that the configu-
rations that are removed by minimisation in earlier clustering steps, could never become
optimal in later steps. This concept is related to monotonicity for mapping functions as
defined in Definition 2.2.

Definition 4.2 (Monotonicity of a clustering step). Suppose we are combining ¢ clusters
having parameter sets C; and 0 < ¢ < £. The action of combining these clusters is
monotone, iff for all &, € C; and 0 < i < ¢, F(¢}) =< F.(c,) implies F.(c - ... -
&Y F(F-... .

A monotone clustering step preserves the dominance order of cluster configurations. This
implies that a cluster configuration ¢ that is dominated before the clustering step, can
safely be removed by minimisation, because all configurations of the combined cluster
that incorporate ¢ would be dominated by other configurations after clustering. In other
words, if all clustering steps are monotone, none of the eventual task-level Pareto pownts are lost in the
wmeremental algorithm, and the result of the incremental algorithm is the same as the result
from the all-at-once algorithm.

Lemma 4.1. A clustering step in which clusters 0 to £ — 1 are combined is monolone, if the mapping
F% 1o calculate the metrics of the combined cluster can be rewritten as a monotone incremental mapping
Gec_from only the cluster-level metrics of clusters that are combined (parameters of individual nodes are
not explicitly needed):

F (... 7)) =Gee (Fe(@) - ... Fo(e7h)) (4.1)
_for some monotone_function G (SM)Z — Syr. For k metrics, the incremental mapping Goc must
be a tuple (9o, g1, - - -, gk—1) of k monotone functions.
Progf. This follows immediately from the monotonicity of Gec. O

This result means that the availability of an incremental mapping for cluster metrics
does not only lead to more efficient computations in many cases, it also ensures the
monotonicity of the cluster algorithm. Note that for monotonicity to hold, it is not needed
to actually use the incremental mapping; it just needs to exist. However, monotonicity
is only guaranteed if the incremental mapping functions are monotone (non-decreasing).
New cluster-level metrics can be derived by the function F; from the parameters of all
nodes inside the new cluster, by the function G, from the metrics of all the clusters, or a
hybrid form. This is an implementation choice that can be made per mapping function,
based on efficiency of computation and storage. Before providing G for the example
models of Section 3.2, we first illustrate the monotonicity of the cluster method by means
of an example.
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Figure 4.4: Examples of non-monotone (a) and monotone clustering steps (b)—(c). A number at the arc
coming out of node 1 1s the delay T;;.

4.1.3 A Monotone Clustering Order

Consider a mapping function fy to calculate a maximum-delay quality metric (captured
in quantity (q) for a cluster, given a parameter vector ¢. Note that the WSN model for
target tracking has a speed metric instead of a delay metric. Tor the sake of the example,
however, we use the delay, for which lower values are preferred (=g, equals <). We
express fq in terms of parameter values 73, which indicate the time to send a message
from node 7 to its parent in the routing tree.

fa(@) =max{ > T, (4.2)

where L is the set of paths from all leaf nodes in the cluster to the root node (including the
root node itself). Clearly, this function does not only depend on the 7T; values of the nodes
in the cluster; also the way the nodes are connected in the routing tree plays an important
role. Therefore, when combining clusters with maximum delay as a quality metric, it is
necessary that these clusters are connected by links in the network’s routing tree, such that
the new cluster is a tree. Furthermore, we make sure that the clustering step is monotone
by ensuring that (4.1) holds for fq. We first give an example of a clustering strategy
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that fails monotonicity condition. Subsequently, we show a clustering strategy that is
monotone. Throughout the example, we only show the delay metric, but keep in mind
that there may be other quality metrics as well. This means that even if a configuration
has a worse delay than another, it may be a Pareto point, depending on the values of other
metrics. For convenience, we write a configuration € as a vector of only T values.
Suppose we have a cluster {1,2,3}, as in Figure 4.4(a). The cluster has mult-
ple possible configurations (different values of T7, T5 and T3). The figure shows two

configurations: E§1,2,3} = (1,4,1) and 5%1’2’3} = (1,1,3). The cluster delays are

fa(@?3) = max{1 + 4,1+ 1} = 5 and fa4(ei"**)) = max{1 + 1,1 + 3} = 4 (the
thick arrows in the figure show the bottleneck path). Thus, fd(égl’Q’S}) =04 fd(6{1’2’3})
and after minimisation, 6}1’2’3} may be eliminated (depending on the other metrics). Now
we join this cluster with downstream cluster {5}, with one configuration ¢(°} = (2). The
new configurations are Eil’z’g} et = (1,4,1,2) and 551’2’3} et = (1,1,3,2). The
delays become fd(éi1’2’3} %) = max{1+4+4,1+1+2} = 5and fd(égl’z:}} ctoh)y =
max{1+ 1,1+ 3+ 2} = 6. This implies that fa(cl" 2} . &0}) <, fa(ed 2. &l5}),
but Eil’Q’s} may have been discarded in the previous step! Therefore, this clustering
step 1s non-monotone. The reason is that the addition of a downstream cluster extends the
bottleneck path in one configuration but not in the other one. Observe that this cannot
occur when adding upstream clusters: the bottleneck path is then always affected.

Now we use a clustering order that is monotone. Figure 4.4(b) shows a possible first
clustering step, after initialisation. Here, one-node clusters {2} and {4} are combined.
The figure shows two configurations 5{4} = (4) and 554} = (3) of cluster {4}, and one
configuration &2} = (1) of cluster {2}. The mapping function for the combined cluster
{2,4} is simply Ty + T», which is 5 and 4 for configurations E#} -2t and 534} -tz
respectively. This step is clearly monotone, and this is always the case when combining
clusters that contain only one path: the max-function can be left out and the remaining
summation is always monotone.

The second clustering step in the example would be the combination of {3} and {5},
which goes in the same way as step 1. A possible third step is given in Figure 4.4(c). In
this step, we are joining cluster {2, 4} (having configurations 6?’4} =(1,4) and 632’4} =
(1,3)) with {3, 5} (configuration (4, 1)) and {1} (configuration (1)). Configuration 5?’4}
has a longer delay (1 + 4 = 5) than ¢, (1 + 3 = 4), so it could have been discarded
in step 1. Therefore, it should not be possible that a combination of this configuration
with any of the other clusters’ configurations becomes a unique Pareto point. The joint
cluster’s delay is

fa (5{2’4} . 5{3’5} . 5{1}) = max {T4 +To+ Ty, Ts +T5 + Tl}

= max {fd(5{2’4}) + fa@™), fa@®) + fd(é{l})}

= max {fd<é{2’4})7 fd<é{3’5}>} + fa(et™). (4.3)
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The last line can be seen as a function g(x,y, 2) = max{x,y} + z, which is monotone,
and therefore this clustering step is monotone according to Lemma 4.1. In the example,

using Ei2’4} or 632’4} will lead to a combined-cluster delay of 1 +4 +1=6o0r4 + 1+

{1,2,3,4,5) {1,2,3,4,5}
1 2

4 = 6 respectively. Although ¢ 1s not strictly worse than ¢

_{2,4}

dominated (equal values dominate each other), so ¢;”""" could have been safely removed.
{1,2,3,4,5}
1

, 1t is still
Configuration ¢ may be worse in dimensions other than (Jq to render it strictly
dominated, or the two configurations may be identical in terms of metrics, in which case
only one needs to be kept. But Ei1’2’3’4’5} will never strictly dominate 651’2’3’4’5}.

We also see in (4.3) how the delay mapping function for step 3 can be rewritten from
a function that operates on parameters to an incremental mapping function on cluster-
level metrics. The implementation of the latter is clearly the most efficient, since the
computation is easier and fewer values need to be stored.

The final step to complete the network is to combine cluster {1, 2, 3,4, 5} with cluster
{0}, assuming for example Ty = 2. This step is straightforward: the delay is equal to
fa (6{1’2’3’475} . E{O}) = fq (6{1’273’4’5}) + fa (E{O}) and this step is thus monotone. The
delays are 6 + 2 = 8 for both configurations.

Definition 4.3 (Leaf Cluster). A leaf cluster of a WSN is cluster with the special property
that for each node in the cluster, all its descendants in the WSN’s routing tree are also
included in the cluster.

Proposition 4.2 (Monotonocity of Algorithm 4.2 for fa). All clustering steps of Algorithm 4.2
are monotone for fq, if in each clustering step, the clusters that are combined form a tree with root node
R that (besides R) comprises all R’s descendants in the network’s routing tree. ‘That s, each newly
Jformed cluster is a leaf cluster.

Progf” For each step of the algorithm, we need to ensure that fq is defined for the com-
pound cluster, and that the step is monotone. The algorithm maintains two invariants:

1. Each cluster is a tree. This ensures that fq is defined for each cluster.
2. A cluster either contains exactly one node or it is a leaf cluster.

Line 4 initialise both invariants, while line 6 plus the selection condition trivially main-
tains them, whichever cluster is chosen for combination. Invariant 2 ensures that, when
combining clusters, the root of a multiple-node cluster M is always connected to the root
R of the new cluster via a path containing only one-node clusters. If not, a node belong-
ing to another multiple-node cluster would be on this path, but this implies the existence
of a multiple-node cluster that is not a leaf cluster, which contradicts invariant 2. The
maximum delay from any leaf node in cluster M to R is equal to the maximum delay of
cluster M as a whole, plus the delays of the extra nodes on the path (including R). This
is a summation of only cluster metrics, which is monotone. Thus, function f4 applied
to a combination of one-node and multiple-node clusters is equivalent to the maximum
over the maximum delays for all leaf clusters (either multiple-node or one-node). This
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1s a monotone function using only metrics of the compound clusters, which ensures that
the clustering step itself is monotone for the delay metric (by Lemma 4.1). d

We reorganise Algorithm 4.2 into Algorithm 4.3, a recursive form that uses incre-
mental mappings. The recursive function CreateCompound should be called with the
index of the network’s root node as argument (assumed to be 0, line 19). This algorithm
enforces a monotone clustering order: it starts at the leaf nodes and continues up towards
the root, and clusters are formed as leaf clusters in compliance with Proposition 4.2. The
function CreateOneNode is slightly modified for use in this version of the algorithm:
line 6 in Algorithm 4.1 is omitted, such that quality metrics are left in the configurations,
and parameters remain to be hidden. Line 14 of Algorithm 4.3 uses the incremental
mapping G to compute the quality metrics for the compound cluster from the metrics
of the clusters that are contained in the compound. The lower-level metrics are then no
longer needed, and therefore removed in line 15. The result is a set of Pareto-optimal
configurations for the cluster containing all nodes. If needed, task-level metrics can be
derived from these (line 20), and finally, the result is minimised (line 22). Note that, while
the parameters for each node in the resulting set are hidden and do not play a role in the
computations (except at the node level), they are still part of the configurations.

4.1.4 Correctness of Example Models

To prove the correctness of the cluster method for the WSN models of Section 3.2, we
need to provide a monotone incremental mapping G¢. (Lemma 4.1). Monotonicity
should be verified for each incremental mapping function g; separately, and a clustering
step should only combine clusters that can be monotonically combined (note that the
mapping functions in mappings F' need not be monotone). Table 4.1 gives Gcc. I3, and
% are cumulative metrics, as indicated by the sub-script X, that should be divided by |c]
to get the actual quality metrics 1€ and ¢ of Table 3.2. The incremental computation of
these cumulative metrics is more efficient than the computation of the actual metrics, as
we leave out the divide operation.

Theorem 4.3 (Monotonicity of Algorithm 4.3). The cluster method (Algorithm 4.3) is monotone
Jor the WSN models of Section 3.2.

Progf- It can be shown by similar arguments as in Proposition 4.2 (plus the fact that
minimum, addition and multiplication are monotone) that, given the clustering strategy
in Algorithm 4.3, all mapping functions in the model can be written as monotone
functions from cluster to cluster metrics, as in Table 4.1. Therefore, by Lemma 4.1,
Algorithm 4.3 is monotone for the WSN model. O

4.1.5 Complexity

The operations of Pareto algebra mostly have a polynomial time complexity which is
at most quadratic (for the Simple Cull minimisation algorithm) in the number of con-
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Algorithm 4.3: Monotone cluster combining with incremental mappings

1 function CreateOneNode(i):

2 Ci — Spei|T initial set of parameter vectors for node ¢

3 Ci—{p-F:(p-u) |peC;} VIp  append derived metrics and hide parameters
4 Ci — (C;NDyy) | Ine constrain and abstract from resource metrics
5 C; — min(C;) minimise on quality metrics

6 return C;

8 function CreateCompound () :

9 Cpmd «— CreateOneNode (%) create one-node cluster set for root node %
10 if ¢ is a leaf node:

11 return Cpod return one-node cluster set if 7 is a leaf’
12 for each child j of ¢: recursively create product set

13 Cprod < Cprod X CreateCompound (j)

14 Cprod < {€- Gec(C) | € € Cproa} append derived quality metrics

15 Corod < Cprod | IMiow abstract from lower-level metrics

16 Cprod — min(Cprod) minimise on quality metrics

17 return Cprod return compound cluster’s Pareto set
18

19 Cclus < CreateCompound (0) cluster-level Pareto points for network
20 C«—{c-Ge(2) | € € Cetus} derive task quality metrics

21 C « C | Invtiow abstract from lower metrics

22 Copt < min(C) task-level Pareto points
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Table 4.1: Incremental mappings (G.) for a cluster ¢

Reliability
Inf. completeness I5(e) =I5 (rt(e) - [ 14+ D I5() (4.4a)
i€ch(c)
Time
Reporting rate (SM) — 1§(c) = Y 1§(i) (4.4b)
i€sub(c)
1
Detection speed (TT)  S¢(¢) = min (Sc(rt(c)), ieIIcliizI(lc) M) (4.4¢)
Lifetime Te(e) = nin T<() (4.4d)
1esub(c
Space
Coverage degree Cc) = mibI% )Cc(i) (4.4¢)
i€sub(c

Note: (4.4a) and (4.4c) depend on a tree; the others do not. For combined cluster c, the root cluster is
denoted 1t (c), the set of chuld clusters ch(c); sub(c) = {rt(c)} U ch(c).
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figurations n [Geilen and Basten 2007]. A crucial operation is combining two sets of
configurations of size n and m by a free product, which has complexity O(n - m), and
increases the number of configurations from n + m to n - m. The free product increases
the number of configurations, while minimisation and applying constraints never increase,
and usually reduce this number.

The efficiency of Algorithms 4.2 and 4.3 mainly depends on the number of clusters
£ that are combined per step, and the number of configurations |C;| in each cluster i.
Line 7 of Algorithm 4.2 (lines 12—13 of Algorithm 4.3) combines configuration sets with a
free product. The size of the resulting set Cproq 1s equal to |Co| - . .. - |Co—1], and the time
complexity of the free-product operation is O(|Cprod|). The complexity of the derivation
step in the following line also depends on |Cprod| (metrics need to be derived for each
new configuration), but on the complexity of the mapping functions as well. Finally, the
complexity of the minimisation operation also depends on |Cprodl, as said above.

If we consider the number of configurations per node as given and at most n, mapping
functions can be evaluated in constant time, and assuming a quadratic minimisation
algorithm is used, the complexity of joining all nodes in one step is o2V ). This is
obviously not scalable and therefore not useful for WSNs in general. Therefore, it makes
sense to join as few clusters as possible in each step and to rely on minimisation to keep
the configuration sets small. The algorithm’s complexity could even become linear, if
each step is able to reduce the set size to roughly m when cluster configuration sets of size
m are combined. On the other hand, if the minimisation operation does not manage to
significantly reduce the size of Cproq, the complexity would again be exponential. This
number of configurations that can be minimised away greatly depends on the mapping
functions and the configurations’ values, and it is hard to give general bounds, as we
do not make any assumptions about these values and the precise mappings (besides the
monotonicity requirement). If hardly any configurations are dominated in each step, the
run time still grows exponentially with the number of nodes. However, this is a very
unlikely case; experiments show that, in practice, only very few configurations are Pareto
optimal, and the run time of the cluster algorithm scales approximately linearly with
the number of nodes in the network (see Section 4.6). Furthermore, in such practical
cases, we will always find all Pareto points. Nevertheless, we want to make the worst-case
behaviour tractable. We can do so by limiting the number of configurations in the quality-
metric space. The reduction method introduced in Section 4.4 works out the details.
Limiting |Cprod| enforces an upper bound on the run time, in exchange for lower-quality
results. This provides a means to control practical complexity, and is especially useful
when running the algorithm on sensor nodes.

Furthermore, it follows from the significance of Cpro4 that, to keep the run time low, it
1s desirable to combine as few clusters per step as possible. However, due to the restriction
imposed by the monotonicity condition on the clusters that may be combined, a given
(one-node) root cluster is always combined with all of its child clusters at the same time.
The number of configuration sets that are combined in a cluster step is thus equal to the
node degree (number of child nodes) plus one. Therefore, the node degree of nodes in the
routing tree is crucial, and should be as low as possible. We come back to this in Chapter 5,
in which tree-construction algorithms with node-degree reduction are suggested.
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4.2 Implementation

To efficiently implement Algorithm 4.3, we suggest optimisations that significantly improve
its memory complexity and therefore also its timing. We give some further implementation
details as well. The optimised algorithm is given as Algorithm 4.4.

4.2.1 Interleaved Combining, Deriving and Minimising

Since a product set can be very large, an implementation that first computes the whole
product set and then derives the metrics and minimises the resulting set would need an
excessive amount of memory. Therefore, the loop body of Algorithm 4.3 is rewritten
in an interleaved fashion: when an element of the product set is computed, metrics are
immediately derived, and the resulting configuration is then integrated in a configuration
set that is kept minimal, as in the following construct.

1 Cmin «— & initialise minimal set

2 for all ¢ in Product(S): iterate through product set

3 c—c-F(c) append derived metrics

4 Cmin < AddAndMin (Cnin, C) add to set and keep Pareto minimal

The Product function yields a new element from the free product of the configuration
sets in the list S, instead of computing the whole product set at once. Thus, Product is a
generator as available in programming languages such as Python and C#. The incremental
minimisation function AddAndMin, given in Algorithm 4.3, is derived from the Simple
Cull algorithm [Geilen and Basten 2007]. This function adds a new configuration to a
Pareto-minimal configuration set, and keeps the set minimal. This construct is integrated
in Algorithm 4.4. The asymptotic ime complexity of this approach is the same as before,
but the memory demand is now in the order of the size of the minimised configuration
sets, instead of the product sets, and thus a lot smaller.

4.2.2 Quantisation

The metric values that are obtained from the mapping functions are of limited accuracy,
and we can take this into account while performing minimisation. Given a configuration
set with two example configurations @ = (20, 0.1) and b = (2,0.1000001), we see that
@ Z band b £ @, and hence both are Pareto optimal. However, we may consider the
difference between the values in the second quantity to be insignificant. Looking at only
the first quantity, a@ is clearly better (assuming larger is better). We decide to treat both
second-quantity values as being equal to 0.1, such that @ < b, and b will be removed by
minimisation.

We capture the accuracy for each quantity in a vector g, and define a function
Rz : § — S that quantises a configuration. Rg rounds every value in a configuration
to the nearest multiple of the corresponding value in g. This kind of quantisation is
trivially monotone (rounding does not change the order of configurations in a quantity),
which ensures that quantised Pareto points correspond to Pareto points in the unquantised
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Algorithm 4.4: Optimised implementation of Cluster algorithm

1 function CreateOneNode(i):

2
3
4
5

6

26

Ci — Speilr
C—A{()-Clj1]0<ji<|C|} VO
Ci—{p-F(p-u)|peC}|Ip

Ci — (CiN D) | Inie

C; < min(C;)

return C;

function CreateCompound (%) :

C <+ CreateOneNode (i)
if ¢ is a leaf node:

return C
add C to list S
for each child j of ¢:

add CreateCompound(j) to S
Ciin «— @
for all ¢ in Product(S):

€+ ¢ Gec(0)

¢ ¢ | Iviow

¢« (¢-Rq(0)) V Inq

Cmin < AddAndMin (Cmin, C)
Index [i]+ (Cmin A I1) | (Inq U IQ)
Ci — (Cmin & Ivq) | (1 U Iq)
Ci—{() G[j1]0<j<|Cl}voO

return C;

27 Celus < CreateCompound (0)
28 C «— {E . Gct(a) | € E Cclus}
29 C«+—C l, IMlow

30 Copt < min(C)

initial set of parameter vectors for node %
prepend and hide index

append metrics, remove parameters

constrain and abstract from resources

minimise on quality metrics

create one-node cluster set for root node %

return one-node cluster set if ¢ is a leaf
initialise list of clusters

recursively create child clusters

initialise minimal set

iterate through product set

append derived quality metrics

abstract from lower-level quantities

add quantised metrics; hide original

add to set and keep Pareto minimal
extract indexing table

extract unquantised metrics
prepend and hide index

return compound cluster’s Pareto set

cluster-level Pareto points for network
derive task quality metrics
abstract from lower-level metrics

task-level Pareto points
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Algorithm 4.5: Incremental minimisation_function

1 function AddAndMin(C, @) :

2 for all acC: loop through all configurations @ in C

3 if a=Xe¢: if ¢ is dominated by @, do not add ¢ and return

4 return C

5 else if cXa: if ¢ dominates @, remove a

6 C — C\{a}

7 return CU {c¢} ¢ is not dominated by any configuration in C, so add it

set. The difference is that multiple (Pareto) points may have equal metric vectors after
quantisation, and only one of those coinciding configurations is kept. We use this function
in line 20 of Algorithm 4.4 to extend the configuration with quantised metrics, while the
original metrics are hidden for the minimisation operation in the next line. In line 23,
we unhide the original metrics and abstract from the quantised ones, because we use the
unquantised configurations for further processing to prevent the propagation of rounding
errors.

4.2.3 Indexing

Recall that a cluster configuration is a vector of parameter values (for all nodes in the
cluster) plus a vector of metric values. A straightforward implementation of the algorithm
would store each configuration exactly in this format. However, as illustrated in Figure 4.3,
the metrics of a cluster can be directly computed from the metrics of lower-level clusters by
incremental mapping functions, for the networks we study; the parameters are not needed.
Algorithm 4.3 does use incremental mapping, but still leaves the full parameter vectors
(hidden) in the configuration sets. Our next optimisation measure uses this opportunity
to save on precious storage space and time-consuming memory accesses.

First of all, in the case that multiple nodes have the same parameter spaces, we need
to store this space only once, and in the configurations we can use indices to parameter
vectors, instead of the full vectors. Still, a cluster configuration would contain a parameter
index for each node contained in the cluster, and therefore the size of configurations grows
when the cluster algorithm progresses and clusters become larger. As a result, the memory
demand of the algorithm does not scale, which may be prohibitive for large networks. We
therefore extend the use of indexing in the cluster algorithm, as shown in Figure 4.5. In
each step of the algorithm, a (one-node) root cluster is combined with its child clusters.
For each of these clusters we need a configuration set with metric vectors. Each metric
vector in a configuration set is given an index, and when combining metric vectors into
new configurations, their indices are stored with them. After deriving quality metrics
and minimising the new configuration set, this set is split into a set that holds only the
metric vectors and a linked set that contains vectors of indices, called the indexing table.
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? Node ? 1-node cluster
2 parameter 2 metric vectors
vectors > to parent
? Child cluster A l o
2 metric vectors 1
2
— / Combindti
ombination .
" > .
& analysis
!
Indexing table ~ Combined cluster
0 Child cluster B . metric vectors
; metric vectors (parameter vector index,

child A conf index,
child B conf index)

Figure 4.5: Implementation of one clustering step (node degree 2). The figure shows the lables that are
needed for configuration sets and indexing, which constitute almost all of the memory needed. The numbers
shown to the left of the tables are the indices.

Subsequently, only the table of metric vectors is used in the next cluster step.

Algorithm 4.4 implements this approach. When creating one-node clusters in the
CreateOneNode function, a hidden index is prepended to each configuration in line 3,
and after deriving quality metrics, the parameter values are abstracted from in line 4. Also
the compound clusters created by CreateCompound are prefixed by an index in line 24.
The configurations in the product set now contain, instead of the parameter vectors for
all contained nodes, the indices of the configurations of the contained clusters. After the
product/derive/minimise loop, the indexing table is extracted in line 22, and the set of
metric vectors is returned with new indices prepended (line 23-25). The indexing tables
are stored in a data structure called Index, to be used later.

Thus, besides the parameter spaces Spe,i|7, for every node in the network only an
indexing table is stored. Memory for intermediate cluster configuration sets can be freed
immediately after usage in the next cluster step. When the final set of Pareto points (for
the whole network) has been computed, one metric vector will be selected, and we need to
reconstruct the parameter vector that gives rise to it by tracing back through the indexing
tables. Algorithm 4.6 shows how this is done by a recursive function that is called with
the ID of the network’s root and the index of the selected configuration.

4.3 Distributed Execution

Algorithm 4.4 is given as a centralised algorithm that is run separately from the WSN;
before starting the WSN’s task. However, the algorithm treats nodes in a leaf-to-root
fashion: a node only depends on information from descendants to compute configurations
for the whole cluster with itself as root. Itis therefore also possible to execute the algorithm
in a distributed way, in which each node passes the optimal configurations on to its parent,
after computing the Pareto set for its cluster. When the network’s root has been reached,
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Algorithm 4.6: Reconstructing a parameter vector. Index [n] [i] selects the i" index in the indexing
table of node . The first column in an indexing table is always the parameter index for the node; the
remaining columns are indices of configurations of chuld clusters.

1 function reconstructParams(n, i):

2 k « Index[n] [i] get the i row in the indexing table of node n

3 D — Seenl|T [k[01] obtain the parameter vector for node n

4 if n is a leaf node:

5 return p return parameter vector for leaf node n

6 7«1

7 for each child c of n: recursively reconstruct descendents’ parameters
8 p «— p-reconstructParams(c, k[j1)

9 j—jJ+1
10 return p return parameter vector for cluster with root n

the Pareto optimal configurations for the whole network are known.

In contrast to the centralised algorithm, distributed QoS optimisation requires com-
munication in the network. The use of indexing in Section 4.2.3 limits the communication
overhead per node to just the transmission of the metric vectors of its Pareto-optimal
(cluster) configurations. Furthermore, the communication costs of loading the chosen
configuration to the network (phase 5) are also reduced. In the centralised case, the
nodes need to transfer a packet containing the selected parameter vectors for each of its
descendants. In the distributed case, however, only one index per immediate child node
needs to be transmitted. Nodes use their indexing tables to find out which parameter
vector they need to use, and which indices need to be sent to their children. All transfers
in the QoS optimisation and downloading phases should be reliable, and therefore an
automatic repeat request scheme (acknowledgements and retransmissions) is used.

Since each node computes its own node-level configurations in a distributed QoS-
analysis algorithm, itis not needed to gather the local details of nodes (node type, parameter
set, energy level, etc.) ata central point. The initialisation phase of configuration therefore
becomes simpler. In fact, if also the tree-construction phase is done in a distributed way,
there is no initialisation needed altogether. Figure 4.6 shows a state diagram featuring the
QoS optimisation and loading states, which correspond to the equally named phases of the
configuration process. This diagram applies to all nodes except the root. The preceding
distributed tree algorithm is described in detail in Chapter 5. After this algorithm, the
node knows its parent and children. The action start Pareto analysis in the diagram is
implemented as Algorithm 4.4 without the recursion, in which the list of child clusters
Pareto sets S 1s constructed using the Pareto messages received from the children. If the
node has no children (a leaf node), it immediately starts Pareto analysis. The resulting
Pareto set is sent in a Pareto message to the parent. Subsequently, the node waits in the
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QoS
optimisation

loading

[got sets from all children] /
start Pareto analysis
send Pareto msg to parent

Load msg received [from parent] /
determine and set parameters
send Load msg to all children

Pareto msg received [from child] /
store child's Pareto set

Figure 4.6: Distributed QoS optimisation, state diagram. Assumed is that a distributed tree-construction
algorithm s executed first that has a final state degree set, afler which a node knows its parent and
children (see Chapter 5). State transitions are triggered by events and/or conditions as annotated at the
arrow before the slash. Actions at a transition are given afier the slash. All events that are not listed at a
state are ignored.

loading phase for a Load message from its parent, containing the index of the selected
configuration. Upon receiving this message, the node configures itself, and sends Load
messages to its children. Next, the task can be started, and the run-time adaptation state
1s entered, which is described in Chapter 6.

The root node, when in possession of the Pareto set of the whole network, enters the
selection state in which it chooses one of the configurations, instead of transmitting a Pareto
message. After that, it initiates the loading phase by sending a Load message to each of
its children.

As the distributed execution allows for computations to run in parallel (all leaf nodes
can start at the same time), there is a scalability benefit. The total run time for the cen-
tralised (Zcenty) and distributed execution (Tgjsty), when ignoring communication delays
(we learn from the experiments in Section 4.6 that communication time is negligible), can
be expressed as follows:

Tcentr = ZT(Z)a (45>
eV
Tdistr = Izréa\;( ‘ 3 T(])7 (46>
j on p*

where T'(7) is the run time of the cluster step with node i as root, and p' is the path
from node 7 to the network’s root node. Thus, the run time of the distributed execution
is determined by a critical path of node run times, instead of the run times of all steps
together. On the other hand, sensor nodes usually have very simple processors, while the
centralised algorithm can be executed on a fast and powerful server. Moreover, running
on sensor nodes uses their batteries, a scarce resource.

The pros and cons of a distributed QoS-optimisation algorithm in the configuration
process should be weighed carefully, considering the situation at hand. An important
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observation is that the in-network computation of configurations is a prerequisite for the
development of localised reconfiguration methods, to quickly respond to changes in the
local environment, which is the topic of Chapter 6. Another interesting option would
be a hybrid system, in which a number of more powerful nodes are deployed as cluster
heads. These special nodes could take care of the configuration of the nodes under
their supervision in a centralised way, in order to save resources in sensor nodes. This
mix of the centralised and distributed approaches may provide an interesting trade-off.
Section 4.6.4 shows results for distributed QoS optimisation, which are based on a TinyOS
implementation for TelosB sensor nodes.

4.4 Complexity Control

From Section 4.1.5 we learn that a major factor that determines the run time of a cluster
step — which may take place at a single sensor node in the distributed approach — is the
size of the product set |Cprod|: the product of the sizes of the cluster configuration sets that
are being combined. The complexity further depends on the number of Pareto points of
the compound cluster (|Ciin|). Both sizes are not predictable in general, but we can still
do a number of things to influence them. Measures to decrease the size of the product set
could focus on either reduction of the number of clusters that are combined (equal to the
node degree plus one), or the size of the child cluster’s configuration sets. The former is
dealt with in Chapter 5 about routing tree construction. In this section, we discuss ways to
control the complexity of the cluster algorithm by limiting the sizes of the sets contributing
to Cprod, in exchange for lower-quality results (the meta trade-off between configuration
cost and task quality).

Besides reducing the configuration time, there is another reason for placing such
limits, if the QoS-optimisation algorithm is executed in a distributed way on the sensor
nodes themselves, as outlined in Section 4.3. These sensor nodes usually have a very
limited amount of memory available, and therefore it may be needed to limit the size
of configuration sets in the algorithm, if there is simply no space to store larger sets.
Moreover, for a WSN operating system such as TinyOS, the memory allocation is static,
and suitable fixed sizes of all data structures need to be determined in advance.

4.4.1 Limiting the Complexity of the Cluster Algorithm

The run time of a cluster step in Algorithm 4.4 is the time needed for one call to the
function CreateCompound without counting the time needed for recursive calls in this
function in line 15. Looking closely at the code of the algorithm, we see the following
structure, where p = [Spe4|, ¢ = |Cprod|, ” = |Crnin:

| function CreateCompound (i) : (@]
2 C «— CreateOneNode (7) O
3 . (@]
4 for all ¢ in Product(S): O
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5 20 a o(1)
6 Cmin < AddAndMin (Cmin, ©) O(r)
7 000 (9(7')

We assume p is a relatively small, known and fixed number, so we ignore it and focus
on q and r. Both ¢ and r are unpredictable, and depend on the model and values of
the parameters throughout the network. The worst-case complexity of the AddAndMin
function is O(r): if ¢ is a Pareto point, it is compared with all configurations in Cy,i, and
then added. The worst-case for the loop is when every configuration in the product set is
a Pareto point, so 7 grows in each iteration. Hence, the loop is O(¢?), and (as r < ¢q) the
overall complexity of a step is also O(¢?). Moreover, as explained in Section 4.1.5, the
complexity of the full algorithm is exponential in the number of nodes in the worst case,
as ¢ may grow exponentially with each step. However, if we could limit ¢ to a constant @),
the complexity of the cluster step becomes a constant O(Q?). If we do this for each step,
the overall complexity of Algorithm 4.4 becomes O(]N| - Q?), and hence it is guaranteed
to be linear in the number of nodes. If we also restrict r to a constant R < @), the
complexity becomes O(JN] - Q - R). As said above, setting the limits ) and R is needed
for an implementation on memory-constrained sensor nodes, and hence very relevant in
practise.

Restricting the size of Cpin or Cproq implies a potential reduction in quality, as a
number of Pareto points may need to be left out. The magnitude of the quality loss
depends on the number of Pareto points, which is not predictable, and on the choice of
points that are kept. Itis hard to steer the choice of points in case of a bound on Ciin, as
it depends on the order in which the points in the product set are generated in the loop.
For a reduction of Cproq we have more freedom. This could be done by assessing the size
of the product set before combining, and reducing child-cluster configuration sets if the
product set is larger than the threshold ). The key questions are then: which sets to reduce,
how many configurations to remove, and which configurations to remove from a set. Here we
need to assess the impact (loss of quality) of removing a configuration. Our approach to
address the first two questions is to reduce the size of the largest configuration sets first,
until the product size is smaller than the threshold. By doing this, the sets will become of
similar size, such that every combined cluster maintains a diverse set of solutions (good
distribution and spread, see below). For example, if we have three sets of sizes 10, 8 and
5 configurations (a product set of 400 configurations), and a product threshold of 200, we
will reduce the sets to 6, 6, and 5 configurations respectively (a product of 180).

4.4.2 Reducing Pareto Sets

Suppose a given Pareto set C needs to be capped at a maximum of m points. Which
points to remove? The easiest way is to just randomly remove configurations. However,
for a configuration set, it seems to be desirable to have a good distribution and spread of
points. A good spread means that the configuration set spans the whole (reachable part
of the) metric space. Distribution refers to the placement of points in the metric space;
the points should be as far away from each other as possible to have an even distribution



60 4.4. Complexity Control

across the space. We use this as a heuristic when reducing sets.

The goal is to form an m-point subset C,,, of an n-point Pareto set C with the best spread
and distribution possible. A number of approaches are described in the literature [Morse
1980, Rosenman and Gero 1985, Zitzler and Thiele 1999], which are based on data
clustering: based on some criteria, m clusters of points are formed and per cluster, one
representative point is chosen. Since speed is of utmost importance for an implementation
on sensor nodes, we use a simpler method with a random component (see below). We
first define the problem as follows.

Definition 4.4 (Distribution Factor).

- 4.
N(Cm) = _ min d(@, ), (+.7)

where d(cy, ¢1) is the distance between configurations ¢y and ¢, for which we use the
average of the normalised differences per quantity:

k=1 _
60761 ;; Co Qz C)z)|7 (48)

7,max

with k the number of quantities, (Q;) the value of configuration ¢ for quantitiy Q;, and
Qi max the largest value of quantity @); over all configurations in C.

We are looking for the m-point subset Cy, that has the largest distribution factor and
use this as our reduced configuration set. This set has the best distribution and typically
also the best spread (intuitively, the best distribution can be achieved if the whole space is
used). Note the differences with Definition 2.3: C,, is not defined as the m-point subset
with the smallest quality loss compared to C. We are only interested in quality loss at
the network level; reduction is typically used at lower levels, and there is no clear relation
between the quality loss at various levels. We therefore choose to apply the commonly
used distribution-based way of reduction.

To find C,,, we could simply try all m-point combinations of points from C and
determine 7(C,,). This approach takes O((") - (). More efficient exact algorithms
might be possible, but this is left for future work. For our purpose it seems to be sufficient to
use an approximated, but much faster way of computing C,,. We suggest Algorithm 4.7,
which runs in O(n?). It first determines the distances between all pairs of points in C
according to distance metric d in Definition 4.4. It then repeatedly removes one of the
points (randomly chosen) in the pair with the shortest distance until m points remain. See
Figure 4.7 for an example. Section 4.6.5 contains results on the effects of limiting the size
of the product set.
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Figure 4.7: The Pareto set above contains seven configurations, of which we want to keep only four.

Algorithm 4.7 is a heuristic algorithm that attempls to remove points, such that the remaining configuration
set has a good spread and distribution. The algorithm starts by building a table that contains all pairs of
points with the distances according to (4.8), and sorting this table by ascending distance (lefi-most table).

Subsequently, configurations are removed in rounds, until the desired number remains. In each round, one
of the points in the pair with the shortest distance is chosen (randomly) and removed. Then all table entries
containing the removed configuration are erased as well. In the example above, configurations, B, D, and
F are consecutively removed. The resulting distribution_factor m is equal to 0.25.
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Algorithm 4.7: Computing a well-distributed k-point subset of C

1 function Reduce((C,k):

2 allocate 3-column table
3 for each ¢p,c; €C:
4 add row d(Co,C1),C0,C1 to the table

o

sort rows of table by ascending distance

6 while |C| > k:

7 r < first row of the table

8 randomly choose a ¢ from the configuration pair in r
9 remove all rows in the table containing ¢

10 C —C\{c}

11 return C

4.5 Multiple Tasks

The problem description in Chapter 3 targets the configuration of a WSN for a single
task. It is already possible with the current method to analyse heterogeneous networks, in
which any node may be different. Each (type of) node needs its own parameter space Sp;
and model to map parameters to cluster metrics. At the cluster and task levels, however,
all metrics need to be the same, which makes sense if all nodes are working together to
perform a single task.

In some cases it is even possible to configure a network for multiple tasks running at
the same time, using the same method. For this to work, it is needed that both tasks share
a common routing tree, and that the cluster/task metrics of all tasks are merged into a
single metric space. We show an example of this below.

While using a shared configuration space for multiple tasks is useful for relatively static
applications, an interesting next step would be to allow any combination of tasks to share
a WSN. Ideally, we would analyse each task separately, and then select a feasible Pareto
point for each task, taking into account the sharing of resources. This is a challenging
topic that we do not cover in depth in this thesis, but leave for future work. We do sketch
a possible solution in this section.

4.5.1 Shared Configuration Space

As an example, we study a network running both SM and TT at the same time. We
have three node types: nodes that do either SM or T, and nodes that do both. The
network can contain any distribution and any number of these node types. One practical
scenario to use this could be a disaster scene in which we constantly need to observe
the temperature across the region to be aware of fire, while at the same time we want
to track people walking around. We may specify that the tracking information needs to
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Table 4.2: Metrics for combined SM/TT clusters

Metric Task
Information Completeness SM
Information Completeness TT
Reporting Rate SM
Detection Speed TT
Lifetime SM/TT
Coverage Degree SM
Coverage Degree TT

Output Traffic (additional metric) SM/TT

be more fine-grained than the temperature mapping task, and hence we could deploy a
large number of T'T nodes plus a smaller number of SM+TT nodes (assuming that using
combined nodes is more cost effective than using separate SM nodes).

We let both tasks share the same routing tree, which means that T'T nodes also relay
traffic for the SM task and vice versa. We assume that SM and T'T need different sensors,
so the combined SM+TT nodes need to have two sensors, and hence two sample-rate
parameters. It is therefore needed to create a new node-level model (mapping functions)
for the combined SM+TT nodes. The quality metrics in this model are the union of the
metrics of the SM and TT models. Further, a new cluster model is needed. Note that
for the cluster method to work, all clusters need to have the same metrics. And since a
cluster can now have both the SM and T'T tasks, we need the quality metrics for both
tasks incorporated in the configuration space; see Table 4.2 for an overview of the metrics.
Note that some metrics are shared by both tasks, while others are not. For example, we
are interested in the individual coverage of the tasks, but we define a shared lifetime metric
because both tasks share the same network.

The mapping functions can be easily derived from the functions in Table 4.1. However,
they do depend on the type of the root node of the cluster. For instance, if the root is an
SM node, it only forwards TT traffic and it does not add a new detection-delay term.
Therefore, (4.4c) will just be

sz, { (54 2) |

There are similar considerations for the other metrics. Most importantly, all mapping
functions are still monotone, so the cluster algorithm will return all Pareto-optimal con-
figurations.

4.5.2 Decoupled Task Optimisation

It is interesting to consider a WSN as a platform on which multiple tasks can run simulta-
neously, while sharing the platform’s resources, especially if one would allow each task to
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have its own sink node and routing tree. All tasks may be known in advance (at configura-
tion time), or could be started and terminated by the user while the network is operating
and running other tasks. In such a scenario, it is convenient to be able to analyse tasks
separately from one another, and then combine the per-task results. Phases 1 to 3 of our
current analysis method deliver a complete set of feasible Pareto-optimal configurations
for a single task, representing all potentially suitable trade-offs. In phase 4, the selection
phase, a choice is made for one of these points. If we have the Pareto sets for all tasks that
should run on the WSN, we may turn the selection phase into a multi-task selection phase,
in which a feasible configuration for each tasks needs to be selected. Since the platform
resources are shared by all tasks, the resource metrics and constraints play a major role in
this selection phase.

The problem sketched here resembles a Multi-Dimensional Multiple-Choice Knap-
sack Problem (MMKP) [Akbar et al. 2001, Hiremath 2008, Ykman-Couvreur et al. 2006],
avariant of the 0—1 Knapsack Problem: multiple choice means that each task has a choice of
multiple Pareto points, and multi dimensional refers to the multiple resources and constraints.
A MMKP is generally specified as follows.

Maximise
m T,
Z = Zzpiﬂ?m (4.9)
i=1 j=1
subject to
m n;
ZZwijkxij < ck, ke{l,....l}, (4.10)
i=1 j=1
i
> a=1, ie{l,...,m}, (4.11)
j=1
zy; € {0,1}, ie{l,....m}, je{l,...,n;}. (4.12)

In this formulation, there are m item classes (task configuration sets), each having n;
items (configurations), and ! resources. Each item j of class 4 has a non-negative value
Dij; (a quality-metric vector should be mapped to a single value), and requires resources
wij = (Wij1,Wej2,- - ., w;i;). The resource constraints are captured in a vector ¢ =
(c1,¢2,...,c) of upper bounds. A variable x;; can be either 0 or 1, reflecting whether
the corresponding item is picked or not. Values and resources are additive. Exactly
one item from each class is selected to maximise the total value, subject to the resource
constraints. The MMKP is NP-hard.

The problem is especially challenging as resources appear at the node level, and their
number therefore depends on the number of nodes. Also, communication bandwidth is a
shared resource in some sense (for neighbouring nodes) and a distributed resource in some
other sense (nodes far apart); how to model this? Furthermore, resource metrics should
no longer be hidden or abstracted from after matching with the constraints, such that the



4. QoS Optimisation 65

Pareto sets contain trade-offs between quality and resource metrics, instead of between
quality metrics alone, which potentially leads to a very large number of Pareto points.
The MMKP formulation treats all parameters — or the configurations of various tasks —
as independent. In the WSN case, parameters may be shared between multiple tasks, and
should therefore match in the configurations of different tasks. This consistency constraint
potentially alleviated the complexity of the MMKEP, as it reduces the configuration space.
A potential solution to the MMKP is very similar to the cluster algorithm. The m items
in the problem description may be combined incrementally, while applying constraints
and minimising in each step. The incremental mapping functions (additions) are trivial
and monotone. Also the reduction technique from Section 4.4 can be exploited to trade
quality for complexity. The consistency constraint (WSN tasks are not independent)
can be incorporated by the join operator of Pareto algebra [Geilen et al. 2007], which
combines a free-product and a constraint to match quantities in two configuration sets
(similar to the join function in relational databases). Such an approach, in the domain of
chip-multiprocessors, has been published by Shojaei et al. [2009]. Further exploring this

approach, or deriving useful heuristics, is an interesting direction for future work.

4.6 Experiments

We implemented Algorithm 4.4 and ran it for networks of different sizes, for both the
Spatial Mapping and Target Tracking models as given in Section 3.2. The computations
intended for centralised processing were implemented in C++ (with our Pareto-algebra
library [Geilen and Basten 2007]) and carried out on a laptop with Intel Core 2 Duo
processor (using only one core) at 2.4 GHz and 2 GB RAM. These results can easily be
scaled to other platforms. To assess the performance of the distributed algorithms on real
sensor nodes, we gathered profiling data from an implementation in TinyOS [Levis 2006]
on a TelosB sensor node [Crossbow Technology 2007] (see Section 4.6.4), and used this
information in simulations of a whole WSN in the OMNeT++ simulator [Varga 2008].
The simulations allow the loss of packets with a probability depending on the distance
between sender and receiver, and due to collisions. We used CSMA-based medium-access
control, and Automatic Repeat Request (ARQ)) was implemented where needed to achieve
reliable communication.

For each network size, we randomly distributed sensor nodes in a square area. To
ensure an even distribution across the area, we placed the nodes with a certain vari-
ance around fixed grid points. While scaling the number of nodes, the area was scaled
accordingly, such that the node density was equal for all networks. For each network,
the transmission range was set to 20 m, and a routing tree was created. To ensure a
fair comparison between the results for all networks — algorithm complexity depends on
node degree — we only used SPSTs in which each node has at most three immediate
child nodes. See Chapter 5 for details on how to construct such trees. We first set the
quantities for the node-level parameters as follows: TzPower = {0, —5,—10} (dBm),
SampleRate = {0.5,0.3,0.1} (Hz), DutyCycle = {0.2,0.4,0.6}. Thisleads to 33 = 27

possible configurations per node. Subsequently, we did the same tests for just 8 configu-



66 4.6. Experiments

rations per node, by omitting the last parameter value in each quantity. To achieve some
robustness in the measured run times and configuration counts, for each network size and
number of configurations, we analysed 100 different networks.

4.6.1 Run Time and Number of Configurations

To gain insight in the scalability of Algorithm 4.4, we recorded the size of the product set
(ICorod|) in each step, as well as the run time, based on a centralised (sequential) execution.
Constraints were not used in these experiments; the goal was to find all Pareto points. It
turned out that the maximum size of Cproq (over all steps), the number of configurations
simultaneously considered, stays limited, even when the network size increases. For the
tests with 8 configurations per node, this maximum was 4, 752 (see Figure 4.8). Tor the case
of 27 configurations per node, |Cprod| increased to about 234.4 - 103. Moreover, judging
from Figure 4.8, the average run time of the algorithm increases roughly proportionally
with the number of nodes in all scenarios, which is good considering that the underlying
configuration space grows exponentially. Therefore, we may conclude that the algorithm
is very well scalable and thus suitable for the configuration of a WSN. For example, for the
900-node networks, the T'T scenario, and 27 configurations per node, the algorithm took
on average 20.2 seconds to complete, while the total number of possible configurations
is 27999, The resulting Pareto set for one of these networks is given in Table 4.3. There
are 9 Pareto-optimal configurations, and each of these solutions has a corresponding set
of parameter values for each node. We see that there are clear trade-offs between most
quality metrics.

4.6.2 Memory Usage

Further, we recorded the average memory usage (over all steps) of the cluster algorithm,
in the same experiments as above. Figure 4.9 shows the difference in memory usage
between Algorithm 4.3 and Algorithm 4.4. It is clear that the average memory usage
of the optimised implementation is nearly independent of the network size, while the
non-optimised implementation needs more memory for larger networks.

4.6.3 Comparison with a Genetic Algorithm

We also explored the configuration space of the example network of Table 4.3 via the
genetic algorithm SPEA [Zitzler and Thiele 1999]. A WSN configuration is represented
by an individual in the genetic algorithm, that has one chromosome (the parameter vector)
made up of genes (parameter values), and a fenotype (the metric vector). SPEA uses two
sets of individuals (configuration sets): the population P and the non-dominated set P’.
Algorithm 4.8 shows a high-level overview of the algorithm. We use a random initial
population P inline 1. Lines 3 and 4 take the Pareto points from the previous iteration as
the set P’. The prune statement in line 5 is similar our reduction algorithm in Section 4.4:
it reduces a Pareto set to a maximum size by removing points. The fitness function of
SPEA in line 6 assigns a strength (or fitness) to each individual, based on the number of
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Figure 4.8: Run time and number of configurations. For increasing network size, the run time (a and b)
does not grow more than linearly for both the SM (circle markers) and T'T (cross markers) scenarios and
two different sizes of the parameter space. The reason for this linear growth is that the maximum number
of simultaneously considered configurations at any clustering step (|Cprodl) stays limited (¢ and d).

Table 4.3: Analysis results (Pareto points) for 900-node example network.

Information Completeness  Detection Speed — Lifetime ~ Coverage Degree

I¢ (%) 5¢(L.10%) T¢ (h) ce
84 41 3481 0.2
63 41 3773 0.2
2.0 41 4073 0.2
78 41 1821 0.4
59 41 1970 0.4
2.0 41 2123 0.4
78 41 1214 0.6
59 41 1313 0.6

2.0 41 1415 0.6
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Algorithm 4.8: Genetic algorithm (SPEA)

| generate initial population P and empty P’

2 repeat:

3 copy non-dominated points from P to P’

4 minimise P’

5 prune P’ to a maximum size, if needed

6 calculate the fitness of individuals in P and P’

7 select individuals from PUP’ up to the population size
8 apply crossover and mutation

9 break if stop criterion is satisfied

Table 4.4: Settings used for the genelic algorithm

Setting Value
Population size 200
Maximum size of P’ 20

Crossover probability 0.5
Mutation probability 0.2

individuals it dominates (for P’), or the strengths of dominating individuals (for P). Line 7
selects points from P and P’ by a game based on the strength values. Finally, crossover
(mixing two chromosomes into a new one) and mutation (changing some genes randomly)
is applied to the remaining individuals. The algorithm’s main loop is repeated until the
stop criterion in line 9 is satisfied. The settings that we used in our experiments are
summarised in Table 4.4. The crossover probability of 0.5 means that two chromosomes
are equally mixed into a new one (the genes from either chromosome are equally likely to
appear in the new chromosome).

We ran this algorithm on the example network without a stop criterion. Even after
running for three days, it returned 6 configurations (among others (0.8, 12, 3869, 0.2)),
which were all strictly dominated by at least one configuration in Table 4.3. It turns out
that configurations with the best metric values are so rare and isolated in the total space
of size 27990 that the genetic algorithm is doomed to fail: the probability of finding the
Pareto points goes to zero. The best metric values found were 8.4, 12, 3869 and 0.2 (order
as in the table), which 1s 90%, 70%, 5% and 67% lower than the best values found by
our method. This result confirms the expected result that a search space of 27°% is too
large to search efficiently and accurately via a randomised approach, and it emphasises

the strength of our exact algebraic approach.
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4.6.4 Distributed QoS Optimisation

The experimental results above are all for a centralised execution of Algorithm 4.4.
However, Section 4.3 shows that the algorithm can also be run directly on the sensor
network in a distributed fashion. For these experiments, we use profiling information from
an implementation in TinyOS for the target-tracking task. We executed this program
on a TelosB sensor node, and measured the run time of one cluster step for various sizes
of the product set (|Cprodl). The run time is to a large extent determined by |Cprod,
since it represents the number of configurations that need to be analysed. Figure 4.10
shows the results: it appears that the run time has an approximately linear relation with
|Cprodl, with a slope of 0.0234 s per configuration in Cproq. TelosB nodes have very
basic processing capabilities: they have a TT MSP430 microcontroller (a 16-bit RISC
processor) that runs at 8 MHz, has 10 kB of the data memory (RAM), 48 kB program
flash memory, and a transceiver with a bitrate of 250 kbps for communication. Our
TinyOS implementation uses about 18.3 kB of the program memory and 4.6 kB RAM
when targeted at 27 configurations per node, a node degree of at most three, and child
configuration sets of size eight.

We used simulations to find the run time of the cluster-based QoS-optimisation al-
gorithm on a whole WSN; including communication overhead, based on this profiling
information for TelosB nodes. The simulated nodes run the same program as the real
nodes, and the simulated processing time is taken as 0.0234 - |Cpmd| s. Further, the
experiments were set up in the same way as for the centralised algorithm. We did tests
for various network sizes (up to 1,225 nodes); see Figure 4.11 for the resulting run times.
The run time is mostly due to the processing time at the nodes; the communication
overhead was negligible. For comparison, this figure also shows the timing results for the
centralised algorithm. Note that the results for the centralised algorithm in Figure 4.11
are for execution on a relatively fast laptop, while the distributed algorithm was based
on TelosB sensor nodes. It turns out that it takes about 8 minutes and 6 seconds on
average to do QoS analysis for a 900-node TelosB network with the distributed method,
compared to 20 s for the centralised implementation on a powerful laptop. Given the very
limited processing power of TelosB nodes, we believe this is reasonable, especially when
more powerful nodes are available. Furthermore, the configuration time can be further
decreased quite a bit, while giving up a little quality, by the reduction method introduced
in Section 4.4, as shown in the next sub-section. And finally, the scalability benefit of
parallelisation is visible in this graph: the trend is clearly sub-linear (refer to Equation 4.6).

4.6.5 Complexity Control

Table 4.5 shows the results of experiments with reduction of Pareto sets, for the distributed
QoS-optimisation algorithm running on TelosB sensor nodes. The set-up is the same as
before. Varied is the maximum allowed size of the product set. When the limit is
exceeded, the configuration sets are reduced by removing configurations as explained in
Section 4.4. Reduction is done by the heuristic approach (Algorithm 4.7). The first column
in Table 4.5 indicates the maximum allowed size of the product set. The next columns
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Table 4.5: Pareto-set Reduction (900-node networks)
Max. [Cprod| Run time (s) Quality loss Reduction (%)

00 485.97 0 0
4,000 392.41 0.004 0.1
2,000 355.24 0.011 0.2
1,000 309.20 0.032 1.3

750 281.35 0.065 2.4
500 219.77 0.149 4.7
250 125.05 0.241 10.0

Table 4.6: Experimental results for multiple tasks sharing a single configuration space.
SM TT SM+TT Runtime  Pareto points

(o) (%) (%) (s) ' ’
20 20 60 17 16 8
33 33 33 19 18 8
40 40 20 20 19 9
45 45 10 21 19 9
50 50 0 37 19 11
0 90 10 15 15 8
0 100 13 13 8
100 0 0 11 9 7
100 0 24 13 9

Lnumber of Pareto points for the whole network

2 average number of Pareto points over all clusters

show the resulting QoS-optimisation run time, the quality loss L (as in Definition 2.3),
and the fraction of nodes that experienced reduction.

We see in the table that the gain in run time is indeed significant, and improves
consistently when the threshold on the product-set size is reduced, up to about four times
faster for 900-node networks with a threshold of 250. At the same time, the quality loss
increases. Since the gain in run time is large, Pareto-set reduction with the heuristic
method appears to be useful if we could tolerate some quality loss. Suppose we tolerate
a loss of about 6.5%, we would use a threshold of 750 and arrive at an average run time
of 281.35 s, an improvement of about 42%. In this case, about 2.4% of the nodes have
applied reduction. Figure 4.11 contains run-time results for this threshold, for various
network sizes.
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4.6.6 Multiple Tasks

Finally, we tested Algorithm 4.4 for different combinations of the three node types in one
network, sharing a single configuration space (see Section 4.5). The set-up was the same as
above (centralised execution, same 900-node networks and 27 configurations). The results
are summarised in Table 4.6. Note that the run-times vary quite a bit: in some cases the
run times are shorter than in the homogeneous case, sometimes longer. The differences
arise from a varying number of Pareto points, as seen in the last two columns of Table 4.6.
These numbers are quite unpredictable, since they depend on many factors. The number
of Pareto points may change a lot even when small changes to model constants are made.
Most importantly, also in these multi-task networks, the run-times do not explode, but
remain very short given the complexity of the problem.

4.7 Summary

The algorithms introduced in this chapter belong to the QoS-optimisation phase of the
configuration process (phase 3), which is executed after the network has been initialised
and the routing tree has been constructed. In this phase, which is the heart of the
configuration method, the Pareto-optimal WSN configurations are determined, using the
foundation laid in Chapter 3.

Since the configuration space grows exponentially with the size of the network (the
number of nodes), trying all possible combinations of parameter values (parameter vectors)
is not scalable. The QoS optimiser introduced in this chapter takes advantage of the
hierarchical cluster structure of our WSN models. The optimiser starts at the lowest level,
in which each cluster contains just a single node, and determines the Pareto points of
these clusters. Subsequently, it incrementally forms larger clusters, while in each step non-
optimal configurations are removed. If the number of Pareto-optimal configurations that
remains after each step is relatively small, this algorithm is very efficient. The experimental
evaluation shows that this is indeed the case for the two WSN tasks introduced earlier.
Finding the 9 Pareto points of a 900-node network in the example set-up with 2790
potential solutions took a mere 20.2 seconds on a laptop. Moreover, the experiments
show a linear relationship between the network size and the algorithm’s run time.

We specify conditions for which the algorithm correctly finds all Pareto points of a
WSN task, and show that our target-tracking and spatial-mapping tasks comply with these
requirements. The order in which clusters are combined appears to be of paramount
importance to the correctness. In each step, a leaf cluster must be formed, which means
that for each node in the new cluster, also all of its descendants must be in the cluster.
Hence, a correct cluster strategy starts at the leaf nodes and progresses towards the root.

We further present a number of techniques to implement the algorithm in a time-
and memory-efficient manner. The complexity of a cluster step is reduced, firstly by
interleaving several Pareto-algebra operations such that dominated configurations can be
removed immediately when found, and secondly by the indexing of used configurations
from the inner clusters instead of working with their full parameter vectors. Besides that,
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quantisation makes use of the fact that the metrics computed by the mapping functions
have limited accuracy by ignoring insignificant differences between metric values.

Owing to its incremental leaf-to-root nature, and the above implementation optimi-
sations, it is straightforward to distribute the cluster algorithm. The algorithm is able to
execute even on a network of very basic sensor nodes, and finish the 900-node test in
about eight minutes.

If the algorithm is still not fast enough, and one is willing to sacrifice some of the
task’s quality, Pareto-set reduction can be used to set the quality/cost meta trade-off
to any desired point. Especially when running the algorithm on resource-constrained
sensor networks, restricting the maximum size of the Pareto sets is useful, if not necessary.
Simulations show that the run time of algorithm on sensor nodes can be reduced by more
than three minutes, if 6.5% of the quality is forfeited.

Finally, we give hints on how to apply this method to QoS optimisation for multi-
ple tasks that simultaneously run on a single (heterogeneous) WSN, and which are the
difficulties that need to be overcome. This is an interesting direction for future work.

The main difference with our approach and randomised multi-objective optimisers
such as genetic algorithms, is that we guarantee to find a/l Pareto points for a given model.
An experiment also shows the huge speed difference our algorithm has over a genetic
algorithm, owing to the smart way of searching through the solution space.



74 4.7. Summary

600

500

400

300

200

centralised run time (s)
distributed run time (s)

100

0 200 400 600 800 1000 1200 14000
network size

Figure 4.11: Run time of QoS optimisation: centralised (solid lines), distributed (dashed lines) and
distributed reduced with a threshold of 750 (dashed lines, o-markers). Note that the scales for centralised
and distributed are different.



Chapter 5

Routing-Tree Construction

The WSN configuration process introduced in this thesis focuses on networks that employ
a routing tree for communication between sensors and the sink. The construction of
the routing tree has been factored out of the QoS optimisation phase into a separate
phase, such that cluster-based QoS analysis can be performed, which is efficient and
scalable. This chapter covers routing-tree construction, phase 2 of the six configuration
phases defined in Section 3.4, while Chapter 4 discussed all other phases of the static
configuration problem (1, 3, 4, and 5; an integrated experimental evaluation follows in
this chapter), and Chapter 6 introduces techniques to tackle run-time dynamism.

The routing tree has an enormous impact on not only the quality metrics of typi-
cal sensor-network tasks, but also on the complexity of the QoS optimiser. Important
properties of a routing tree are the average path length and the maximum node degree.
Ideally, both the average path length and the maximum node degree would be as low as
possible. In Section 5.1, we discuss the relevance of these properties. Sections 5.2 and 5.3
introduce centralised algorithms to construct routing trees having various trade-offs be-
tween path length and node degree. Section 5.4 gives similar, but distributed algorithms
that run directly on the WSN and go hand-in-hand with the distributed QoS optimiser
of Section 4.3. Section 5.5 provides an experimental evaluation of the tree algorithms, as
well as an overview of all static configuration phases as covered il this point.

5.1 Approach

For a given network, many different (rooted) spanning trees can usually be constructed.
For every spanning tree, the attainable quality-metric values (and thus the set of Pareto-
optimal configurations) could be different, and also the configuration time varies. As
concluded in Section 4.1.5, it is beneficial for the run time of the QoS-analysis algorithm
to have a routing tree in which the node degrees (number of child nodes) are as low
as possible. However, minimisation of node degrees when finding a spanning tree of a
graph generally conflicts with the desire to have short paths, which gives rise to another
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trade-off to be taken into account. There are quality metrics in the example models of
Section 3.2, such as defection speed (the inverse of the maximum event-to-sink delay), that
are generally better when paths in the tree are shorter. On the other hand, more-hop
paths can also have a better end-to-end reliability, if the per-hop distances (in meters) are
smaller. Further, reducing the node degree has a positive effect of load balancing, as the
traffic is more evenly distributed among the nodes. This improves the network lifetime,
which is defined as the minimum lifetime over all nodes. The trade-off to be made is now
not only between quality metrics, but also at a higher level between quality metrics and
configuration time: a meta trade-off between the objectives specified in Section 3.3.

Intuitively, a routing tree that is Pareto optimal in the sense of the above-mentioned
trade-off between quality and configuration time, is a spanning tree with the property
that there is no other spanning tree that has an equal or better configuration time, and
an equal or better resulting quality (in terms of Definition 2.4) at the same time. We
therefore compare the configuration time and the sets of Pareto points belonging to
different spanning trees, and select the best trees.

Because an exhaustive exploration of all spanning trees is infeasible, we consider only
spanning trees that have good trade-offs between node degree and path length. We hereby
assume that the quality of the task improves if the average path length is reduced while the
maximum degree remains constant, and vice versa. We start with shortest-path spanning
trees (SPSTs), as often done in the literature on sensor networks, and continue with trees
that have lower node degrees, but also longer paths. We further show how to make our
tree-construction algorithms distributed.

As said in Section 3.1, we allow all types of node deployments (grid, random) as
long as it is possible to form a fully-connected network. However, in dense networks more
different spanning trees are possible, which provides more freedom for the algorithms, and
hence better results. We do assume that all nodes have similar communication capabilities
and that all links are symmetric. In the algorithms in this chapter, we consider a link to
be present between two nodes, if they are able to communicate with each other using a
medium transmission-power level. This leaves enough freedom for the QoS optimiser
to adjust the power levels to either save energy or improve the link’s reliability, while the
network is dense enough for the tree algorithms to be not too restricted.

5.2 Low-Degree Shortest-Path Spanning Trees

There are usually multiple SPSTs possible in a network with a given root. Let §(¢) denote
the degree of node 7. The first goal as follows.

Definition 5.1 (Minimum-Degree Shortest-Path Spanning-Tree Problem). Given a graph
G = (V,E) and root node r, create a shortest-path spanning tree with root 7 that
minimises max;ey 0(%).

A related and well-known problem in graph theory is that of constructing a minimum-
degree spanning tree (MDST). A MDST for a graph is a spanning tree with the smallest
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(a) non-optimised:

Omax = 4,0sq = 1.3, himax = 4
D = 0,t = 0.56 s (centralised),
t = 715 s (distributed)

(c) optimised with A = 2 (centr.):
Omax = 2,654 = 0.7, hmax =5
D =0.002,t =0.05s

(b) optimised SPST (centralised):
Omax = 4,054 = 1.1, Amax = 4
D = —0.001,t = 0.28s

(d) fully optimised (centralised):
dmax = 2, 0sq = 0.4, hmax = 9
D =0.012,t =0.03s

(e) optimised SPST (distributed):
Omax =4, 6sa = 1.1, hmax = 4
D = —-0.001,t = 4305

() fully optimised (distributed):
Omax = 2, 6sa = 0.9, hmax = 4
D =0.001,t =233s

Figure 5.1: Examples of trees generated by the various algorithms (Spax: maximum node degree, dsq:
standard deviation of the node degree, hmax: maximum hop count, D: quality difference with non-
optimised case, t: run time of tree construction plus QoS optimisation), see Section 5.5 for the experimental

set-up.
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Algorithm 5.1: SPST construction with balanced node degrees. The function ConstructTree is
called with the graph G and a root node v. The operator arg min is defined lo return a set of minimisers
as i (5.1)

I function ContructTree(G,r):

2 T — BFS(G,r)

3 repeat:

4 Omax < Max;ev\ {r} 0(0)

5 S—{ieV\{r}|o6(i) > Omax — 1}
6 n <0

7 for each i€ S:

8 n < n + Improve(G,T,1)
9 if n=0:

10 return 7T

12 function Improve(G,T,3):

13 {0
14 for each child j of ¢:
15 C «— {z € V|  neighbour of j in G, h(z) = h(i)
and §(z) < 0(i) — 2}
16 if C#9:
17 change parent of j in 7T to one in argminmec 6(m)
18 L—1+1
19 return /£

maximum node degree, without considering path length or any other costs, and does not
have a designated root node.

Definition 5.2 (Minimum-Degree Spanning-Tree Problem). Given a graph G = (V, E),
create a spanning tree that minimises max;ey 0(%).

This problem is known to be NP-hard. Firer and Raghavachari [1994] provide an algo-
rithm that yields an approximation of the MDST for undirected graphs. This algorithm
is not directly usable for our problem, because of our shortest path requirement and
the fact that the algorithm does not take a fixed root node into account. Krishnan and
Raghavachari [2001] give a similar algorithm for directed graphs with a specified root
node, called DMDST. This algorithm still does not optimise for path length, but it can be
adapted to serve our purpose.
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DMDST starts by constructing an arbitrary spanning tree. Then, the algorithm finds
the set S of nodes with the highest node degrees and tries to lower these one by one. If
at least one of the nodes in S could be improved, the process starts again; otherwise the
algorithm terminates. As the algorithm always improves a node in each step, or halts, it
is guaranteed that the algorithm terminates. Improving a node 7 means finding different
routes to the root for one or more of #’s children, such that 7’s degree becomes lower, while
other node degrees do not become larger than ¢’s new degree. This effectively balances
the node degrees in the tree.

Our adapted algorithm is given as Algorithm 5.1. The function ContructTree is
called with a directed graph G = (V, E) with V a set of n nodes (equal to N in our
case) and E the set of m links (there is a link from node A to node B if B is within the
communication range of A), and root node 7. In the pseudo code, 6(¢) is the degree of
node ¢, and h(i) is the distance in hops (hop count) of node i to the root. The initial
tree 1s an SPST (constructed by a Breadth-First Search (BFS) [Cormen et al. 2001]), and
every improvement step maintains the shortest-path property. This means that if a node
Jj is appointed another parent node, the new parent needs to have the same distance to
the root as the old one. This rule also ensures that the transformation does not introduce
loops and thus maintains a tree: the new parent can never be a descendant of j, since
it is one hop closer to the root than j. Moreover, a node only changes its parent, if the
new parent has a degree at least two less than the current parent, such that the degrees
of both parents become more balanced. Note that the degree of the root node cannot be
reduced in an SPST. We therefore exclude the root in lines 4 and 5 of the algorithm; it
is not meaningful in line 5, and leaving it in in line 4 would lead to a potentially earlier
termination of the algorithm (and a less balanced tree), as nodes with degrees lower than
the root are not optimised. Line 5 selects the nodes with large node degrees (dmax and
Omax — 1) for balancing,

The function arg min in line 17 1s defined to return a set of minimisers, as follows for
a function f over a domain X’

. . /
argmin f(z) = {z € X | f(z) = min f(2")} (5-1)
An example is given in Figure 5.1. Compare the graphs in Figures 5.1(a) and 5.1(b),
respectively showing the non-optimised and optimised trees with the shortest-path con-
straint. We see two nodes with degree 4 in the non-optimised tree: nodes 0 and 4. In the
optimised tree, two of node 4’s children have been moved to node 5 to eliminate the high
degree. Furthermore, the degree of node 9 has been lowered from 2 to 1. However, the
root’s degree could not be reduced due to the shortest path constraint. If we execute the
QoS-optimisation algorithm with 27 configurations per node as in Section 4.6, the quality
difference D between the resulting Pareto sets of the non-optimised and optimised tree
arrives at -0.001 (i.e. -0.1%). Thus, the SPST-optimised tree gives slightly better results.
More significant is the gain in run time (tree construction plus QoS optimisation, which
goes down from 0.56 s to 0.28 s. Thus, it is clear that degree optimisation is useful.
The complexity of Algorithm 5.1 depends on the number of improvement steps and
the complexity of the improvement function. The latter is a loop over all children of a node



80 5.3. Node-Degree and Path-Length Trade-offs

1, in which each iteration takes constant time. Krishnan and Raghavachari [2001] showed
by experiment that the number of improvement steps grows approximately linearly with
the number of nodes in the network. Thus, if dpax is the largest node degree in the
initial tree constructed by BFS, the practical time complexity of the degree-improvement
is O(dmax - ). Furthermore, the initial BFS runs in O(n - m).

5.3 Node-Degree and Path-Length Trade-offs

Reducing the node degree even more can only be done by making paths longer. Since
there are generally few nodes with a very high node degree, it is expected that not many
paths need to be enlarged to attain a significant improvement. We wish to solve the
following problem.

Definition 5.3 (Degree-Constrained Shortest-Path Spanning Tree Problem). Given a graph
G = (V, E), root node 7 and degree target A, create a spanning tree with root 7 that

minimises
1
— h(z 5.
77 2 R, (5.2)
%
subject to
0(i) <A, forallieV. (5.3)

Since this MDST problem is NP-hard, also this problem is intractable.

DMDST is an algorithm that optimises for node degree as much as possible, so it
almost does what we need. The difference is that we do not need to optimise degrees
beyond a given degree target A, only path lengths. A simpler trade-off algorithm is
obtained by slightly altering Algorithm 5.1, and including the parameter A; the adapted
algorithm is given as Algorithm 5.2, and explaining in the remainder of this section.

In the trade-off algorithm, the hop-count condition in line 15 of Algorithm 5.1 is
removed to enable longer paths as well. Instead, we need another condition in line 15.
Since it is now possible that a candidate new parent in C' is a descendant of j, changing
to such a parent creates a loop. This needs to be verified by following the path from the
candidate parent to the root: if j is not on the path, no loop would be formed and the
parent can safely be chosen. As also the root’s degree can now be lowered, we remove the
exclusion of the root from lines 4 and 5. DMDST allows the new path from a node j to
the root to initially go through the sub-tree of j. This may lead to smaller node degrees
(and longer paths), but involves a BFS for each improvement step, and is therefore more
complex than our algorithm.

In line 17 we no longer pick the candidate parent with the lowest degree, since
optimising beyond degree A is not needed. The function ChooseParent is introduced,
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Algorithm 5.2: Tree construction with balanced node degrees; no shortest-path constraint. The function
ConstructTree is called with the graph G, root node , and a degree target A\ as its arguments. The
operator arg min is defined to return a set of minimisers as i (5.1).

1 function ContructTree(G,r,A):

2 T — BFS(G,r)

3 repeat:

4 Omax < max;cv (%)

5 S—{i €V |6()>0dmax —1 and (i) > A}
6 n<—0

7 for each i€ S:

8 n <« n + Improve(G,T,i,A)

9 if n=0:

10 return 7T’

12 function Improve(G,T,i,A):

13 {0

14 for each child j of «¢:

15 C «— {z € V| x neighbour of j in G, z no descendant of j and
0(x) <6(i) — 2}

16 if C#g:

17 change parent of j in 7" to ChooseParent (C,A)

18 L—1+1

19 break if (i) <A

20 return /

21

22 function ChooseParent(C,A):

23 S—{i|d@x) <A,ieC}
24 if S=9:
25 S «— argminiec 6(j)

26 return arbitrary element of argmin;cs h(t)
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which selects, from a set C, a parent that has a shortest path to the sink and a degree at
most A, or otherwise having the lowest degree available.

Finally, to establish control on the trade-off between path length and node degree, a
stop condition is built in: only nodes with a degree more than A are attempted to be
improved. This leads to the extra term 6(¢) > A in line 5 of Algorithm 5.2, in which
the sets of candidate nodes for optimisation is formed. Furthermore, the loop in the
Improve function should be stopped when (i) < A. Since a solution to the problem of
Definition 5.3 may not exist (and if it exists, we may not find it due to the intractability of
the problem), the algorithm may terminate without meeting constraint (5.3).

The impact of these changes can be seen in Figures 5.1(c) and 5.1(d). Compare
Figure 5.1(a) of the initial tree with Figure 5.1(c), in which all nodes with a degree more
than 2 are optimised (A = 2), regardless the path length. We see that now also the root’s
degree has been reduced, such that the largest node degree is lowered from 4 to 2, but
there are still four nodes with the maximum degree of 2. The degree improvement is at the
expense of an increase of one hop in the longest path. In the fully degree-optimised tree
in Figure 5.1(d), all nodes except the root have degree 0 or 1, but the longest path is now
9 hops long. The quality differences of the Pareto sets resulting from the non-optimised
tree, with the optimised tree with A = 2 and the fully-optimised tree respectively, amount
to 0.002 and 0.012, so now the results are slightly worse. On the other hand, the run time
of tree construction plus QoS optimisation is a lot lower: an improvement from 0.56 s to
0.05 s and 0.03 s. Here it seems that especially degree optimisation with A = 2 has a
very good trade-off between run time and quality.

5.4 Distributed Tree Optimisation

Since the degree-improvement steps in Algorithm 5.1 and Algorithm 5.2 use only infor-
mation from nodes in the neighbourhood of the node being improved, it is possible to use
a similar mechanism in a distributed degree-reduction algorithm. The main difference
is the selection of the node to be improved next, which is based on global knowledge
in the centralised algorithms. The use of global knowledge is infeasible in a distributed
algorithm. Furthermore, we need to take the unreliable nature of wireless communication
into account and design a robust algorithm.

A state diagram of the distributed algorithm is shown in Figure 5.2. Together with
Figure 4.6, this figure forms the state diagram for phases 1 through 5 of the distributed
configuration process. This program runs in each node, except the root, which starts
directly in the parent set state. A state change may occur upon reception of a message
from another node, or when a timer expires. These events may also trigger actions. State
changes and associated events and actions are drawn as arrows in the diagram. A node
should eventually have a single parent, and a number of children. Each node that is
within communication range and is not a parent or child is called a peer.

In the initial no parent state, a node does not have a parent, and is therefore not yet
admitted to the tree. Flooding from the root node, the distributed equivalent of a breadth-
first search, is used to set up the initial spanning tree. The root node initiates the process
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Flood msg received /
no add peer
parent set ParentDelay timer if not yet set

ParentDelay timeout /

choose parent from peers (Reduce Reply received [fail] or Stoplmprove timeout)
send Flood msg [still untried children] /
set DegreeDelay timer send Reduce Request to next child

Flood msg received /
add child or peer
parent Improve timeout /
set send Reduce Request to first child
set Stoplmprove timer

improving

DegreeDelay timeout /
set degree to number of children
if degree > A: set Improve timer
else: set Stable timer

Reduce Reply received [success] /

change child to peer; update degree

if degree > A: set Improve timer

else: set Stable timer
(Reduce Reply received [fail] or StopImprove timeout)
[all children tried] /

set Stable timer

degree
set

Reduce Request received /
send Parent Request to all peers
set StopFind timer

StopFind timeout /
pick new parent if available ﬁnding
send Reduce Reply
set Stable timer parent

Reduce Reply received
or StopCandidate timeout /
if success: change peer to child
update degree
set Stable timer

Parent Request received /

if Inprovement Rules 1 & 2 hold:
send Parent Reply

set StopCandidate timer

Parent Reply received /
store parent candidate

Stable timeout /
tree construction completed

candidate
parent

QoS

o

el
3
=
a
=3
o
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Figure 5.2: Dustributed tree construction, stale diagram. State transitions are triggered by events and/or
conditions as annolated at the arrow before the slash. An event can be due to an incoming message from
another node or a timer expiry. Actions at a transition are gien afier the slash. All events that are not
listed at a state are ignored. Tumers are local to a state; leaving a state implies resetting a timer.
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Figure 5.3: A degree-improvement step.

by broadcasting a Flood message. A Flood message contains the ID of the sender and its
parent, as well as its hop count. Upon receiving the first Flood message from a candidate
parent, a node waits for a short while to collect more messages from potential parents.
To this end, it sets the ParentDelay timer. This delay is used, because in a practical
network, the message that arrives first is not necessarily from the node with the shortest
hop count. Following the delay, it chooses a candidate with the smallest hop count to the
root as its parent, broadcasts a new Flood message, and enters the parent set state. This is
an intermediate state intended to detect the node’s children — and thus its degree — and
other peers by overhearing messages. Imperfect overhearing can be corrected by making
a parent acknowledge a new child, and the child retransmitting the message if needed.
The degree set state is reached after the DegreeDelay timer expires, and the neighbourhood
of the node is deemed to be stable. At nodes closer to the sink, this happens earlier than
further down the tree, but owing to the locality of the algorithm, this makes no difference.
This is the end of the flooding phase, and degree reduction commences.

The node-degree balancing scheme 1s initiated through a mechanism of timers. If
the degree of a node is higher than the degree target A, it sets the Improve timer with
a duration inversely proportional to the degree, and starts the improvement procedure
only after expiration of this timer. This ensures that high-degree nodes are improved first.
Time synchronisation is not needed in the network, because the algorithm uses completely
local handshakes between three nodes, as explained below. Such handshakes may happen
concurrently at any time and place in the network.

Refer to Figure 5.3 for the following explanation. Improvement starts with a Reduce
Request message from node A, which wants to reduce its degree after expiry of its Improve
timer, to node B, one of its children. This places node A in the improving state, and B
in the finding parent state. B will then attempt to find another parent node. It does so
by broadcasting a Parent Request message that its peers would receive. Both messages
contain the degree of A and its distance to the root. A peer C checks whether it is indeed
a suitable new parent by comparing its node degree and distance to the root with those
of the current parent A (see below for the precise conditions). If it is, C' answers with
a Parent Reply message to B, and changes to the candidate parent state. After a delay
during which other candidate parents may reply, B will change its parent to a candidate
parent according to the function ChooseParent of Algorithm 5.2, C' in this example. B
confirms the change to both A and C by sending a Reduce Reply message, such that they
could update their child and peer lists, and degree. After that, A may schedule another
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Improve timer if the degree is still higher than the threshold A. If B does not manage
to change its parent (a timeout occurs), node A repeats the procedure with another child
if possible, or gives up. Following this procedure, the three nodes return to the degree set
state. When entering this state with a sufficiently low degree, the Stable timer is started.
The tree-construction algorithm completes at a node when this timer expires without
interruption; the timer is reset when leaving the degree set state. At this point, the node’s
parent and children are fixed and QoS optimisation is started (see Chapter 4).

Due to message loss during the flooding phase, it is possible that some nodes are not
admitted to the tree. In dense networks —and WSNs are usually dense — the chances
of this happening are quite low, because each node has many potential parents, and
thus flooding has a lot of inherent redundancy. Additional measures can be taken to
ensure that nodes that missed all flooding messages still find a parent node. Handshaking
between A, B and C' is used to properly update the parent, child and peer data of all
nodes in the improvement phase, as visualised in the timing diagram of Figure 5.3 and the
state diagram of Figure 5.2. B’s confirmation to A and C' should be acknowledged, and
retransmitted if needed. If A or C still do not receive the confirmation, their estimation of
the degree would be incorrect. The consequence of this is that further degree-optimisation
may be incorrect, or oscillations occur (nodes switch parents indefinitely). The latter can
be avoided by setting a limit on the number of switches a node can make. An incorrect list
of children, however, never breaks the tree, which is defined only by the parent variable in
each node. As there are typically few nodes with high degrees (the average degree in a tree
is a constant), the cost of the algorithm stays limited. Finally, the correct behaviour of the
algorithm depends on properly set timer values. See Table 5.1 below in the experimental
section, for an overview of the timer values used in our experimental set-up.

As before, node C' can decide in two ways whether it is a suitable new parent,
depending on whether path length has a higher priority than node degree or not. Either
way, C’s degree should be at least two less than the degree of A:

Improvement rule 1.

5(C) < 6(A) —2 (5.4)

If an SPST is required, as before, the following additional rule applies, which ensures that
path lengths remain the same and no loops are introduced:

Improvement rule 2(a) (Shortest-path constrained).

h(C) = h(A) (5.5)

In the case without shortest-path constraints, the centralised Algorithm 5.2 ensures
that C'is not a descendant of B by following the path from C upwards, in order to prevent
loops from being formed. This is a relatively expensive operation in the distributed case,
as a lot of messages may be needed, and not entirely trustworthy because of the unreliable
wireless communication. We suggest a compromise that poses extra requirements on
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candidate parents based on the proposition below. Further, when the hop count of a
node changes, also the hop count of all its descendants in the tree changes. Updating the
distance state in each descendant would require a message to be propagated all the way
down to the leaves. For robustness and energy considerations, however, we choose to keep
the algorithm localised, and therefore do not update the hop-count variables. Only in the
loading phase, the hop counts are updated again for later use. The consequence is that
not all potential for degree reduction is used. Experiments in Section 5.5 show that our
approach still leads to a large improvement in node degree.

Proposition 5.1 (Loop-freeness). Let h(i) be the hop count of node i to the root in the initial tree;
h(2) is not updated when the tree is changed. We impose the following requirements on a candidate
parent C of a node B with current parent A:

1. h(C) < h(B)
2. h(C’s parent) < h(C)
As a result, loop-freeness is guaranteed.

Proof Requirement 1 ensures that the nodes on any path in the tree starting from the
root are ordered by ascending h. For example:

0 <=1 <=2 <=3 <-4 K-5 -6
h=0 h=1 h=1 h=2 h=2 h=2 h=3

A loop can only be formed if a node connects to a node further down on such path (a
descendant in the tree). Because of 1, a node cannot connect to a node with a higher
h. Hence, loops can only be formed when connecting to a node with the same h (node
3 connects to 5 in the example). Requirement 2 allows a node to only connect to the
first node with a specific value of h on a path, e.g. 0, 1, 3, or 6. This ensures that a
node B cannot connect to a node C' with the same h if C'is a descendant of B, and thus
eliminates the possibility of loops. 0

The requirements in Proposition 5.1 can be made a little looser, without changing the
reasoning in the proof, which leads to the following rule:

Improvement rule 2(b) (Unconstrained).

h(C) < h(B) or (h(C) = h(B) and h(C’s parent) < h(C)) (5.6)

This allows node 4 to connect to node 2 in the example of the proposition’s proof.

Proposition 5.2 (Tree property). An improvement step that follows rule 1 plus rule 2(a) (for an
SPST) or 2(b) (no path-length constraints) does not break an existing tree.
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Table 5.1: Timer values for distributed tree optimisation

Timer name Value (s)
ParentDelay 0.01
DegreeDelay 0.10
Improve 416
StopImprove 0.12
StopFind 0.05
StopCandidate 0.12
Stable 0.50

Proof A graphisa tree if every node (except the root) has exactly one parent node, and the
graph contains no loops. An improvement step may update the parent of a node B from
node A to C, if C' allows this, ensuring that B again has a valid parent. Improvement
rules 2(a) (trivial) and 2(b) (similar reasoning as in the proof of Proposition 5.1) ensure
loop-freeness in the SPST and non-SPST cases. O

In the example of Figure 5.1, the distributed algorithm with shortest path restriction
(Figure 5.1(e)) leads to a tree with maximum node degree dmax = 4, standard deviation
of the node degree dsq = 1.1, and maximum hop count Amyax = 4. The unrestricted
version (Figure 5.1(f)) arrives at dmax = 2, dsa = 0.9, and Amax = 4, which is similar to
the results of the centralised algorithm with A = 2. The quality differences between the
resulting Pareto sets from the non-optimised tree, and both optimised trees are -0.001 and
0.001 respectively. The run times of distributed tree construction plus distributed QoS
optimisation (see Section 4.3) improve from 715 s to 430 s and 233 s in the respective
cases.

5.5 Experiments

In this section we present experimental results on the various aspects of centralised and
distributed routing-tree creation. These experiments cover tree creation with and without
shortest-path constraints, and various values of A for the latter. The experiments were
set-up in the same way as in Section 4.6. The effect of reducing node degrees in a shortest-
path spanning tree was tested on 100 networks of 900 nodes each, randomly deployed in
an area of 300 x 300 m, and communication ranges of 20 m. This time, however, no
restrictions on the node degree were applied; the previous experiments only used networks
with node degrees of at most 3, which were actually generated by Algorithm 5.2 with
A = 3. The simulations to test the distributed algorithm take packet loss due to random
bit errors and collisions into account. The timer values that were used in the distributed
algorithm are listed in Table 5.1. The results are presented in Section 5.5.1.

Since at this point we have covered all static configuration phases (phase 1 to 5), which
lead to a properly configured WSN, we present and overview of results of these phases. Itis
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Table 5.2: Results on tree construction: node degree and hop count (averages over 100 900-node networks)

Centralised

Node degree

max st.dev.

Node-degree

optimisation

Hop count
Non-optimised | 6.06  1.14 | 26.43  14.65(0.25

max  mean (st.dev.)

)
Optimised SPST | 5.14  0.88 | 26.43  14.65 (0.25)
Fully optimised 2.00 033 | 5225 26.01(2.51)
A=2 2.00 0.75 | 3495 18.75(1.12)
A=3 3.00 099 | 29.25 16.22(0.72)
A=4 4.00 1.07 | 27.04 15.12(0.55)
A=5 5.00 1.09 | 26.62  14.80(0.38)

Distributed

Node-degree Node degree Hop count
optimisation max st.dev. | max mean (st.dev.)
Non-optimised 7.10  1.33 | 26.71  14.76 (0.25)
Optimised SPST | 5.21  0.92 | 26.75  14.76 (0.25)
Fully optimised 3.08 0.80 | 32.19 17.42(0.79)

particularly interesting to observe the differences between the centralised and distributed
approaches. See Section 5.5.2 for these results.

5.5.1 Tree Optimisation

Tor all 100 networks, routing trees were constructed by both a simple breadth-first search or
flooding, to serve as reference algorithms that construct SPSTs without degree reduction,
and the centralised and distributed degree-reduction algorithms introduced in this chapter.
The run times were recorded, as well as the node degrees and path lengths of the
trees. Subsequently, the cluster algorithm for QoS optimisation was executed for all trees
(target-tracking task, 27 configurations per node), and the run times were recorded. Also
determined was the quality difference of the Pareto set for the degree-optimised tree
compared to the results from the reference trees, based on Definition 2.4. The results
are given in Tables 5.2 and 5.3. In each table, the first row is for SPSTs without degree
optimisation, the second is for degree-optimised SPSTs, and the remaining rows are for
further degree optimisation given a degree target A, while allowing paths to grow longer.
Here, the “fully optimised” algorithm balances node degrees as much as it can. The
distributed algorithm functioned properly in all cases, even in the presence of packet loss:
all nodes were correctly included in the tree.

First of all, Table 5.2 shows that the node-degree optimisation algorithms, both
centralised and distributed, really do what they are supposed to do: reducing high node
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Table 5.3: Results on tree construction: run times and quality (averages over 100 900-node networks)

Centralised
Node-degree Tree-construction ~ QoS-optimiser ~ Slower”  Quality diff>*
optimisation run time’ (s) run time’ (s) (%)
Non-optimised ‘ 0.013 (0.000) 666.41 (830.79) n/a n/a
Optimised SPST ‘ 0.015 (0.001) 303.16 (629.93) 11 -0.01 (0.02)
Fully optimised 0.717 (0.046) 4.11(0.13) 0 0.08 (0.03)
A=2 0.316 (0.029) 5.69 (0.15) 0 0.04 (0.03)
A=3 0.097 (0.017) 20.25 (1.75) 0 0.01 (0.03)
A=14 0.034 (0.009) 62.78 (14.02) 0 0.01 (0.03)
A=5 0.019 (0.004) 158.62 (72.66) 10 0.00 (0.02)
Distributed
Node-degree Tree-construction QoS-optimiser Slower’  Quality diff*’
optimisation run time? (s) run time’ (s) (%)
Non-optimised 0.386 (0.011) 5.66-10% (2.20-10°) n/a n/a
Optimised SPST 1.302 (0.199) 1.33-10% (3.81-10%) 18 0.00 (0.01)
Fully optimised 1.001 (0.082) 485.97 (366.08) 1 0.01 (0.01)

“Relative number of times the optimiser run time for the optimised tree is worse than without degree
optimisation.

bValues are averages over all networks, with the standard deviation given in brackets.

°D(Cr,Cg) as in Definition 2.4, with Cg the Pareto set without degree optimisation, and Cg the Pareto set
with degree optimisation.

degrees. It is evident from the reduction in the standard deviation of the node degree
that the degrees are more balanced after optimisation. The average node degrees are not
listed in the table, as for any tree of n nodes, the mean node degree is a constant equal to
"T_l. In the SPST case, the maximum node degree is not lowered much by optimisation.
The maximum degree in the SPSTs was often at the root node, which cannot be reduced,
since all one-hop neighbours of the root have to be its children in an SPST. However,
the standard deviation did become lower, which already has an effect on the following
configuration phase, QoS optimisation. If paths may be made longer, also the maximum
node degree can be reduced significantly: from about six to two (centralised), or seven to
three (distributed). The increase of the longest path, however, is significant.

Note that the distributed algorithms perform a little worse compared to the centralised
algorithms. This is explained by the presence of packet loss and the variable delay of
packets travelling in a wireless network. Also, we willingly gave up some potential for
degree reduction in the distributed algorithm in order to keep it localised (see Section 5.4).
The hop counts of “SPSTs” created by the distributed algorithm, however, are only a bit
longer than the real SPSTs constructed under ideal circumstances. Regarding the node
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degree, the performance of fully-optimised distributed tree construction is comparable to
optimisation with A = 3 in the centralised case.

From Table 5.3, it is clear that gain in speed of the QoS optimiser outweighs the
extra run time needed for node-degree optimisation. The QoS optimisation time can
be reduced by about 162 times to just over four seconds in the centralised case, and
about 116 times for the distributed algorithms. The smallest reduction can be seen when
forcing the tree to be an SPST. However, even though the SPST has better-balanced node
degrees, the standard deviation of the run times is very large, implying that the times vary
widely. More importantly, we also see in Table 5.3 that for 11% of the networks (18% for
distributed), node degree optimisation with an SPST restriction actually makes the QoS
optimiser run longer than before. This is attributed to the unpredictable nature of the
number of Pareto points of a cluster. Changing the tree may increase the number of Pareto
points of a cluster so much that, even if node degrees are lower, QoS optimisation overall
takes more time. This becomes even worse due to the fact that, in an SPST, the degree of
the root node can never be reduced. Without path-length constraints, the node degrees
can be reduced much more, and these effects diminish. In the fully-optimised case, the
QoS optimiser’s run time has a much smaller standard deviation. It is interesting to note
that full degree-optimisation in the distributed case takes less time than SPST-constrained
tree optimisation. This is probably owing to the additional freedom the unconstrained
algorithm has over the SPST-algorithm, which leads to quicker results, even though more
(concurrent) work is done.

Next, consider the last column of Table 5.3, which lists the quality differences between
the Pareto points for the non-degree-optimised trees and the optimised versions. It
appears that the degree-optimised SPST is sometimes better than the non-optimised tree
and sometimes worse, but on average they lead to Pareto sets of similar quality. Further
optimised trees tend to yield Pareto sets of slightly lower quality, but the differences are
quite small. Coupled with the enormous gain in QQoS-optimisation run time, it is clear
that — at least for the target tracking WSN model used here — node degree reduction is
very useful, even if the paths from sensors to the root are increased.

For the remainder, we use centralised tree optimisation with A = 3 and fully-optimised
distributed tree optimisation, since we consider these to have good quality/configuration
time trade-offs. Moreover, these instances of the centralised and distributed tree algorithms
show similar performance.

Figure 5.4 shows what happens to the run times of the centralised and distributed
tree algorithms for different network sizes. It is clear that the distributed algorithm is
much better scalable. The communication overhead causes it to be a little slower than
the centralised execution, but the run time does not increase a lot when the network size
grows, while the run time of the centralised algorithm increases more than linearly with
the network size.

5.5.2 The Complete Configuration Process

An overview of the costs of phases 1, 2, 3 and 5 of the configuration process for 900-node
networks, for the centralised and distributed approaches, as well as for distributed with
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Figure 5.4: Run time of tree-construction: centralised (solid lines) and distributed (dashed lines).

reduction (product-set threshold of 750), is given in Table 5.4. This table includes for
every phase the total time it takes to complete, the average processing time per node, and
the average number of bytes transmitted per node. Furthermore, Figure 5.5 illustrates
the total run time for varying network sizes. This graph includes the results for QoS
optimisation from Figure 4.11, which dominate the total run time. We do not consider
the details of selecting a specific configuration from the Pareto-optimal set (configuration
phase 4), since this selection is application specific. Since the number of Pareto-optimal
configurations is typically very small, the selection phase will have little or no impact on
the costs of the configuration process.

Looking at only the initialisation, tree construction, and loading phases together, we see
that the distributed implementation is much faster than the centralised implementation,
and that it has in total a significantly smaller communication overhead as well. The
QoS-optimisation phase, however, takes much longer when executed on the sensor nodes
directly, as we used nodes with very limited processing capabilities (TelosB, see Section 4.6).
Therefore, the centralised approach has the best overall run time, while it still has a larger
communication overhead for the nodes. The run time of the distributed QoS optimisation
can be improved by the Pareto-set reduction techniques of Section 4.4. Furthermore, from
Figure 5.5 it is clear that the distributed approach is better scalable to large networks.

5.6 Summary

Before the QoS-optimisation phase thatis detailed in the previous chapter can be executed,
a routing tree needs to be formed. This tree has two properties that impact not only the
task quality, but also the complexity of the QoS optimiser. First of all, the average path
length of the tree, measured over the paths from each node to the sink, should be as low
as possible, as quality metrics such as delay and reliability typically benefit from this.
Secondly, the maximum node degree in the tree should be as low as possible. Ideally,
each node has the same, low degree, such that the workload is evenly distributed over
the network. This avoids bottlenecks and has a positive impact on the network’s lifetime.
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Table 5.4: Configuration overview (900-node networks)

Phase Costs! Centralised  Distributed  Distr. reduced
Initialisation Total time (s) 3.56 0 0
Processing (s) 0 0 0
Comm. (bytes) 196.9 0 0
Tree construction  Total time (s) 0.10 1.00 1.00
Processing (s) 0 0 0
Comm. (bytes) 0 58.9 38.9
QoS optimisation  Total time (s) 20.25 485.97 281.35
Processing (s) 0 2.34 1.97
Comm. (bytes) 0 69.6 70.8
Loading Total time (s) 3.80 0.45 0.44
Processing (s) 0 0 0
Comm. (bytes) 135.0 21.4 21.3
Total Total time (s) 27.71 487.42 282.80
Processing (s) 0 2.34 1.97
Comm. (bytes) 331.9 149.9 151.0

I Processing and communication costs are averages per node.
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Figure 5.5: Total configuration run time: centralised (solid lines), distributed (dashed lines) and distributed
reduced (dashed lines, o-markers). Note that the scales for centralised and distributed are different.
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Moreover, the complexity of the QoS optimiser rapidly increases with the maximum node
degree. Balancing degrees across the network further takes the most out of the available
parallelism when the optimiser is run on the WSN itself in a distributed fashion.

This chapter introduces centralised as well as distributed algorithms to construct a
routing tree with a good trade-off between path length and node degree, which are
conflicting objectives. We provide two different optimisation strategies: one in which
the maximum node degree 1s minimised while forcing the tree to have the shortest paths
possible, and another in which the average path length is minimised within a maximum-
degree constraint.

Experiments show that the algorithms indeed establish a range of degree/path-length
trade-offs. More importantly, this also leads to the expected trade-off between task quality
and configuration cost, which is tunable by setting the degree target. Hence, together
with the complexity control techniques of Chapter 4, routing-tree construction provides
powerful means to choose a suitable point on the quality/cost trade-off curve.

The chapter finally provides a roundup on the full configuration process from initiali-
sation to loading. The pros and cons of the centralised versus the distributed approaches
are highlighted.
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Chapter 6

Run-Time Adaptation

Chapters 4 and 5 completely describe the configuration process for a static network.
Wireless Sensor Networks, however, are often dynamic. For example, nodes may run out
of battery or move, or the environment changes, such that the wireless connections behave
differently. If the network changes, the previously computed configuration is not likely to
be optimal anymore. Or worse, the network is broken and some nodes are disconnected
from the sink, or quality constraints are violated. It is therefore necessary to be able to
adapt to such dynamism at run time.

The most straightforward way to update the configuration is to run the whole configu-
ration process again. This chapter provides methods to more efficiently compute and load
a new configuration. There is an important trade-off between the quality achieved by
the running task and the cost of configuring the network (see Section 3.3). This trade-off
becomes even more critical when regularly adapting to changes in the network.

Itis important to consider the granularity and frequency of reconfiguration. Adapting
the configuration to all high-frequency fluctuations of the system would not be feasible.
Because of scalability issues, it is best to react to such dynamism on a small, local scale
using appropriate techniques depending on the application. One could for example
temporarily increase the sample rate or duty cycle based on the predicted trajectory of a
target [Pattem et al. 2003], or adjust the transmission power in response to fluctuations of
the link quality or workload [Chipara et al. 2006].

Such small-scale techniques are orthogonal to our method; the configuration that
we establish should be seen as a relatively long-term set point of the node parameters.
The computed local metrics should be maintained on average in order to achieve a
globally good performance, while short fluctuations are allowed. If more structural
changes happen, such as nodes that move, enter or leave the network, a reconfiguration
according to our framework should be done to update the parameters of a possibly large
group of nodes, or even the whole network, depending on the desired quality/cost trade-
off. Extending the static configuration method of the previous chapters with a variety of
reconfiguration techniques to handle coarse-grained dynamism is the topic of this chapter.

Section 6.1 does the ground work by defining the types of events that may occur at run
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time, and it explores what is needed to adapt to them. Section 6.2 then introduces ways
to adapt the routing tree in case the event calls for it. In Section 6.3, we elaborate on tree
reconstruction for a specific type of dynamism: the mobile sink. Subsequently, Section 6.4
explains how to optimise the task quality in the new situation, especially in a localised
way. Section 6.5 provides an experimental evaluation of the proposed reconfiguration
schemes. Finally, Section 6.6 presents another example of how the configuration method
can be used.

6.1 Preliminaries

The objectives in Section 3.3 state that the WSN should always be in a configuration
(p,u, Fy(p - u), Fi(p - u)) that satisfies the constraints and optimises the value function,
as specified by the following equations (repeated for convenience):

Fy(p-a) = min(val({Fy(p' - ) | p' € Spc} NDy)), (3.5)
F.(p-a) € D.

The approach that we take in this thesis is to first create a routing tree (determine the parent
parameters), and subsequently optimise the remaining parameters. The optimisation
problem is specified given a vector of uncontrollable parameters 4. One uncontrollable
parameter is the location parameter, which is always present in each node, and this
parameter is most important for the tree construction process.

The configuration process described in Chapters 4 and 5 assumes a static situation:
Spe and 4, as well as the optimisation criteria (value function and constraints) are given
and fixed. It furthermore starts from an unconfigured network. During the lifetime
of the task, however, events may occur that cause a change in the situation, and would
necessitate a re-evaluation of the above equations, and possibly an alteration of the current
configuration.

Definition 6.1 (Events). We distinguish the following types of events:
1. A criteria event: a different value function val or quality constraints D,.

2. A parameter event: a change in the vector of uncontrollables % that does not require
changes in the routing tree.

3. A lopology event: a tree-link breaks, a node moves, a new node enters, or a node dies
or leaves. This event includes moves of the sink. Contrary to parameter events,
this would typically require an update of the routing tree. This event implies
changes in u (e.g. the location) as well as potentially in Sp, (in case of a change in
the set of nodes).

Ciriteria events are easy to handle, as our QoS optimiser computes and stores all Pareto
points of the WSN, and these do not change. Hence, we only need to apply the new
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constraints and value function to the Pareto set Copt (perform the selection phase):
¢" = min(val(Copt N Dy)).

If the selected configuration is different from the current one, we need to load the con-
trollable parameters of the new configuration ¢* into the network (the loading phase).

Parameter events deal with a change in the vector of uncontrollables, say from g to
1. Examples are a change in the contention loss L or the transmission delay Dyy at
some node. It is now likely that the configurations in Copt experience changes, at least
in the metrics, but possibly also in the parameters (different parameter vectors are Pareto
optimal). It is therefore necessary to recompute the Pareto set, and then do selection and
loading.

For topology events, we specifically examine broken links and entering/leaving nodes,
and implement a moving node as a node that leaves and comes back at a different location.
We do study a mobile sink as a special case, because of its practical relevance and high
impact. Other mobility scenarios are left as future work.

Parameter and topology events should be detected before they can be adapted to.
For this to work, we need to rely on ways to measure these parameters on the nodes. It
1s possible, for example, to assess the value of the contention-loss parameter L from the
models of Section 3.2, by maintaining a count on the packets that have collided versus
the number of sent packets. It is also straightforward to measure the transmission-delay
parameter Diy and keep it as a running average over a past period. If such assessment is
not possible for certain parameters, there is no opportunity to react. Another interesting
application of this is the ability to adapt to model inaccuracies. If uncontrollable parame-
ters are seen as model constants that are estimated for the initial QoS-analysis phases, the
real value of such parameters may be measured at run time, and the configuration can be
adapted to using the more accurate model that has been obtained.

Topology events centre around changed link conditions. For an existing node to detect
that its parent link is broken or too bad to be used, the parent and child could periodically
reconfirm the link by a handshake, or use acknowledgements on the data messages from
child to parent.

Reconfiguration obviously comes at a cost. The second objective in Section 3.3 is to
minimise the cost of (re)configuration in terms of time and energy. It follows that there
is a trade-off between the amount of time and energy spent on reconfiguration and the
quality achieved by the task. This trade-off has two extremes. The first option achieves
the best quality against the highest cost, by completely reconfiguring the network, which
involves computation and/or communication at every node!. The other extreme is to do
as little as possible to ensure that the task is still able to operate within the constraints, and
nothing to improve the task quality beyond that. The latter would involve computation
and communication at a minimum number of nodes. Between these two extremes lies a
range of possible solutions, each with its own quality/cost trade-off. Section 4.4 discusses

!'Note that we assumed in Section 3.3 that task quality and configuration cost are independent. This basically
implies that the frequency or granularity of reconfigurations is small enough, such that the task quality is not
significantly affected by the energy and time used for reconfigurations.
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ways to set this trade-off. In this chapter, another control targeted at this trade-off is
introduced: locality.

Definition 6.2 (Locality, Configured Area, (Minimal) Active Area). We define the locality of
the (re)configuration process as the group of network nodes that play a role in the process,
typically an interconnected group of nodes around the place where the event occurred.
There is a part of the locality, in a region we term the configured area, of nodes that adapt
their configuration after the event. These nodes perform at least the loading phase. We
further consider a part of the locality, called the active area, of nodes that (apart from the
loading phase) also play a role in the tree construction, QoS optimisation, and selection
phases of the configuration process. The minimal actwve area comprises the nodes that
necessarily need to be updated after an event (especially a topology event) to ensure that
the network remains operational.

Definition 6.3 (Deviation). The deviation dev of the reconfiguration process controls the
size of the active area beyond the minimal active area. The active area is equal to the
minimal active area plus nodes at most dev hops away from it.

Full task-quality optimisation without being concerned with the cost implies global
configuration in general: the configured area is the whole network. Local reconfiguration
generally does not ensure optimal quality. However, the active area does not need to be
large. Reacting to a criteria event only requires selection and loading, and thus the active
area is only the sink, even for optimal reconfiguration. As we see in this chapter, also
reacting to the more comprehensive parameter or topology events usually does not require
a large active area. In order to make the reconfiguration process local, the configured
area 1s shrunk, such that nodes outside the area keep their parameters configured as they
are. We typically make the configured area equal to the active area in these cases.

By means of the deviation parameter, the locality can be set to a wide range of sizes
between the minimal active area and the full network. The deviation is therefore a
powerful quality/cost trade-off control. As non-optimal (but cheaper) reconfiguration
may deteriorate the quality over time, it is advisable to periodically reset the configuration
by doing a global reconfiguration.

As in the previous chapters, reconfiguration can be done in either a centralised
or a distributed manner, although local reconfiguration is typically a distributed affair.
Especially adaptation of the routing tree is efficiently done in a distributed way. In this
chapter, we focus on a fully distributed implementation, and clarify what changes when
things are done centrally where applicable.

6.2 Basic Tree Maintenance

The occurrence of a topology event requires maintenance of the routing tree to be done
before the other node parameters can be optimised. This section discusses how to adapt
the tree after such an event. We assume this is done in a distributed way. Adaptation
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(a) Node 11 joins. It finds a parent in node 6.

(b) The link from node 8 to its parent node 5 breaks. Node 8 finds a
new parent: node 6.

P&/
T

(c) Node 5 leaves. Nodes 7 and 8 are orphaned, and find new parents
4 and 6 respectively.

(d) Node 5 moves. The orphaned nodes 7 and 8 find new parents as
in (c), and node 5 connects to node 9.

Figure 6.1: The four types of topology events. 'Thick arrows between nodes represent new links, dashed
ones are broken links. Nodes in the minimal active area have a darker shade.
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updates the existing routing tree, while striving to maintain the node degrees at a given
value A or less, and minimising the paths lengths within this constraint, or by enforcing
a shortest-path constraint (as in Chapter 5). We also consider a deviation parameter dev
that restricts the locality in which the algorithm is allowed to act.

We discuss four types of topology events:

1. Join. A new node enters and needs to be incorporated in the running network. See
Figure 6.1(a).

2. Link breakage. A tree-link becomes structurally so weak due to a change in the
environment, that it cannot be used anymore (the reliability falls below a threshold).
The nodes that used this link need to be rerouted. See Figure 6.1(b).

3. Leave. A node runs out of battery, breaks, or is taken away. The descendants of this
node need to be reconnected to the sink. See Figure 6.1(c).

4. Move. A node moves to a different location. See Figure 6.1(d).

We only support occasional moves of sensor nodes. The underlying assumption is that
sensor nodes are intended to be stationary, but may incidentally be moved by people or
some ecffect in the node’s surroundings. These moves are modelled as a leave followed
by a join and are handled accordingly, as in Figure 6.1(d). In the next section, we study
a mobile sink as a special case, because of its practical relevance and high impact. The
simple leave/join mechanism does not work for a mobile sink. Other mobility scenarios
are left as future work.

One might wonder whether the lifetime metric of Section 3.2 — defined as the time
until the first node dies — still makes sense when nodes may die without ending the life of
the network. We would like to re-emphasise that the definition of this metric intends to
push the optimiser to balance the energy usage across all nodes. Ideally, all nodes would
die at the same time. In practise, however, there will always be nodes that break earlier,
while the network may still function properly. We simply treat this as a new instance of
the configuration problem, in which the same metrics apply.

Note that joins, link breakages, and leaves have an important common property: one
or more nodes need to find a new parent. A new node has never had a parent, a node
that observes that the link to its parent is broken needs a new parent, and a node that
disappears orphans its children. Therefore, the three cases can all be mapped to instances
of a single problem, being the problem of (re)connecting a node to the tree. The minimal
active area for a topology event contains all nodes that necessarily experience a change in
child or parent nodes. All dark-shaded nodes in the four examples of Figure 6.1 belong
to the minimal active area.

Anode in search of a new parent acts similarly as a node that receives a Reduce Request
message from its parent in the distributed degree-reduction algorithm of Section 5.4. The
node will first broadcast a Parent Request message. This message contains the hop count
(distance to the sink) of the node’s previous parent, or the value infinity for new nodes,
and it has the value infinity in the degree field (note that in Section 5.4, the hop count and
degree fields are values of the parent of the node that broadcasts a Parent Request). Each
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node receiving this request decides based on the same rules as in Section 5.4 whether it
1s a suitable parent. If so, it would answer with a Parent Reply message containing its
hop count and node degree values. The requesting node assesses the replies and selects
a parent from the candidate list using the function ChooseParent from Algorithm 5.2,
given the degree target A. The choice of parent is confirmed to the new parent, which
happens via a message called Child Confirm. This message should be acknowledged by
the parent, and retransmitted if needed, to ensure the parent has a correct list of children.
The correctness of this approach is ensured by the same reasoning as in Section 5.4.

In case no parents within the degree target were available (the new parent has a degree
larger than A after the join), there may still be room for improvement. The parent may
execute the degree reduction algorithm of Section 5.4, hoping that any of its other children
is able to find another parent. Allowing this may cause a chain of reduce requests. We
bound this chain to an active area with a range of dev hops around the node at which
the first event occurred; outside the active area, nodes will not react to requests (dev is
included in the messages, and decremented at each hop).

In order not to loose data, a node that is orphaned may store incoming data messages,
to be forwarded to the new parent upon connection. Alternatively, data loss may be
accepted. We refer to the time between losing connection and reconnecting to a new
parent as the disruption time, which is one of the evaluation metrics in the simulations of
Section 6.5.

Multiple tree events that occur simultaneously may require repairing of the tree at
various places at the same time. This is possible for the same reasons as for the degree
reduction algorithm: nodes that are busy reacting to one event, will ignore messages from
other events.

6.3 Tree Maintenance for a Mobile Sink

Supporting a mobile sink is of interest for lifetime extension, as it relieves the energy bot-
tleneck that naturally exists at nodes close to the sink, which need to transfer much more
data than nodes further away [Luo and Hubaux 2005, Wang et al. 2005a]. Furthermore,
the application may have the need for a mobile sink, for example in disaster-recovery situ-
ations in which rescue workers walk around with handheld devices to collect information
about the scene.

As the routing tree most likely breaks when the sink moves, the tree needs to be
reconstructed (see Figure 6.2(a)). We assume that the sink moves stepwise, and after each
step resides at its position long enough to justify rebuilding the tree. For applications with
a continuously and relatively fast moving sink, maintaining a routing tree is probably not
the best solution and other methods of delivering data to the sink may be more suitable
[Cugola and Migliavacca 2009].

Asbefore, our goal is to create a tree in which all nodes have a degree no more than the
degree target A and paths that are as short as possible within that constraint, or an SPST
with degrees as low as possible (depending on the chosen meta trade-off, see Chapter 3).
We assume that such a tree gives rise to the best task quality. After a move of the sink, the
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cost of globally reconstructing the tree (in time and energy) may be too high, especially if
moves are frequent. We therefore propose a new algorithm that recreates the tree only in
a certain region around the sink, the active area, and retains the parts of the existing tree
elsewhere, thereby sacrificing some quality (longer paths). The size of the active area is
determined by the deviation parameter dev as before.

6.3.1 Minimal-Cost Reconstruction

We consider full tree reconfiguration as in Chapter 5 as a baseline algorithm that provides
the best quality against the highest cost. At the other end of the spectrum would be
an algorithm that has the lowest reconfiguration cost, but a lower quality as well. This
algorithm ensures that all nodes are connected to the sink again, and is therefore required
for a minimum service level, but does nothing beyond that to improve the quality. The
active area for this algorithm is therefore considered to be the minimal active area. We
call this algorithm QuickFix. We first introduce QuickFix, and then explain under which
assumptions it works properly and which further measures may be needed.

After the sink moves to a new position, it may be out of range of some or all of
its children in the existing tree. QuickFix creates new paths from these nodes to the
sink. All other nodes in the network are descendants of the former children of the
sink. Therefore, reconnecting these former children to the sink means that all nodes are
connected again. Reconnection is based on the observation that the existing tree has
paths to the sink’s former child nodes from anywhere in the area, and happens in three
phases; see Figure 6.2 for an overview. The sink, at its new position, starts by broadcasting
a SinkMove message (see Table 6.1 for the full format of this message). The nodes that
receive this message become the sink’s new children, which all have a path to one of the
disconnected former children of the sink. In the second phase, QuickFix follows these
paths and reverses the links, until such a former child is reached. To this end, each
node involved in this phase sends a unicast SinkMove message to its current parent upon
receiving a SinkMove message from a child or the sink, after which the sender of the
SinkMove message is made the new parent. Finally, this former child node broadcasts
a SinkMove message that enables other former children of the sink to connect, which is
repeated until all are reconnected.

A state diagram for the QuickIix algorithm is shown in Figure 6.4. The initial
adaptation phase in this diagram is entered immediately after the loading phase completes
(see Figure 4.6). Each phase of QuickFix has its own state, which is reached by a node
after receiving a SinkMove message that matches a certain condition (indicated at the
transition’s arrow). To ensure that nodes react to a SinkMove message only once, an
update number is used in the SinkMove-message format. This number is incremented at
each reconfiguration (sink move), and only if a node receives a SinkMove message which
has a higher update number than it has seen before, it will update its parent variable and
forward the message. A node stays in one of the QuickFix states for a duration specified
by a SinkMove timer (for reasons described in the next sub-section), before performing
its actions and proceeding to the degree reduction phase. Degree reduction happens as in
Chapter 5.



6. Run-Time Adaptation 103

Q Q £

®

i @"T @\@, A
5o o
O—i—0 o

(b)

Figure 6.2: The sink moved from left (dashed triangle) to right. (a) The nodes that have dashed arrows
became disconnected afier the move of the sink. Thick arrows indicate a path_from the new position of the
sink to these nodes. (b) Dark-coloured nodes form the active area of QuickFix. The number indicates the
QuickFix phase they perform. Nodes marked with an asterisk (*) are the nodes just outside the tunnel that
connect as well, and may start Controlled Flooding,

Figure 6.3: Former children of the sink, in two disconnected groups. Group A is connected to the tunnel, but
none of these nodes can reach a node in group B by broadcasting. Group B’s nodes (plus all descendants)
remain disconnected afler QuickFix.
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Table 6.1: SinkMove-message format
Field Explanation
Sender ID of the sender node
Destination ID of the destination node, or & if broadcast
Deviation Deviation value dev
Hop count Number of hops to the sink in the new tree

Update number  Number of the current maintenance pass; incremented at each move
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Figure 6.4: QuickFix, state diagram. This diagram follows immediately after Figure 4.0, the initial
adaptation state is reached afier completing the loading phase. State transitions are triggered by events
and/or conditions as annotated at the arrow before the slash. An event can be due to an incoming message
_from another node or a timer expiry. Actions at a transition are gwen afier the slash. All events that are not
listed at a state are ignored. 'The degree-reduction state is the entry point for the degree-reduction algorithm
of Section 5.4. The values of the fields of SinkMove messages are given between angular brackets in the
order as in Table 6.1. The three phases of QuickFix each have their own state and are triggered by a
SinkMove message in slightly different conditions.
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QuickFix effectively creates a tunnel, containing all above mentioned paths, through
which all disconnected nodes are reconnected to the sink. This has no effect on the
node degrees (except the sink’s), but all paths are enlarged by paths of the tunnel. An
optimisation that does not cost any extra SinkMove transmissions can be made: any node
that overhears a SinkMove message may set the sender of this message as its parent node
(nodes marked by an asterisk in Figure 6.2(b)). By doing this, the node creates a shortcut
to the tunnel and shortens the path of itself and its descendants.

Proposition 6.1 (QuickFix). If a tree exists before the move of the sink, QuickFix leads to a tree
containing all nodes and the sink (at its new position) as root, under the following conditions:

1. The sink’s broadcast afler the move s recewed by at least one sensor node.
2. QuickFix messages creating the tunnel are not lost.

3. The sub-network consisting of only the former children of the sink s fully connected (see
Figure 6.3).

Proof. In the current tree Tp, all nodes have a path to one of the sink’s former immediate
child nodes, a set called Sp. After the sink’s move, it starts a new tree 77 by connecting
a number of sensor nodes within its range, as set S7 (phase 1). Condition 1 ensures that
this is possible. Further, each node in S; has a path to a node in Sp in 7. Phase 2
grows tree 17 by reversing the Tp links on the paths from S nodes to Sp nodes. The
nodes on these paths form the tunnel. Condition 2 ensures the reliability of these paths.
Finally, condition 3 ensures that the sub-set of nodes in Sy that was reached in phase 2
will connect to the remaining Sp nodes in phase 3. Consequently, all nodes in Sy, S1
and the tunnel become part of 77. As all other nodes in the network have paths in 7p to
a node in either Sy, S7 or the tunnel, all nodes are now part of 77. [

The first condition in Proposition 6.1 implies that the sink needs acknowledgements
from its new children that have received its broadcast. If no acknowledgement is received,
the sink rebroadcasts. The second condition can also be guaranteed by an acknowledge-
ment scheme, as all transmissions are unicast. The third condition will generally be met
if the node density (with respect to the radio range) is sufficiently high. This will usually
be the case, as WSNs are typically very dense.

6.3.2 Improving the Quality

QuickFix reconnects all nodes to the sink in a highly cost-efficient way, but the average
path length of the resulting tree will be high. The active area consists of only the old
and new children of the sink and the tunnel between them. To reduce the average path
length, but keep the costs limited, we use another mechanism on top of QuickFix, which
enlarges the active area by a number of hops that is specified by the deviation parameter
dev. This parameter is part of the SinkMove-message format (see Table 6.1). Any node
that overhears a SinkMove message does not only connect to the sender (as described in
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Figure 6.5: The example of Figure 6.2 with Controlled Flooding (CF) having dev = 1. Dark-coloured
nodes have been affected by CF and some of them (those in the bottom part) have found a shortcut to the
sink. The numbers indicate the deviation values dev per node.
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Figure 6.6: Controlled Flooding, state diagram. This diagram extends the QuickFix diagram of
Figure 6.4; the three QuickFix stales are represented by a single QuickFix state in this diagram. The
controlled-flooding state is also triggered by a SinkMove message. A CF message is distinguished from a
QuickFix message by the different conditions on the transition edges. In the controlled flooding state, new
SinkMove messages may arrwe. If such a message meets any of the QuickFix phases’ conditions, CF s
aborted and QuickFix s execuled as in Figure 6.4.
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the previous sub-section), but if the deviation value is larger than zero, it will broadcast
a new SinkMove message with a decremented deviation value, and an empty destination
field to indicate a broadcast. We refer to this as Controlled Flooding (CF). By flooding the
active area, a local SPST is constructed, and consequently also the paths of the nodes
outside the area are reduced in length (see Figure 6.5 and the state diagram in Figure 6.6).

QuickFix and CF are not executed consecutively, but run in parallel; SinkMove
messages for the three phases of Quicklix as well as CF are distinguished by different
conditions (see the transitions in the state diagrams). The use of update number in the
SinkMove message format, which are incremented at each sink move, ensures that a node
reacts to a move only once. There is one exception to this rule: since QuickFix is crucial to
reconnect all nodes in the new tree, QuickFix’s SinkMove messages are always forwarded
(to the parent in the o/d tree!), even though a CF message with the same update number
arrived earlier.

Before reacting to a Flood message, the distributed tree-construction algorithm of
Section 5.4 waits for a short while to collect potential Flood messages from other nodes, in
order to mitigate the differences in propagation speed of the messages. The sender of the
Flood message with the shortest hop count is chosen as the new parent, and then the Flood
message 1s forwarded. Controlled Flooding does the same. To ensure that QuickFix and
CI’s SinkMove messages travel through the network with about the same speed, just like
Flood messages, also QuickFix uses this delay. Both delays are implemented in the state
diagrams via the SinkMove timer.

Since all chains of forwarded SinkMove messages (QuickFix and CF) originate from
the sink, each affected link is pointed to the node that sent the message, and nodes react
only once to CF messages of a certain update number, a correct tree (rooted at the sink,
loop-free) 1s formed in the active area. The nodes at the edge of the active area keep their
existing sub-trees, so all nodes are connected to the active area and hence to the sink. Loss
of CF messages may lead to longer paths, but never results in a broken tree, as QuickFix
already takes care of connecting all nodes.

After QuickFix and CF finish, the node degrees are reduced as before. However, paths
have changed in length and only the nodes in the active areca know their distance to the
sink. Therefore, only nodes in the active area take part in the degree reduction in order
to guarantee loop-freeness (the improvement rules in Section 5.4 need the hop count).
When only QuickFix is used, the reduction algorithm is not able to do much, since the
active area is small. Therefore, we bound the number of nodes that may directly connect
to the sink by A, already in the first phase of QuickFix via some extra handshaking.

The deviation parameter controls the trade-off between reconfiguration cost and
quality. A larger deviation value leads to a larger active area, and thus to more nodes
obtaining shorter paths, and a better quality. On the other hand, reconfiguring a larger
active area takes more time and more transmitted SinkMove messages. The best value
for the deviation parameter depends on the application.
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6.3.3 Related Work

Several topology-maintenance schemes have been suggested earlier; such as STEM [Schurg-
ersetal. 2002], D'TM [Bhattacharya et al. 2005], SSP [Yang et al. 2005], MobiRoute [Luo
et al. 2006], and DCTC [Zhang and Cao 2004], some of which aim at mobile sinks or
targets. In STEM, an additional transceiver is required for control messages. Such a
method may increase the size and cost of micro-sensors. DTM, on the other hand, con-
structs an optimal tree as the mobile target moves. Knowledge of the movement pattern
of the mobile target, however, is required in DTM. Although such knowledge is not re-
quired in SSP, this protocol requires flooding the network with control messages twice on
every sink update. This introduces a high communication overhead, as well as numerous
changes to the topology. Our method, similar to SSP, does not assume knowledge of
the sink movement pattern or localisation. However, we take a further step over SSP
to restrict the amount of topological changes and control messages, and to balance out
energy consumption among nodes in the network.

Luo and Hubaux [2005] assume that data packets are generally geographically routed
towards the mobile sink and conclude that a sink circling around the perimeter of the
network 1s beneficial for the network’s lifetime. In MobiRoute, the same authors suggest
a routing mechanism to support this concept, in which they assume the sink’s trajectory
adaptively controlled to maximise lifetime. Topological changes are propagated through-
out the whole network when the sink reaches a new anchor point, which is expensive.

Kim et al. [2003] provide a solution for a scenario with multiple moving sinks and a
single data source, in which they create and maintain a dissemination tree rooted at the
source. This is in contrast with our case, with a single sink and multiple sources (all sensor
nodes are sources). Moreover, such a dissemination tree does not span all nodes.

Akkaya and Younis [2004] in EARM also identify a trade-off between maintenance
costs and efficiency of the topology. When the sink moves, they first try to increase the
transmission range of the last-hop nodes to maintain connections with the sink. If this is
no longer possible, intermediate nodes are found and added to the routes. Only if both
options fail or the topology becomes too inefficient, the whole network is reconfigured,
which causes a lot of overhead. While this may be sufficient for a relatively slow-moving
sink, this mechanism would still need complete reconfigurations quite often when the
sink travels faster. Our method, on the other hand, allows for better fine-tuning of the
trade-off, such that complete reconfigurations are much less needed.

The tree-reconstruction method of Zhang and Cao [2004] (DCTC) comes closest
to our method, as they also flood a restricted area. However, our way of combining
such restricted flooding with a baseline mechanism that ensures connectivity is new. By
doing this, we enable a wide range of possible trade-offs between maintenance costs and
task-level quality metrics.

QuickFix is similar to the Arrow Distributed Directory Protocol introduced in a
different context by Demmer and Herlihy [1998]. The Arrow protocol also maintains a
spanning tree on a network graph, but the situation is slightly different, as there is no sink
node that actually moves around. Instead, the root of the tree is a node as any other, but
other nodes in the network can request to become the new root. This request happens
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Table 6.2: Types of parameter reconfiguration with varying localities

Type Active area Configured area

Naive global Whole network Whole network

Efficient global ~Nodes near event given dev; paths to sink ~ Whole network

Semi local Nodes near event given dev, paths to sink  Nodes near event given dev
Fully local Nodes near event given dev Same as active area

as in QuicklFix’s second phase: a control message is sent on the path from the requesting
node to the root, while all links on the path are reversed. The difference with the mobile
sink case is therefore that the old and new root are two different, static nodes and the
network graph does not change. The old and new root are still/already part of the tree
after the change event, and none of the nodes becomes disconnected. Hence, the first
and third phases of QuickFix are not part of the Arrow protocol.

Contrary to many existing approaches, our tree-reconstruction method does not
require any knowledge about the deployment of nodes or movement of the sink, and is
robust to message loss. Moreover, our way of integrating topology control with node
configuration to meet task-level QoS goals, as detailed in the next section, is unique.

6.4 Optimising Node Parameters

Normal operation of the network task can continue as soon as the tree has been recon-
structed. However, due to the changes in the structure of the network, the level of quality
achieved by the running task is typically lower than possible, and could even be such that
QoS constraints are violated. Furthermore, uncontrollable parameters may change over
time (a parameter event), also changing the WSN configuration. It is therefore worth-
while to improve the quality by reconfiguring the nodes’ parameters after a change in the
network.

Parameter and topology events occur at a certain location in the network. When
a node changes its parent due to any of the topology events of Section 6.2, the node
itself, but also its old and new parent play an active role: the minimal active area of the
reconfiguration process comprises these three nodes (see Figure 6.1). The size of the active
area also can be larger, depending on the deviation parameter. In the mobile-sink case,
many nodes change their parents, and the active area is always a region around the sink.
Uncontrollable parameters are present at the lowest level: the node level. Suppose a single
value in @ changes, then this is the value of an uncontrollable parameter belonging to a
single node. The minimal active area contains only this node. We show in this section that
the active area for parameter optimisation contains at least the areas described above, and
potentially more nodes if global optimality is required. An overview of the various types
of parameter reconfiguration with the associated active and configured areas is given in
Table 6.2. The meaning of each row in this table becomes clear in this section.

While parameter reconfiguration is in progress, the network is in a state of reduced
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Figure 6.7: Node 8 has changed from node 5 to node 6 as its parent. "The minimal active area comprises
these three nodes. All dark-shaded nodes and the sink need to recompute their Pareto points and form the
actwe area for a globally-optimal reconfiguration.

quality. It is therefore desirable to reconfigure as quickly as possible. Moreover, pa-
rameter reconfiguration comes at a cost, as processing and communication is needed to
compute and load the new settings. In this section, we first look at how to efficiently
compute a globally-optimal post-event configuration. We then explore the trade-off be-
tween the quality achieved by reconfiguration and the cost it has by introducing localised
optimisation strategies.

6.4.1 Globally-Optimal Reconfiguration

In this section, we assume that the location and parent of each node do not change
anymore. Hence, the configuration space Sp. reduces to Sp|r given the current tree
T, and the reconfiguration phases needed are QoS optimisation, selection and loading.
Furthermore, after initially configuring the network and after each reconfiguration, all
cluster-level Pareto sets and the indexing tables are stored and available for reuse.

The most straightforward, though inefficient, way to globally optimise the QoS is to
simply re-run the full QoS-optimisation algorithm from Chapter 4, on the whole network.
Observe however, that as events occur locally, many nodes and their sub-trees/clusters
remain unchanged. Therefore, also the sets of Pareto-optimal configurations for many
nodes and clusters outside the minimal active area do not change, and need not be
recomputed. In Table 6.2, the former is called nawe global parameter reconfiguration, and
the latter 1s termed ¢fficient global parameter reconfiguration.

Suppose the uncontrollables of a node ¢ change in a fully configured network. As
a result, only the clusters containing node ¢ could have changed Pareto sets. Due to
the clustering order of Algorithm 4.4 in which all created clusters are leaf clusters (as in
Definition 4.3), the clusters containing ¢ are the ones having as roots all nodes on the
path from 4 to the sink (including node 7). Therefore, node ¢ and all its ascendants form
the active area for global adaptation to this event. In Figure 6.7, for example, when a
parameter event occurs at node 6, this node recomputes the Pareto set for its cluster, using
the Pareto sets of its children, which have been stored since the previous configuration
process ended. The new Pareto set is passed to node 3, which uses this plus its current
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one-node cluster set and the Pareto sets of its other children to recompute its cluster-level
Pareto set. This is repeated at node 1 and the sink, after which the sink performs the
selection phase and initiates the loading of the new configuration.

Now consider a fully configured network in which a single node changes its parent as
part of the reaction to a topology event (including the mobile sink case), as in Figure 6.7,
where node 8 switches from node 5 to 6. This would cause changes in the Pareto set of
the cluster with root node 8. Further, the roots of all other clusters that have changes in
them need to be updated: the clusters with as root the old and new parent (nodes 5 and 6),
and all nodes on the paths from these three nodes to the sink (nodes 1, 2 and 3). These
six nodes form the active area for global adaptation to this event.

The clustering order implies that for a globally-optimal parameter reconfiguration,
the QoS-optimisation algorithm may start at the nodes at the edge of the active area,
further referred to as the boundary nodes, instead of at the leaf nodes of the network.

Definition 6.4 (Boundary node). A boundary node of an active area is a node that has
no descendants inside this active area.

In Figure 6.7, after the switch, nodes 5 and 8 are the boundary nodes, and for a parameter
event at node 7, node ¢ is the (only) boundary node. The reconfiguration of the active area
reuses the Pareto sets of the clusters just outside the area. Note, however, that the newly
selected configuration at the sink, may cause a different configuration to be selected from
the Pareto sets of any node, including the nodes outside the active area. This means that,
while recomputing the Pareto sets is local, loading the selected configuration still involves
all nodes in the network, and thus the configured area is the whole network.

6.4.2 Llocalised Reconfiguration

To make the reconfiguration completely local, not only the tree reconstruction and QoS
analysis phases, but also the loading phase should be restricted to a local area. In fact,
after the tree has been reconfigured, the network is already able to operate, and therefore
the lowest-cost action is simply to do nothing at all, and keep the current configurations
in all nodes. However, we would still need to ensure that the constraints are satisfied, so
parameter reconfiguration may still be needed.

Low-Cost Adaptation to Parameter Events. In case of a changed uncontrollable at node
1, the most localised reconfiguration option is to recompute only the Pareto set of node
’s cluster, without propagating the results to ¢’s ascendants. For local reconfiguration,
we do not wish to adapt the configurations of ¢’s descendants, and therefore we use only
the current configurations of 7’s children in the computation (instead of the full Pareto
sets). This has the added benefit that the analysis becomes simpler (smaller configuration
space), significantly reducing the cost of reconfiguration. The price is sub-optimality of
the found task-level Pareto set and hence a potentially non-optimal quality of the selected
configuration.
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Figure 6.8: Node 5 experiences a change in its uncontrollable parameters. The dark-shaded nodes form

the active area_for the local parameter reconfiguration to this event with dev = 1. Nodes 7 and 8 are the
boundary nodes.

We write ¢ for the currently selected configuration of node 7. The one-node cluster
Pareto set for node 4 given the new vector 4; is computed. Then, the cluster-level
Pareto set C;|g, is computed from the new one-node cluster Pareto set and the current
configurations of ¢’s child clusters. The issue is that quality constraints (as well as the
value function) are defined only at the task level, so we cannot use lower cluster-level
configurations to draw conclusions about quality-constraint satisfaction. What we do
know, is that the current configuration satisfies the constraints. This implies that each
new configuration that dominates the current configuration, also satisfies the task-level
constraints owing to the monotonicity of the mapping functions (see Chapter 4), which
enables us to conservatively pick a new configuration: if the set

Cr={cle=¢.ceCla} 6.1)

contains at least one configuration, we may use it. If C* is empty, we do not know which
of the configurations satisfies the task-level quality constraints. We could then select the
configuration that is nearest to ¢;, for instance in terms of (2.4), and hope the impact on
the task level quality metrics is small or insignificant. If this is not acceptable, we could
propagate the new Pareto set to the sink to derive the task-level metrics and determine
the optimal constraint-satisfying configuration. The active area is then enlarged (i plus
all its ascendants), while the configured area is still only node 7. This is similar to global
reconfiguration as in the previous section (the active area is the same), but the configured
area 1s just one node instead of the whole network. We refer to the latter approach as
semi-local parameter reconfiguration, in contrast to_fully-local (see Table 6.2).

Semi-local reconfiguration also ensures that all of 4’s ascendants have correct Pareto
sets. After a fully-local reconfiguration at node %, the Pareto sets of the ascendants of
¢ are not accurate anymore. However, if ¢ conservatively picks a new configuration
as above, monotonicity ensures that also the current configurations of ¢’s ascendants
contain conservative estimates of the metrics. Hence, if the current configurations of these
ascendants are used in later local reconfigurations, the results would also be conservative.
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Improved Quality for Parameter Events. If the low-cost reconfiguration described above
1s not good enough, the optimiser can be given more freedom, by reconfiguring more
nodes around %: some of its descendants and ascendants. Intuitively, it makes sense to
update the configurations of these nearby nodes, as ¢’s performance is influenced most by
its neighbourhood. The size of both the active and configured area around ¢ is controlled
by the deviation parameter dev: the areas comprise ¢ plus its ascendants and descendants
at most dev hops away. This is illustrated in Figure 6.8. The earlier case in which only ¢ is
reconfigured has a deviation value dev = 0. The active area is a sub-tree of the network’s
routing tree (a cluster according to Definition 3.1; not necessarily a leaf cluster), while all
descendants of its boundary nodes have already been configured. We can therefore apply
an adapted form of the algorithm of the QoS-optimiser of Chapter 4 to compute the new
Pareto points.

As we only allow nodes in the configured area to update their configurations, the QoS
optimiser needs to take into account the current configuration for all other nodes. More-
over, the optimiser needs to obey the leaf-to-root clustering order as before. Therefore, as
for global reconfiguration, the process has to start at the boundary nodes, and these nodes
use the current configurations of the clusters just outside the area (see Figure 6.8). Note
that this is a generalisation of the case with dev = 0 above, in which ¢ is also a boundary
node.

When the optimiser has computed the Pareto set of the cluster of the active area’s root
node, which is the cluster that contains the whole configured area, we need to determine
which configurations meet the quality constraints. As above, the only certainty we have
at this (cluster) level, is that all configurations that dominate the current configuration
meet the constraints. Hence, we again apply (6.1) to find these points. If there are no
such points, we could either choose the nearest to the current configuration, or extend the
active area by continuing the configuration process up to the sink, in order to compute the
task-level configurations and apply the constraints and value function on these (semi-local
parameter reconfiguration). A small step further is to make all nodes on the path to the
sink part of the configured area, and compute new parameters for these as well.

Topology Events.  For local adaptation to topology events, we assume that all nodes in the
active area for tree reconstruction also undergo parameter optimisation. We also equate
the configured area to the active area. To further exchange quality for lower cost, we
could reduce the configured area even more (smaller than the area of tree reconfiguration).
However, not re-analysing all clusters with changed parents or children inside means that
the computed metrics are not accurate; when locally reconfiguring the whole active area
from boundary nodes to the local roots, the computed metrics are always accurate.

In case of a topology event, multiple nodes may be changed together. Especially in
the mobile sink scenario, the affected area may be a relatively large region. It makes
sense to reconfigure the parameters of nodes that form a cluster (sub-tree) in the affected
area together. Each cluster can then be reconfigured locally, in the same way as for the
parameter event above. As for parameter events, both semi- and fully-local reconfiguration
are possible, with the same pros and cons. In case of semi-local reconfiguration, the
affected area is always a single cluster. The recomputed configurations are then task-level
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configurations and can therefore be directly checked for constraint satisfaction and value.
As the active (and configured) area in the mobile sink case is always a region around the
sink, we only consider semi-local reconfiguration, for the added benefits it has against low
additional costs compared to fully-local in this specific case.

6.4.3 Practical Details

Finding the Active Area and Boundary Nodes.  From the previous, it follows that we need
to make the boundary nodes start the QoS analysis with the correct child Pareto sets.
However, after a topology event, a node actually does not know whether it is a boundary
node or not. What is more, in case of global and semi-local reconfiguration, not every
node may know that it is a part of the active area. In the example of Figure 6.7 in which
node 8 changed parents, only nodes 5 and 6 will be aware of the change, while also 1, 2,
and 3 need to be updated.

In these cases, we therefore make every changed node send a message called Optimise
to its parent (after some delay to ensure the tree is stable), which indicates that the parent is
part of the active area. This message needs to be communicated reliably (acknowledged,
and retransmitted if needed). If the parent was not a changed node, it now knows that
it is also in the active area, and it will forward the message to its own parent. When this
procedure completes, all nodes in the active area are identified, and these nodes also know
whether each of their children is in the active area or not.

A node 1s identified as a boundary node if it does not receive an Optimise message
from any of its children within a reasonable period of time. The boundary nodes then
start the QoS analysis, which propagates in the usual way up to the root. Each node
that has one or more children outside the active area requests these children to transfer
their current Pareto sets (these may have changed as a result of other events), or only the
currently selected configuration in case of semi-local reconfiguration, before commencing
the QoS analysis. After completing the QoS-optimisation phase, the sink proceeds with
the loading phase. When the load messages reach outside the active area, they are no
longer forwarded in the localised case. In the globally-optimal case, the load messages
are forwarded up to the leaf nodes of the network.

In the fully-local adaptation to a topology event, we may restrict parameter optimi-
sation to the nodes affected by the repairing of the tree. It is likely that there will be
multiple separate clusters in the active area, which each should do their own optimisation.
Boundary nodes are appointed through the mechanism described above, though without
nodes that were not affected in the tree reconstruction playing a role. A cluster root is
identified by its parent that is outside the active area.

For a fully-local adaptation to a parameter event at node ¢ (as in Figure 6.8), the
boundary nodes are found by simply descending the tree by dev hops. These boundary
nodes know that they need to start the analysis and may do so straight away, and thus a
procedure as above is not needed. Also the root of the active area — the node at dev hops
towards the sink from ¢ — knows that it is the root when the messages reach there, and that
it should finish the configuration phase and perform the selection phase.

Until here, we assumed that all adaptation takes place in a distributed way. While
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this 1s certainly the most natural way to update the routing tree, centralised execution
may still be the method of choice for parameter optimisation due to the potentially high
computation costs on sensor nodes. Such centralised parameter optimisation would need
all changes to be communicated to the sink, very much like during the initialisation phase
of the configuration process as defined in Section 3.4. To save costs, new parameters may
be computed and loaded periodically, instead of after each change.

Concurrent Events.  If fully-local parameter optimisation takes place due to two events,
in two clusters that are disjoint, no interference occurs and the clusters may safely be
optimised simultaneously. If the clusters overlap, that is, the root of one cluster is part of
the other cluster, one of the clusters needs to be optimised first. The second reconfiguration
action is either aborted at the node that joins the two clusters, or suspended, and resumed
after the first reconfiguration completes.

For semi-local and global reconfiguration, the active areas for multiple events always
overlap, as the sink is always involved. Reconfiguration for multiple events is then always
handled sequentially. Because reacting to each event may lead to a large overhead if many
events occur, one could decide to do periodic global reconfigurations instead. Further
details about these concurrency issues are left as future work.

6.5 Experiments

Since the performance of our reconfiguration approach depends on many factors, such
as the type of task, the size of the network, the frequency and place of events — such as the
movement pattern of the sink (size of steps, speed) — we use simulations to compare various
scenarios. We are especially interested in the choice between localised and globalised QoS
analysis on resulting task quality and reconfiguration costs. To see whether parameter
reconfiguration really makes sense, we also compare the results with the option of not
reconfiguring at all (though minimal tree reconstruction may still be needed to ensure the
network remains functioning).

6.5.1 Simulation Overview

The simulations were carried out in the same basic set-up as in the previous chapters; see
Section 4.6 for details. We used networks of 900 TelosB sensor nodes randomly deployed
in an area of 300x300 m, and running the target-tracking task defined in Section 3.2,
and 27 different configurations per node. We only focus on the distributed execution of
the (re)configuration algorithms. We distinguish five kinds of reconfiguration: the four of
Table 6.2 plus no reconfiguration at all.

For local parameter reconfiguration, a value function val is needed that chooses one
of the Pareto points to be loaded into the network —local reconfiguration depends on the
current configuration, that is, one that was selected earlier as having the best value. For
easy comparison of the various methods, we use a value function that assigns a real value
to a configuration: a weighted sum of all four metrics, where each weight normalises
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the metric. To this end, we define the value of a configuration vector ¢ = (information
completeness, detection speed, lifetime, coverage degree) as its inner product with the

vector ¥ = (100, 200, 0.1, 100):

le|—1
val(e) = > elil - vli] (6.2)

=0

We do not use constraints in these experiments, to avoid biased results.

We simulate three scenarios. Firstly, we see what happens when uncontrollable pa-
rameters change, and whether reconfiguration is useful. Secondly, we look at a scenario
in which nodes break — due to a drained battery or some other defect — a situation that
is very relevant in practise. Finally, we examine the mobile sink scenario. We do not
simulate criteria events, since these only require the selecting and loading phase to be
redone, exactly as in Chapter 4.

6.5.2 Changing Uncontrollable Parameters

The contention-loss factor L is one of the uncontrollable parameters in the node model
of Section 3.2. It is a number in the range [0, 1], which is an estimate of the fraction
of the packets transmitted to the node’s parent that are lost due to collisions. This is
typically a parameter that is estimated at design time, but may turn out to be quite
different when running the task on the network. In this experiment we do an initial
configuration of the network in which all nodes have L = 0.1, and store the set of Pareto
points Cp. Then we change the L values at all nodes to random values from the set
{0,0.05,0.1,0.15,0.2,0.25, 0.3} (a parameter event), and recompute the metrics for the
configurations in Cy (having the same controllable-parameter vectors that is); the resulting
set is called C;. The metrics of the configurations in C; correspond to the metrics of the
system after the event if we would not reconfigure the parameters. After that, the network
is globally reconfigured (efficient global), and the quality difference D(C2,C;) between
the new Pareto set Co and Cy is determined (see Definition 2.4).

The simulations are done for 100 random networks, as in the previous chapters. The
results are somewhat surprising: the quality difference between not reconfiguring (C;) and
the real Pareto points after the event (Cs) is negligible (not exactly zero due to quantisation
differences, but always smaller than 0.001). This implies that the Pareto points that were
initially computed — for the “wrong” values for uncontrollable parameter L — are the
same as the Pareto points with corrected or changed L values. In other words, the set
of Pareto points seems to be independent of the values of L of the nodes, at least in this
model. That is, it seems that the same controllable-parameter vectors are Pareto-optimal
for any L. This is understandable from Figure 3.3, in which L has a monotone effect on
the reliability metric (the other metrics are not affected by L, since retransmissions are
not used in our task models).

Other tests reveal that the same holds for the other uncontrollables in the model. The
values of the metrics, however, do change. Therefore, in order to check the constraints,
it is still needed to recompute the metrics, but only of the Pareto-optimal configurations
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in Cp. This is obviously much more efficient than when starting with the full parameter
space as in the original configuration problem. After the recomputation of the metrics,
we re-execute the selection and load phases (load only if the newly selected configuration
is different from the current one) in order to establish a constraint satisfying solution. This
result is especially relevant for global reconfiguration, as local reconfiguration is already
very efficient.

The conclusion is that it is not needed to perform the QoS-optimisation phase after a
parameter event for this WSN model, as the Pareto set does not change. We may keep the
current parameter vectors, and only need to recompute the metrics and check for con-
straint satisfaction. In general, however, we may not draw this conclusion. Determining
the precise relationship between uncontrollables and Pareto optimality is an interesting
topic for future work. It is, for example, interesting to know under which conditions the
Pareto set is insensitive to an uncontrollable.

6.5.3 Broken Nodes

As it turns out that parameter events are not a major issue for the WSN task we study, we
repeat the experiments of the previous sub-section for the next scenario: broken nodes.
For each of the same 100 networks of 900 nodes, we establish an initial Pareto set Cy. We
then remove ten random nodes and repair the tree as proposed in Section 6.2. Then,
we recompute the metrics of the configurations in Cy and call the new configuration set
Ci. This set represents the “do nothing” option. Subsequently, we use efficient global
parameter reconfiguration to find the Pareto-optimal configuration set Ca in the new
network with ten nodes fewer, and compute the quality difference between C; and Cs.

Also 1n this scenario it turns out that the quality differences are really small: about
0.001 on average. This suggests that the impact of nodes leaving the network and locally
patching the routing tree on a properly configured WSN is quite small. Apparently, the
changes that occur in the tree are not very significant on the scale of the network as a
whole that mostly stays intact. Therefore, parameter reconfiguration after repairing the
routing tree does not seem to be needed. Naturally, these conclusions can only be drawn
for the WSN task and model that we study. The behaviour of other tasks and models
needs to be verified on a case-by-case basis.

6.5.4 Mobile Sink

In this section, we examine the method of adaptation while the sink is moving, as intro-
duced in Section 6.3. Compared to the broken-nodes scenario of the previous sub-section,
a mobile sink has a much larger impact on the routing tree, and we therefore expect a
significant effect on the quality of the configurations if no parameter reconfiguration is
performed. We therefore more thoroughly investigate this case and the various reconfig-
uration strategies.

The evaluation metrics used to compare the solutions are as follows:

o Disruption time: the duration of service disruption just after a topology event until
the tree has been reconfigured to include all nodes. This is equal to the time
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needed for QuickFix to complete. During Controlled Flooding (if CF continues
after QuickFix finishes) and parameter optimisation, the network does function,
though its service quality is reduced. Hence, for the parameter and criteria events
discussed before, the disruption time is always zero.

e Tree-reconfiguration time: the total time needed to reconstruct the tree, comprising
QuickFix, Controlled Flooding, and node-degree reduction.

o Reconfiguration time: the total duration of the tree- and parameter-reconfiguration
process. The total reconfiguration time is also a rough indication of the amount of
processing needed on the nodes (the optimisation time is dominated by processing).

e Communication cost: the average number of bytes transmitted for reconfiguration,
over all nodes in the network.

o Value loss: the relative loss in value compared to the best case.

The simulated networks and WSN task are the same as before (900 nodes in an area
of 300 x 300 m). The SinkMove timer was set to expire after 0.01 s, while the remaining
set-up was as in Chapter 5. First, we look at the sink placed at coordinates (100,150), and
the network configured with the method of the previous chapters. Then the sink moves to
position (200,150), and the network is reconfigured using the various options described in
this chapter. We simulated 100 different networks and report the medians of the metrics
of interest. In the second scenario, the sink makes multiple consecutive moves, while the
network is reconfigured after each move.

Tree Reconstruction.  We first study the behaviour of the tree-reconstruction algorithm
for a mobile sink described in Section 6.3 in the single-move scenario. All 100 networks
were tested with various values of the deviation parameter, as well as full flooding (global
reconfiguration) as a baseline. The degree-reduction algorithm with a target node degree
of 2 was executed on the resulting networks. The first point to note is that the tree
was correctly rebuilt in all of the cases. Figure 6.9(a) shows that average path length
decreases monotonically from almost 18.2 to 11.5 when increasing the deviation from 0
(only QuickFix) to 12. The optimal average path length (when fully flooding the network)
1s also 11.5. Figure 6.9(b) indicates that the size of the affected region also grows steadily
with the deviation until, at deviation 12, almost the whole network is reconfigured, and
hence we obtain an approximate SPST with this deviation (within the degree constraint).
Observe that the active area first grows faster than linearly, but slows down after deviation
6; this is the point where Controlled Flooding reaches the edges of the network.

Along with the active area, the amount of communication increases in a similar pace
(Figure 6.9(c)). As expected, also the total tree-reconfiguration time, excluding degree
reduction, increases with the deviation (Figure 6.9(d), dashed line), with an offset due to
QuickFix. The time needed for QuickFix/CF is relatively short compared to the time
used to reduce the node degrees, and together with the fact that the latter does not depend
on the size of the active area, this explains why the total time spent on tree reconstruction
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Figure 6.9: Evaluation of tree reconstruction_for various deviation values.

(solid line in Figure 6.9(d)) is not clearly dependent on the deviation. Also recall that if
only QuickFix is used, the degree-reduction algorithm is hardly effective due to the small
active area, which is why the run time at deviation 0 is lower than for the others. Overall,
the tree-reconstruction time is always less than 1.4 s, while the disruption time, comprising
only the time need for QuickFix, is just over 0.1 s.

Parameter Optimisation. Now compare the optimisation times of the various cases of
parameter optimisation in Figure 6.10(a). We confirm that efficient global reconfiguration,
in which only nodes in the active area recompute their Pareto points, is always faster
than the naive version, and this is most pronounced for small deviations. However, the
differences are not as large as might be expected. Local optimisation (semi local to
be precise, as explained in Section 6.4.2) on the other hand, in which the same nodes
recompute their Pareto points as in the efficient-global case, but with boundary nodes
using just one configuration for their child nodes outside the active area (instead of their
full set of Pareto points), is much faster. This may imply that the configuration sets of
nodes closer to the sink are larger than those of nodes further away. It is interesting to see
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that the optimisation time of the localised algorithm initially increases very slowly (sub-
linearly) with the deviation, starting at just 9.7 s. Deviation 5 appears to be an inflection
point beyond which the rate of increase grows quickly. Eventually, the three lines meet at
418 s (about seven minutes; not visible in the graph), when fully flooding the network; this
is equivalent to deviation infinity, as the active area is the whole network.

Next, we test the quality of the resulting configurations by comparing their values.
The best value occurs when using full flooding and global parameter optimisation. Using
this value as a baseline, Figure 6.10(b) shows the relative loss in value when using the
other methods. It turns out that, for the target-tracking task, all methods for parameter
optimisation, semi-local and global, achieve the same quality (the solid line), while not
optimising is significantly worse (8 to 10 percentage points; the dashed line). Given its
low overhead, this makes local reconfiguration very attractive for any deviation. The best
value possible when not optimising (at deviation 12) can be attained with optimisation
already at deviation 3. For a larger deviation, we see a steady improvement in value,
which is consistent with the assumption that quality of the task improves if the average
path length is reduced for a given degree target A, and vice versa (see Section 5.1). At
deviation 0, the difference with the optimum is quite large at 14.3%, but after deviation 6
it becomes smaller than 1%.

6.5.5 Quality/Cost Trade-offs.

Combining all results yields the totals for the reconfiguration process in the evaluation
metrics. The disruption time only depends on tree reconstruction (QuicklFix) and has
been reported above. Figure 6.11 gives an overview of the trade-offs between the total
time and communication costs of reconfiguration, and the value loss of the resulting
configuration, for all reconfiguration options. The two plots should be seen together as a
three-dimensional trade-off space. It is immediately clear that all global-reconfiguration
points (the black dots) are dominated by the semi-locally optimised (grey) and non-
optimised (white) options. In contrast, most of the other points are Pareto optimal. As



6. Run-Time Adaptation 121

25 T T T T 25 T T T T T T
Do s s s s DO
! ! ! ! 1 ! ! ! ! !
D ; ; : : 02 : : :
— — 3
® P 32 O
= 1R, g 1 150 @ ]
i po’ o i e
E ° 2 2 H] C)O P
< 10O @ 2 10r QU @ )
> 3 3 > 1 3!
O [ 5 Ve .
sk O: 45,. i sk 9 @i
%68: . . o ‘6% . . <5) O ’: é 7 g .
0 7@{\?(‘\]0 il 2 .f'. 0 | I 6 O ﬁ'\’Y‘f‘P\
0 100 200 300 400 O 20 40 60 80 100 120 140
reconfiguration time (s) communication (bytes/node)
(a) Time vs. value loss (b) Communication vs. value loss

Figure 6.11: Parelo plots for the reconfiguration process. Black dots belong to (efficient) global parameter
reconfiguration, grey to (semi) local, and white to no parameter optimisation. Deviation values are given
at interesting trade-off points.

non-optimisation is obviously the fastest, itis the best choice when speed and low processing
costs are most important, although the loss in value is at least 7.7%. In many cases,
however, semi-local reconfiguration provides the best trade-off between the three metrics:
low cost and good quality. At deviation 5, for example, semi-local reconfiguration takes
44.9 s (of which the service is disrupted for about 0.1 s), costs 50.3 bytes of communication
per node, and the overall quality is 3.5% lower than the best case. The configuration
space that was analysed in this time, for the active area of 350 nodes, has a size of 27350
configurations, of which the found configuration has the optimal value.

Multiple Moves of the Sink. It is interesting to see what happens to the loss of value when
the sink moves repeatedly, and the network is locally optimised at each move. Figure 6.12
shows the value loss of semi-local optimisation with deviation 5 compared to the optimal
case, for 25 consecutive moves of 50 m in random directions. The results are averages over
five different runs. A very irregular pattern is visible, but the trend is a slowly increasing
loss for each move. We therefore suggest to do a full network reconfiguration periodically,
or when the attained value becomes too low.

Discussion. 'The best choice of reconfiguration method and deviation value in the mobile
sink case heavily depends on the WSN task and its requirements as well, and specifically
on the sink’s behaviour. Due to the unpredictable nature of the sizes of the Pareto sets
and therefore the optimisation time, as well as the quality of the resulting task-level Pareto
set, it 1s hard to give guidelines for this choice. In practise, a system could first have a
calibration phase to tune the deviation value, or simulations like ours can be used.



122 6.6. Case Study: Building Monitoring

o

~
T

w
T

value loss (%)

N
T
1
]
1
1

o

o
23
>
&
N
o

25

# of moves

Figure 6.12: Multiple consecutive moves: value loss compared to optimal with trend line.

The methods that do all processing in-network are useful for applications in which the
sink stays at its position for a while before moving again (e.g. when moving the sink for
lifetime improvement), to justify the cost and speed of reconfiguration. For scenarios such
as disaster recovery, in which the sink (rescue worker with handheld) may move a bit faster,
an interesting option is to deploy special, more powerful nodes (such as handhelds) that
handle most of the optimisation duties, or even do all the work at the sink. This is again
a trade-off: between communication and processing cost (offloading computation effort
increases the amount of communication between sensors and sink), and of course the cost
of the additional nodes. Tor example, doing the QoS analysis for deviation 5 as above
on a laptop (Intel Core 2 Duo processor at 2.4 GHz) takes 3.0 s for the globally-optimal
case, and just 0.6 s for the localised case. For handheld devices, these numbers would
be higher, but still much lower than when done in-network on sensor nodes. However,
the communication costs per node increase by about five times (both global and local).
Future work will have to focus on this trade-off in more depth.

6.6 Case Study: Building Monitoring

This section shows another example to illustrate the use of the configuration method in a
different scenario. The main aim of this section is to highlight its support for heterogeneous
collections of nodes, having various capabilities and parameter sets. We look at a wireless
sensor network for monitoring a large building.

6.6.1 Situation and Model

Figure 6.13(a) shows a map of one of the floors of a hospital building that is monitored
by a sensor network. Our goal is to configure this network. As our hospital is located in
an carthquake-prone area, structural monitoring is used to detect weak spots in the walls
of the building, such that early measures can be taken to avoid damage and its possible
catastrophic effects. Sensors that measure, for example, vibrations [Kurata et al. 2008]
or moisture are placed at or inside the walls of the building. Secondly, we have cameras
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inside the rooms of the hospital to keep an eye on the patients, which operate on a low
frame rate. Besides that, we also monitor the rooms’ climate — temperature and humidity
— by one or two sensor nodes in each room. We assume that all measured information is
collected by a mobile handheld device: the sink. Figure 6.13(a) shows the placement of
the various types of nodes in the area.

The operator responsible for monitoring the building holds on to the sink node and
1s able to select one camera node at a time to watch its video stream. Wall and climate
nodes periodically take measurements, which are forwarded to the sink. We assume no
reliable data transport (no retransmissions) is used. The wall nodes are less powerful
nodes and are assumed to be located in less accessible places (that is, changing batteries
is hard). Therefore, these nodes are considered special and are not used to relay any
data for other nodes. The network set-up is similar to IEEE 802.15.4 networks with
their distinction between full-function devices and reduced-function devices, arranged in
a cluster-tree network. The cluster-tree is in fact just a tree in which the reduced-function
devices area always leaf nodes. This also means that our configuration method applies
to it; tree construction can easily enforce reduced-function devices to be tree leaves by
making them not forward Flood messages.

We explore a different method for medium access in this example, which is based
on TDMA (time-division multiple access), and show that our configuration method is
particularly suited to this kind of networks. TDMA has the property that transmissions
can be cleanly separated, thereby avoiding collisions. Thisimplies that parts of the network
can be considered independently from one another, which is an ideal situation for our
configuration method, which assumes clusters to be independent entities (apart from their
composition in the cluster hierarchy). The disadvantage of TDMA is the overhead caused
by the need for synchronisation between nodes.

One of the challenges in using TDMA for sensor networks is the assignment of time
slots to nodes for their transmissions, while keeping the total length of the schedule small.
The problem is related to the classical problem of graph colouring, for which there are
no known algorithms that construct a minimum-length schedule in an efficient way (the
problem is NP-complete) [Ramanathan and Lloyd 1992]. However, there are (distributed)
algorithms available that efficiently provide good solutions [Herman and Tixeuil 2004,
Lloyd 2002, Mao et al. 2007], for example based on a greedy construction of the schedule,
and are also able to repair the schedule at run time in case changes in the network topology
occur.

We assume that one of the above algorithms and a mechanism for time synchronisation
are in place and a so-called broadcast schedule has been established soon after deployment.
The schedule is periodic, and the schedule for each node contains a time slot for its own
broadcast, as well as time slots for each of the nodes that are close enough to interfere
with the node’s transmissions. This means that the schedule contains slots for each of
the nodes in a two-hop neighbourhood. The schedule ensures that the node’s broadcasts
never collide with other nodes’ broadcasts. When the network is in operation, the radio
of a node needs to be in receive mode only during the time slots of its child nodes in the
routing tree. An additional sleep period may be introduced in the TDMA schedule to
allow nodes to sleep more.
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We consider the following quality metrics for our configuration problem (all are
greater-is-better metrics):

1. Video quality (g): the average rate of the video stream in number of images per
minute over all nodes.

2. Speed (s): inverse of the average latency from sensor to sink in seconds.

3. Wall-measurement rate (wm): average number of wall-measurement samples taken
per hour over all wall nodes.

4. Climate-measurement rate (cm): average number of climate-measurement samples
taken per hour over all climate nodes.

5. Completeness (c): fraction of the number of all measurements/samples taken in the
network that arrive at the sink.

6. Wall-node lifetime (w!): time in hours until the first wall node runs out of battery.

7. Other nodes lifetime (0l): average battery life in hours of climate and camera nodes.

These metrics are task-level metrics, as well as cluster-level metrics for any cluster in
the network (according to Definition 3.1) including one-node clusters. Note that because
of the special nature of wall nodes, we have split the lifetime metric into two separate
metrics. The first one is a minimum-lifetime metric that considers each wall node to be
essential. This metric pushes the QoS optimiser to balance the workload evenly over all
wall nodes. For the remaining nodes, an average lifetime metric is defined. Separating
the lifetime metrics makes it easier to set priorities and constraints, and change them if
deemed necessary.

For the speed metric, we assume that the per-hop delay is equal to the length of the
TDMA period, and for simplicity in this example, that this period is the same for all nodes.
We also assume that there is no queueing delay at the nodes, which is justified by the fact
that the rates are low. Hence, the speed is inversely proportional to the hop count.

The parameters of the nodes and their values are defined in Tables 6.3-6.5. The
parameter set of a wall node (all combinations of parameter values) has 9 parameter
vectors, while climate and camera nodes both have 12. We assume that the sink node is
not configurable. Note that the parameters and values for any node may be completely
different, thereby allowing very heterogeneous networks. The full configuration space has
size 922 - 1227 = 1.37 - 1029,

Mappings from parameters to cluster metrics, as well as cluster-to-cluster metrics are
given in Tables A.1-A.4 in Appendix A. In this example, we skip the layer of node metrics,
and go directly to cluster metrics, even for single nodes. We leave it to the reader to verify
that these mappings are correct.
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6.6.2 Configuration

After construction of the broadcast TDMA schedule, the configuration method com-
mences as usual by constructing a routing tree, this time taking into account that wall
nodes are always leaf nodes. We use a degree target A = 3. The resulting tree is drawn
in Figure 6.13(a).

The next step is QoS analysis. Running the algorithm of Chapter 4 gives the set of 15
Pareto points shown in Table 6.6. We observe a trade-off between most metrics, except
for speed and completeness. Speed is constant, as it only depends on the hop count, and
only the tree-construction phase affects it. Apparently, lower completeness values than
94% provide no good trade-ofls.

Figure 6.14 gives an overview of the complexity of running the QoS optimiser on this
example. The figure shows the routing tree with at each node the size of the product
set, or the size of the parameter set for leaf nodes, which is assumed to be proportional
to the processing time. For example, for TelosB sensor nodes, the processing time in
seconds is about 2.34 - 1072 times this number (see Section 4.6.4). For a laptop with a
Core 2 Duo processor at 2.4 GHz, the factor was measured to be about 1.8 - 1075, The
sum of the numbers in the graph, 46,374, is a measure of the QoS-optimiser’s run time
when centrally executed. This would take less than a second on the said laptop. When
executed in a fully-distributed way, the longest path in the graph is what counts. This is
the right-most path, yielding a total of 17,328, which would take about 405 s to execute
on a network of only TelosB nodes. As we know from Chapter 4, distributed execution
has the benefit of having much lower communication costs, as each node has to send only
a single value to each of its child node in the loading phase, instead of parameters for all of
its descendants. Further, if we equip our camera, climate and sink nodes by slightly more
advanced processors, it is easy to get the configuration time down to less than a minute.

However, it is also possible to combine centralised and distributed computation. We
stated above that wall nodes are less powerful and should be off-loaded as much as possible.
We can do this by making their parents compute the configurations for them, and thereby
following the concept of the cluster-tree network with full- and reduced-function devices.
This is a straightforward option in the configuration method. The computation would
now take a little bit longer (17,346) due to the reduced parallelism.

After finding the Pareto points, one of them is selected based on constraints and a
value function, and loaded into the network. After that, normal operation of the network
may start.

6.6.3 Moving Sink

If the sink moves to the other side of the building, the tree will be broken. Running the
tree-reconstruction algorithm of this chapter with deviation value 0 (only QuickFix), we
are able to repair the routing tree, as shown in Figure 6.13(b). Affected links are drawn
with heavier lines in this picture. The new Pareto points are given in Table 6.7.
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Table 6.3: Wall-node parameters

Parameter

Set of values (quantity)

Sample rate (7 in samples/h)

Transmission power (p in dBm)

{5,10,15}
{-25,-15, —10}

Table 6.4: Climate-node paramelers

Parameter

Set of values (quantity)

Sample rate (r in samples/h)

Transmission power (p in dBm)

{20, 40,60}

{~15,-10,-5,0}

Table 6.5: Camera-node paramelers

Parameter

Set of values (quantity)

Video quality (7 in frames/min)
Transmission power (p in dBm)

{10, 20, 30}

{-15,-10, 5,0}

Table 6.6: Pareto poinis for the situation as in Figure 6.13(a)

q S wm  cm c wl ol

24 0.008 5.0 489 094 82255 41826
24 0.008 10.0 48.9 0.94 41127 41826
24 0.008 20.0 48.9 0.94 20563 41826
27 0.008 5.0 444 094 82255 41921
26 0.008 5.0 46.7 0.94 82255 42079
28 0.008 5.0 37.8 0.94 82255 46680
30 0.008 5.0 60.0 0.94 82255 28318
27 0.008 10.0 444 0.94 41127 41921
26 0.008 10.0 46.7 0.94 41127 42079
28 0.008 10.0 37.8 0.94 41127 46680
30 0.008 10.0 60.0 0.94 41127 28318
27 0.008 20.0 444 094 20563 41921
26 0.008 20.0 46.7 0.94 20563 42079
28 0.008 20.0 37.8 0.94 20563 46680
30 0.008 20.0 60.0 094 20563 28318
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Table 6.7: Pareto points _for the situation as in Figure 6.13(b)

q s wm  cm c wl ol

30 0.008 5.0 60.0 092 82255 27870
30 0.008 10.0 60.0 092 41127 27870
30 0.008 20.0 60.0 092 20563 27870

Figure 6.14: Processing costs per node for configuring the example of Figure 6.15(a). The numbers
correspond to the size of the product set, or the size of the parameter set for leaf nodes, which is assumed to
be proportional to the processing time. The colours of the nodes correspond with the colours in Figure 6.15
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6.7 Summary

Wireless Sensor Networks are typically liable to changes at run time due to events in
their environment. The configuration process described before this chapter did not deal
with these events, but rather configured the network for a static situation. This chapter
introduces adaptation methods that intend to update the configuration in response to
events at run time.

Three kinds of events are introduced, which require various degrees of change to
the configuration. The least impact have changes in the objectives and/or constraints
specified by the user, the so-called criteria events. Under such events, the current Pareto
sets are still optimal, and reconfiguration simply means selecting a point using the new
criteria, and loading it into the network.

Secondly, a parameter event involves a change in one or more uncontrollable param-
eters. After such an event, it is likely that the current Pareto sets are not valid anymore
and need to be recomputed. Luckily, it is normally not necessary to re-analyse the whole
network in order to find up-to-date globally Pareto-optimal configurations. Because of
the hierarchical nature of the configuration process, only the Pareto points for clusters
that contain changes need to be recomputed. Details are given on how this works.

The event that has the largest impact is the topology event. As part of such an event,
nodes may move, appear or disappear, or communication links may become dysfunctional.
The effect is that the routing tree may be broken and therefore needs to be fixed. We
provide tree-reconfiguration mechanisms for the several kinds of topology events that may
occur. These mechanisms are based on the tree algorithms of Chapter 5. A special case
that we treat in more detail because of its practical relevance and huge impact on the
configuration is the mobile sink.

If events occur regularly, global reconfiguration after each event may be too expensive.
Instead, it is possible to reconfigure only a local region of nodes, around the place where
the event occurred. The drawback is that the computed configurations are no longer
guaranteed to be Pareto-optimal on a global level, and hence the achieved task quality
may be lower than possible. This is again an example of a quality/cost trade-off.

Experimental evaluation shows that, for the example WSN task, parameter events
do not have a big influence on the Parcto sets. This means that before and after the
event, the same parameter vectors are Pareto optimal. However, the quality metrics may
still change, and therefore also constraints may have been violated. The implication is
that QoS optimisation is not really needed in this example, but the selection and loading
phases still are (loading only if the new configuration is different from the current). An
interesting direction for future work is to find out what exactly causes the Pareto points to
be nsensitive to changes in an uncontrollable.

A similar result is seen in the experiments for the topology events in which several
nodes break or run out of energy. Whatis always needed in these cases is a reconfiguration
of the part of the tree where the event occurred. Simulations show, however, that the
Pareto set does not change significantly for the example WSN task. That is, the current
configuration is already a Pareto point, or nearly as good as one. Again, however, metrics
would have changed after the event, and constraints need to be checked.
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The mobile sink experiments show the real use of parameter reconfiguration. Since
the tree changes significantly, also the Pareto points do. Simulations show that local
reconfiguration of the tree as well as the parameters makes a lot of sense in this case, as
the attained quality is comparable to the quality achieved by global reconfiguration, while
the costs are much lower. Not reconfiguring leads to a much lower quality. By adjusting
the size of the locality that is reconfigured, the quality/cost trade-off can be controlled.

This chapter completes our treatment of the WSN configuration problem.



Chapter 7

Conclusions

Numerous developments on Wireless Sensor Networks (WSNs) have been made since
their emergence around ten years ago. A large variety of hardware for an even wider
range of applications are readily available at the moment, efficient networking and data
dissemination algorithms have been devised, while optimising specific properties of inter-
est. Since WSNSs typically contain a very large number of nodes, and each of these nodes
has its own hardware or software settings, it is a huge challenge to configure each node
such that the network behaves and performs according to the wishes of its owner. This is
especially true if the demands are multifarious and inherently conflicting,

This thesis provides a methodology to configure WSNs such that constraints on
multiple quality metrics (performance characteristics) are met, and the overall quality
(performance) is optimised. The method is intended for networks with a single data sink,
using a routing tree for communication. The overall quality is defined by a value function
over all quality metrics. The configuration process is efficient, and scalable to very large
networks. Furthermore, we provide ways to adapt the configuration at run time to changes
in the environment of the network, or in the demands from the user.

7.1 Overview of the Configuration Method

The network may comprise a heterogeneous set of nodes (devices having various types and
capabilities) and a task that is defined in terms of a number of high-level quality metrics.
The method is specifically intended for networks featuring a single data sink, in which a
tree topology is used for communication between the sensor nodes and the sink, where
the sink is the root of the tree. Furthermore, for the configuration process to be scalable,
it needs to be possible to divide the network into a hierarchy of clusters (groups of nodes
forming a sub-tree of the routing tree), such that each cluster has its own quality metrics.
The hierarchy implies that a larger cluster includes several smaller clusters, and that the
larger cluster’s metrics can be derived from these smaller cluster’s metrics (for the precise
requirements, see Chapter 4). We specified two example tasks — spatial mapping and
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target tracking — that fulfil these rules and can be configured efficiently for any network
size.

The configuration process first collects information form the network if needed, and
subsequently it builds the routing tree. We designed new algorithms to build a tree
in which paths are as short as possible within a maximum node-degree constraint, the
degree target A (see below for an explanation of the importance of A). The next, and most
significant phase in the configuration process is the QoS-optimisation phase, in which the
Pareto-optimal configurations for the given quality metrics are determined. This phase
relies on the above cluster hierarchy. Subsequently, the Pareto points that meet the quality
constraints are pulled through the value function, after which the best configuration is
selected for use. This configuration is then loaded into the network.

All phases of the configuration process can be implemented and executed in either
a centralised or a distributed way. The choice between centralised and distributed does
not affect the quality metrics, but is important for the different aspects of configuration
cost: time, processing costs per sensor node, and communication costs per sensor node.
The distributed methods generally have a better time complexity and lower communica-
tion costs. However, the actual run times can be significantly longer (especially for the
distributed QoS optimiser) due to the limited processing capabilities of the sensor nodes,
and the centralised algorithms do not require processing on the energy-constrained sensor
nodes.

The effort required to adapt the configuration to changes in the environment or
objectives can usually be restricted to a local region around the occurrence location of the
change, without giving up too much in quality. Reconfiguration may be triggered by a
change in the constraints or value function due to renewed priorities of the user. In this
case, the current set of Pareto-optimal configurations is still valid, and may be reused for
selecting a new configuration. A so-called parameter event occurs when a property of the
environment changes, for example the quality of a link, without breaking the routing tree.
Pareto points may now change, and should therefore be recomputed. Finally, a topology
event may break the tree, and needs all configuration steps to be performed again. A
special case of a topology event that is studied in detail, and for which we developed a
dedicated tree-reconstruction scheme, is the mobile sink case.

Note that our design objectives for the configuration process are twofold and inherently
conflicting: the task’s quality, as well as the cost of configuration should both be optimised.
Our solutions are aware of this quality/cost trade-off within the configuration process,
and provide handles to choose a suitable point in the trade-off space. Table 7.1 gives
an overview of these handles and how they influence the trade-off. The best trade-off
depends on many factors, including the nature of the task, the environment of the network,
and the wishes of the user. In this thesis, we therefore merely present the handles and
their effect, and rely on the user to select the proper settings.
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Table 7.1: Handles to control the quality/cost trade-off

Product-set threshold The maximum size of the product set per iteration of the QoS-
optimisation algorithm may be limited to any threshold. The
result is that the worst-case time complexity of the optimiser is
linear, though it is no longer guaranteed that the resulting con-
figurations are Pareto optimal. A smaller threshold generally
implies a lower configuration cost and a lower task quality, and
vice versa.

Degree target A A lower maximum node degree in the network leads to a sig-
nificantly lower time complexity of the configuration process.
Additionally, it has a positive effect on certain task quality met-
rics, due to improved load balancing. However, forcing the tree
to have lower degrees tends to make the average path length
large, which deteriorates other quality metrics.

Locality, deviation dev  Locality only plays a role when adapting an already configured
WSN to anew situation. The deviation parameter dev controls
the size of the area that is reconfigured. The larger the size of
this area, the better the resulting task quality and the larger the
cost of reconfiguration.

7.2 Recommendations for Future Work

While this thesis provides a complete and efficient solution for the configuration problem
for the given class of WSN, there is room for extension. Below are some ideas for future
work.

e Our QoS optimiser has been designed for networks with a routing tree in place.
However, the correctness of the incremental optimisation method has been de-
fined in more general terms, and may therefore also apply to other routing tech-
niques [Akkaya and Younis 2005]. Future research could therefore focus on sup-
porting alternative routing protocols.

e The current method first optimises the routing tree, and then the remaining pa-
rameters. Certain points in the configuration space that have the parent node as a
parameter may therefore be missed. Ideally, the configuration process would jointly
optimise the tree (parent nodes) and the other parameters. Due to the required leaf-
to-root cluster order of the QoS optimiser, which needs a tree to start, this seems
to be impossible. However, it may still be interesting to revisit this issue and study
possible alternatives.

o Experiments in Chapter 4 show that the QoS optimiser is scalable for the example
networks, which are considered to be representative and accurate instances of
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typical WSN tasks. However, in general, the worst-case optimisation time is still
exponential in the size of the network. Scalability essentially relies on a relatively
small number of Pareto points in each of the clusters that is used in the algorithm.
It may be possible to specify a class of WSN task models for which the algorithm is
guaranteed to be scalable. In such a class, the mapping functions and values of the
parameters would be restricted.

The option to exploit the benefits of both the centralised and distributed implemen-
tations of the configuration process by deploying powerful, dedicated configuration
nodes, or moving the computation form sensor nodes to already existing high-
capacity nodes, seems very promising. Such a scheme fits almost readily in the
configuration method as it is, and deserves experimental evaluation.

While the resource metrics and constraints are already integrated in the QoS
optimiser, we did not yet take these into account in the experiments. Resource
metrics are especially important when looking to run multiple tasks on one WSN
simultaneously. Itis quite straightforward to include a resource model for a resource
that is local to a node, such as the available clock cycles for processing on the micro-
controller. However, designing a resource model for a resource that is shared
between nodes, such as the wireless communication channel, and its integration in
the QoS optimiser is challenging, as the monotonicity of the hierarchical method
should be ensured. Hence, the design and integration of such resource models
would be very interesting.

Section 4.5 briefly touched on the topic of configuring a WSN to run multiple tasks
concurrently. The current method is able to support this, if the parameters and
metrics of all tasks are fused in a single configuration space, and all tasks share the
same routing tree. A more general approach for sharing the WSN as a platform
between independently running tasks is formulated as a multi-dimensional multiple-
choice knapsack problem (MMKP). Working out the details of a solution to this
problem is yet to be done. Good resource models, as hinted at in the previous point,
are key to this approach.

In Chapter 6 on adaptation, it was found that the Pareto-optimal configuration set
1s insensitive to changes in certain uncontrollable parameters. This is a potentially
a very powerful feature, as only the current Pareto-optimal configurations need to
be considered after a shift in such an uncontrollable parameter, and reconfiguration
can be done very efficiently. The precise relation between uncontrollables and their
values, and the dominance relation of configurations, is still unclear. Identifying
such uncontrollables and the ranges of values for which the Pareto set is invariant,
would be a very useful next step.

Throughout the thesis we have used the assumption from Section 3.3 that task
quality and configuration cost are independent optimisation targets. In practise,
however, this is not necessarily the case, and the configuration process may affect the
quality of the running task, especially when reconfiguring relatively often. Future
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work could focus on integrating the optimisation of task quality and configuration
cost for specific cases.

o Another possible extension is the use of probability distributions instead of deter-
ministic mapping functions, probably obtained from experiments, in order to better
assess the effects of inaccuracies in the mappings. This may require a probabilistic
version of Pareto algebra.

e Tinally, as the current experimental evaluation is mostly based on simulation (though
the run time of a TinyOS implementation of the QoS optimiser was measured on
real TelosB sensor nodes), a feasibility check of the configuration method on a real

WASN is desirable.



136 7.2. Recommendations for Future Work




Appendix A

Mappings for the Case Study

The appendix contains the mapping functions for the case study of Section 6.6. The
mapping functions use the following helper functions from transmission power in dBm to
respectively reliability and current draw in mA:

0.60 ifp=—25
0.80 ifp=—15

p2r(p) = 0.90 ifp=—10 (A1)
0.95 ifp=—5
0.99 ifp=0

8.50 ifp=—25
9.90 ifp=—15

p2i(p) = { 11.0 ifp=—10 (A.2)
14.0 ifp= -5
174 ifp=0
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Table A.1: One-node-cluster mappings for a wall node n

Video quality q(n) =
Speed s(n) =
Wall-meas. rate wm(n) = 7’( )
Climate-meas. rate em(n) =0
Completeness c(n) = p2r(p(n))
Wall-node lifetime wl(n) = b
(TsIs + Tix - p2i(p(n))) - r(n)
Other nodes lifetime ol(n) =

(A.3b

With E the battery power in mAh, Ty and I the sample time (in h) and current (in
mA), and Tix the transmission time.

Table A.2: One-node-cluster mappings for a climate node n

Video quality qgn)=0
Speed s(n)=1
Wall-measurement rate wm(n) =0
Climate-measurement rate em(n) =r(n)
Completeness c(n) = p2r(p(n))
Wall-node lifetime wl(n) = oo

E
Other nodes lifetime ol(n) = B

With E the battery power in mAh, and
ne(n) - t

P =TI r(n) + Tixc - p2i(p(n)) - (r(n) + f(n)) +

T

with T and I the sample time (h) and current (mA), Tty the transmission time (h),
f(n) an estimate of the rate at which messages from n’s descendants are forwarded,
ne(n) the number of children of node n, I« the current drawn in receive mode (mA),
and ¢ and T the duration of a time slot and the period of the TDMA schedule (h).
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Table A.3: One-node-cluster mappings for a camera node n

Video quality qg(n) =r(n) (A.5a)
Speed s(n)=1 (A.5D)
Wall-measurement rate wm(n) =0 (A.5¢)
Climate-measurement rate em(n) =0 (A.5d)
Completeness c(n) = p2r(p(n)) (A.5e)
Wall-node lifetime wl(n) = o0 (A.5)
E
Other nodes lifetime ol(n) = B (A.5g)
With E the battery power in mAh, and
r(n . r(n ne(n) -t
Pt S i) (g )+ PR

with T and I the sample time (h) and current (mA), Tix the transmission time (h),
f(n) an estimate of the rate at which messages from n’s descendants are forwarded,
ne(n) the number of children of node n, Iy the current drawn in receive mode
(mA), and ¢ and T the duration of a time slot and the period of the TDMA schedule
(h). The rate r(n) is divided by 18, the number of camera nodes, as only one video
stream is requested at a time.
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Table A.4: Cluster-to-cluster mappings for a cluster ¢

Video quality gz(c)= Y au(i) (A.6a)
i€sub(c)

Speed s5(c) ! (A.6b)

pee s(c) = — .

L+ > ieen(e(ss(@) ™t +1)

Wall-meas. rate wmy(c) = Z wm (7) (A.6¢)
1€sub(c)

Climate-meas. rate ems(c) = Z ems (i) (A.6d)
i€sub(c)

Completeness es(e) =ces(rt(e) | 1+ Z ex(9) (A.6e)

i€ch(c)

Wall-node lifetime wl(c) = mibr% )wl(i) (A.6f)
1€5ub(C

Other nodes lifetime ols(c) = Z ol (1) (A.6g)
1€sub(c)

For combined cluster ¢, the root cluster is denoted rt(c), the set of child clusters ch(c);
sub(c) = {rt(e)} U ch(c). All metrics with sub-script ¥ are cumulative metrics that
need to be divided by the number of nodes to obtain the desired average values. The
resulting speed value needs to be divided by the TDMA-period length to obtain the

real speed in s~
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Glossary of Terms

Node

Wireless Sensor Net-
work (WSN)
Sink

Task

Routing Tree

Node degree
Cluster

Leaf cluster

Parameter

An autonomous device that has at least a processor and a
communication interface, and usually also sensors (a sensor
node).

A network of usually a large collection of sensor nodes, which
are able to communicate over wireless links.

A special node in a WSN that is assigned to collect the mea-
surements from the sensor nodes.

The function of a WSN, or the job it is supposed to perform,
which is placed under certain performance constraints. Exam-
ple: a target-tracking task is supposed to find and track target
objects in a specified area, and report the target locations back
to a central node that displays the information to the user.

A spanning tree over the network with the sink at its root, used
for the communication of data from sensors to the sink.

The number of child nodes of a node in the routing tree.

A cluster is a sub-set of the nodes involved in the task that forms
a sub-tree of the task’s routing tree.

A cluster with the special property that for each node in the
cluster, all its descendants in the WSN’s routing tree are also
included in the cluster.

A tunable property in the system, usually a hard- or software
setting. Parameters are the only aspects of the system that we
can set directly. Examples: transmission power, duty cycle,
sample rate. A controllable parameter is a parameter that the
configuration system is able to directly control, as opposed to
uncontrollable parameters.
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Glossary of Terms

Metric

Mapping
Incremental map-
ping

WSN configuration

Parameter space

Constraint

Value function

Pareto-optimal con-
figuration  (Pareto
point)

Adaptation

An measurable quantity that serves as an optimisation target.
We may place constraints on metrics, or choose to maximise
or minimise them. Quality metrics are those metrics that
are ultimately important to the task of the WSN. Examples:
detection speed, lifetime, coverage degree. Resource metrics
measure resource utilisation, which is important when mapping
multiple tasks to the same WSN.

A function that yields a vector of metrics for a given vector
of parameters. A mapping is a quantitative model of a sys-
tem/WSN.

A mapping from metric a vector to another metric vector,
typically as to combine multiple clusters in a compound cluster.
A vector of parameter values and resulting metric values for a
WSN.

A set of all possible distinct vectors of parameters for a given
node.

A user-specified bound on a metric.

The main objective function; a function that totally orders all
quality metrics.

A configuration that is not dominated by any other configu-
ration, that is, there is no other configuration that is better in
at least one quantity (dimension), while at the same time not
worst in any of the other quantities.

Updating the WSN configuration at run time, in response to
a change in the situation, e.g. changes in the environment,
moving nodes, or amended requirements.



List of Symbols and Notations

Pareto Algebra and Extensions

configuration

configuration set

quantity

dominance relation: ¢y dominates ¢;

configuration space

SRR
| A
SI

constraint set

min(C) minimisation: returns the set of Pareto-optimal configurations in C

(@ mapping function applied to ¢ (also defined for configuration sets)

Co x C1 the free product of Cy and C;

Clk abstracts the quantity with index & from C (also for sets of indices)

cNnD constrains C to D

Cvk hides quantity with index k from C (also for sets of indices)

Cak unhides quantity with index k from C (also for sets of indices)

CLk] the configuration with index k in C

clk] the value of the quantity with index & in &

L(Cr,Ca)  quality loss of approximated Pareto set Cx compared to reference set
Cr

D(Cy,C1)  quality difference between two Pareto-minimal configuration sets Co
and C;

WSN Configuration

N the set of nodes in the WSN

p vector of controllable-parameter values (parameter vector)
U vector of uncontrollable-parameter values

Sp parameter space

Spe controllable-parameter space
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154 List of Symbols and Notations

Spu uncontrollable-parameter space

SMm metric space

Swvq quality-metric space

Suir resource-metric space

D, quality constraint

D, resource constraint

g mapping to quality metrics

F. mapping to resource metrics

Smla sub-set of the metric space for a given %
Spe|T sub-set of Spe corresponding to the tree '
val value function

F,, F, F;  mappings to node, cluster and task metrics respectively

Ghe, Gee incremental node-to-cluster and cluster-to-cluster mappings

Corod product set

Ip, Iy, sets of indices to the controllable-parameter, resource-metric, and
Iuqg quality-metric quantities

Routing Tree

0(4) degree of node 4

R highest node degree in network

A degree target (degree constraint)

h(i) hop count from node ¢ to the sink

Rmax highest hop count (longest path) in network
Adaptation

dev deviation parameter of the routing-tree reconstruction algorithm
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